6.826—Principles of Computer Systems 2000

2. Overview and Background

This is a course for computer system designers and builders, and for people who want to really
understand how systems work, especially concurrent, distributed, and fault-tolerant systems.

The course teaches you

how to write precise specifications for any kind of computer system,

what it means for an implementation to satisfy a specification, and

how to prove that it does.
It also shows you how to use the same methods less formally, and gives you some suggestions
for deciding how much formality is appropriate (less formality means less work, and often a
more understandable spec, but also more chance to overlook an important detail).

The course also teaches you a lot about the topics in computer systems that we think are the mos
important: persistent storage, concurrency, naming, networks, distributed systems, transactions,
fault tolerance, and caching. The emphasis is on

careful specifications of subtle and sometimes complicated things,

the important ideas behind good implementations, and

how to understand what makes them actually work.
We spend most of our time on specific topics, but we use the general techniques throughout. We
emphasize the ideas that different kinds of computer system have in common, even when they
have different names.

The course uses a formal language called Spec for writing specs and implementations; you can
think of it as a very high level programming language. There is a good deal of written

introductory material on Spec (explanations and finger exercises) as well as a reference manual
and a formal semantics. We introduce Spec ideas in class as we use them, but we do not devote
class time to teaching Spec per se; we expect you to learn it on your own from the handouts.

Because we write specs and do proofs, you need to know something about logic. Since many
people don't, there is a concise treatment of the logic you will need at the end of this handout.

This is not a course in computer architecture, networks, operating systems, or databases. We will
not talk in detail about how to implement pipelines, memory interconnects, multiprocessors,
routers, data link protocols, network management, virtual memory, scheduling, resource
allocation, SQL, relational integrity, or TP monitors, although we will deal with many of the

ideas that underlie these mechanisms.

Topics

General

Specifications as state machines.

The Spec language for describing state machines (writing specs and implementations).
What it means to implement a spec.

Using abstraction functions and invariants to prove that a program implements a spec.

Handout 2. Overview and Background

6.826—Principles of Computer Systems 2000

What it means to have a crash.
What every system builder needs to know about performance.

Specific

Disks and file systems.

Practical concurrency using mutexes (locks) and condition variables; deadlock.
Hard concurrency (without locking): models, specs, proofs, and examples.
Transactions: simple, cached, concurrent, distributed.

Naming: principles, specs, and examples.

Distributed systems: communication, fault-tolerance, and autonomy.
Networking: links, switches, reliable messages and connections.

Remote procedure call and network objects.

Fault-tolerance, availability, consensus and replication.

Caching and distributed shared memory.

EDrevious editions of the course have also covered security (authentication, authorization,
encryption, trust) and system management, but this year we are omitting these topics in order to
spend more time on concurrency and semantics and to leave room for project presentations.

Prerequisites

There are no formal prerequisites for the course. However, we assume some knowledge both of
computer systems and of mathematics. If you have taken 6.033 and 6.042, you should be in good
shape. If you are missing some of this knowledge you can pick it up as we go, but if you are
missing a lot of it you can expect to have serious trouble. It's also important to have a certain
amount of maturity: enough experience with systems and mathematics to feel comfortable with
the basic notions and to have some reliable intuition.

If you know the meaning of the following words, you have the necessary background. If a lot of
them are unfamiliar, this course is probably not for you.

Systems

Cache, virtual memory, page table, pipeline

Process, scheduler, address space, priority

Thread, mutual exclusion (locking), semaphore, producer-consumer, deadlock
Transaction, commit, availability, relational data base, query, join

File system, directory, path name, striping, RAID

LAN, switch, routing, connection, flow control, congestion

Capability, access control list, principal (subject)

If you have not already studied Lampson’s paper on hints for system design, you should do so as
background for this course. It is Butler Lampson, Hints for computer system desigaedings

of the Ninth ACM Symposium on Operating Systems Principlgsber 1983, pp 33-48. There

is a pointer to it on the course Web page.

Handout 2. Overview and Background

6.826—Principles of Computer Systems 2000

Programming

Invariant, precondition, weakest precondition, fixed point
Procedure, recursion, stack

Data type, sub-type, type-checking, abstraction, representation
Object, method, inheritance

Data struatres: list, hash table, binary search, B-tree, graph

Mathematics

Function, relation, set, transitive closure

Logic: proof, induction, de Morgan’s laws, implication, predicate, quantifier
Probability: independent events, sampling, Poisson distribution
Statemachine, context-free grammar

Computational complexity, unsolvable problem

If you haven'’t been exposed to formal logic, you should study the summary at the end of this
handout.

References

These are places to look when you want more information about some topic covered or alluded
to in the course, or when you want to follow current research. You might also wish to consult
Prof. Saltzer’s bibliography for 6.033, which you can find on the course web page.

Books

Some of these are fat books better suited for reference than for reading cover to cover, especially
Cormen, Leiserson, and Rivest, Jain, Mullender, Hennessy and Patterson, and Gray and Reuter.
But the last two are pretty easy to read in spite of their encyclopedic character.

Systems programming Greg Nelson, edSystems Programming with ModulafenticeHall,

1991. Describes the language, which has all the useful features of C++ but is much simpler and
less error-prone, and also shows how to use it for concurrency (a version of chapter 4 is a
handout in this course), an efficiently customizable I/O streams package, and a window system.

Performance Jon BentleyWriting Efficient ProgramsPrentice-Hall, 1982. Short, concrete,
and practical. Raj Jaiithe Art of Computer Systems Performance Analyéisy, 1991. Tells
you much more than you need to know about this subject, but does have a lot of realistic
examples.

Algorithms and data structures Robert SedgwickAlgorithms Addison-Wesley, 1983. Short,

and usually tells you what you need to know. Tom Cormen, Charles Leiserson, and Ron Rivest,
Introduction to AlgorithmsMcGraw-Hill, 1989. Comprehensive, and sometimes valuable for

that reason, but usually tells you a lot more than you need to know.

Distributed algorithms: Nancy LynchDistributed AlgorithmsMorgan Kaufmann, 1996. The
bible for distributed algorithms. Comprehensive, but a much more formal treatment than in this
course. The topic is algorithms, not systems.

Handout 2. Overview and Background

6.826—Principles of Computer Systems 2000

Computer architecture: John Hennessy and David Pattergdomputer Architecture: A

Quantitative Approach2nd edition, Morgan Kaufmann, 1995. The bible for computer
architecture. The second edition has lots of interesting new material, especially on
multiprocessor memory systems and interconnection networks. There’s also a good appendix on
computer arithmetic; it's useful to know where to find this information, though it has nothing to
do with this course.

Transactions, data bases, and fault-tolerancelim Gray and Andreas Reutéransaction
Processing: Concepts and Technigudsrgan Kaufmann, 1993. The bible for transaction
processing, with much good material on data bases as well; it includes a lot of practical
information that doesn’t appear elsewhere in the literature.

Networks: Radia Perlmarinterconnections: Bridges and Routefgidison-Wesley, 1992. Not
exactly the bible for networking, but tells you nearly everything you might want to know about
how packets are actually switched in computer networks.

Distributed systems Sape Mullender, edDistributed System®nd ed., Addison-Wesley, 1993.

A compendium by many authors that covers the field fairly well. Some chapters are much more
theoretical than this course. Chapters 10 and 11 are handouts in this course. Chapters 1, 2, 8, anc
12 are also recommended. Chapters 16 and 17 are the best you can do to learn about real-time
computing; unfortunately, that is not saying much.

User interfaces Alan CooperAbout FaceIDG Books, 1995. Principles, lots of examples, and
opinionated advice, much of it good, from the original designer of Visual Basic.

Journals

You can find all of these in the LCS reading room. The cryptic strings in brackets are call
numbers there. You can also find the last few years of the ACM publications in the ACM digital
library at www.acm.org.

For the current literature, the best sources are the proceedings of the following conferences. ‘Sig’
is short for “Special Interest Group”, a subdivision of the ACM that deals with one field of
computing. The relevant ones for systems are SigArch for computer architecture, SigPlan for
programming languages, SigOps for operating systems, SigComm for communications, SigMod
for data bases, and SigMetrics for performance measurement and analysis.

Symposium on Operating Systems Principles (SOSP; published as special issues of ACM
SigOpsOperating Systems Reviefall of odd-numbered years) [P4.35.06]

Operating Systems Design and Implementation (OSDI; Usenix Association, now published
as special issues of ACBIigOps Reviewfall of evennumbered years, except spring 1999
instead of falll998) [P4.35.U71]

Architectural Support for Programming Languages and Operating Systems (ASPLOS;
published as special issues of ACM Sig@gzerating Systems Revie8igArchComputer
Architecture Newsor SigPlan Noticesfall of evennumbered years) [P6.29.A7]

Handout 2. Overview and Background

6.826—Principles of Computer Systems 2000

Applications, Technologies, Architecture, and Protocols for Computer Communication,
(SigComm conference; published as special issues of ACM SigGaonmputer
Communication Revievannual) [P6.24.D31]

Principles of Distributed Computing (PODC; ACM; annual) [P4.32.D57]
Very Large Data Bases (VLDB; Morgan Kaufmann; annual) [P4.33.V4]

International Symposium on Computer Architecture (ISCA; published as special issues of
ACM SigArch Computer Architecture Neywannual) [P6.20.C6]

Less up to date, but more selective, are the journals. Often papers in these journals are revised
versions of papers from the conferences listed above.

ACM Transactions on Computer Systems
ACM Transactions on Database Systems
ACM Transactions on Programming Languages and Systems
There are often good survey articles in the less technical IEEE journals:
IEEE Computer Networks CommunicationSoftware
The Internet Requests for Comments (RFC’s) can be reached from

http://ds.internic.net/ds/rfc-index.html

Handout 2. Overview and Background 5

6.826—Principles of Computer Systems 2000

Rudiments of logic

Propositional logic

The basic type iBool , which contains two elementse andfalse . Expressions in these
operators (and the other ones introduced later) are called ‘propositions’.

Basic operators.These arél (and),[(or), and~ (not)! The meaning of these operators can be
conveniently given by a ‘truth table’ which lists the valua of b for each possible

combination of values af andb (the operators on the right are discussed later) along with some
popular names for certain expressions and their operands.

negation conjunction disjunction equality implicatipn
not and or implies
a b ~a a [b a [b a=b a zDb a Ob
T T F T T T F T
T F F T F T F
F T T F T F T T
F F F F T F T
name of conjunct disjunct antecedent
name ob conjunct disjunct consequent

Note: In Spec we write=> instead of thé] that mathematicians use for implication. Logicians
write O for implication, which looks different but is shaped like thegart of O .

In case you have an expression that you can't simplify, you can always work out its truth value
by exhaustively enumerating the cases in truth table style. Since the table has only four rows,
there are only 16 Boolean operators, one for each possible arrangemeantsfin a column.

Most of the ones not listed don’t have common names, though ‘not and’ is called ‘nand’ and ‘not
or' is called ‘nor’ by logic designers.

TheOandO operators are
commutative and
associative and
distribute over each other.
That is, they are just like (times) and- (plus) on integers, except thatoesn't distribute over:
a+(b*c) Zz(@a+b)*(@a+c)
but O does distribute over:
a Ob Oc)=(a Ob) O(a Oc)
An operator that distributes ovEris called ‘conjunctive’; one that distributes oveis called
‘disjunctive’. Soboth O and are both conjunctive and disjunctive. This takes some getting used
to.

