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28.  Availability and Replication 

This handout explains the basic issues in building highly available computer systems, and 
describes in some detail the specs and code for a replicated service with state. 

What is availability? 

A system is available if it delivers service promptly. Exactly what this means is something that 
has to be specified. For example, the spec might say that an ATM must deliver money from a 
local bank account to the user within 15 seconds, or that an airline reservation system must 
respond to user input within 1 second. The definition of availability is the fraction of offered load 
that gets prompt service; usually it’s more convenient to measure the probability p that a request 
is not serviced promptly. 

If requests come in at a certain rate, say 1/minute, with a memoryless distribution (that is, what 
happens to one request doesn’t depend on other requests; a tossed coin is memoryless, for 
example), then p is also the probability that not all requests arriving in one minute get service. If 
this probability is small then the time between bad minutes is 1/p minutes. This is called the 
‘mean time to failure’ or MTTF; sometimes ‘mean time between failures’ or MBTF is used 
instead. Changing the time scale of course doesn’t change the MTTF: the probability of a bad 
hour is 60p, so the time between bad hours is 1/60p hours = 1/p minutes. If p = .00001 then there 
are 5 bad minutes per year. In a big system something is always broken, and usually we care 
about the service that one stream of customers sees rather than about whether the system is 
perfect, so we use the availability of one terminal to measure the MTTF. 

We focus on systems that fail and are repaired. While the system is failed, it provides no service. 
After it’s repaired, it provides perfect service until it fails again. If MTTF is the mean time to 
failure and MTTR is the mean time to repair, then the availability is  

 p = MTTR/(MTTF + MTTR) 

If MTTR/MTTF is small, we have approximately 

 p = MTTR/MTTF 

Note that doubling MTTF halves p, and so does halving the MTTR. The two factors are equally 
important. This simple point is often overlooked. 

Redundancy 

There are basically two ways to make a system available. One is to build it out of components 
that fail very seldom. This is good if you can do it, because it keeps the system simple. However, 
if there are n components and each fails independently with small probability pc, then the system 
fails with probability n pc. As n grows, this number grows too. Furthermore, it is often expensive 
to make highly reliable components. 

6.826—Principles of Computer Systems   2000 

Handout 28.  Availability and Replication 2 

The other way to make a system available is to use redundancy, so that the system can work even 
if some of its components have failed. There are two main patterns of redundancy: retry and 
replication.  

Retry is redundancy in time: fail, repair, and try again. If failures are intermittent, repair doesn’t 
require any action. In this case 1/MTBF is the probability of failure, and MTTR is the time 
required to detect the failure and try again. Often the failure detector is a timeout; then the 
MTTR is the timeout interval plus the retry time. Thus in retry, timeouts are critical to 
availability. 

Replication is physical redundancy, or redundancy in space: have several copies, so that one can 
do the work even if another fails. The most common form of replication is ‘primary-backup’ or 
‘hot standby’, in which the system normally uses the primary component, but ‘fails over’ to a 
backup if the primary fails. This is very much like retry: the MTTR is the failover time, which is 
the time to detect the failure plus the time to make the backup live. This is a completely general 
form of redundancy. Error correcting codes are a more specialized form. 

Another completely general form of replication is to have several replicas that operate in 
lockstep and interact with the rest of the world only between steps. At the end of each step, 
compare the outputs of the replicas. If there’s a majority for some output value, that value is the 
output of the replicated system, and any replica that produced a different value is declared faulty 
and should be repaired. At least three replicas are needed for this to work; when there are exactly 
three it’s called ‘triple modular redundancy’, TMR for short. A common variation that simplifies 
the handling of outputs is ‘pair and spare’, which uses four replicas arranged in two pairs. If the 
outputs of a pair disagree, it is declared faulty and the other pair’s output is the system output.  

A weaker form of physical replication (that is, one that tolerates fewer failures) is an error 
correcting code. It’s easy to apply this to storing and transmitting data; we cite some examples 
below. 

A computer system has three major components: processing, storage, and communication. Here 
is how to apply redundancy to each of them. 

• In communication intermittent errors are common and retry is simply retransmitting a 
message. If messages can take different paths, component failures often look like intermittent 
errors because a retry will use different components. It’s also possible to use error-correcting 
codes (called ‘forward error correction’ in this context), but usually the error rate is low 
enough that this isn’t cost effective. 

• In storage retry is not so easy, but error correcting codes still work well. ECC memory using 
Hamming codes, the elaborate codes used on disk drives, and RAID disks are all examples of 
this. Straightforward replication, usually called ‘mirroring’, is also popular. 

• In processing error correcting codes usually can’t handle arbitrary state transitions. Retry is 
only possible if you have the old state, so it’s usually coded in a transaction system. The 
replicated state machines that we studied in handout 18 are fully general, however, and can 
make any kind of processing highly available. Using these methods to replicate a processor at 
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the instruction set level is tricky but possible.1 People also use lockstep replication at the 
instruction level, usually pair-and-spare, but such systems can’t use standard components 
above the chip level, and it’s very expensive to engineer them without single points of 
failure. As a result, they are expensive and not very successful. 

War stories 

Availability is a property of an entire system, hardware, software, and operations. There are lots 
of ways that things can go wrong. It’s instructive to study some examples. 

Ariane crash 

The first flight of the European Space Agency’s Ariane 5 rocket self-destructed 40 seconds into 
the flight. The sequence of events that led to this $400 million failure is instructive. In reverse 
temporal order, it is roughly as follows, as described in the report of the board of inquiry.2 

1. The vehicle self-destructed because the solid fuel boosters started to separate from the main 
vehicle. This decision to self-destruct was part of the design and was carried out correctly. 

2. The boosters separated because of high aerodynamic loads resulting from an angle of attack 
of more than 20 degrees. 

3. This angle of attack was caused by full nozzle deflections of the solid boosters and the main 
engine. 

4. The nozzle deflections were commanded by the on board computer (OBC) software on the 
basis of data transmitted by the active inertial reference system (SRI 2). Part of the data for 
that time did not consist of proper flight data, but rather showed a diagnostic bit pattern of the 
computer of SRI 2, which was interpreted by the OBC as flight data.  

5. SRI 2 did not send correct flight data because the unit had declared a failure due to a software 
exception.  

6. The OBC could not switch to the back-up SRI (SRI 1) because that unit had already ceased 
to function during the previous data cycle (72-millisecond period) for the same reason as SRI 
2.  

7. Both units shut down because of uncaught internal software exceptions. In the event of any 
kind of exception, according to the system spec, the failure should be indicated on the data 
bus, the failure context should be stored in an EEPROM memory (which was recovered and 
read out), and, finally, the SRI processor should be shut down. This duly happened. 

8. The internal SRI software exception was caused during execution of a data conversion from a 
64-bit floating-point number to a 16-bit signed integer value. The value of the floating-point 

                                                 
1 Hypervisor-based fault tolerance, T. Bressoud and F. Schneider; ACM Transactions on. Computing Systems 14, 1 
(Feb. 1996), pp 80 – 107. 
2 This report is a model of clarity and conciseness. You can find it at 
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html and a summary at 
http://www.siam.org/siamnews/general/ariane.htm. 
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number was greater than what could be represented by a 16-bit signed integer. The result was 
an operand error. The data conversion instructions (in Ada code) were not protected from 
causing operand errors, although other conversions of comparable variables in the same place 
in the code were protected. It was a deliberate design decision not to protect this conversion, 
made because the protection is not free, and analysis had shown that overflow was 
impossible. In retrospect, of course, we know that the analysis was faulty; since it was not 
preserved, we don’t know what was wrong with it. 

9. The error occurred in a part of the software that controls only the alignment of the strap-
down inertial platform. The results computed by this software module are meaningful only 
before liftoff. After liftoff, this function serves no purpose. The alignment function is 
operative for 50 seconds after initiation of the flight mode of the SRIs. This initiation 
happens 3 seconds before liftoff for Ariane 5. Consequently, when liftoff occurs, the function 
continues for approximately 40 seconds of flight. This time sequence is based on a 
requirement of Ariane 4 that is not shared by Ariane 5. It was left in to minimize changes to 
the well-tested Ariane 4 software, on the grounds that changes are likely to introduce bugs. 

10. The operand error occurred because of an unexpected high value of an internal alignment 
function result, called BH (horizontal bias), which is related to the horizontal velocity sensed 
by the platform. This value is calculated as an indicator for alignment precision over time. 
The value of BH was much higher than expected because the early part of the trajectory of 
Ariane 5 differs from that of Ariane 4 and results in considerably higher horizontal velocity 
values. There is no evidence that any trajectory data were used to analyze the behavior of the 
unprotected variables, and it is even more important to note that it was jointly agreed not to 
include the Ariane 5 trajectory data in the SRI requirements and specifications. 

It was the decision to shut down the processor that finally proved fatal. Restart is not feasible 
since attitude is too difficult to recalculate after a processor shutdown; therefore, the SRI 
becomes useless. The reason behind this drastic action lies in the custom within the Ariane 
program of addressing only random hardware failures. From this point of view, exception- or 
error-handling mechanisms are designed for random hardware failures, which can quite 
rationally be handled by a backup system. But a deterministic bug in software will happen in the 
backup system as well. 

Maxc/Alto memory 

The following extended saga of fault tolerance in computer RAM happened to my colleagues in 
the Computer Systems Laboratory of the Xerox Palo Alto Research Center. Many other people 
have had some of these experiences. 

