
6.826 Principles of Computer Systems

Sample Projects

March 11, 2000

1 Air-Traffic Control

In an alternate universe, computer technology developed much faster than aviation technology. As you were
walking down Vassar street late one night, a physics experiment in an adjacent building created a time-space
singularity that transported you into this alternate universe. When you get there, you are surprised to learn
that airplanes are considered to be an extremely dangerous form of travel, because the planes are always
crashing into each other on the runways when they take off and land.

You decide to support yourself by building an air-traffic control system that manages the arrivals and
departures of airplanes to minimize the crashes. You sell the the Grand Poo-Bah of the country on the idea
by promising that there will be no more crashes. Now you have to deliver on your promise (or more precisely,
keep convincing the Grand Poo-Bah that a working system is just around the corner if he keeps giving you
more money).

Luckily, you took 6.826 the semester before your fateful trip down Vassar street, so you know to do a
design of the system in Spec before you start to hack. You should first develop a Spec that says what the
system should do. Your system will control an individual airport. Planes will come into the system in one
of two ways:

1. They request a take off slot to leave the airport.

2. They come into in your controlled airspace and request a landing slot to arrive at the airport.

Airplanes typically take one of several standard routes into and out of the airport, and you need to be
sure that there are no collisions on the runways or on the routes in the airspace surrounding the airport.

You will probably need to model the runways, the airspace, the arrival of the airplanes into the system,
and the departure of airplanes from the system. You then develop an implementation that schedules the
arrivals and departures. You can make some reasonable assumptions about the arrival rates as long as these
assumptions are made explicit. You should strive to let planes take off as soon as possible after they enter
the system to depart the airport, and let planes land as soon as possible after they enter the system to land
at an airport. Also be sure that airplanes can land before they run out of fuel.

2 White Pages Lookup System

You have recently acquired a tape of all the telephone directories in the United States. The data in this tape
was acquired by obtaining a White Pages telephone book from each region in the United States, then hiring
cheap labor to type each book into a database.

You decide to start a company to make this data available on the Internet. The spec for your system is
simple: given a name, find the number. Or, given a number, find the name. Maybe you even want to deliver
more value and let people search by name and state, city, zip code or county. Unfortunately, the data is too
big to fit into the main memory of your machine, and is even too big to fit into a single disk. You realize
you’ll have to have at least 5 disks just to hold the raw data. And you can’t just stop there. To access the

1



data fast enough, you’ll have to build indexes, and maybe even store the indexes on extra disks. If you are
really ambitious you’ll figure out how to keep the data available even if one of your disks fails.

Your job is to figure out how to architect the system. You’ll have to make reasonable assumptions about
the data set size and distribution, then come up with an implementation that works for those assumptions.

3 Flood Management System

The goal of this project is to specify and implement a flood management system. The system consists of a
set of rivers, dams, and water level sensors. When it rains upstream, the water flows into the river and the
water level rises. The water then flows downstream, raising the water level as it does so. The system should
ensure that the water level at each dam never rises above the height of the dam. If it does, the dam will fail,
catastrophically flooding the towns downstream.

Each dam has a spillway that can be opened to let more water out of the lake behind the dam in a
controlled way. When it rains and the water level rises upstream, your system must anticipate how much
water will flow into the lake behind the dam and preemptively open the spillway to ensure that there is
enough room in the lake to hold the excess water. One way to do this is to always keep the spillway
completely open. But of course this negates the purpose of the dams, which is to build up waterskiing lakes
for wealthy suburbanites. So your system should also have a target water level for each dam and attempt
to keep the lake at that level whenever possible.

You will have to model the river basin and come up with a specification that captures the requirements
of this system. We are not expecting you to do any complicated differential equations or continuous math-
ematics; you can use a very simple model that discretizes the system at the granularity of, say, hours. You
can also make some reasonable assumptions about the maximum possible change in water levels that can
take place over the space of an hour. You will then develop an implementation that decides when to open
each spillway to ensure the absence of catastrophic floods.

4 E-commerce

You are designing a modern business-to-consumer e-commerce system, similar to amazon.com. The basic
function of the system is to sell books. To do this, it needs a catalog of available books, a way for the user
to search the catalog and order books, a shopping basket that records the user’s current order, a way for the
user to provide credit card and shipping information and be charged for the order, and a way to ship the
order.

There are many extensions: remembering the user’s information from one day to the next, keeping track
of past and pending orders, handling returns, handling disputed charges, keeping track of inventory and
ordering from your distributors, aggregating orders from lots of users and recommending related books based
on this information, posting sales ranks, recording book reviews from staff or users, one-click ordering, and
expanding to other types of merchandise. There are also implementation issues: scalability and availability.
Some of these are essential for your site to stay in business, others may be important to grow your business.

The external interfaces of this system are the web pages displayed to the user, the credit card system,
and the wholesale distributors that get you books from the publishers. You don’t want to do user interface
design, so you need a suitable abstraction of a web page, and you also need suitable abstract interfaces to
payment and wholesale systems.

Of course a complete spec and implementation for amazon.com, even at a very high level, will be too
complicated. You need to choose a suitable set of functions, figure out the abstract state and specs for these
functions, and then work out a high-level implementation without getting bogged down in minor details.

5 MBTA

You are designing a train control system for the T. This system gets information from trains about current
positions, breakdowns, etc. It gets inputs from operators, both long-term information about desired sched-
ules, inventory of trains, and configuration of the track, and short-term information about how to respond

2



to unscheduled problems. It has a model of the train and track system, and it issues instructions to train
drivers and to switches and signals. It also tells operators the current state of the system.

Your job is not to do detailed modeling of the dynamics of trains, but to abstract away from this to high-
level information about the current and expected state of the system, and figure out from this information
how to operate the system safely and reasonably efficiently. For simplicity, you can assume that all trains
are the same size, and that you get perfect information about the current position and velocity of each train
and state of each signal, switch, and section of track. You can’t assume that any of these components always
carry out your instructions, because they can break. You should not do detailed user interface design, but
only a high-level description of what information operators can get and what actions they can take.

3