11t's possible to write all three in terms of the single operator ‘nor’ or ‘nand’, but our goal is clarity, not minimality.

Handout 2. Overview and Background 6

6.826—Principles of Computer Systems 2000

The relation between these operators-aiggiven by DeMorgan’s laws (sometimes called the
“bubble rule” by logic designers), which say that you can puskide] or O by flipping from
one to the other:

~(@ 0Ob) = ~a O~b

~(@ 0Ob) = ~a O~b

Becauseool is the result type of relations like we can write expressions that mix up relations
with other operators in ways that are impossible for any other type. Notably
(a=b) = (@ Ob) O(~a 0O-~b))

Some people feel that the outer = in this expression is somehow different from the inner one, and

write it =. Experience suggests, however, that this is often a harmful distinction to make.

Implication . We can define an ordering 8nol with false > true , that is false is greater
thantrue . The non-strict version of this ordering is called ‘implication’ and writte(rather
than= or >= as we do with other types; logicians writéljtwhich also looks like an ordering
symbol). Satrue [false) = false (read this as:tfue is greater than or equal ftgse
is false) but all other combinations ate . The expressioa [b is pronounceda implies
b”, or “if a thenb”.2

There are lots of rules for manipulating expressions contalihingpe most useful ones are
given below. If you remember that is an ordering you'll find it easy to remember most of the
rules, but if you forget the rules or get confused, you can turil tiveo [J by the rule

@ Ob) =-a Ob |
and then just use the simpler rules{if], and~. So remember this even if you forget
everything else.

The point of implication is that it tells you when one proposition is stronger than another, in the

sense that if the first one is true, the second is also true (becauseaifdooth 0 b aretrue ,
thenb must barue since it can't béalse).3 So we use implication all the time when reasoning
from premises to conclusions. Two more ways to pronoanceb are ‘a is stronger than”

and ‘b follows froma”. The second pronunciation suggests that it's sometimes useful to write
the operands in the other orderpa8l a , which can also be pronouncedi$ weaker thaa” or

“b only if a”; this should be no surprise, since we do it with other orderings.

Of course, implication has the properties we expect of an ordering:

Transitive: Ifa 0 b andb O ¢ thena O ¢ .4

2 |t sometimes seems odd tiate impliesb regardless of what is, but the “if ... then” form makes it clearer
what is going on: ifalse istrue you can conclude anything, but of course it isn’t. A proposition that implies
false is called ‘inconsistent’ because it implies anything. Obviously it's bad to think that an inconsistent

proposition is true. The most likely way to get into this hole is to think that each of a collection of innocent looking

propositions is true when their conjunction turns out to be inconsistent.

3 It may also seem odd thatse > true rather than the other way around, sitrae seems better and so
should be bigger. But in fact if we want to conclude lots of things, being cléslseto is better becausefilse

is true we can conclude anything, but knowing that is true doesn’t help at all. Strong propositions are as
close tofalse as possible; this is logical brinkmanship. For exangléb is closer tdalse thana (there are

more values of the variablasandb that make ifalse), and clearly we can conclude more things from it than from
a alone.

4We canalsowritethiga Ob) O® Oc¢) O Oc).

Handout 2. Overview and Background 7

6.826—Principles of Computer Systems 2000

Reflexive:a O a .
Anti-symmetric: Ifa O b andb O a thena=b .5

Furthermore;- reverses the sense of implication (this is called the ‘contrapositive’):
(@ Ob) = (~b 0 ~a)
More generally, you can move a disjunct on the right to a conjunct on the left by negating it.
Thus
(@ Ob Oc) = (a O~b O c)
As special cases in addition to the contrapositive we have
(@ O0b) =(a O~b 0O false) = ~(a O~b)
(@ O b) = (true 0 ~a 0Ob) = false
sincefalse andtrue are the identities fdr andl.

Ofalse =~a Ob
O~a Ob =~a Ob

We say that an operatoy is ‘monotonic’ in an operand if replacing that operand with a stronger
(or weaker) one makes the result stronger (or weakegidely, bp is monotonic in its first
operand” means thataf 00 b then(aop c) 0 (bopc) .BothOandOare monotonic; in

fact, any conjunctive operator is monotonic, becauselif b thena=(a [Ob) , Soaopc=

(@ Ob)opc=aopc Obopc [bopec.

If you know what a lattice is, you will find it useful to know that the set of propositions forms a
lattice with(as its ordering and (remember, thinkbfas “greater than or equal”):

top =false
bottom =true
meet =00 least upper bound, &0 Ob) O a and & Ob) O b
join =0 greatest lower bound, s®o (0 (a [Ob) andb O (@ Ob)

This suggests two more expressions that are equivalenfta :

@ Ob=@=(@a Oby) ‘and’ing a weaker term makes no difference,

because [0 b iff a= least upper bound(b).

@ Ob=b=(Oby) ‘or'ing a stronger term makes no difference,

becausea [0 b iff b= greatest lower bounay(b).
Predicate logic

Propositions that have free variables, ikes orx<3 [x<5 , demand a little more

machinery. You can turn such a proposition into one without a free variable by substituting some

value for the variable. Thus#fx) isx<3 thenP(5) is5<3="false . To get rid of the free
variable without substituting a value for it, you can take the ‘and’ or ‘or’ of the proposition for
all the possible values of the free variable. These have special names andénotation

Ox|PX) = P(x1) Opx2) 0O.. for allx, P(x) . In Spec,

(ALL X | P(x)) or O: {x | P(x)}

5Thus(a=b)=(a
written “a iff b”.

6 There is no agreement on what symbol should separatextiee Ox from theP(x) . We use ‘|’ here as Spec does,
but other people use ‘.’ or " or just a space, or wfitex) and(Ox) . Logicians traditionally writéx) and(Ox) .

Ob Ob O a),whichiswhya=b is sometimes pronounced if and only ifb” and

Handout 2. Overview and Background 8

6.826—Principles of Computer Systems 2000

Ox| P(x) = P(x1) Opx2) 0O.. there exists ar such thab(x) . In Spec,

(EXISTS x | P(x)) or : {x| P(x)}

Here thexi range over all the possible values of the free varidblés. first is called ‘universal
guantification’; as you can see, it corresponds to conjunction. The second is called ‘existential
guantification’ and corresponds to disjunction. If you remember this you can easily figure out
what the quantifiers do with respect to the other operators.

In particular, DeMorgan’s laws generalize to quantifiers:
~(Ox]PX) = (Ox | ~P(x))
~(Ox|PX) = (Ox|~P(x))

Also, becausé&l and are conjunctive and therefore monotomi@nddare conjunctive and
therefore monotonic.

It is not true that you can reverse the order ahd, but it's sometimes useful to know that
havingOfirst is stronger:
Oyl O x|Pxy) 0 Ox| OylPXxy)

Intuitively this is clear: g that works for every can surely do the job for each particwar

If we think of P as a relation, the consequent in this formula say®tisabtal (relates every to
somey). It doesn't tell us anything about how to fingt ¢hat is related te. As computer

scientists, we like to be able to compute things, so we prefer to have a function that computes
or the set of’s, fromx. This is called a ‘Skolem function’; in Spec you whtéunc (Or P.setF

for the set)P.func is total ifP is total. Or, to turn this around, if we have a total functisuich
thatO x | P(x, f(x)) , then certainlyix| DOy|P(xY) ; in fact,y = f(x) will do.

Amazing.

7 In general this might not be a countable set, so the conjunction and disjunction are written in a somewhat
misleading way, but this complication won’t make any difference to us.

Handout 2. Overview and Background 9

6.826—Principles of Computer Systems 2000

Summary of logic
TheOandO operators are commutative and associative and distribute over each other.

DeMorgan’s laws: ~(a 0Ob) = ~a O~b

~(a 0Ob) = ~a

Implication: (@ Ob) =-~a

Implication is the ordering in a lattice (a partially ordered set in which every subset has a least

upper and a greatest lower bound) with

top =false
bottom =true
meet =0
join =0

For allx, P(x) :

Ox|P(X) = P(x1)

There exists ar such thaP(x):

Ox | P(x) = P(x1)

Index for logic

~, 6

and, 6

antecedent, 6
Anti-symmetric, 8
associative, 6

bottom, 8
commutative, 6
conjunction, 6
conjunctive, 6
consequent, 6
contrapositive, 8
DeMorgan’s laws, 7, 9
disjunction, 6
disjunctive, 6
distribute, 6
existential quantification, 9
EXISTS, 9

follows from, 7

free variables, 8
greatest lower bound, 8
ifathenb, 7
implication, 6, 7

join, 8

lattice, 8

least upper bound, 8

Handout 2. Overview and Background

sofalse [true

least upper bound, &0 [Ob) 0O a
greatest lower bound, so [0 (a Ob)

Opx2)y 0O..

Opx2) O..

meet, 8
monotonic, 8
negation, 6

not, 6

only if, 7
operators, 6

or, 6

ordering on Bool, 7
predicate logic, 8
propositions, 6
quantifiers, 9
reflexive, 8
Skolem finction, 9
stronger than, 7
top, 8

transitive, 8

truth table, 6
universal quantification, 9
weaker than, 7

10

6.826—Principles of Computer Systems 2000

3. Introduction to Spec

This handout explains what the Spec language is for, how to use it effectively, and how it differs
from a programming language like C, Pascal, Clu, Java, or Scheme. Spec is very different from
these languages, but it is also much simpler. Its meaning is clearer and Spec programs are more
succinct and less burdened with trivial details. The handout also introduces the mairctons

that are likely to be unfamiliar to a programmer. You will probably find it worthwhile to read it
over more than once, until those constructs are familiar.

Spec is a language for writing precise descriptions of digital systems, both sequential and
concurrent. In Spec you can write something that differs from a practical implementation (for
instance, one written in C) only in minor details of syntax. This sort of thing is usually called a
program. Or you can write a very high level description of the behavior of a system, usually
called a specification. A good specification is almost always quite different from a good
program. You can use Spec to write either one, but not the same style of Spec. The flexibility of
the language means that you need to know the purpose of your Spec in order to write it well.

Most people know a lot more about writing programs than about writing specs, so this
introduction emphasizes how Spec differs from a programming language and how to use it to
write good specs. It does not attempt to be either complete or precise, but other handouts fill
these needs. THgpec Reference Manuglandout 4) describes the language completely; it gives
the syntax of Spec precisely and the semantics inforn#dthynic Semantics of Spétandout 9)
describes precisely the meaning of an atomic command; here ‘precisely’ means that you should
be able to get an unambiguous answer to any question. The section “Non-Atomic Semantics of
Spec” in handout 17 on formal concurrency describes the meaning of a non-atomic command.

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. Dijkstra Discipline of ProgrammingPrentice-Hall, 1976) as extended

by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calcé@y TOPLASL], 4, Oct.

1989, pp 517-561). The notation for expressions is derived from mathematics.

This handout starts with a discussion of specifications and how to write them, with many small
exanples of Spec. Then there is an outline of the Spec language, followed by three extended
examples of specs and implementations. At the end are two handytearepage summaries,

one of the language and one of the official POCS strategy for writing specs and implementations.