One of the lab’s first projects (in 1971) was to build a time-sharing computer system named 
Maxc. Intel had just started to sell a 1024-bit semiconductor RAM chip, the Intel 1103, and it 
promised to be a cheap and reliable way to build the main memory. Of course, since it was new, 
we didn’t know whether it would really work. However, we knew that for about 20% overhead 
we could use Hamming codes to implement single error correction and double error detection, so 
that the memory system would work even if individual chips hard a rather high failure rate. We 
did this, and the memory was solid as a rock. We never saw any failures, or even any double 
errors. 
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When the time came to design the Alto personal workstation in 1972, we used the same 1103 
chips, and indeed the same memory boards. However, the Alto memory was much smaller (128 
KB instead of 3 MB) and had 16 bit words rather than the 40 bit words of Maxc. As a result, 
error correction would have added much more overhead, so we left it out; we did provide a parity 
bit for each word. For about 6 months the machines performed flawlessly, running a fairly 
vanilla minicomputer operating system that we had built, which provided a terminal on the 
screen that emulated a teletype.  

It was only when we started to run the Bravo full-screen editor (the prototype for Microsoft 
Word) that we started to get parity errors. These errors were puzzling, because the chips were 
identical to those used without incident in Maxc. When we looked closely at the Maxc system, 
however, we discovered that although the ECC circuits had been designed to report both 
corrected errors and uncorrectable errors, the software logged only uncorrectable errors; 
corrected errors were being ignored. When logging of corrected errors was implemented, it 
turned out that the 1024-bit chips were actually failing quite often, and the error-correction 
circuitry was quite busy in setting things right.3 

Investigation revealed that 1103’s are pattern-sensitive: sometimes a bit will flip when the values 
of surrounding bits are just so. The reason we didn’t see them on the Alto in the first 6 months is 
that you just don’t get enough patterns on a single-user machine that isn’t being very heavily 
used. Bravo put up lots of interesting stuff on the screen, which used about half the main 
memory to store values for its pixels, and thus Bravo made enough different patterns to tickle the 
chips. With some effort, we were able to write memory test programs that ran on the Alto, using 
lots of random test patterns, and also found errors. We never saw these errors in the routine 
testing that we did when the boards were manufactured. 

Lesson: Fault-tolerant systems tend to become fault-intolerant, because faults that are tolerated 
don’t get fixed. It’s essential to monitor the faults and repair the faulty components even though 
the system is still working perfectly. Without monitoring, there’s no way to know whether the 
system is operating with a large or a small safety margin. 

When we built the Alto 2 two years later in 1975, we used 4k RAM chips, and because of the 
painful experience with the 1103, we did put in error correction. The machine worked flawlessly. 
Two years later, however, we discovered that in one-quarter of the memory, neither error 
correction nor parity was working at all. The chips were much better that 1103’s, and in addition, 
many single-bit errors don’t actually cause any observed failure of the software. On Alto 1 we 
knew about every single-bit error because of the parity. On Alto 2 in 1/4 of the memory we 
didn’t know. Perhaps there were some failures that had no visible impact. Perhaps there were 
failures that crashed programs, but they were attributed to bugs in the software.  

                                                 
3 A couple of years later we had a similar problem with Maxc. In early January people noticed that the machine 
seemed to be slow. After a while, someone looked at the console log and discovered that over the holidays the 
memory had developed a permanent double (uncorrectable) error. The software found this error and reconfigured 
the memory without the bad region; this excluded one quarter of the memory from the running system, which 
considerably increased the amount of paging. Normally no one looked at the console log, so no one knew that this 
had happened. 
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Lesson: To test a fault-tolerant system, you have to inject all the faults the system is supposed to 
tolerate. You also need to detect all faults, and you have to test the detection mechanism as well. 

I believe this is why most PC manufacturers don’t put parity on the memory: it isn’t really 
needed because chips are pretty reliable, and if parity errors are reported the PC manufacturer 
gets blamed, whereas if random things happen the software supplier gets blamed. 

Lesson: Beauty is in the eye of the beholder. The various parties involved in the decisions about 
how much failure detection and recovery to code do not always have the same interests. 

Replication 

In the remainder of this handout we present specs and code for a variety of replication 
techniques. We start with two specs of a “strongly consistent” replicated service, which looks 
almost like a single copy to its clients. The complication is that some client requests can fail; the 
second spec constrains the failure behavior more than the first.  Then we give two codes, one 
based on primary copy and the other based on voting. Finally, we give a spec of a “loosely 
consistent” service, which is much weaker but allows much cheaper highly available code. 

Specs for consistent replication 

A consistent service executes actions just like a non-replicated service: each action is executed at 
most once, and all clients see the same sequence of actions. However, the response to a client's 
request for an action can also be that the action “failed”; in this case, the client does not know 
whether or not the action was actually done. The client may be able to figure out whether or not 
it was done by executing more actions, but the failed response gives no information. The idea is 
that a failed response may be caused by failure of the replica doing the action, or of the 
communication channel between the client and the service. 

The first spec places no constraints on the timing of failed actions. If a client requests an action 
and receives a failed response, the action may be performed at any later time. In addition, a failed 
response can be generated at any time. 

The second spec still allows actions with failed responses to happen at any later time. However, 
it allows a failed response only if the system fails (or is recovering from a failure) during the 
execution of an action. 

In practice, some constraints on when failed actions are performed would be desirable, but it 
seems hard to write a general spec of such constraints that applies to a wide range of code. For 
example, a client might like to be guaranteed that all actions, including failed actions, are done in 
the order in which the client requests them. Or, the client might like the same kind of ordering 
guarantee, but covering all clients rather than each individual one separately. 

Here is the first spec, which allows “failed” responses at any time: 
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MODULE Replication [ 
V,   % Value 
S WITH { s0: () -> S } % State 
] EXPORT Do = 

TYPE VS = [v, s] 
A = S -> VS % Action  

VAR s := S.s0() % State of service 
pending : SET A := {} % Failed actions to be done. 

APROC Do(a) -> V RAISES {failed} = << % Do a or raise failed 
 VAR vs := a(s) | s := vs.s; RET vs.v 
[] pending \/ := {a}; RAISE failed >> 

THREAD DoPending() = % Do or drop a pending failed a 
DO << VAR a :IN pending |  

pending - := {a};  
BEGIN s := a(s).s [] SKIP END >> % Do a or drop it 

[] SKIP OD 

END Replication 

Here is the second spec. Intuitively, we would like a failed response only if the service fails (by a 
crash or a network failure) sometime during the execution of the action, or if the action is 
requested while the system is recovering from a failure. The body of Do is a single atomic action 
which happens between the invocation and the return; if down is true during that interval, one 
possible outcome of the body is to raise failed. Note that an action that has made it into 
pending can be executed at an arbitrary later time, perhaps when down = false. 

MODULE Replication2 [ V, S as in Replication ] EXPORT Do = 

TYPE VS = [v, s] 
A = S -> VS % Action  

VAR s := S.s0() % State of service 
pending : SET A := {} % failed actions to be done. 
down := false % true when system has failed 
   % and not finished recovering 

PROC Do(a) -> V RAISES {failed} = << % Do a or raise failed 
% Raise failed only if the system is down sometime during the execution. Note that this  isn’t an APROC 

 VAR vs := a(s) | s := vs.s; RET vs.v 
[] down => pending \/ := {a}; RAISE failed >> 

% Thread DoPending as in Replication 

THREAD Fail() = DO << down := true >>; << down := false >> OD 
% Happens whenever a node crashes or the network fails. 

END Replication2 

There are two general ways of coding a replicated service: primary copy (also known as master-
slave, or primary-backup), and voting (also known as quorum consensus). Here we sketch the 
basic ideas of each. 
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Primary copy 

The primary copy algorithm we give here is based on one invented by Liskov and Oki.4 It codes 
a replicated state machine along the lines described in handout 18, using the Paxos consensus 
algorithm to decide the sequence of state machine actions. When things are working well, the 
clients send action requests to the replica that is currently the primary; that replica uses Paxos to 
reach consensus among all the replicas about the index to assign to the requested action, and then 
responds to the client. We only assign an index j to an action if all prior indices have been 
assigned to actions, and no later ones.  

For simplicity, we assume that every action is unique, and use the action to identify all the 
messages and outcomes associated with it. In practice, clients accomplish this by tagging each 
action with a unique ID and use the ID for this purpose. 

MODULE PrimaryCopy [ % implements Replication 

  V, S as in Replication   
  C,                                 % Client names 
  R ] EXPORT Do =                               % Replica (server) names 

TYPE VS = [v, s] 
A = S -> VS % Action  
X = ENUM[failed] % eXception result 
Data        = (Null + V + X)              % Data in message 
P        = (R + C)              % All process names 
M        = [sp: P, rp: P, a, data]              % Message: sender, receiver, 
action, data                   
J = NAT % Action index: 1, 2, ... 

There is a separate instance of consensus for each action index J. Its outcome records the agreed-
upon jth action. We achieve this by making the Consensus module of handout 18 into a CLASS 
with A as V. The Actions function maps from J to instances of the class. The processes in R run 
consensus. In a real system the primary would also be both the leader and an agent of the 
consensus algorithm, and its state would normally include the outcomes of all the already 
decided actions as well as the next available action index. This means that all the old outcomes 
will be available, so that Outcome() will never return nil for one of them. We assume this in 
what follows, and accordingly make outcome a function. 

CLASS ReplCons EXPORT allow, outcome = 

VAR outcom   : (A + Null) := nil 

APROC allow(a) = << outcome = nil => outcom := a [] SKIP >> 
FUNC  outcome() -> (A + Null) = << RET outcom >> 

END ReplCons 

We abstract the communication as a set of messages in transit among all the clients and replicas. 
This could be coded by a set of the unreliable channels of handout 21, one in each direction for 

                                                 
4 B. Liskov and B. Oki, Viewstamped replication: A new primary copy method to support highly available 
distributed systems, Proc. 7th ACM Conference on Principles of Distributed Computing, Aug. 1988. 
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each client-replica pair; this is the way most real systems do it. Note that the channel can lose or 
duplicate both requests and responses. The channel connects the Do procedure with the replica. 
The Do procedure, which is the client side of the channel, deals with losses by retransmitting. If 
there’s a failure, the result value may be lost; in this case Do raises failed as required by the 
Replication spec. 

The client code keeps trying to get a replica to handle its request. The replica proceeds as though 
it is the primary. If there’s more than one primary, there will be contention for action indexes, so 
this is not desirable. Just as with Paxos, there should be only one primary at a time. In fact, the 
primary and the Paxos leader should be the same. Usually the primary has a lease, which has 
some advantages discussed later. For simplicity, we show each replica handling only one request 
at a time; in practice, of course, they could be batched. In spite of this, there can be lots of 
request in progress at a time, since several replicas may be handling client request 
simultaneously if there is confusion about who is the primary. 

We begin with code in which the replicas only keep track of the actions, that is, the results of 
consensus. This is not very practical, since it means that they have to recompute the current state 
from scratch for every request, but it is simple. Later we consider the complications of keeping 
track of the current state. 

VAR actions : J -> ReplCons := InitActions()  
msgs : SEQ M  := {}             % multiset of messages in transit 
working : P -> (A + Null) := {} % Just for abstraction function 

% ABSTRACTION FUNCTION:  
Replication.s = AllActions(LastJ())(S.s0()).s 
Replication.pending =   working.rng \/ {m :IN msgs | m.data = nil | m.a}  
                      – Outcome.rng – {nil} 

% INVARIANT: (ALL j :IN 1 .. LastJ() | Outcome(j) # nil) 

% The client 
PROC Do(a, c) -> V RAISES {failed} = % First choose a new uid  

working(c) := a; % Just for the abstraction function 
DO VAR primary: R | % Guess the current primary 

Send(c, primary, a, nil);  
VAR a', data | (primary, a', data) := Receive(c);  

IF a' = a => IF data IS V => RET data [*] RAISE failed FI 
[*] SKIP FI % Discard responses that aren’t to a 

[] SKIP % if timeout on response 
[] RAISE failed % if too many retries 
OD; working(c) := nil % Just for the abstraction function 

% The server replicas 
THREAD DoActions(r) = % one for each replica 

DO VAR c, a, data | % of current request 
<< (c,a,data):=Receive(r); working(r):=a >>; % Primary: receive request  
data := DoAction(id, a); Send(r, c, a, data) % Do it and send response 
working(r) := nil % Just for the abstraction function 

OD 

PROC DoAction(id, a) -> Data =  
DO  VAR j | % Keep trying until id is done. 
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j := LastJ(); % Find last completed j 
IF a IN Outcome.rng => RET failed % Has a been done already? If so, failed. 
[*] j + := 1; actions(j).allow(a); % No. Try for consensus on a as action j 

Outcome(j) # nil =>  % Wait for consensus 
IF Outcome(j) = a => RET Value(j) % If we got j, Return its result. 
[*] SKIP FI % Another action got j. Try again.  

FI 
OD  
 

% These routines compute useful functions of the action history. 

FUNC Value(j) -> V = RET AllActions(j)(S.s0()).v 
% Compute value returned by j’th action; needs all outcomes <= j 

FUNC AllActions(j) -> A = RET Compose({j' :IN 1 .. j | | Outcome(j')}) 
% The composition of all the actions through j. Type error if any of them is nil. 

FUNC Compose(aq: SEQ A) -> A =  
aq # {} => RET aq.head * (* : {a :IN aq.tail | | (\ vs | a(vs.s))}) 

FUNC LastJ() -> J = RET {j' | Outcome(j') # nil}.max [*] RET 0 
% Last j for which consensus has been reached. 

FUNC Outcome(j) -> (A + Null) = RET actions(j).outcome() 

PROC InitActions() -> (J -> ReplCons) =  % Make a ReplCons for each j 
VAR acts: J -> ReplCons := {}, rc: ReplCons | 

DO VAR j | ~ acts!j => acts(j) := rc.new OD; RET acts 

% Here is the standard unreliable channel. 
APROC Send(p1, p2, id, data) = << msgs := msgs \/ {M{p1, p2, id, data}} >> 
APROC Receive(p) -> (P, ID, Data) = << VAR m :IN msgs | % Receive msg for p 

m.rp = p => msgs - := {m}; RET (m.sp, m.id, m.data) >> 
THREAD LoseOrDup() =  

DO << VAR m :IN msgs | BEGIN msgs - := {m} [] msgs \/ := {m} END >> [] SKIP OD 

END PrimaryCopy 

There is no explicit code for crashes. A crash simply resets the control state. For the client, this 
has the same practical effect as getting a failed response: you don’t know whether the action 
happened or not. For the replica, either it got consensus or it didn’t. If it did, the action has 
happened; if not, it hasn’t. Either way, client will keep trying if the replica hasn’t already sent a 
response that isn’t lost in the channel. The client may see a failed response or it may get the 
result value. 

Instead of failing if the action has already been done, we could try to return the proper result. It’s 
unreasonably expensive to always guarantee to do this, but it’s quite practical to do it for recent 
requests. This changes one line of DoAction: 

 
IF a IN Outcome.rng =>  

BEGIN RET failed [] RET Value({j | Outcome(j) = a}.choose) END 

This code is completely non-deterministic about retransmissions. As usual, it’s necessary to be 
prudent in practice, especially since talking to too many replicas may cause needless failed 
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responses. We have omitted any details about how the client finds the current primary; in 
practice, if the client talks to a replica that isn’t the primary, that replica can redirect the client to 
the current primary. Of course, this redirection might happen several times if the system is 
unstable. 

In this code replicas keep actions forever, both so that they can reconstruct the state and so that 
they can detect duplicate requests. When replicas keep the current state they don’t need all the 
actions for that, but they still need them to detect duplicates. The reliable messages of handout 26 
can’t help with this, because they work only when a sender is talking to a single receiver, and 
here there are many receivers, one for each replica. . Real systems usually don’t keep actions 
forever. Instead, they time them out, and often they tie each action to the current choice of 
primary, so that the action gets a failed response if the primary changes during its execution. To 
reconstruct the state of a very old replica, they copy the entire state from some other replica and 
then apply the most recent actions to bring it fully up to date. 

This version of the code doesn’t keep track of either the current state or the current action, but 
reconstructs them explicitly from the sequence of actions, using LastJ and AllActions. In a real 
system, the primary maintains both its idea of the last action index j and a corresponding state s. 
These satisfy the obvious invariant. In addition, the primary’s j is the latest one, except while the 
primary is getting consensus, which it can’t do atomically: 

INVARIANT (ALL r | sr(r) = AllActions(jr(r))(S.s0()).s) 
INVARIANT jr(primary) = LastJ() \/ primary is getting consensus 

This means that once the primary has obtained consensus on the action for the next j, it can 
update its state and return the corresponding result. If it doesn’t obtain this consensus, then it 
isn’t a legitimate primary. It needs to find out whether it should still be primary, and if so, bring 
its state up to date. The CatchUp procedure does the latter; we omit the code that chooses the 
primary. In practice we don’t keep the entire action history, but catch up a severely outdated 
replica by copying the state from a current one; we omit this code as well. 

VAR jr : R -> J := {* -> 0} 
sr : R -> S := {* -> S.s0()} 

PROC DoAction(id, a) -> Data =  
DO  VAR j := jr(r) | % Don’t need to search for j.  

IF << a IN Outcome.rng => RET failed % Has a been done already? If so, failed. 
[*] j + := 1; actions(j).allow(a); % No. Try for consensus on a as action j 

Outcome(j) # nil =>  % Wait for consensus 
IF Outcome(j)=a => VAR vs := a(sr(r)) | % If we got j, return its result. 

<< sr(r) := vs.s; jr(r) := j >>; RET vs.v 
[*] CatchUp(r) FI % Another action got j. Try again.  

FI 
OD  

PROC Catchup(r) = % Apply actions until you run out 
DO VAR j := jr(r) + 1, o := Outcome(j) |  

o = nil => RET; 
sr(r) := (o AS a)(sr(r)).s; jr(r) := j 

OD 
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Note that the primary is still running consensus for each action. This is necessary so that another 
replica can take over should the primary fail. It can, however, use the optimization for a 
sequence of consensus actions that is described in handout 18; this means that each consensus 
takes only one round-trip.  

When they are running normally, the other replicas will run Catchup in the background, based 
on the information they get from the consensus. If a replica gets out of touch with the consensus, 
it can run the full Catchup to get back up to date. 

We have assumed that a replica can do each action atomically. In general this will require the 
replica to use a transaction. The logging needed for the transaction can also provide the storage 
needed for the consensus outcomes.  

A further optimization is for the primary to obtain a lease. As we saw in handout 18, this means 
that it can respond to read-only requests from its copy of the state, without needing to run 
consensus. Furthermore, the other replicas can be simple read-write memories rather than active 
agents; in particular, they can be disk drives. 

Voting 

The voting algorithm sketched here is based on one invented by Dave Gifford.5 The idea is that 
each replica has some version of the state. Versions are indexed by J just as in PrimaryCopy and 
each Do produces a new version. To read, you read the state of some copy of the latest version. 
To write, you find a copy of the current (latest) version, apply the action to create a new version, 
and write the new version into enough replicas. A distributed transaction makes this operation 
atomic. A real system does the updates in place, applying the action to enough replicas of the 
current version; it may have to bring some replicas up to date first. 

Warning: Because Voting is built on distributed transactions, it isn’t easy to compare it to 
PrimaryCopy, which is only built on the basic Consensus primitive. 

The definition of ‘enough’ must ensure that both reads and writes find the latest version. The 
standard way to do this is to insist that both examine a majority of the replicas, where ‘majority’ 
is defined so that any two majorities intersect. Here majority is renamed ‘quorum’ to emphasize 
the fact that it may not be a numerical majority, and we allow for separate read and write 
quorums, since we only need to assure that any read or write sees any previous write, not 
necessarily any previous read. This distinction allows us to bias the code to make reads easier at 
the expense of writes, or vice versa. For example, we could make every replica a read quorum; 
then the only write quorum is all the replicas. This choice makes it easy to do a read, since you 
only need to reach one replica. On the other hand, writes are expensive, and in fact impossible if 
even one replica is down. 