Handout 3. Introduction to Spec 1

6.826—Principles of Computer Systems 2000

What is a specification for?

The purpose of a specification is to communicate precisely all the estmtiabout the
behavior of a system. The important words in this sentence are:

communicate The spec should tell both the client and the implementer what each needs

to know.

precisely We should be able to prove theorems or compile machine instructions
based on the spec.

essential Unnecessary requirements in the spec may confuse the client or make it
more expensive to implement the system.

behavior We need to know exactly what we mean by the behavior of the system.

Communication

Spec mediates communication between the client of the system and its implementer. One way to
view the specification is as a contract between these parties:

The client agrees to depend only on the system behavior expressed in the spec; in return it
can count on the implementation to provide a system that actually does behave as the spec
says it should.

The implementer agrees to provide a system that behaves according to the spec; in return it is
free to arrange the internals of the system however it likes, and it does not have to deliver
anything not laid down in the spec.

Usually the implementer of a spec is a programmer, and the client is another programmer.
Usually the implementer of a program is a compiler or a computer, and the client is a
progranmer.

Behavior

What do we mean by behavior? In real life a spec defines not only the functional behavior of the
system, but also its performance, cost, reliability, availability, size, weight, etc. In this course we
will deal with these matters informally if at all. The Spec language doesn’t help much with them.

Spec is concerned only with the possible state transitions of the system, on the theory that the
possible state transitions tell the complete story of the functional behavior of a digital system. So
we make the following definitions:

A stateis the values of a set of names (for instare®,color=red).

A historyis a sequence of states such that each pair of adjacent states is a transition of the
system (for instancer1; x=2; x=5 is the history if the initial state is1 and the
transitions are “ik=1 thenx:=x+1 "and“ifx=2 thenx:=2*x+1 .

A behavioris a set of histories (a non-deterministic system can have more than one history).

Handout 3. Introduction to Spec 2

6.826—Principles of Computer Systems 2000

How can we specify a behavior?

One way to do this is to just write down all the histories in the behavior. For example, if the state
just consists of a single integer, we might write

111111111111111111
121111111111111111

121212121212121212
12345123123456780910
The example reveals two problems with this approach:

The sequences are long, and there are a lot of them, so it takes a lot of space to write them
down. In fact, in most cases of interest the sequences are infinite, so we can'’t actually write
them down.

It isn't too clear from looking at such a set of sequences what is really going on.

Another description of this set of sequences from which these examples are drawn is “18
integers, each one eitheor one more than the preceding one.” This is concise and
understandable, but it is not formal enough either for mathematical reasoning or for directions to
a computer.

Precise

In Spec the set of sequences can be described in many ways, for example, by the expression
{s:SEQInt| s.size=18

A(ALLi: Int| 0 <=iAi< s.size ==>
s()=1V(i>0ANs()=s(-1)+1))}

Here the expression {n} s very close to the usual mathematical notation for defining a set.
Read it as “The set all s which are sequences of integers suchdbat = 18 and ...". Spec
sequences are indexed fromThe(ALL ...) is a universally quantified predicate, anrc

stands for implication, since Spec uses the more familiéor ‘then’ in a guarded command.
Throughout Spec the * symbol separates a declaration of some new names and their types from
the scope in which they are meaningful.

Alternatively, here is a state machine that generates the sequences we want as the successive
values of the variablie. We specify the transitions of the machine by starting with primitive
assignment commanasd putting them together with a few kinds of compound commands.
Each command specifies a set of possible transitions.
VAR, j|
<«<i=1;j:=1>>;
DO<<j<18=>BEGINi:=1[i:=i+1END;j:=j+1>>0D

Here there is a good deal of new notation, in addition to the familiar semicolons, assignments,
and plus signs.

Handout 3. Introduction to Spec 3

6.826—Principles of Computer Systems 2000

VAR, j | introduces the local variablesandj with arbitrary values. Becausebinds
more tightly than , the scope of the variables is the rest of the example.

The<<..>> brackets delimit the atomic actions or transitions of the state machine. All
the changes inside these brackets happen as one transition of the state machine.

j<18=>.. is a transition that can only happen wherg . Read it as “if <18
then .. ". Thej<18 is called gguard If the guard is false, we say that the entire
commandails.

i=1[i=i+1 is anon-deterministid¢ransition which can either seto 1 or
increment it. Rea@ as ‘or’.

TheBEGIN ... END brackets are just brackets for commands, like { ... } in C. They are there
because> binds more tightly than thg operator inside the brackets; without them the
meaningwould be “either set to 1 if j<18 or increment andj unconditionally”.

Finally, theDO ... OD brackets mean: repeat the transition as long as possible.
Eventuallyj becomedas and the guard becomes false, so the command insid®the
obDfails and can no longer happen.

The expression approach is better when it works naturally, as this example suggests, so Spec has
lots of facilities for describing values: sequences, sets, and functions as well as integers and
booleans. Usually, however, the sequences we want are too complicated to be conveniently
described by an expression; a state machine can describe them much more easily.

State machines can be written in many different ways. When each transition involves only

simple expressions and changes only a single integer or boolean state variable, we think of the
state machine as a program, since we can easily make a computer exhibit this behavior. When
there are transitions that change many variables, non-deterministic transitions, big values like
sequences or functions, or expressions with quantifiers, we think of the state machine as a
specification, since it may be much easier to understand and reason about it, but difficult to make
a computer exhibit this behavior. In other words, large atomic actions, non-determinism, and
expressions that compute sequences or functions are hard to implement. It may take a good deal
of ingenuity to find an implementation that has the same behavior but uses only the small,
deterministic atomic actions and simple expressions that are easy for the computer.

Essential

The hardest thing for most people to learn about writing specs & $ip&C is not a programi

spec defines the behavior of a system, but unlike a program it need not, and usually should not,
give any practical method for producing this behavior. Furthermore, it should pin down the
behavior of the system only enough to meet the client’s needs. Details in the spec that the client
doesn’'t need can only make trouble for the implementer.

The example we just saw is too artificial to illustrate this point. To learn more about the
difference between a spec and an implementation consider the following:

Handout 3. Introduction to Spec 4

6.826—Principles of Computer Systems 2000

CONST eps := 10**-8

APROC SquareRootO(x: Real) -> Real =
<<VARY : Real | Abs(x - y*y) < eps => RET y >>

(Spec as described in the reference manual doesn't lRaeg a@ata type, but we’ll add it for the
purpose of this example.)

The combination o¥ARand=> is a very common Spec idiom; read it as “choogesach that

Abs(x - y*y) < eps and dorRET y”. Why is this the meaning? TheRmakes a choice of any

Real as the value of, but the entire transition on the second line cannot occur unless the guard
is true. The result is that the choice is restricted to a value that satisfies the guard.

What can we learn from this example? First, the resulityedreRoot0(x) is not determined by

the value ok; any result whose square is withigs of x is possible. This is whgquareRoot0

is written as a procedure rather than a function; the result of a function has to be determined by
the arguments and the current state, so that the value of as®apHikei(x) = f(x) will be

true . In other wordsSquareRoot0 is non-deterministic.

Why did we write it that way? First of all, there might not be Rewy (that is, any floating-point
number of the kind used to represraal) whose square exactly equals Second, we may not

want to pay for an implementation that gives the closest possible answer. Instead, we may settle
for a less accurate answer in the hope of getting the answer faster.

You have to make sure you know what you are doing, though. This spec allows a negative result,
which is perhaps not what we really wanted. We could have written (highlighting changes with
boxes):

APROC SquareRoot1(x: Real) -> Real =

<<VARY:Real |y >= 0\ Abs(x - y*y) < eps => RET y >>

to rule that out. Also, the spec produces no resuk § , which means thatquareRoot1(-1)
will fail (see the section on commands for a discussion of failure). We might prefer a total
function that raises an exception:

APROC SquareRoot2(x: Real) -> Real RAISES[{undefined} =

\
<< x>F0=>VARY:Real|y>=0AAbs(x-y*y) <eps =>RETy
[RAISE undefined >>]

The[*] s ‘else’; it does its second operand iff the first one fails. Exceptions in Spec are much
like exceptions ircLuU. An exception is contagious: once started IRABSE it causes any

containing expression or command to yield the same exception, until it runs into an exception
handler (not shown here). TRaISES clause of a routine declaration must list all the exceptions
that the procedure body can generate, eith&A$ES or by invoking another routine.

An implementation of this spec would look quite different from the spec itself. Instead of the
existential quantifier implied by thear y, it would have an algorithm for finding for

1 We could accommodate this fact of life by specifying the closest floating-point number. This would still be non-
deterministic in the case that two such numbers are equally close, so if we wanted a deterministic spec we would
have to give a rule for choosing one of them, for instance, the smaller.

Handout 3. Introduction to Spec 5

6.826—Principles of Computer Systems 2000

instance, Newton’s method. In the algorithm you would only see operations that have obvious
implementations in terms of the load, store, arithmetic, and test instructions of a computer.
Probably the implementation would be deterministic.

Another way to write these specs is as functions that return the set of possible answers. Thus

SquareRoots1(x: Real) -> SET Rdal= |
RET {y : Real | y >= 0 A Abs(x - y*y) < eps}

0

Note that the form inside tHe} set constructor is the same as the guard oREfieTo get a
single result you can use the setisose method:SquareRoots1(2).choose .2

In the next section we give an outline of the Spec language. Following that are three extended
examples of specs and implementations for fairly realistic systems. At the end is a one-page
summary of the language.

2 := squareRoots1(x).choose (using the function) is almost the same asSquareRoot1(x) (using the
procedure). The difference is that becattsmse is a function it always returns the same element (even though we
don’t know in advance which one) when given the same set, and hencSquiaesRoots1 is given the same

argument. The procedure, on the other hand, is non-deterministic and can return different values on successive calls

Handout 3. Introduction to Spec 6

6.826—Principles of Computer Systems 2000

An outline of the Spec language

The Spec language has two main parts:

* An expressiordescribes how to compute a result (a value or an exception) as a function of
other values: either literal constants or the current values of state variables.

* A commandiescribes possible transitions of the state variables. Another way of saying this
is that a command is a relation on states: it allows a transitiorsfrdms2 iff it relatess1 to
s2.

Both are based on tistate which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the sequence example above thapgjre

Actually a command relates statetdcomesan outcome is either a state (a normal outcome)
or a state together with an exception (an exceptional outcome).

There are two kinds of commands:

» An atomiccommand describes a set of possible transitions, or equivalently, a set of pairs of
states. Fonstance, the commardi:=i+1>> describes the transitions - i=2,
i=2 —i=3 , etc. (Actually, many transitions are summarized=by- i=2 , for instance(=1,
i=1) - (=2, j=1) and (i=1, j=15) - (i=2, j=15)). If a command allows more than one
transition from a given state we say it is non-deterministic. For instance, on page 3 the
commandEGINi:=1[i:=i+1END allows the transitions2 -i=1 and
i=2 -i=3.

» A non-atomiccommand describes a set of sequences of states (by contrast with the set of
pairs for an atomic command). More on this below.

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.

The meaning of an expression, which is a function from states to values (or exceptions), is much
simpler than the meaning of an atomic command, which is a relatiwedre states, for two
reasons:

* The expression yields a single value rather than an entire state.

¢ The expression yields at most one value, whereas a non-deterministic command can yield
many final states.

A atomic command is still simple, much simpler than a non-atomic command, because:

» Taken in isolation, the meaning of a non-atomic command is a relation between an initial
state and a history. Again, many histories can stem from a single initial state.

* The meaning of the composition of two non-atomic commands is not any simple
combination of their relations, such as the union, because the commands can interact if they
share any variables that change.

Handout 3. Introduction to Spec 7

6.826—Principles of Computer Systems 2000

These considerations lead us to describe the meaning of a non-atomic command by breaking it
down into its atomic subcommands and connecting these up with a new state variable called a

program counter. The details are somewhat complicated; they are sketched in the discussion of
atomicity below, and described in handout 17 on formal concurrency.

The moral of all this is that you should use the simpler parts of the language as much as possible:
expressions rather than atomic commands, and atomic commands rather than non-atomic ones.
To encourage this style, Spec has a lot of syntax and built-in types and functions that make it
easy to write expressions clearly and concisely. You can write many things in a single Spec
expression that would require a number of C statements, or even a loop. Of course, an
implementation with a lot of concurrency will necessarily have more non-atomic commands, but
this complication should be put off as long as possible.

Organizing the program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

A routineis a named computation with parameters, in other words, an abstraction of the
computation. Parameters are passed by value. There are four kinds of routine:

A function(defined withFUNQ is an abstraction of an expression.

An atomic procedurddefined withAPROQ is an abstraction of an atomic command.
A general procedure (defined wiiROQ is an abstraction of a non-atomic command.
A thread(defined withTHREAD is the way to introduce concurrency.

« Atypeis a highly stylized assertion about the set of values that a name or expression can
assume. A type is also a convenient way to group and name a collection of routines, called its
methodsthat operate on values in that set.

An exceptionis a way to report an unusual outcome.

A moduleis a way to structure the name space into aléwekhierarchy. An identifierr
declared in a module has the name.i throughout the program. élassis a module that
can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

The next two sections describe things about Spec’s expressions and commands that may be new
to you. It doesn’t answer every question about Spec; for those answers, read the reference
manual and the handouts on Spec semantics. There is a one-page summary at the end of this
handout.

Handout 3. Introduction to Spec 8

6.826—Principles of Computer Systems 2000

Expressions, types, and functions

Expressions are for computing functions of the state. A Spec expression is a constant, a variable,
or an invocation of a function on an argument that is some sub-expression. The values of these
expressions are the constant, the current value of the variable, or the value of the function at the
value of the argument. There are no side-effects; those are the province of commands. There is
quite a bit of syntactic sugar for function invocations. An expression may be undefined in a state;
if a simple command evaluates an undefined expression, the command fails (see below).

A Spec type defines two things:
A set of values; we say that a vahesthe type if it's in the set. The sets are not disjoint.

A set of functions called thmethod<of the type. There is convenient syntax for
invoking methodnon a values of the type.

Spec is strongly typed. This means that you are supposed to declare the types of your variables,
just as you do in Pascal otu. In return the language defines a type for every exprésaiwh

ensures that the value of the expression always has that type. In particular, the value of a variable
always has the declared type. You should think of a type declaration as a stylized comment that
has a precise meaning and could be checked mechanically.

If Foo is a type, you can omit it in a declaration of the identifigrsoo1, foo' etc. Thus
VAR intl, bool2, char" | ...
is short for

VAR intl: Int, bool2: Bool, char": Char | ...

Spec has the usual types: , Nat (non-negativent), Bool , functions, sets, records, tuples, and
variable-length arrays called sequences. A sequence is a function whose d¢main.js

n-1} for somen. In addition to the usual functions like' and"v* , Spec also has some less

usual operations on these types, which are valuable when you want to suppress implementation
detail: constructors and combinations.

You can make a type with fewer values ussugHTHATFor example,

TYPE T = Int SUCHTHAT (\iz Int | 0 <= i \i<=4)
has the value s¢t, 1, 2, 3, 4} . Here the) ...) is a lambda expression that defines a
function fromint to Bool , and a value has tygef it's anint and the function maps it tae .

Section 5 of the reference manual describes expressions and lists all the built-or@péocat

should read the list, which also gives their precedence and has pointers to explanations of their
meaning. Section 4 describes the types. Section 9 defines the built-in methods for sequences,
sets, and functions; you should read it over so that you know the vocabulary.

3 Note that a value may have many types, but a variable or an expression has exactly one type: for a variable, it's the

declared type, and for a complex expression it's the result type of the top-level function in the expression.

Handout 3. Introduction to Spec 9

6.826—Principles of Computer Systems 2000

Constructors

Constructors for functions, sets, and sequences make it easy to toss large values around. For
instance, you can describe a database as a fudbtivpom names to data records with two

fields:
TYPE DB = (String -> Entry)
TYPE Entry = [salary: Int, birthdate: Int]
VAR db := DB{}

Heredb is initialized using a function constructor whose value is a function undefined
everywhere. The type can be omitted in a variable declaration when the variable is initialized; it
is taken to be the type of the initializing expression. The type can also be omitted when it is the
upper case version of the variable nab®in this example.

Now you can make an entry with
db := db{ "Smith" -> Entry{salary := 23000, birthdate := 1955} }
using another function constructor. The value of the constructor is a function that is the same as
db except at the argumergmith” , where it has the valusntry{...} , which is a record
constructorThe assignment could also be written
db("Smith") := Entry{salary := 23000, birthdate := 1955}
which changes the value of thie function at'smith* without changing it anywhere else. This
is actually a shorthand for the previous assignment. You can omit the field names if you like, so
that
db("Smith") := Entry{23000, 1955}
has the same meaning as the previous assignment. Obviously this shorthand is less readable and
more error-prone, so use it with discretion. Another way to write this assignment is
db("'Smith").salary := 23000; db("Smith").birthdate := 1955

The set of names in the database can be expressed by a set constructor. It is just

{n: String | db!n},
in other words, the set of all the strings for whichdihéunction is defined (" is the ‘is-
defined’ operator; that igix is true ifff is defined ak). Read this “the set of stringssuch that
db!n ”. You can also write it agb.dom , the domain ofib; section 9 of the reference manual
defines lots of useful built in methods for functions, sets, and sequences. It's important to realize
that you can freely use large (possibly infinite) values such at thenction. You are writing a
specification, and you don't need to worry about whether the compiler is clever enough to turn
an expensive-looking manipulation of a large object into a cheap incremental update. That's the
implementer’s problem (so you may have to worry about whether she is clever enough).

If we wanted the set of lengths of the names, we would write

{n: String | db!n | n.size}
This three part set constructor contairifand only if there exists amsuch thatibin and
i=nsize . So{n: String | db!n} is short for{n: String | db!n | n} . You can
introduce more than one name, in which case the third part defaults to the last name. For
example, if we represent a directed graph by a function on pairs of nodes thatretunben
there’s an edge from the first to the second, then

{n1: Node, n2: Node | graph(nl, n2) | n2}
is the set of nodes that are the target of an edge, anghthe ‘tould be omitted.

Following standard mathematical notation, you can also write

Handout 3. Introduction to Spec 10

6.826—Principles of Computer Systems 2000

{f :IN openFiles | f.modified}
to get the set of all opemodified files. This is equivalent to
{f: File | f IN openFiles /\ f.modified}
because i§ is aSET T, thenIN's is a type whose values are thigin s; in fact, it's the type
T SUCHTHAT (\t|tIN's) . This form also works for sequences, where the second operand
of :IN provides the ordering. Sosdfis a sequence of integegs;IN s | x > 0} is the
positive ones{x:INs|x>0]|x *x} is the squares of the positive ones, gnol s
| x*x} is the squares of all the integers, because an omitted predicate defewdts4o

To get sequences that are more complicated you can use sequence genera@oneitiHILE.
{i:=1BYi+1WHILEi<=5true|i}
is{1,2,3,4,5} ; the second and third parts could be omitted. This is just like the “for”
construction in C. An omittedHILE defaults tarue , and an omitted defaults to an arbitrary
choice for the initial value. If you write several generators, each variable gets a new value for
each value produced, but the second and later variables are initialized first. So to get the sums of
successive pairs of elementssofvrite
{x := s BY x.tail WHILE x.size > 1| | x(0) + x(1)}
To get the sequence of partial sums ofvrite (eliding| | sum
{x:IN's, sum := 0 BY sum + x}
Takinglast of this would give the sum of the elements oT o get a sequence whose elements
are reversed from those @fwrite
{X:IN s, rev :={} BY {x} + rev}.last
To get the sequengge), f2(e), ..., fn(e)}
{i:IN1 .. n,iter:=e BY f(iter)}
This uses the operator;j .. |

at the end)

, write
is the sequende i+1, ..., j-1, j}

Combinations

A combination is a way to combine the elements of a sequence or set into a single value using an
infix operator, which must be associative, must have an identity, and must be commutative if it is
applied to a set. You write “operatosequence or set”. Thus

+: (SEQ String){"He", "I", "I0"} = "He" + "I + "lo" = "Hello"
because on sequences is concatenation, and

+:{ifINL1..4||i™2}=1+4+9+16=30

Existential and universal quantifiers make it easy to describe properties without explaining how
to test for them in a practical way. For instance, a predicate that isff the sequence is
sorted is

(ALLi:IN1 .. s.size-1 | s(i-1) <= s(i))
This is a common idiom; read it as

“foralli in1.. s.size-1 , s(i-1) <= s(i) "

This could also be written

(ALL i :IN (s.dom - {0}) | s(i-1) <= s(i))
sinces.dom is the domain of the functian which is the non-negative integers.size

4 In the sequence form s is not a type but a special construct; treating it as a type would throw away the
essential ordering information.

Handout 3. Introduction to Spec 11

6.826—Principles of Computer Systems 2000

Because a universal quantification is just the conjunction of its predicate for all the values of the
bound variables, it is simply a combination usingas the operator:
(ALL i| Predicate(i)) = \: {i | Predicate(i)}
Similarly, an existential quantification is just a similar disjunction, hence a combination/using
as the operator:
(EXISTS i | Predicate(i)) = V : {i | Predicate(i)}
Spec has the redundasiiL andeEXISTS notations because they are familiar.

If you want to get your hands on a value that satisfies an existential quantifier, you can construct
the set of such values and usedhsse method to pick out one of them:

{i | Predicate(i)}.choose
This is deterministicchoose always returns the same value given the same set (a necessary
property for it to be a function). It is undefined if the set is empty, which is the case in the
example if na satisfiesPredicate

ThevArRcommand described in the next section on commands is another form of existential
quantification that lets you get your hands on the value, but it is non-deterministic.

Functions

Like everything (except types), functions are ordinary values in Spec. Given a function, you can
use a function constructor to make another one that is the same except at a particular argument,
as in theDB example above. Another examplé{is>0} , which is the same asexcept that it
is 0 atx. If you have never seen a construction like this one, think about it for a minute. Suppose
you had to implement it. i is represented as a table of (argument, result) pairs, the
implementation will be easy. fis represented by code that computes the result, the
implementation is less obvious, but you can make a new piece of code that says

(y:Int] ((y=x)=>0[Tf(y)))

Here'v is ‘lambda’, and the subexpressigg = x) => 0 [*] f(y)) is a conditional,
modeled on the conditional commands we saw in the first section; its valife/isx and
fly) otherwise, so we have changeplist ato, as desired. If the else clauge(y) is

omitted, the condition is undefinedyif# x . Of course in a running program you probably
wouldn’t want to construct new functions very often, so a piece of Spec that is intended to be
close to a practical implementation must use function constructors carefully.