There are many other ways to arrange the quorums. One simple scheme is to arrange the 
processes in a rectangle, make each row a read quorum, and make each row-column pair a write 
quorum. For a square with n replicas, a read quorum has n1/2 replicas and a write quorum 
2 n1/2 - 1. By changing the shape of the rectangle you can favor reads or writes. 

                                                 
5 D. Gifford, Weighted voting for replicated data. ACM Operating Systems Review 13, 5 (Oct. 1979), pp 150-162. 
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We abstract away from the details of communication and atomicity. The algorithm assumes that 
all the replicas can be updated atomically by a write, and that a replica can be read atomically. 
These atomic operations can be coded by the distributed transactions of handout 27. The 
consensus that is necessary for replication is hiding in the two-phase commit.  

The abstract state is the state of a current replica. The invariant says that every rq has a current 
version, there’s a wq in which every version is current, and two replicas with the same version 
also have the same state. 

MODULE Voting [ as in Replication, R ] EXPORT Do = % Replica (server) names 

TYPE QS = SET SET R % Quorum Sets 
RWQ = [r: QS, w: QS] 
J = Int % Version number: 1, 2, ... 

VAR sr : R -> S := (* -> S.s0()) % States of replicas 
jr : R -> J := (* -> 0) % Version Numbers of replicas 
rwq := Quorums()  % Read QuorumS 

% ABSTRACTION FUNCTION: replication.s = sr({r | jr(r) = jr.rng.max}.choose) 

% INVARIANT:    (ALL rq :IN rwq.r | jr.restrict(rq).rng.max = jr.rng.max) 
             /\ (EXISTS wq :IN rwq.w | jr.restrict(wq).rng = (jr.rng.max} 
             /\ (ALL r1, r2 | jr(r1) = jr(r2) ==> sr(r1) = sr(r2)) 

APROC Do(a) -> V = << 
IF ReadOnly(a) => % Read, not update 

VAR rq :IN rwq.r,  
    j := jr.restrict(rq).rng.max, r | jr(r) = j => 

RET a(sr(r)).v 
[*] VAR wq :IN rwq.w, % Update action 
     j := jr.restrict(wq).rng.max, r | jr(r) = j => 

j := j + 1; % new version number 
VAR vs := a(sr(r)), s := vs.s | 

DO VAR r' :IN wq | jr(r') < j =>sr(r') := s; jr(r') := j OD; 
RET vs.v 

FI >> 

FUNC ReadOnly(a) -> Bool = RET (ALL s | a(s) = s) 

APROC Quorums () -> RWQ = << 
% Chooses sets of read and write quorums such that every write quorum intersects every read or write quorum. 

VAR rqs: QS, wqs: QS | (ALL wq :IN wqs, q :IN rqs \/ wqs | q/\wq # {}) =>  
RET RWQ{rqs, wqs} >> 

END Voting 
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It’s possible to reconfigure the quorums during operation, provided that at least one of the new 
write quorums is made completely current. 

APROC NewQuorums() = <<  
VAR new := Quorums(), j:= jr.rng.max, s:= sr({r | jr(r) = jr.rng.max}.choose) | 

VAR wq :IN new.w | DO VAR r :IN wq | jr(r) < j => sr(r) := s OD; 
rwq := new 

Loosely consistent replication 

Some services have availability and response time constraints that make it impossible to 
maintain the illusion that there is a single copy. Instead, each operation is initially processed at 
one replica, and the replicas “gossip” in the background to keep each other up to date about the 
updates that have been performed. Such strategies are used in name services6, for distributing 
information such as password files, and for maintaining system binaries. We sketched a spec for 
this in the section on coherence in handout 12 on naming, and we repeat it here in a form that 
parallels our other specs. Another name for this kind of loose replication is ‘eventual 
consistency’. 

Propagating updates in the background means that when an action is processed, the replica 
processing it might not know about some earlier actions. This is reflected below by allowing an 
action to be processed using any subsequence of the earlier actions to determine the response to 
the action. Such behavior is possible (though unlikely) in distributed naming systems such as 
Grapevine7 or the domain name service8. The spec limits the nondeterminism by requiring an 
action's response to include the effects of all actions executed before the most recent Sync. If 
Sync’s are done reasonably frequently, the incoherence won’t get out of hand. A paper by 
Lampson9 goes into much more detail. 

For this to make sense as the system evolves, the actions must be defined on every state, and the 
result must be independent of the order in which the actions are applied (that is, they must all 
commute). In addition, it’s simpler if the actions are idempotent (for the same reason that 
idempotency simplifies transaction redo recovery), and we assume that as well. Thus  

 (ALL aq: SEQ A, aa: SET A | aq.set = aa ==> Compose(aq) = Compose(aa.seq))  

You can always get idempotency by tagging each action with a unique ID, as we saw with 
transactions. To make the standard read and write operations on path names described in 
handout 12 commutative and idempotent, tag each name in the path name with a version number 
or timestamp, both in the actions and in the state. 

We write the spec in two equivalent ways. The first is in the style of handout 7 on disks and file 
systems and handout 12 on naming; it keeps track of all the possible states that the service can 
get into. It would be simpler to define Sync as ss := {s} and get rid of ssNew, as we did in 

                                                 
6 also called ‘directories’ in networks, and not to be confused with file system directories 
7 A. Birrell at al., Grapevine: An exercise in distributed computing. Comm. ACM 25, 4 (Apr. 1982), pp 260-274. 
8 RFC 1034/5. You can find these at http://www.rfc-editor.org/isi.html. If you search the database for them, you will 
see information about updates. 
9 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed 
Computing, Minaki, Ontario, 1986, pp 1-10. You can find this at http://research.microsoft.com/lampson. 
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handout 7, but this is too strong for the code we have in mind. Furthermore, the extra strength 
doesn’t help the clients. DropFromSS doesn’t change the behavior of the spec, since it only drops 
states that might not be used anyway, but it does make it easier to write the abstraction function. 

MODULE LooseRepl [ V, S WITH {s0: ()->S] EXPORT Do, Sync = 

TYPE VS = [v, s] 
A = S -> VS % Action  

VAR s : S     := S.s0() % latest state  
ss : SET S := {S.s0()} % all States since end of last Sync 
ssNew : SET S := {S.s0()} % all States since start of Sync 

APROC Do(a) -> V = << 
s := a(s).s; ss := Extend(ss, a); ssNew := Extend(ssNew, a); 
VAR s0 :IN ss | RET a(s0).v >> % choose a state for result 

PROC Sync() = ssNew := {s}; << VAR s0 :IN ssNew | ss := {s0} >>; ssNew := {} 

THREAD DropFromSS() =  
DO << VAR s1 :IN ss, s2 :IN ssNew | ss - := {s1}; ssNew - := {s2} >>  
[] SKIP OD 

FUNC Extend(ss: SET S, a) -> SET S = RET ss \/ {s' :IN ss | | a(s').s} 

END LooseRepl 

The second spec remembers the state at the last Sync instead of the current state, and keeps track 
explicitly of the actions done since the last Sync. After a Sync all the actions that happened 
before the Sync started are included in s, together with some subset of later ones.  

MODULE LooseRepl2 [ V, SA WITH {s0: ()->SA] EXPORT Do, Sync = 

TYPE S = SA WITH {"+":=Apply} 
VS, A as in LooseRepl 

VAR s : S     := S.s0() % synced State (not latest) 
aa : SET A := {} % All Actions since last sync 
aaOld : SET A := {} % All Actions between last two Syncs 

APROC Do(a) -> V = <<  
VAR aa0 : SET A | aa0 <= aa \/ aaOld => % choose actions for result 

aa \/ := {a}; RET a((s + aa0)).v >> 

PROC Sync() =  
<< aaOld := aa; aa := {} >>; << s := s + aaOld; aaOld := {} >> 

THREAD DropFromAA() =  
DO << VAR a :IN aa \/ aaOld | s := s + {a}; aa - := {a}; aaOld - := {aa} >>  
[] SKIP  
OD 

FUNC Apply(s0, aa0: SET A) -> S = RET PrimaryCopy.Compose(aa0.seq)(s).s 

END LooseRepl2 
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The picture shows how the set of possible states evolves as three actions are added, assuming 
that no actions were added while Sync 6 was running, so that the only state at the end of Sync 6 
is s.   

The abstraction function from LooseRepl2 to LooseRepl constructs the states from the Synced 
state and the actions: 

ABSTRACTION FUNCTION 
LooseRepl.s     = s + aa 
LooseRepl.ss    = {aa1: SET A | aa1 <= aa | s + aa1} 
LooseRepl.ssNew = {aa1: SET A | aa1 <= aa | s + (aa1 \/ aaOld)} 

We leave the abstraction function from LooseRepl to LooseRepl2 as an exercise. 

The standard code has a set of replicas, each with a current state and a set of actions accumulated 
since the start of the last Sync; note that this is different from either spec. Typically actions have 
the form “set the value of name n to v”. Any replica can execute a Do action. During normal 
operation the replicas send actions to each other with Gossip; more detailed code would send a 
(or a set of a’s) from r1 to r2 in a message. Sync collects all the recent actions and distributes 
them to every replica. We omit the complications of catching up a replica that has missed some 
Syncs and of keeping track of the set of replicas. 
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MODULE LRImpl [ as in Replication, % implements LooseRepl2 
  R ] EXPORT Do, Sync = % Replica (server) names 

TYPE VS = [v, s] 
A = S -> VS % Action  
J = NAT % Sync index: 1, 2, ... 