Functions can return functions as results. Thus->V is the type of a function that takesan
and returns a function of type>v, which in turn takes e and returns &. If f has this type,
thenf(t) has typeu->v, andiit)u) has typev. Compare this withr, U)->v , the type of a
function which takes an and au and returns &. If g has this typeg(t) doesn't type-check,
andg(t,u) has typev. Obviouslyf andg are closely related, but they are not the same.

You can define your own functions either by lambda expressions like the one above, or more
generally by funtton declarations like this one

FUNC NewF(y: Int) -> Int = RET ((y =x) => 0 [*] f(y))
The value of thislewF is the same as the value of the lambda expression. To avoid some
redundancy in the language, the meaning of the function is defined by a command irRevhich
sub-commands specify the value of the function. The command might be syntactically non-
deterministic (for instance, it might containRor []), but it must specify at most one result

Handout 3. Introduction to Spec 12

6.826—Principles of Computer Systems 2000

value for any argument value; if it specifies no result values for an argument or more than one
value, the function is undefined there. If you need a full-blown command in a function
constructor, you can write it witbaAMBDANstead of :

(LAMBDA (y: Int) -=> Int = RET ((y =x) => 0 [*] f(y)))

You can compose two functions with theperator, writing*g . This means to apply first

and theny. It is often useful wheh is a sequence (remember th&E® T is a function fromo,

1, ..., size-1} to T), since the result is a sequence with every eleméntrafpped by. So:
(0..4)*{\i: Int | i} = (SEQ Int){0, 1, 4, 9, 16}

since0 ..4={0, 1, 2, 3, 4} becausent has a method with the obvious meaning:

i.j= {i, i+1, ..., j-1, j} . In the section on constructors we saw another way to
write

(0 .. 4) *{\i: Int | i*i},
as

{iiINO.. 4]}

This is more convenient when the mapping function is defined by an expression, as it is here, but
it's less convenient if the mapping function already has a name. Then it's shorter and clearer to

write
(0 .. 4) * factorial

rather than
{i:INO..4||factorial(i)}.

Methods

Methods are a convenient way of packaging up some functions with a type so that the functions
can be applied to values of that type concisely and without mentioning the type itself. Look at the

definitions in section 9 of th8pec Reference Manuyathich give methods for the built-in types
SEQT, SET T, andT->U. If s is aSEQ T, s.head iS Sequence[T].Head(s) , which is just(0)
(which is undefined i§ is empty). You can see that it's shorter to wgitead .5

You can define your own methods by uswgH. For instance, consider
TYPE Complex = [re: Real, im: Real] WITH {"+":=Add, mag:=Mag}

Add andMag are ordinary Spec functions that you must define, but you can now invoke them on a

¢ which isComplex by writingc + ¢ andc.mag , which meamdd(c, ¢ andMag(c) . You

can use existing operator symbols or make up your own; see section 3 of the reference manual

for lexical rules. You can also writmplex."+" andComplex.mag to denote the functionsid
andMmag; this may be convenient@omplex was declared in a different module. Usikugl as a
method does not make it private, hidden, static, local, or anything funny like that.

When you nestviTH the methods pile up in the obvious way. Thus

TYPE MoreComplex = Complex WITH {"-":=Sub, mag:=Mag2}
has an additional method , the same+" asComplex , and a diferentmag. Many people call
this ‘inheritance’ and ‘overriding’.

5 Of courses(0) is shorter still, but that's an accident; there is no similar alternatiweetéor

Handout 3. Introduction to Spec 13

6.826—Principles of Computer Systems 2000

Commands

Commands are for changing the state. Spec has a few simple commands, and seven operators for
combining commands into bigger ones. The main simple commands are assignment and routine
invocation. There are also simple commands to raise an exception, to return a function result, and
to SKIP, that is, do nothing. If a simple command evaluates an undefined expression, it fails (see
below).

The operators on commands are:

¢ A conditional operatopredicate => command , read “ifpredicate thencommand’. The

predicate is called guard

e Choice operatorg1[Jc2 andcl[*]c2 ,read ‘or and ‘else’.

e Sequencing operatorst ; c2 andcl EXCEPT handler . Thehandler is a special form of
conditional commandsxception => command

Variable introductionVvAR id: T | command
doesn't fail”.

, read “chooseé of typeT such thatommand

¢ Loops:DO command OD.

Section 6 of the reference manual describes commaArtm®ic Semantics of Spgives a precise
account of their semantics. It explains that the meaning of a commarelasien between a

state and an outcome (a state plus an optional exception), that is, a set of possible state-to-
outcome transitions.

Conditionals and choice

The figure below (copied from Nelson’s paper) illustrates conditionals and choice with some
very simple examples. Here is how thegriu

The command

p=>c
means to de if p is true. Ifp is false this command fails; ather words, it has no outcome.
More precisely, it is a state in which is false or undefined, this command does not relate
any outcome.

What good is such a command? One possibility ispthétl be true some time in the future, and
then the command will have an outcome and allow a transition. Of course this can only happen
in a concurrent program, where there is something else going on that cap makeEven if
there’s no concurrency, there might be an alternative to this command. For instance, it might
appear in the larger command
p=>c

0 p=>c
in which you read] as ‘or’. This fails only if each qf andp' is false or undefined. If both are
true (as in theo state in the south-west corner of the figure), it means to do either ; the
choice is non-deterministic. if is ~p then they are never both false, angli§ defined this
command is equivalent to

Handout 3. Introduction to Spec 14

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

Xy xy xy xy if y=0 initially, x=1 afterwards, iy >3 initially, x=2 afterwards, and otherwiseis
00— 00 00— (00 unchanged. If you think of it relationallyt [[c2 ~ has all the transitions of (there are none if
c1 fails, several if it is non-deterministic) as well as all the transitions.dBoth failure and

—_— J——
01 01 01 01 non-determinism can arise from deep inside a complex command, not just froreetgp-or
10— 10 10 10 VAR
B
1 11 1 11 The precedence rules for commands are
SKIP x=0=>SKIP EXCEPT binds tightest
(partial) ; next
=>| next (for the right operand; the left side is an expression or delimitedrpy
0mM bind least tightly.
Xy Xy Xy Xy
00 00 00 00 These rules minimize the need for parentheses, which are written around commands in the ugly
01 >> o1 01\ 01 form BEGIN ... END or the slightly prettier fornF ... FI ; the two forms have the same
meaning, but as a matter of style, the latter should only be used around guarded commands. So,
10 : 10 10\ 10 for example,
11 11 11 11 p=>cl;c2
is the same as
y:=1 y=0=>y:=1 p => BEGIN c1; c2 END
(partial) and means to del followed byc2 if p is true. To guard only1 with p you must write

IF p =>cl [¥] SKIP FI; c2
which means to det if p is true, and then to d@. The[*] SKIP ensures that the command

v i o Xy before the;" does not fail, which would preveert from getting done. Without thg skip
00 00 OOSZ 00 isi
E : that is in
01 01 01 01 IF p=>clFl;c2
10 10 10 10 if p is false ther ... FI fails, so there is no possible outcome from whizttan be done and
" \ 1 11 ;: 11 the whole thing fails. Thug p => c1 FI; c2 has the same meaningmas> BEGIN c1; c2
END which is a bit surprising.
x =0 => SKIP SKIP Sequencing
Dy:0:>y;:1 []y:0:>y;:]_) . . .
(partial, non-deterministic) (non-deterministic) Acl;c2 command means just what you think it does: éitstthenc2. The command

cl;c2 gets you from statel to states2 if there is an intermediate statesuch that1 gets you
from sl tos andc2 gets you froms to s2. In other words, its relation is the composition of the

Combining commands X e
relations forcl andc2; sometimes’ is called ‘sequential composition’.df produces an

p=>c exception, the composite command ighazsind produces that exception.
[c . . .
in which you read?] as ‘else’. On the other handpifs undefined the two commands differ, A CLEXCEPT ex=>c2 command is just like1;c2 ~except that it treats the exceptienthe
because the first one fails (since neither guard can be evaluated), while the second does other way around: i1 produces the exceptien then it goes on tee, but ifc1 produces a
normal outcome (or any other exception), the composite command igaaaed produces that
Bothci[lc2 andcl[®c2 fail only if bothcl andc2 fail. If you think of a Spec program outcome.
operationally (that is, as executing one command after another), this means that if the execution
makes some choice that leads to failure later on, it must ‘back-track’ and try the other Variable introduction

alternatives until it finds a set of choices that succeed. For instance, no matterisyladiter . . . L .
y=0=>x=x-1x<y=>x:=1 VARGgives you more dramatic non-determinism tflanThe most common use is in the idiom

y>0=>x:=3 ;x<y=>x:=2 - VARX:T|P(x)=>c o)
[SKIP which is read “choose someof typeT such thab(x) , and dac”. It fails if there is nox for
whichP(x) is true and: succeeds. If you just write

Handout 3. Introduction to Spec 15 Handout 3. Introduction to Spec 16

6.826—Principles of Computer Systems 2000

VARX: T|c
thenvARacts like ordinary variable declaration, giving an arbitrary initial value to

Variable introduction is an alternative to existential quantification that lets you get your hands on
the bound variable. For instance, you can write

IF VAR n:Int, x: Int, y: Int, z: Int |
(n>2 A X**n + y**n = z**n) =>out :=n

[*] out:=0

Fl

which is read: choose integers, y, z suchthah>2 andx"+y "=z ", and assign to
out ; if there are no such integers, assigo out .6 The command before tit¢ succeeds iff
(EXISTS n: Int, x: Int, y: Int, z: Int | n > 2 \ X**n + y**n = z**n),
but if we wrote that in a guard there would be no way tewseto one of then's that exist. We
could also write
VAR s := {n:Int, x: Int, y: Int, z: Int
| n>2AX*n +y**n = z*n
[(n, %y, 2)}
to construct the set of all solutions to the equation. Them{f
(n, X, y,2) with the desired property.

, s.choose Yyields a tuple

You can us&/ARto describe all the transitions to a state that has an arbitrary relaticghe
current stateVAR s' | R(s, ') =>s:=s' if there is only one state variable

The precedence ¢fis higher tha] , which means that you can string together diffevest
commands with] or[¥ , but if you want several alternatives withinaRyou have to use
BEGIN...END OFIF ... FI . Thus
VAR x: T | P(x) => c1
0 g=>c2
is parsed the way it is indented and is the same as
BEGIN VAR x: T | P(x) => ¢1 END
[BEGIN q=>c2 END
but you must write the brackets in
VAR x: T |
IF P(x) =>cl
[Q(x) =>c2
FI

which might be formatted more concisely as
VAR X: T |
IF P(x)=>cl
I RX)=>c2Fl
or even
VAR X: T | IF P(x) => c1 [] R(x) => c2 FI

You are supposed to indent your programs to make it clear how they are parsed.

6 A correctness proof for an implementation of this spec defied the best efforts of mathematicians between Fermat's
time and 1993.

Handout 3. Introduction to Spec 17

6.826—Principles of Computer Systems 2000

Loops

You can always write a recursive routine, but often a loop is clearer . In Spec yoD .useD
for this. These are brackets, and the command inside is repeated as long as it succeeds. When it
fails, the repetition is over and tbe ... OD is complete. The most common form is

DO P =>cOD
which is read “whiler is true dac”. After this commandp must be false. If the command inside
theDO ...OD succeeds forever, the outcome is a looping exception that cannot be handled.
Note that this is not the same as a failure, which simply means no outcome at all.

For example, you can zero all the elements of a sequenith
VARi:=0|DOi<s.size=>s():=0;i-:=10D
or the simpler form (which also avoids fixing the order of the assignments)
DO VAR i | s(i) # 0 => s(i) := 0 OD
This is another common idiom: keep choosing @s long as you can find one that satisfies
some predicate. Sineeis only defined for betweerd ands.size-1 , the guarded command
fails for any other choice of. The loop terminates, since t® :=0 definitely reduces the
number ofi ’s for which the guard is true. But although this is a good example of a loop, it is bad
style; you should have used a sequence method or function composition:
s := Sill(0, s.size)
or
s:={x:INs||O}
(a sequence just likeexcept that every element is mapped)iaemembering that Spec makes
it easy to throw around big things. Don’t write a loop when a constructor will do, because the
loop is more complicated to think about. Even if you are writing an implementation, you still
shouldn’t use a loop here, because it's quite clear how to write C code for the constructor.

To zero all the elements sfthat satisfy some predicate/ou can write
DO VAR i: Int | (s(i) # 0 A P(s(i))) => s(i) := 0 OD

Again, you can avoid the loop by using a sequence constructor and a conditional expression
s:={X:INs||(PX)=>0[x)}

Atomicity

Each<<..>> command is atomic. It defines a single transition, which includes moving the
program counter (which is part of the state) from before to after the command. If a command is
not inside<<...>> , it is atomic only if there’s no reasonable way to split it3¥pP, HAVOCRET,
RAISE. Here are the reasonable ways to split up the other commands:

« An assignment has one internal program counter value, between evaluating the right hand
side expression and changing the left hand side variable.

« A guarded command likewise has one, between evaluating the predicate and the rest of the
command.

« Aninvocation has one after evaluating the arguments and before the body of the routine, and
another after the body of the routine and before the next transition of the invoking command.

Note that evaluating an expression is always atomic.

Handout 3. Introduction to Spec 18

6.826—Principles of Computer Systems 2000

Modules and names

Spec’s modules are very conventional. Mostly they are for organizing the name space of a large
program into a twdevel hierarchymodule.id . It's good practice to déare everything except a
few names of global significance inside a module. You can also dedHBess, just likeVARS.

MODULE foo EXPORT |, j, Fact =
CONSTc:=1
VAR i:=0
j=1
FUNC Fact(n: Int) -> Int =
IF n<=1=>RET1

[*] RET n * Fact(n - 1)
FI

END foo

You can declare an identifier outside of a module, in which case you can refer toiét as
everywhere; this is short falobal.id , SOGlobal behaves much like an extra module. If you
declared at the top level in modulg id is short form.id inside ofm If you include it inms
EXPORTClause, you can refer to it msd everywhere. All these names are ingiabal state

and are shared among all the atomic actions of the program. By contrast, names introduced by a
declaration inside a routine are in theal state and are accessible only within their scope.

The purpose of thexPoORTclause is to define the external interface of a module. This is
important because modutemplements moduls iff T's behavior at its external interface is a
subset of's behavior at its external interface.

The other feature of modules is that they can be parameterized by types in the sameistyle as
clusters. The memory systems modules in handout 5 are examples of this.

You can also declare a class, which is a module that can be instantiated many tinseg. The
class produces a globabj type that has as its methods the exported identifiers of the class plus
anew procedure that returns a new, initialized instance of the class. It also produg@scta

module that contains the declaration of ¢ type, the code for the methods, and a state
variable indexed bpbj that holds the state records of the objects. For example:

CLASS Stat EXPORT add, mean, variance, reset =
VAR n Int:=0

sum Int:=0

sumsq Int:=0

PROC add(i: Int) = n + := 1; sum + :=i; sumsq + := i**2
FUNC mean() -> Int = RET sum/n

FUNC variance() -> Int = RET sumsg/n — self. mean**2
PROC reset() = n := 0; sum := 0; sumsq := 0

END Stat

Then you can write

Handout 3. Introduction to Spec 19

6.826—Principles of Computer Systems 2000

VAR s: Stat | s := s.new(); s.add(x); s.add(y); print(s.variance)
In abstraction functions and invariants we also wetiie for field n in obj 's state.

Section 7 of the reference manual deals with modules. Section 8 summarizes all the uses of
names and the scope rules. Section 9 gives several modules used to define abstract data types.

This completes the language summary; for more details and greater precision consult the
reference manual. The rest of this handout consists of three extended examples of specifications
and implementations written in Spec: topological sort, editor buffers, and a simple window
system.

Example: Topological sort

Suppose we have a directed graph whesevertexes are labeled by the integersn
represented in the standard way by a relatigvl, v2) s true ifv2 is a successor of , that
is, if there is an edge from1 tov2. We want a topological sort of the vertexes, that is, a
sequence that is a permutatioroofn in whichv2 followsvi whenever2 is a successor of
vl. Of course this possible only if the graph is acyclic.

MODULE TopologicalSort EXPORT V, G, Q, TopSort =

TYPEV=INO..n
G =(V,V)->Bool
Q=SEQV

% Vertex
% Graph

PROC TopSort(g) -> Q RAISES {cyclic} =
IF VAR Q| qIN (0..n).perms /A IsTSorted(q, g) => RET q
[*] RAISE cyclic % g must be cyclic
Fl

FUNC IsTSorted(q, g) -> Bool =

% Not tsorted ifv2 precedes1 in g but is also a child
RET ~ (EXISTS v1 :IN g.dom, v2 :IN g.dom | v2 < v1 A g(q(v1), q(v2))

END TopologicalSort

Note that this solution checks for a cyclic graph. It allows any topologically sorted result that is a
permutation of the vertexes, becausevhRr g in TopSort allows anyy that satisfies the two
conditions. Thewerms method on sets and sequences is defined in section 9 of the reference
manual; thelom method gives the domain of a functianpSort is a procedure, not a function,
because its result is non-deterministic; we discussed this point earlier when studying

SquareRoot . Like that one, this spec has no internal state, since the module Ws& Ho

doesn’t need one, because it does all its work on the input argument.

The following implementation is from Cormen, Leiserson, and Rivest. It adds vertexes to the
front of the output sequence as depth-first search returns from visiting them. Thus, a child is
added before its parents and therefore appears after them in the result. Unvisited vertexes are
white , nodes being visited ageey , and fully visited nodes atgack . Note that all the
descendants oftaack node must belack . Thegrey state is used to detect cycles: visiting a
grey node means that there is a cycle containing that node.

Handout 3. Introduction to Spec 20

6.826—Principles of Computer Systems 2000

This module has state, but you can see that it's just for convenience in programming, since it is
reset each tim&opSort is called.
MODULE TopSortimpl

EXPORT V, G, Q, TopSort = % implementsTopSort

TYPE Color = ENUM|[white, grey, black] % plus the spec’s types

VAR out : Q

color: V -> Color % every vertex starts white

PROC TopSort(g) -> Q RAISES {cyclic} = VAR i:=0 |
out := {}; color := {* -> white}
DO VAR v | color(v) = white => Visit(v, g) OD;
RET out

% visit every unvisited vertex

PROCVisit(v, g) RAISES {cyclic} =
color(v) := grey;
DO VAR V' | g(v, V') /\ color(v') # black =>
IF color(v') = white => Visit(V', g)
[*] RAISE cyclic
Fl
OD;
color(v) := black; out := {v} + out

% pick an successor not done

% grey — partly visited

% addv to front ofout

The implementation is as non-deterministic as the spec: depending on the order in which
TopSort choosew andvisit chooses' , any topologically sorted sequence can result. We
could get a deterministic implementation in many ways, for example by taking the smallest node
in each case (thein method on sets is defined in section 9 of the reference manual):

VAR v :={vO0 | color(v0) = white}.min in TopSort

VAR V' :={v0 | g(v, v0) /\ color(v') # black }.min in Visit
An implementation in C would do something like this; the details would depend on the
representation af.

Example: Editor buffers

A text editor usually haslauffer abstraction. A buffer is a mutable sequence€@fTo get

started, suppose that= Char and a buffer has two operations,
Get() to get character

Replace to replace a subsequence of the buffer by a subsequence of an argumerg®ftype
C, where the subsequences are defined by starting position and size.

We can make this specification precise as a Spec class.

Handout 3. Introduction to Spec 21

6.826—Principles of Computer Systems 2000

CLASS Buffer EXPORT B, C, X, Get, Replace =

TYPEX = Nat % indeX in buffer

C =Char

B=SEQC % Buffer contents
VAR b:B:={} % Note: initially empty

FUNC Get(x) -> C = RET b(x) % Note: defined ifD<=x<b.size

PROC Replace(from: X, size: X, b": B, from". X, size": X) =
% Note: fails if it touche€'s that aren’t there.
VAR b1, b2, b3 | b =bl + b2 + b3 /A bl.size = from N\ b2.size = size =>
b := bl + b'.seg(from’, size’) + b3

END Buffer

We can implement a buffer as a sorted arrgyi@fescalled a ‘piece table’. Each piece contains
asSEQ ¢, and the whole buffer is the concatenation of all the pieces We use binary search to find
a piece, so the cost Gt is at most logarithmic in the number of pieGsplace may require
inserting a piece in the piece table, so its cost is at most linear in the number of jmieces.
particular, neither depends on the numbet'sfAlso, eaclReplace increases the size of the

array of pieces by at most two.

A piece is & (in C it would be a pointer tos) together with the sum of the length of all the
previous pieces, that is, the indexsirifer.b of the firstC that it represents; the index is there
so that the binary search can work. There are internal routin&s(x) , which uses binary
search to find the piece containing andsplit(x) , which returns the index of a piece that
starts ak, if necessary creating it by splitting an existing pieeplace callsSplit twice to
isolate the substring being removed, and then replaces it with a single piece. The time for
Replace is linear inpt.size because on the average halpofis moved wherspiit or

Replace inserts a piece, and in half@f, p.x is adjusted iize' # size

7 By using a tree of pieces rather than an array, we could make the Begtlate logarithmic as well, but to
keep things simple we won't do that. S&8Impl in handout 7 for more on this point.