VAR jr : R -> J := {* -> 0} % latest Sync here 
sr : R -> S := {* -> S.s0()} % current State here 
hsrOld : R -> S := {* -> S.so()} % history: state at last Sync 
hsOld : S := S.so() % history: state at last Sync 
aar : R -> SET A := {* -> {}} % actions since last Sync here 

APROC Do(a) -> V = << VAR r, vs := a(sr(r)) | 
aar(r) \/ := {a}; sr(r) := vs.s; RET vs.v >> 

THREAD Gossip(r1, r2) =  
DO VAR a :IN aar(r1) – aar(r2) | aar(r2) \/ := a; sr(r2) := a(sr(r2))  
[] SKIP OD 

PROC Sync() =  
VAR aa0: SET A := {},  
    done: R -> Bool := {* -> false},  
j | j > jr.rng.max => 

DO VAR r | jr(r) < j =>  % first pass: collect all actions 
<< jr(r) := j; aa0 \/ := aar(r); aar(r) := {} >> OD; 

DO VAR r | ~ done (r) =>  % second pass: distribute all actions 
<< sr(r) := sr(r) \/ aa0; done (r) := true >> OD 

 

END LRImpl 

 

6.826—Principles of Computer Systems   2000 

Handout 28.  Availability and Replication 18 

. 





6.826—Principles of Computer Systems   2000 

Handout 30.  Concurrent Caching 1 

30.  Concurrent Caching 

This handout presents several specs and codes for caches in concurrent systems. We begin with a 
spec for CoherentMemory, the kind of memory we would really like to have; it is just a function 
from addresses to data values. We also specify the IncoherentMemory that has fast code, but is 
not very nice to use. Then we show how to change IncoherentMemory so that it codes 
CoherentMemory with as little communication as possible. We describe various strategies, 
including invalidation-based and update-based strategies, and strategies using incoherent 
memory plus locking. 

Since the various strategies used in practice have a lot in common, we unify the presentation 
using successive refinements. We start with cache code GlobalImpl that clearly works, but is 
not practical to code directly because it is extremely non-local. Then we refine GlobalImpl in 
stages to obtain (abstract versions of) practical code.  

First we show how to use reader/writer locks to get a practical version of GlobalImpl called a 
coherent cache. We do this in two stages, an ideal cache CurrentCaches and a concrete cache 
ExclusiveLocks. The caches change the guards on internal actions of IncoherentMemory as 
well as on the external read and write actions, so they can’t be coded externally, simply by 
adding a test before each read or write of IncoherentMemory, but require changes to its insides.  

There is another way to use locks to get a different practical version of GlobalImpl, called 
ExternalLocks. The advantage of ExternalLocks is that the locking is decoupled from the 
internal actions of the memory system so that it can be coded separately, and hence 
ExternalLocks can run entirely in software on top of a memory system that only implements 
IncoherentMemory. In other words, ExternalLocks is a practical way to program coherent 
memory on a machine whose hardware provides only incoherent memory. 

There are many practical codes for the methods that are described abstractly here. Most of them 
originated in the hardware of shared-memory multiprocessors.1 It is also possible to code shared 
memory in software, relying on some combination of page faults from the virtual memory and 
checks supplied by the compiler. This is called ‘distributed shared memory’ or DSM.2 
Intermediate schemes do some of the work in hardware and some in software.3 Many of the 
techniques have been re-invented for coherent distributed file systems.4  

                                                 
1 J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 2nd ed., Morgan Kaufmann, 
1996, chapter 8, pp 635-754. 
2 K. Li and P. Hudak, Memory coherence in shared virtual memory systems. ACM Transactions on Computer 
Systems 7, 4 (Nov. 1989), pp 321-359. For recent work in this active field see any ISCA, ASPLOS, OSDI, or SOSP 
proceedings. 
3 David Chaiken and Anant Agarwal. Software-extended coherent shared memory: performance and cost. 
Proceedings of the 21st Annual Symposium on Computer Architecture, pages 314-324, April 1994 
(http://www.cag.lcs.mit.edu/alewife/papers/soft-ext-isca94.html). Jeffrey Kuskin et al., The Stanford FLASH 
multiprocessor. In Proceedings of the 21st International Symposium on Computer Architecture, pages 302-313, 
Chicago, IL, April 1994 (http://www-flash.stanford.edu/architecture/papers/ISCA94). 
4 M. Nelson et al., Caching in the Sprite network file system. ACM Transactions on Computer Systems 11, 2 (Feb. 
1993), pp 228-239. For recent work in this active field see any OSDI or SOSP proceedings. 
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All our code makes use of a global memory that is modeled as a function from addresses to data 
values; in other words, the spec for the global memory is simply CoherentMemory. This means 
that actual code may have a recursive structure, in which the top-level code for CoherentMemory 
using one of our algorithms contains a global memory that is coded with another algorithm and 
contains another global memory, etc. This recursion terminates only when we lose interest in 
another level of virtualization. For example,  

a processor’s memory may consist of a first level cache plus  
a global memory made up of a second level cache plus  

a global memory made up of a main memory plus  
a global memory made up of a local swapping disk plus  

a global memory made up of a file server ....  

Specs 

First we recall the spec for ordinary coherent memory. Then we give the spec for efficient but 
ugly incoherent memory. Finally, we discuss an alternative, less intuitive way of writing these 
specs. 

Coherent memory 

The first spec is for the memory that we really want, which ensures that all memory operations 
appear atomic. It is essentially the same as the Memory spec from Handout 5 on memory specs, 
except that m is defined to be total. In the literature, this is sometimes called a ‘linearizable’ 
memory. 

MODULE CoherentMemory [P, A, V] EXPORT Read, Write = 
% Arguments are Processors, Addresses and Data 

TYPE M = A -> D SUCHTHAT (\ f: A->D | (ALL a | f!a)) 
VAR m 

APROC Read(p, a) -> D = << RET m(a) >> 
APROC Write(p, a, d) = << m(a) := d >> 

END CoherentMemory 

From this point we drop the a argument and study a memory with just one location; that is, we 
study a cached register. Since everything about the specs and code holds independently for each 
address, we don’t lose anything by doing this, and it reduces clutter. We also write the p 
argument as a subscript, again to make the specs easier to read. The previous spec becomes 

MODULE CoherentMemory [P, V] EXPORT Read, Write = 
% Arguments are Processors and Data 

TYPE M = D  % Memory 
VAR m 

APROC Readp -> D = << RET m >> 
APROC Writep(d) = << m := d >> 

END CoherentMemory 
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Of course, code usually has limits on the size of a cache, or other resource limitations that can 
only be expressed by considering all the addresses at once, but we will not study this kind of 
detail here. 

Incoherent memory 

The next spec describes the minimum guarantees made by hardware: there is a private cache for 
each processor, and internal actions that move data back and forth between caches and the main 
memory, and between different caches. The only guarantee is that data written to a cache is not 
overwritten in that cache by anyone else’s data. However, there is no ordering on writes from the 
cache to main memory.  

Since this is not enough to get any useful work done, we add a Barrier synchronization 
operation that forces the cache and memory to agree. This can be used after a Write to ensure 
that an update has been written back to main memory, and before a Read to ensure that the data 
being read is current. Barrier was called Sync when we studied disks and file systems in 
handout 7. 

Note that Read has a guard Live that it makes no attempt to satisfy (hardware codes usually have 
an explicit flag called valid). Instead, there is another action MtoC that makes Live true. In a 
real system an attempt to do a Read will trigger a MtoC so that the Read can go ahead, but in Spec 
we can omit the direct linkage between the two actions and let the non-determinism do the work. 
We use this coding trick repeatedly in this handout. Another example is Barrier, which forces 
the cache to drop its data by waiting until Drop happens; if the cache is dirty, Drop will wait for 
CtoM to store its data into memory first. 

You might think that this is just specsmanship and that a nondeterministic MtoC is silly, but in 
fact transferring data from m to c without a Read is called prefetching, and many codes do it 
under various conditions: because it’s in the next block, or because a past reference sequence 
used it, or because the program executes a prefetch instruction. Saying that it can happen 
nondeterministically captures all of this behavior very simply. 

We adopt the convention that an invalid cache entry has the value nil. 

MODULE IncoherentMemory [P, A, V] EXPORT Read, Write, Barrier =      

TYPE M = D % Memory 
C = P -> (D + Null) % Cache 

VAR m : CoherentMemory.M % main memory 
c := C{* -> nil} % local caches 
dirty : P -> Bool := {*->false} % dirty flags 

% INVARIANT Inv1: (ALL p | c!p) % each processor has a cache 
% INVARIANT Inv2: (ALL p | dirtyp ==> Livep) % dirty data is in the cache 

APROC Readp -> D = << Livep => RET cp >> % MtoC gets data into cache 
APROC Writep(d)  = << cp := d; dirtyp := true >> 

APROC Barrierp = << ~ Livep => SKIP >> % wait until not in cache 

FUNC Livep -> Bool = RET (cp # nil) 
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% Internal actions 

THREAD Internalp = DO MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp [] SKIP OD 

APROC MtoCp = << ~ dirtyp => cp := m >> % copy memory to cache 
APROC CtoMp = << dirtyp => m := cp; dirtyp := false >> % copy cache to memory 
APROC CtoCp,p' = << ~ dirtyp' /\ Livep => cp' := cp >> % copy from cache p to p' 
APROC Dropp = << ~ dirtyp => cp := nil >> % drop clean data from cache 

END IncoherentMemory 

In real code some of these actions may be combined. For example, if the cache is dirty, a real 
barrier operation may do CtoM; Barrier; MtoC by just storing the data. These combinations 
don’t introduce any new behavior, however, and it’s simplest to study the minimum set of 
actions presented here. 

This memory is ‘incoherent’: different caches can have different data for the same address, so 
that reads and writes by different processors may see completely different data. Thus, it does not 
implement the CoherentMemory spec given earlier. However, after a Barrierp, cp is guaranteed 
to agree with m until the next time m changes or p does a Write.5 There are commercial machines 
whose memory systems have essentially this spec.6 Others have explored similar specs.7 

Here is a simple example that shows the contents of two addresses 0 and 1 in m and in three 
processors p, q, and r. A dirty value is marked with a *, and circles mark values that have 
changed. Initially Readq(1) yields the dirty value z, Readr(1) yields y, and Readp(1) blocks 
because cp(1) is nil. After the CtoMq the global location m(1) has been updated with z. After 
the MtoCp, Readp(1) yields z. One way to ensure that the CtoMq and MtoCp actions happen before 
the Readp(1) is to do Barrierq followed by Barrierp between the Writeq(1) that makes z 
dirty in cq and the Readp(1). 

                                                 
5 An alternative version of Barrier has the guard ~ livep \/ (cp = m); this is equivalent to the current 
Barrierp followed by an optional MtoCp. You might think that it’s better because it avoids a copy from m to cp in 
case they already agree. But this is a spec, not an implementation, and the change doesn’t affect its external 
behavior. 
6 Digital Equipment Corporation, Alpha Architecture Handbook , 1992. IBM, The PowerPC Architecture, Morgan 
Kaufmann, 1994. 
7 Gharachorloo, K., et al., Memory consistency and event ordering in scalable shared-memory multiprocessors, 
Proc. 17th Symposium on Computer Architecture, 1990, pp 15-26. Gibbons, P. and Merritt, M., Specifying 
nonblocking shared memories , Proc. 4th ACM Symposium on Parallel Algorithms and Architectures, 1992, pp 158-
168. 
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Here are the possible transitions of IncoherentMemory for a given address. This kind of state 
transition picture is the standard way to describe cache algorithms in the literature; see pages 
664-5 of Hennessy and Patterson, for example. 

Write CtoMWrite

MtoC, CtoC

Drop
live /\ ~ dirty

live /\   dirty

~ live

 

 

This is the weakest shared-memory spec that seems likely to be useful in practice. But perhaps it 
is too weak. Why do we introduce this messy incoherent memory? Wouldn’t we be much better 
off with the simple and familiar coherent memory? There are two reasons to prefer 
IncoherentMemory. 

• Code for IncoherentMemory can run faster — there is more locality and less 
communication. As we will see later in ERxternalLocks, software can batch the 
communication that is needed to make a coherent memory out of IncoherentMemory. 

• Even CoherentMemory is tricky to use when there are concurrent clients. Experience has 
shown that it’s necessary to have wizards to package it so that ordinary programmers can use 
it safely. This packaging takes the form of rules for writing concurrent programs and 
procedures that encapsulate references to shared memory. We studied these rules in handout 

6.826—Principles of Computer Systems   2000 

Handout 30.  Concurrent Caching 6 

14 on practical concurrency, under the name ‘easy concurrency’. The two most common 
examples are: 

Mutual exclusion / critical sections / monitors, which ensure that a number of references 
to shared memory can be done without interference, just as in a sequential program. 
Reader/writer locks are an important variation. 

Producer-consumer buffers. 

For the ordinary programmer only the simplicity of the package is important, not the subtlety of 
its code. We need a smarter wizard to package IncoherentMemory, but the result is as simple to 
use as the packaged CoherentMemory.  

Specifying legal histories directly 

It’s common in the literature to write the specs CoherentMemory and IncoherentMemory 
explicitly in terms of legal sequences of references in each processor, rather than as state 
machines (see the references in the previous section). We digress briefly to explain this 
approach, which is similar to what we did to specify concurrent transactions in handout 20. 

For CoherentMemoryLH, there must be a total ordering of all the Readp and Writep(v) actions 
done by the processors (for all the addresses) that 

• respects the order at each p, and 
• such that for each Read and closest preceding Write(v), the Read returns v. 

For IncoherentMemoryLH, for each address separately there must be a total ordering of the 
Readp, Writep, and Barrierp actions done by the processors that has the same properties. 
IncoherentMemory is weaker than CoherentMemory because it allows references to different 
addresses to be ordered differently. If there were only one address and no other communication 
(so that you couldn’t see the relative ordering of the operations), you couldn’t tell the difference 
between the two specs. A real barrier operation usually does a Barrier for every address, and 
thus forces all the references before it at a given processor to precede all the references after it. 

It’s not hard to show that CoherentMemoryLH is equivalent to CoherentMemory. It’s less obvious 
that IncoherentMemoryLH is almost equivalent to IncoherentMemory. There’s more to this spec 
than meets the eye, because it doesn’t say anything about how the chosen ordering is related to 
the real times at which different processors do their operations. Actually it is somewhat more 
permissive than IncoherentMemory. For example, it allows the following history 

• Initially x=1, y=1. 
• Processor p reads 4 from x, then writes 8 to y. 
• Processor q reads 8 from y, then writes 4 to x. 

For x we have the ordering Writeq(4); Readp, and for y the ordering Writep(8); Readq. 

We can rule out this kind of predicting the future by observing that the processors make their 
references in some total order in real time, and requiring that a suitable ordering exist for the 
references in each prefix of this real time order. With this restriction, the two versions of 
IncoherentMemoryLH and IncoherentMemory are equivalent. But the restriction may not be an 
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improvement, since it’s conceivable that a processor might be able to predict the future in this 
way by speculative execution. In any case, the memory spec for the Alpha is in fact 
IncoherentMemoryLH and allows this freedom. 

Coding coherent memory 

We give a sequence of refinements that implement CoherentMemory and are successively more 
practical: GlobalImpl, Current Caches, and ExclusiveLocks. Then we give a different kind 
of code that is based on IncoherentMemory. 

Global code 

Now we give code for CoherentMemory. We obtain it simply by strengthening the guards on the 
operations of IncoherentMemory (omitting Barrier, which we don’t need). This code is not 
practical, however, because the guards involve checking global state, not just the state of a single 
processor. This module, like later ones, maintains the invariant Inv3 that an address is dirty in at 
most one cache; this is necessary for the abstraction function to make sense. Note that the 
definition of Current says that the cache agrees with the abstract memory. 

We show only the code that differs from IncoherentMemory, boxing the new parts. 

MODULE GlobalImpl [P, A, V] EXPORT Read, Write = % implements CoherentMemory 

TYPE ...   % as in IncoherentMemory 
VAR ... 

% ABSTRACTION: CoherentMemory.m = (Clean() => m [*] {p | dirtyp | cp}.choose) 
 
% INVARIANT Inv3: {p | dirtyp}.size <= 1 % dirty in at most one cache 
 
APROC Readp -> D = << Currentp  => RET cp >> % read only current data 
APROC Writep(d) =  % Write maintains Inv3 

<< Clean() \/ dirtyp => cp := d; dirtyp := true >> 

FUNC Currentp = % p's cache is current? 
RET cp = (Clean() => m [*] {p | dirtyp | cp}.choose) 

FUNC Clean() = RET (ALL p | ~ dirtyp) % all caches are clean? 

% Same internal actions as IncoherentMemory. 

END GlobalImpl 

Notice that the guard on Read checks that the data in the processor’s cache is current, that is, 
equals the value currently stored in the abstract memory. This requires finding the most recent 
value, which is either in the main memory (if no processor has a dirty value) or in some 
processor's cache (if a processor has a dirty value). The guard on Write ensures that a given 
address is dirty in at most one cache. These guards make it obvious that GlobalImpl implements 
CoherentMemory, but both require checking global state, so they are impractical to code directly. 
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Code in which caches are always current 

We can’t code the guards of GlobalImpl directly. In this section, we refine GlobalImpl a bit, 
replacing some (but not all) of the global tests. We carry this refinement further in the following 
sections. Our strategy for correctness is to always strengthen the guards in the actions, without 
changing the rest of the code. This makes it obvious that we simulate the previous module and 
that existing invariants hold. The only thing to check is that new invariants hold. 

The main idea of CurrentCaches is to always keep the data in the caches current, so that we no 
longer need the Current guard on Read. In order to achieve this, we impose a guard on a write 
that allows it to happen only if no other processor has a cached copy. This is usually coded by 
having a write invalidate other cached copies before writing; in our code Write waits for Drop 
actions at all the other caches that are live. Note that Only implies the guard of 
GlobalImpl.Write because of Inv2 and Inv3, and Live implies the guard of GlobalImpl.Read 
because of Inv4. This makes it obvious that CurrentCaches implements GlobalImpl. 
CurrentCaches uses the non-local functions Clean and Only, but it eliminates Current. This is 
progress, because Read, the most common action, now has a local guard, and because Clean and 
Only just test Live and dirty, which is much simpler than Current’s comparison of cp with m. 

As usual, the parts not shown are the same as in the last module, GlobalImpl.  

MODULE CurrentCaches ... = % implements GlobalImpl 

TYPE ...   % as in IncoherentMemory 
VAR ... 

% ABSTRACTION to GlobalImpl: Identity on m, c, and dirty. 
 
% INVARIANT Inv4: (ALL p | Livep ==> Currentp) % data in caches is current 

... 
 
FUNC Onlyp -> Bool = RET {p' | Livep'} <= {p} % appears at most in p's cache 
 
APROC Readp -> D = << Livep => RET cp >> % read locally; OK by Inv4 
APROC Writep(d) =  % write locally the only copy  

<< Onlyp => cp := d; dirtyp := true >> 
 
... 
 
APROC MtoCp = << Clean() => cp := m >>  guard maintains Inv4  
... 

END CurrentCaches 

Code using exclusive locks 

The next code refines CurrentCaches by introducing an exclusive (write) lock with a Free test 
and Acquire and Release actions. A writer must hold the lock on an object while it writes, but a 
reader need not hold any lock (Live acts as a read lock according to Inv6). Thus, multiple 
readers can read in parallel, but only one writer can write at a time, and only if there are no 
concurrent readers. This means that before a write can happen at p, all other processors must 
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drop their copies; making this happen is called ‘invalidation’. The code ensures that while a 
processor holds a lock, no other cache has a copy of the locked object. It uses the non-local 
functions Clean and Free, but everything else is local. Again, the guards are stronger than those 
in CurrentCaches, so it’s obvious that ExclusiveLocks0 implements CurrentCaches. We 
show the changes from CurrentCaches.  