Handout 3. Introduction to Spec 22

6.826—Principles of Computer Systems 2000

CLASS Buflmpl EXPORT B,C,X, Get, Replace = % implementBuffer

TYPE % Types as iBuffer , plus
N =X % iNdex in piece table
P =[b,x] % Piecex is pos inBuffer.b
PT =SEQP % Piece Table

VAR pt :=PT{}

ABSTRACTION FUNCTION buffer.b =+ : {p :IN pt | | p.b}
% buffer.b s the concatenation of the contents of the piecgs in

INVARIANT (ALL n :IN pt.dom | pt(n).b # {}
Npt(n).x =+ :{i:IN O .. n-1 || pt(i).b.size})

% no pieces are empty, ardis the position of the piece Buffer.b , as promised.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.b(x - p.x)

PROC Replace(from: X, size: X, b": B, from": X, size": X) =
VAR nl := Split(from); n2 := Split(from + size),
new := P{b := b".seg(from’, size"), x := from} |
pt:= pt.sub(0, n1- 1)
+ NonNull(new)
+ pt.sub(n2, pt.size - 1) * AdjustX(size' - size)

PROC Split(x) -> N =
% Makept(n) start atx, sopt(Split(x)).x = x. Fails ifx > b.size .
% If pt=abcd|efg|hi , thenSplit(4) iSRET1 andSplit(5) is pt:=abcd|e|fg|hi; RET 2

IF pt={} Ax=0=>RETO

[*] VAR n := Locate(x), p := pt(n), b1, b2 |

p.b=bl+b2 A\ p.x+blsize = x =>
VAR fragl := p{b := b1}, frag2 := p{b := b2, x := x} |
pt:= pt.sub(0, n-1)
+ NonNull(fragl) + NonNull(frag2)
+ pt.sub(n + 1, pt.size - 1);
RET (b1={}=>n[n+1)

Fl
FUNC Locate(x) -> N =VAR nl:=0, n2 := pt.size - 1|
% Use binary search to find the piece containinyieldsO if pt={},
% pt.size-1 if pt#{} \ x>=b.size ; never fails. The loop invariant is
% pt={} V n2 >=nl A\ pt(nl).x <= x \ (x < pt(n2).x V x >= pt.last.x)
% The loop terminates becaus2- n1 > 1 ==>nl <n<n2 ,son2—-nl decreases.

DOn2-n1>1=>

VAR n :=(n1+n2)/2 | IF pt(n).x<=x=>nl:=n[*]n2:=nFl
OD; RET (x < pt(n2).x => n1 [*] n2)

FUNC NonNull(p) -> PT = RET (p.b # {} => PT{p} [*] {})
FUNC AdjustX(dx: Int) -> (P -> P) = RET (\ p | p{x + := dx})
END Buflmpl

If subsequences were represented by their starting and ending positions, there would be lots of
extreme cases to worry about.

Handout 3. Introduction to Spec 23

6.826—Principles of Computer Systems 2000

Suppose we now want eactin the buffer to have not only a character code but also some
additional properties, for instance the font, size, underliningcetcandReplace remainthe
same. In addition, we need a third exported metpag that applies to each character in a
subsequence of the buffemap functionC -> C . Such a function might make all this italic,
for example, or increase the font size by 10%.
PROC Apply(map: C->C, from: X, size: X) =
b:= b.sub(0, from-1)
+ b.seg(from, size) * map
+ b.sub(from + size, b.size-1)

Here is an implementation fapply that takes time linear in the number of pieces. It works by
changing the representation to addaa function to each piece, andApply composing thenap
argument with thenap of each affected piece. We need a new versi@eothat applies the
propermap function, to go with the new representation.

TYPEP =[b, x, map: C->C] % X is pos inBuffer.b

ABSTRACTION FUNCTION buffer.b =+ :{p :IN pt | | p.b * p.map}
% buffer.b is the concatenation of the piecepiwith theirmaps applied.
% This is the same AF we had before, except for the additibp.ofap.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.map(p.b(x - p.x))
PROC Apply(map: C->C, from: X, size: X) =
VAR n1 := Split(from), n2 := Split(from + size) |
pt:= pt.sub(0,nl-1)
+ pt.sub(nl, n2 - 1) * (\ p | p{map := p.map * map})
+ pt.sub(n2, pt.size - 1)

Note that we wrotsplit
need to adehap := (\c | c)

so that it keeps the samap in both parts of a split piece. We also
to the constructor farew in Replace .

This implementation was used in the Bravo editor for the Alto, the first what-you-see-is-what-
you-get editor. It is still used in Microsoft Word.

Example: Windows

A window (the kind on your computer screen, not the kind in your house) is a map from points to
colors. There can be lots of windows on the screen; they are ordered, and closer ones block the
view of more distant ones. Each window has its own coordinate system; when they are arranged
on the screen, an offset says where each window’s origin falls in screen coordinates.

MODULE Window EXPORT Get, Paint =

TYPEI = Int
Coord = Nat
Intensity = IN O .. 255
P = [x: Coord, y: Coord] WITH {"-":=PSub} % Point
C =[r: Intensity, g: Intensity, b: Intensity] % Color
w =P->C % Window
FUNC PSub(pl, p2) -> P = RET P{x := pl.x - p2.X, y := plL.y - p2.y}
Handout 3. Introduction to Spec 24

6.826—Principles of Computer Systems 2000

The shape of the window is determined by the points where it is defined; obviously it need not be
rectangular in this very general system. We have given a poifita€thod that computes the
vector distance between two points.

A ‘window system’ consists of a sequenceéwpfoffset: P] pairs; we call a paira The

sequence defines the ordering of the windows (closer windows come first in the sequence); it is
indexed by ‘window numbefvN Theoffset gives the screen coordinate of the window's

(0,0) point, which we think of as its upper left corner. There are two main operations:

Paint(wn, p, c) to set the value af in windowwn, andGet(p) to read the value @fin the

topmost window where it is defined (that is, the first one in the sequence). The idea is that what
you see (the result @fet) is the result of painting the windows from last to first, offsetting each
one by itsoffset component and using the color that is painted later to completely overwrite
one painted earlier. Of course real window systems have other operations to change the shape of
windows, add, delete, and move them, change their order, and so forth, as well as ways for the
window system to suggest that newly exposed parts of windows be repainted, but we won'’t
consider any of these complications.

First we give the spec for a window system initialized wigtmpty windows. It is customary to
call the coordinate system useddsy the screen coordinates. Theffset field gives the
screen coordinate that correspond®t0} inv.w. Thev.c(p) method below gives the value
of v’s window at the point correspondingdafter adjusting by’s offset. The states is just the
sequence of's. For simplicity we initialize them all with the same offgext 53 , which is not
too realistic.

Get finds the smallesivNthat is defined at and uses that window’s color@tThis corresponds
to painting the windows from last (biggeeh to first with opaque paint, which is what we
wanted.Paint uses window rather than screen coordinates.

The state (th®AR) is a single sequence of windows.

TYPEWN = INO..n-1 % Window Number
\Y, = [w, offset: P] % window on the screen
WITH {c:=(\v, p | v.w(p - v.offset))} % C of a screen poimt
VAR ws ={i:INO..n-1| | V{{}, P{10,5}}} % the Window System

FUNC Get(p) -> C = VAR wn := {wn' | V.cl(ws(wn"), p)}.min | RET ws(wn).c(p)
PROC Paint(wn, p, c) = ws(wn).w(p) :=c
END Window

Now we give an implementation that only keeps track of the visible color of each point (that is, it
just keeps the pixels on the screen, not all the pixels in windows that are covered up by other
windows). We only keep enough state to haredie andPaint .

The state is on@ithat represents the screen, plusxgsed variable that keeps track of which
window is exposed at each point, and the offsets of the windows. This is sufficient to implement
Get andPaint ; to deal with erasing points from windows we would need to keep more
information about what other windows are defined at each point, sextlhatd would have a

typeP -> SETWN . Alternatively, we could keep track for each window of where it is defined.

Handout 3. Introduction to Spec 25

6.826—Principles of Computer Systems 2000

Real window systems usually do this, and represeioted as a set of visible regions of the
various windows. They also usually have a ‘background’ window that covers the whole screen,
so that every point on the screen has some color defined; we have omitted this detail from the
spec and the implementation.

We need a history variablgdthat contains the part of all the windows. The abstraction
function just combinewHandoffset to makews. The important properties of the
implementation are contained in the invariant, from which it's cleacGitateturns the answer
specified bywindow.Get . Another way to do it is to have a history variakse that is equal to

ws. This makes the abstraction function very simple, but then we need an invariant that says
offset(wn) = wsH(n).offset . This is perfectly correct, but it's usually better to put as little
stuff in history variables as possible.

MODULE Winimpl EXPORT Get, Paint =

VAR w = W % no points defined
exposed: P->WN:={} % whichwn shows ap
offset := {i:IN0..n-1]| P(5, 10)} %
wH = {i:INO..n-1 || W{} % history variable

ABSTRACTION FUNCTION ws = (\ wn | V{w := wH(wn), offset := offset(wn)})

INVARIANT
(ALLp| w!p =exposed!p
N(wlp ==> {wn|V.cl(ws(wn), p)}.min = exposed(p)
Aw(p) = ws(exposed(p)).c(p)))

The invariant says that each visible point comes from some wirdpsged tells the topmost

window that defines it, and its color is the color of the point in that window. Note that for
convenience the invariant uses the abstraction function; of course we could have avoided this by
expanding it in line, but there is no reason to do so, since the abstraction function is a perfectly
good function.

FUNC Get(p) -> C = RET w(p)

PROC Paint(wn, p, c) =
VAR pO | p = pO0 - offset(wn) => % the screen coordinate
IF wn <= exposed(p0) => w(p0) := c; exposed(p0) := wn [*] SKIP FI;
wH(wn)(p) :=c¢c % update the history var

END Winimpl

Handout 3. Introduction to Spec 26

6.826—Principles of Computer Systems

Index

1,9

(.) ,8

L1

v, 14

[T .13

0,413

>} .8
<<..>> , 3
==> 3,10

=> 3,12

->, 4,10
algorithm, 5

ALL, 3, 10
APROC4, 7
arbitrary relation, 15
array, 8
assignment, 3, 8, 12
atomic, 16

atomic actions, 3
atomic command, 6
atomic procedure, 7
BEGIN, 14
behavior, 2

Bool , 8

choice, 12

choose, 4, 10, 15
class, 19

client, 2
combination, 10
command, 3, 6, 12
communicate, 2
compose, 11
composition, 16
conditional, 11, 12
constant, 7
constructor, 8
contract, 2

declare, 7

defined, 9

Dijkstra, 1

DQ 4, 16

else, 14

END 14

essential, 2
EXCEPT 14
exception, 5
exceptional outcome, 6
existential quantifier, 5, 10
expression, 4, 6
fail, 12, 15

Handout 3. Introduction to Spec

Fl, 14
FUNG 7
function, 7, 8, 10
function constructor, 8, 10
function declaration, 11
functional behavior, 2
global, 17
guard, 3, 12
handler, 5
hierarchy, 17
history, 2, 6
if, 3, 12
IF, 14
implementer, 2
implication, 3
infinite, 3
Int ,8
invocation, 12
lambda expression, 8
local, 3, 17
loop, 16
meaning

of an atomic command, 6

of an expression, 6
method, 7, 11, 16
module, 7, 17
name, 6
name space, 17
Nelson, 1
non-atomic command, 6
non-atomic semantics, 6
non-deterministic, 4, 5, 6, 13, 15
normal outcome, 6, 14
oD 4, 16
operator, 12
or, 4,13
organizing your program, 7
outcome, 6
parameterized, 17
precedence, 14, 15
precisely, 2
predicate, 3, 10, 12
PROC7
procedure, 7
program, 2, 4, 7
program counter, 6
quantifier, 3, 4, 10
RAISE, 5
RAISES, 5
record constructor, 8

2000

relation, 6

repetition, 16

RET, 4

routine, 7

seq, 11

SEQ3
sequence, 8, 16
sequential program, 6
set, 3, 8

set constructor, 9

set of sequences of states, 6
side-effect, 7

spec, 2

specification, 2, 4
state, 2, 6

state transition, 2
state variable, 6
strongly typed, 8
such that, 3
SUCHTHATS8
terminates, 16

then, 3, 12

thread, 7

THREAD7

transition, 2, 6
two-level hierarchy, 7
type, 7
undefined, 8, 12
universal quantifier, 3, 10
value, 6

VAR 3, 4, 15
variable, 6, 7

variable introduction, 15
WITH, 11

27

6.826—Principles of Computer Systems

Handou83. Introduction to Spec

This page intentionally left blank

2000

28

6.826—Principles of Computer Systems

Operators(85, §9)

Op Pr Type x opy is
. 9 Any x’'sy field/method
IS 8 Any doesx havetypey?
AS 8 Any xwithtypey
** 8 Int xY
* 7 Int Xy

func composition

relation composition

7 Int x/ 'y rounded to O

/17 Int mod: X —(X/ y)*y
+ 6 Int X +y

func overlay

seq concatenation
- 6 Int X -y

Set set difference

seq multiset diff
! 6 func x definedaty
't 6 func x!y Ux(y) notex

5 1Int seg{x, x+1,..., vy}

= 4 Any X =y
4 Anhy x 'ty
= 4 s X =y as multisets
<= 4 Int X £y

set X |y (subset)

seq x aprefix of y
<<= 4 s X asub-seq of y
IN 4 set/seq x T 'y (memben)
~ 3 Bool notX (unary)
/\ 2 Bool x Uy (@and)

set X C Y (intersection)
\/ 1 Bool x Uy

set x E Y (union)
==> 0 Bool ximpliesy

Operators associate to the left.