MODULE ExclusiveLocks0 ... = % implements CurrentCaches 

TYPE ...   % as in IncoherentMemory 
VAR ... 

lock : P -> Bool := {*->false} % p has lock on cache? 

% ABSTRACTION to CurrentCaches: Identity on m, c, and dirty. 

% INVARIANT Inv5: {p | lockp}.size <= 1 % lock is exclusive 
% INVARIANT Inv6: (ALL p | lockp ==> Onlyp) % locked data is only copy 

... 

APROC Writep(d) =  % write with exclusive lock 
<< lockp => cp := d; dirtyp := true >> 

... 
 
FUNC Free() -> Bool = RET (ALL p | ~ lockp) % no one has cache locked? 

THREAD Internalp =  
DO    MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp  
   [] Acquirep [] Releasep [] SKIP OD 

APROC MtoCp = % guard maintains Inv4, Inv6 
<< Clean() /\ (lockp \/ Free()) => cp := m >> 

APROC CtoCp,p' =  % guard maintains Inv6 
<< Free() /\ ~ dirtyp' /\ Livep => cp' := cp >> 

APROC Acquirep = << Free() /\ Onlyp => lockp :=true >> % exclusive lock is on cache 
APROC Releasep = << lockp := false >> % release at any time 

... 

END ExclusiveLocks0 

Note that this all works even in the presence of cache-to-cache copying of dirty data; a cache can 
be dirty without being locked. A strategy that allows such copying is called update-based. The 
usual code broadcasts (on the bus) every write to a shared location. That is, it combines with 
each Writep a CtoCp, p' for each live p'. If this is done atomically, we don’t need the Onlyp in 
Acquirep This is good if for each write of a shared location, the average number of reads on a 
different processor is near 1. It’s bad if this average is much less than 1, since then each read that 
goes faster is paid for with many bus cycles wasted on updates.  

It’s possible to combine updates and invalidation. They you have to decide when to update and 
when to invalidate. It’s possible to make this choice in a way that’s within a factor of two of an 
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optimal algorithm that knows the future pattern of references.8 The rule is to keep updating until 
the accumulated cost of updates equals the cost of a read miss, and then invalidate. 

Both Read and Write now do only local tests, which is good since they are supposed to be the 
most common actions. The remaining global tests are the Only test in Acquire, the Clean test in 
MtoC, and the Free tests in Acquire, MtoC, and CtoC. In hardware these are most commonly 
coded by snooping on a bus. A processor can broadcast on the bus to check that: 

• No one else has a copy (Only). 

• No one has a dirty copy (Clean).  

• No one has a lock (Free). 

It’s called ‘snooping’ because these operations always go along with transfers between cache and 
memory (except for Acquire), so no extra bus cycles are need to give every processor on the bus 
a chance to see them. 

For this to work, another processor that sees the test must either abandon its copy or lock, or 
signal false. The false signals are usually generated at exactly the same time by all the 
processors and combined by a simple ‘or’ operation. The processor can also request that the 
others relinquish their locks or copies; this is called ‘invalidating’. Relinquishing a dirty copy 
means first writing it back to memory, whereas relinquishing a non-dirty copy means just 
dropping it from the cache. Sometimes the same broadcast is used to invalidate the old copies 
and update the caches with new copies, although our code breaks this down into separate Drop, 
Write, and CtoC actions. 

Keeping dirty data locked 

In the next module, we eliminate the cache-to-cache copying of dirty data; that is, we eliminate 
updates on writes of shared locations. We modify ExclusiveLocks so that locks are held longer, 
until data is no longer dirty. Besides the delayed lock release, the only significant change is in 
the guard of MtoC. Now data can only be loaded into a cache p if it is not dirty in p and is not 
locked elsewhere; together, these facts imply that the data item is clean, so we no longer need the 
global Clean test. 

MODULE ExclusiveLocks ... = % implements ExclusiveLocks0 

TYPE ...   % as in ExclusiveLocks0 
VAR ... 

% ABSTRACTION to ExclusiveLocks0: Identity on m, c, dirty, and lock. 
 
% INVARIANT Inv7: (ALL p | dirtyp ==> lockp) % dirty data is  locked 

... 

APROC MtoCp =  % guard implies Clean()  
<< ~ dirtyp /\ (lockp \/ Free()) => cp := m >> 

                                                 
8 A. Karlin et al, Competitive snoopy caching. Algorithmica 3, 1 (1988), pp 79-119. 
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APROC Releasep = << ~ dirtyp => lockp := false >> % don't release if dirty 
... 

END ExclusiveLocks 

For completeness, we give all the code for ExclusiveLocks, since there have been so many 
incremental changes. The non-local operations are boxed. 

MODULE ExclusiveLocks[P,A,V] EXPORT Read,Write = % implements CoherentMemory 

TYPE M = D   % Memory 
C = P -> (D + Null) % Cache 

VAR m : CoherentMemory.M % main memory 
c := C{* -> nil} % local caches 
dirty : P -> Bool := {*->false} % dirty flags 
lock : P -> Bool := {*->false} % p has lock on cache? 

% ABSTRACTION to ExclusiveLocks: Identity on m, c, dirty, and lock. 

% INVARIANT Inv1: (ALL p | c!p) % every processor has a cache 
% INVARIANT Inv2: (ALL p | dirtyp ==> Livep) % dirty data is in the cache 

% INVARIANT Inv3: {p | dirtyp}.size <= 1 % dirty in at most one cache 
% INVARIANT Inv4: (ALL p | Livep ==> Currentp) % data in caches is current 
% INVARIANT Inv5: {p | lockp}.size <= 1 % lock is exclusive 
% INVARIANT Inv6: (ALL p | lockp ==> Onlyp) % locked data is only copy 
% INVARIANT Inv7: (ALL p | dirtyp ==> lockp) % dirty data is locked 

APROC Readp -> D = << Livep => RET cp >> % read locally; OK by Inv4 
APROC Writep(d) =  % write with exclusive lock 

<< lockp => cp := d; dirtyp := true >> 

FUNC Livep -> Bool = RET (cp # nil) 
FUNC Onlyp -> Bool = RET {p' | Livep'} <= {p} % appears at most in p's cache? 
FUNC Free() -> Bool = RET (ALL p | ~ lockp) % no one has cache locked? 

THREAD Internalp =  
DO    MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp  
   [] Acquirep [] Releasep [] SKIP OD 

APROC MtoCp =  % guard implies Clean()  
<< ~ dirtyp /\ (lockp \/ Free()) => cp := m >> 

APROC CtoMp = << dirtyp => m := cp; dirtyp := false >> % copy cache to memory. 
APROC CtoCp,p' =  % guard maintains Inv6 

<< Free() /\ ~ dirtyp' /\ Livep => cp' := cp >> 

APROC Dropp = << ~ dirtyp => cp := nil >> % drop clean data from cache 

APROC Acquirep = << Free() /\ Onlyp => lockp :=true >> % exclusive lock is on cache 
APROC Releasep = << ~ dirtyp => lockp := false >> % don't release if dirty 

END ExclusiveLocks 
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Practical code 

The remaining global tests are the Only test in the guard of Acquire, and the Free tests in the 
guards of Acquire, MtoC and CtoC. There are many ways to code them. Here are a few: 

• Snooping on the bus, as described above. This is only practical when you have a cheap 
synchronous broadcast, that is, in a bus-based shared memory multiprocessor. The shared bus 
limits the maximum performance, so typically such systems are not built with more than 
about 8 processors. 

• Directory-based: Keep a “directory”, usually associated with main memory, containing 
information about where locks and copies are currently located. To check Free, a processor 
need only interact with the directory. To check Only, the same strategy can be used; 
however, there is a difficulty if cache-to-cache copying is permitted—the directory must be 
informed when such copying occurs. For this reason, directory-based code usually eliminates 
cache-to-cache copying entirely. So far, there’s no need for broadcast. To acquire a lock, the 
directory may need to communicate with other caches to get them to relinquish locks and 
copies. This can be done by broadcast, but usually the directory keeps track of all the live 
processors and sends a message to each one.  

These schemes, both snooping and directory, are based on a model in which all the 
processors have uniform access to the shared memory. 

 

Shared Main Memory 

Cache Cache Cache

Processor Processor Processor 

Interconnect 

 

The directory technique extends to large-scale multiprocessor systems like Flash and 
Alewife, distributed shared memory, and locks in clusters9, in which the memory is attached 
to processors. When the abstraction is memory rather than files, these systems are often 
called ‘non-uniform memory access’, or NUMA, systems. 

                                                 
9 Kronenberg, N. et al, The VAXCluster concept: An overview of a distributed system, Digital Technical Journal 1, 
3 (1987), pp 7-21. 
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Processor Processor Processor 

Memory Memory Memory 

Cache Cache Cache 

Interconnect 
 

The directory itself can be distributed by defining a ‘home’ location for each address that 
stores the directory information for that address. This is inefficient if that address turns out to 
be referenced mainly by other processors. To make the directory’s distribution adapt better to 
usage, store the directory information for an address in a ‘master’ processor for that address, 
rather than in the home processor. The master can change to track the usage, but the home 
processor always remembers the master. Thus: 

FUNC Home(a) -> P = … % some fixed algorithm 
VAR  master: P -> A -> P % master(p) is partial 
     copies: P -> A -> SET P % defined only at the master 
     locker: P -> A -> P % defined only at the master 
INVARIANT (ALL a, p, p' |  
            master(Home(a))!a % master is defined at a’s home P, 
         /\ master(p)!a /\ master(p')!a ==>  % where it’s defined, it’s the same 
              master(p)(a) = master(p')(a) 
         /\ copies!p = (p = master(Home(a))(a)) ) % and copies is defined only at master 

The Home function is often a hash of a; it’s possible to change the hash function, but if this is 
not done atomically it must be done very carefully, because Home will be different at different 
processors and the invariants must hold for all the different Home’s. 

 

Processor 
1 

Processor 
P 

Processor 
2 

Memory Memory Memory 

Cache Cache Cache 

Interconnect 

Directory Directory Directory 

 

• Hierarchical: Partition the processors into sets, and maintain a directory for each set. The 
main directory attached to main memory keeps track of which processor sets have copies or 
locks; the directory for each set keeps track of which processors in the set have copies or 
locks. The hierarchy may have more levels, with the processor sets further subdivided, as in 
Flash. 
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There are many issues for high-performance code: communication cost, bandwidth into the 
cache into tag store, interleaving, and deadlock. The references at the start of this handout go into 
a lot of detail. 

Purely software code is also possible. This form of DSM makes V be a whole virtual memory 
page and uses page faults to catch memory operations that require software intervention, while 
allowing those that can be satisfied locally to run at full speed. A live page is mapped, read-only 
unless it is dirty; a page that isn’t live isn’t mapped.10 

Code based on IncoherentMemory 

Next we consider a different kind of code for CoherentMemory that runs on top of 
IncoherentMemory. Coherence is guaranteed using an external read/write locking discipline. 
This is an example of an important general strategy—using weaker memory together with a 
programming discipline to guarantee strong coherence. 

The code uses read/write locks, as defined earlier in the course, one per data item. There is a 
module ExternalLocksp for each processor p, which receives external Read and Write requests, 
obtains the needed locks, and invokes low-level Read, Write, and Barrier operations on the 
underlying IncoherentMemory memory. The composition of these pieces implements 
CoherentMemory. We give the code for ExternalLocksp. 

MODULE ExternalLocksp [A, V] EXPORT Read, Write = % implements CoherentMemory 

% ReadAcquirep acquires a read lock for processor p. 
% Similarly for ReadRelease, WriteAcquire, WriteRelease 

PROC Readp =  
ReadAcquirep; Barrierp; VAR d| d := IncoherentMemory.Readp; ReadReleasep; RET d 

PROC Writep(d) = WriteAcquirep; IncoherentMemory.Writep(d); Barrierp; WriteReleasep 

END ExternalLocksp 

This code does not satisfy all the invariants of CurrentCaches and its code. In particular, the 
data in caches is not always current, as stated in Inv4. It is only guaranteed to be current if it is 
read-locked, or if it is write-locked and dirty. 

Invariants Inv1, Inv2, and Inv3 are still satisfied. Invariants Inv5 and Inv6 no longer apply 
because the lock discipline is completely different; in particular, a locked copy need not be the 
only copy of an item. Let wLockPs be the set of processors that have a write-lock, and rLockPs 
be those with a read-lock.  

We thus have Inv1-3, and new Inv4a-Inv7a that replace Inv4-Inv7:   

% INVARIANT Inv4a:  % Data is current 
(ALL p | dirtyp \/ (p IN rLockPs /\ Livep) ==> Currentp()) 

                                                 
10 K. Li and P. Hudak, Memory coherence in shared virtual memory systems, ACM Transactions on Computer 
Systems 7, 4 (Nov 1989), pp 321-359. 
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% INVARIANT Inv5a: % Write lock is exclusive. 
 wLockPs.size <= 1 

% INVARIANT Inv6a: % Write lock excludes read locks. 
 wLockPs # {} ==> rLockPs = {} 

% INVARIANT Inv7a: (ALL p | dirtyp ==> p IN wLockPs) % dirty data is write-locked 

With these invariants, the identity abstraction to GlobalImpl works: 

% ABSTRACTION to GlobalImpl: Identity on m, c, and dirty. 

We note some differences between ExternalLocks and ExclusiveLocks, which also uses 
exclusive locks for writing: 

• In ExclusiveLocks, Read can always proceed if there is a cache copy. In ExternalLocks, 
Read has a stronger guard in ReadAcquire (requiring a read lock). 

• In ExclusiveLocks, MtoC checks that no other processor has a lock on the item. In 
ExternalLocks, an MtoC can occur as long as it doesn’t overwrite dirty writes. 

• In ExternalLocks, the guard for Acquire only involves lock conflicts, and does not check 
Only. (In fact, ExternalLocks doesn't use Only at all.) 

• Additional Barrier actions are required in ExternalLocks. 

• In ExclusiveLocks, the data in the cache is always current. In ExternalLocks, it is only 
guaranteed to be current for read-lock holders, and for write-lock holders who have already 
written. 

In practice we don’t surround every read and write with Acquire and Release. Instead, we take 
advantage of the rules for easy concurrency and rely on the fact that any reference to a shared 
variable must be in a critical section, surrounded by Acquire and Release of the lock that 
protects it. All we need to add is a Barrier at the beginning of the critical section, after the 
Acquire, and another at the end, before the Release. Sometimes people build these barrier 
actions into the acquire and release actions; this is called ‘release consistency’. 

Note—here we give up the efficiency of holding the lock until someone else needs it. 

Remarks 

Costs of incoherent memory 

IncoherentMemory allows a multiprocessor shared memory to respond to Read and Write 
actions without any interprocessor communication. Furthermore, these actions only require 
communication between a processor and the global memory when a processor reads from an 
address that isn’t in its cache. The expensive operation in this spec is Barrier, since the 
sequence Writep; Barrierp; Barrierq; Readq requires the value written by p to be 
communicated to q. In most code Barrier is even more expensive because it acts on all 
addresses at once. This means that roughly speaking there must be at least enough 
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communication to record globally every address that p wrote before the Barrierp, and to drop 
from p’s cache every address that is globally recorded as dirty. 

Read-modify-write operations 

Although this isn’t strictly necessary, all current codes have additional external actions that make 
it easier to program mutual exclusion. These usually take the form of some kind of atomic read-
modify-write operation, for example an atomic swap or compare-and-swap of a register value 
and a memory value. A currently popular scheme is two actions: ReadLinked(a) and 
WriteConditional(a), with the property that if any other processor writes to a between a 
ReadLinkedp(a) and the next WriteConditionalp(a), the WriteConditional leaves the 
memory unchanged and returns an indication of failure. The effect is that if the 
WriteConditional succeeds, the entire sequence is an atomic read-modify-write from the 
viewpoint of another processor, and if it fails the sequence is a SKIP. Compare-and-swap is 
obviously a special case; it’s useful to know this because something as strong as compare-and-
swap is needed to program wait-free synchronization using a shared memory. Of course these 
operations also incur communication costs, at least if the address a is shared.  

We have shown that a program that touches shared memory only inside a critical section cannot 
distinguish memory that satisfies IncoherentMemory from memory that satisfies the serial spec 
CoherentMemory. This is not the only way to use IncoherentMemory, however. It is possible to 
program other standard idioms, such as producer-consumer buffers, without relying on mutual 
exclusion. We leave these programs as an exercise for the reader.  

Caching as easy concurrency 

We developed the coherent caching code by evolving from the obviously correct GlobalImpl to 
code that has no global operations except to acquire locks. Another way to look at it is that 
coherent caching is just a variation on easy concurrency. Each Read or Write touches a shared 
variable and therefore must be done with a lock held, but there are no bigger atomic operations. 
The read lock is Live and the write lock is lock. In order to avoid the overhead of acquiring and 
releasing a lock on every memory operation, we use the optimization of holding onto a lock until 
some other cache needs it. 

Write buffering 

Hardware caches, especially the ‘level 1’ caches closest to the processor, usually come in two 
parts, called the cache and the write buffer. The latter holds dirty data temporarily before it’s 
written back to the memory (or the level 2 cache in most modern systems). It is small and 
optimized for high write bandwidth, and for combining writes to the same cache block that 
happen close together in time into a single write of the entire line. 

Invalidation 

All caching systems have some provision for invalidating cache entries. A system that 
implements CoherentMemory usually must invalidate a cache entry that is written on another 
processor. The invalidation must happen before any read that follows the write touches the entry. 
Many systems, however, provide less coherence. For example, NFS simply times out cache 
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entries; this implements IncoherentMemory, with the clumsy property that the only way to code 
Barrier is to wait for the timeout interval. The web does caching in client browsers and also in 
proxies, and it also does invalidation by timeout. A web page can set the timeout interval, though 
not all caches respect this setting. The Internet caches the result of DNS lookups (that is, the IP 
addresses of DNS names) and of ARP lookups (that is, the LAN address of an IP address). These 
entries are timed out; a client can also discard an entry that doesn’t seem to be working. The 
Internet also caches routing information, which is explicitly updated by periodic OSPF packets. 

Think about what it would cost to make all these loosely coherent schemes coherent, and 
whether it would be worth it. 

Locality and granularity  

Caching works because the patterns of memory references exhibit locality. There are two kinds 
of locality. 

• Temporal locality: if you reference an address, you are likely to reference it again in the near 
future, so it’s worth keeping that item in the cache. 

• Spatial locality: if you reference an address, you are likely to reference a neighboring address 
in the near future. This makes it worthwhile to transfer a large block of data to the cache, 
since the overhead of a miss is only paid once. Large blocks do have two drawbacks: they 
consume more bandwidth, and they introduce or increase ‘false sharing’. A whole block has 
to be invalidated whenever any part of it is written, and if you are only reading a different 
part, the invalidation makes for extra work. 

Both temporal and spatial locality can be improved by restructuring the program, and often this 
restructuring can be done automatically. For instance, it’s possible to rearrange the basic blocks 
of a program based on traces of program execution to put blocks that normally follow each other 
in traces in the same cache line or virtual memory page. 

Distributed file systems 

 A distributed file system does caching which is logically identical to the caching that a memory 
system does. There are some practical differences: 

• A DFS is usually built without any hardware support, whereas most DSM’s depend at least 
on the virtual memory system to detect misses while letting hits run at full local memory 
speed, and perhaps on much more hardware support, as in Flash. 

• A DFS must deal with failures, whereas a DSM usually crashes a program that is sharing 
memory with another program that fails. 

• A DFS usually must scale better, to hundreds or thousands of nodes. 

• A DFS has a wider choice of granularity: whole files, or a wide range of block sizes within 
files. 
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