Expression forms (§ 5)

f(e) func
op : sq set/seq
(ALL X | pred) Bool
(EXI STS x | pred) Bool
(pred=>e;[*] &) Any
Constructors (8 5)

{e1, .., en} et
{i:Nat | i<3] i**2}

f{e; -> ey} func
f{* -> e}

(\i:lnt] i<3)

{e, .., en} seq
{i :INO.. 5] 1**2}
{i:=0BYi+1 WHI LEi <6]||i**2}
(e, -, €n) tuple
r{fq. =eq .,fn =€} record

Handout 3. Introduction to Spec

Spec Summary

Methods (8 9)
set Ops /\ \/ - <= 1N op:
si ze number of members
choose some member of s
seq S as some sequence
pred s.predx)=(x1 s)
f max/ m n some max/min by f ;
max/ mn somemax/min by <=
Set/seq perns set of all permsof sq
fsort S(sorted (q stably) by f 1
sort S(q sorted (q stably) by <=
func Ops * + ! 11
dom rng domain, range
i nv inverse
restrict domantosets;
rel r(x,y)=(f(x)=y)
predicate set s ={x| pred(x)}
relation Ops. * andfunc +

dom rng domain, range

i nv inverse

setF fO)={yl rx,y)}

func f (x) = set F(x). choose
graph i sPath isq, apathing?

cl osure transtive closure of g
seq Ops. +- ..<= <<= N,0p:, func* !
g";fgemd si ze number of elements
funcabove head g(o)

tail {9@),..,9(q. si ze- 1)}

remh removehead =t ai |

| ast d(qg. size-1)

rem {9(0),..,9(q. si ze-2)}

sub {96 2,96 2}

seg {q(i1),-},i . elements

fill i » copiesof x;

| exLE g lexicaly <= qq by f 5"

fsorter pemsortsq stablybyf;

count number of x,’sin g

set gasaset,=q.rng

tuple tuple with q’ s values
Jple seq seq with t u’svalues

function invocation
sq() op sq@) ...
pred(x1) U..Upred(x,)
pred(x1) U..Upred(x,)
e,ifpred dsee;

with these members
of i ?swherei <3

f except=e,atarge;
= e at every arg
lambda (also LAVBDA)
of e’sin this order
{0,1, 4,9, 16, 25}
same

of e’sin this order

r exceptf,=e; ...

2000

Types(§4)
Any, Nul | , Bool , I nt, basic
Nat , Char, Stri ng

SET T, IN s set
T, -> T, function
APROCC T, -> T, procedures
PROC T,-> T,
SEQ T sequence
(Te, ..., Ty) tuple
[fa Tq, il Tl record
(Ty + ...+ Tp) union
T WTH{m: =f,, .} add methods
T SUCHTHAT pred limit values
Commands (§86) Pr
SKI P, HAVCC, simple
RET e, RAI SE ex
p(e) invocation
Xx:=e, x:=p(e), assignment
(X4, L) =e
c1 EXCEPT ex=>c, 3 handleex
Ci1 ; C» 2 sequential
VAR n: T | c 1 newvarn
pred => c 1 if (guarded cmd)
ci1 [] c2 O or (ND choice)
ci1 [*] c2 0 dse
<< ¢ >> atomic ¢
BEA N ¢ END brackets
IF ¢ FI
DO c OD loop until fail

Command operators associate to the left,
but EXCEPT associates to the right.

Modules (8 7)

MODULE/ CLASS M
[Tl W TH{ m: Tll' >T12, } s]
EXPORT ng, ...=

TYPE T, = SET T,
T; = ENUN[Ny,]
CONST n: T :=¢e€
VAR n. T:=¢e
EXCEPTI ON ex = {exjii, ..} +exp+..
FUNCf(nl: Ty, ..)-> T=c

APRCC, PRCC, THREAD similarly
END M

Naming conventions (except in‘Operators')

¢ command op operator

e expression p proccedure

ex exception Pr precedence

f function, field g sequence

g graph r record, relation
i I nt s st

m method T type

n name X Any

z; i thextraargument of a method, or

one of several like non-terminasin arule
§ asection of the Spec reference manual

29

6.826—Principles of Computer Systems 2000

How to Write a Spec

Figure out what the stateis.

Choose the state to make the spec ssmple and clear, not to match the code.
Describethe actions.

What they do to the state.

What they return.

Helpful hints

Notation is important, because it helps you to think about what’s going on.
Invent a suitable vocabulary.

Lessis more. Less state is better. Fewer actions are better.

More non-determinism is better, because it allows more implementations.
In distributed systems, replace the separate nodes with non-determinism in the spec.

Pass the coffee-stain test: people should want to read the spec.

I’msorry | wrote you such a long letter; | didn’t have time to write a short one. — Pascal

How to Design an | mplementation

Write the spec first.
Dream up theidea of theimplementation.
Embody the key idea in the abstraction function.
Check that each implementation action simulates some spec actions.
Add invariants to make this easier. Each action must maintain them.
Change the implementation (or the spec, or the abstraction function) until this works.
Make the implementation correct first, then efficient.
More efficiency means more complicated invariants.
Y ou might need to change the spec to get an efficient implementation.

Measure first before making anything faster.

An efficient programis an exercisein logical brinkmanship. — Dijkstra

Handout 3. Introduction to Spec 30

6.826—Principles of Computer Systems 2000

4. Spec Reference Manual

Spec is a language for writing specifications and the first few stages of successive refinement
towards a practical implementation. As a specification language it includes constructs (quanti-
fiers, backtracking or non-determinism, some uses of atomic brackets) which are impractical in a
final implementation; they are there because they make it easier to write clear, unambiguous and
suitably general specifications. If you want to write a practical program, avoid them.

This document defines the syntax of the language precisely and the semantics inf¥iooally
should read thelntroduction to Spe¢handout 3pefore trying to read this manual In fact,

this manual is intended mainly for reference; rather than reading it carefully, skim through it, and
then use the index to find what you need. For a precise definition of the atomic semantics read
Atomic Semantics of Spgbandout 9). Handout 17 &ormal Concurrencyives the non-

atomic semantics semi-formally.

1. Overview

Spec is a notation for writing specifications for a discrete system. What do we mean by a
specification? It is the allowed sequences of transitions of a state machine. So Spec is a notation
for describing sequences of transitions of a state machine.

Expressions and commands
The Spec language has two essential parts:

An expressiordescribes how to compute a value as a function of other values, either
constants or the current values of state variables.

A commandiescribes possible transitions, or changes in the values of the state variables.

Both are based on tistate which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the examples below theyaad .

There are two kinds of commands:

An atomiccommand describes a set of possible transitions. For instance, the command
<i=i+l>> describes the transitions. -i=2,i=2 -i=3 , etc. (Actually, many
transitions are summarized By -i=2 , for instance(i=1, j=1) - (=2, j=1) and (i=1,

j=15) - (i=2, j=15)). If a command allows more than one transition from a given state we
say it isnon-deterministicFor instance, the commang,i:=1[i:=i+1>>

allows the transitions2 -i=1 andi=2 -i=3 . More onthis in Atomic Semantics of Spec

A non-atomiccommand describes a set of sequences of states. More onRbisial
Concurrency

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.

Handout 4. Spec Reference Manual 1

6.826—Principles of Computer Systems 2000

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. Dijkstra Discipline of ProgrammingPrentice-Hall, 1976) as extended

by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calcé@y TOPLASL], 4, Oct.

1989, pp 517-561). The notation for expressions is derived from mathematics.

Organizing a program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

A routineis a named computation with parameters (passed by value). There are four kinds:
A functionis an abstraction of an expression.
An atomic procedurds an abstraction of an atomic command.
A general procedure is an abstraction of a non-atomic command.
A threadis the way to introduce concurrency.

A typeis a stylized assertion about the set of values that a name can assume. A type is also an
easy way to group and name a collection of routines, calleteifsodsthat operate on
values in that set.

An exceptionis a way to report an unusual outcome.

A moduleis a way to structure the name space into aléwelhierarchy. An identifieir
declared in a moduleis known as inmand asn.i throughout the program. élassis a
module that can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

Outline

This manual describes the language bottom-up:
Lexical rules
Types
Expressions
Commands
Modules

At the end there are two sections with additional information:
Scope rules
Built-in methods for set, sequence, and routine types.

There is also an index. Thetroduction to Spebas a one-page language summary.

Handout 4. Spec Reference Manual 2

6.826—Principles of Computer Systems 2000

2. Grammar rules

Nonterminal symbols are in lower case; terminal syma@spunctuation other thar , or are
guoted, or are in upper case.

Alternative choices for a nonterminal are on separate lines.
symbol* denotes zero of more occurrencesyafbol .

The symbokmpty denotes the empty string.

If x is a nonterminal, the nonterminalst is defined by

xList =X
X, XList

A comment in the grammar runs freato the end of the line; this is just like Spec itself.

A [n] in a comment means that there is an explanation in a note |gh)etteat follows this chunk
of grammar.

3. Lexical rules

The symbols ofhe language are literals, identifiers, keywords, operators, and the punctuation
O} ;<< >>==> > . Symbols must not have embedded white
space. They are always taken to be as long as possible.

A literal is a decimal number such#&5, a quoted character such»as, or a double-quoted
string such asHello\n"

An identifier (id) is a letter followed by any number of letters, underscores, and digits followed
by any number of ' characters. Case is significant in identifiers. By convention type and
procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword.
The predefineddentifiersAny, Bool, Char, Int, Nat, Null, String, true, false , and

nil are declared in every program. The meaning of an identifier is established by a declaration;
see section 8 on scope for details. Identifiers cannot be redeclared.

By conventiorkeywordsare written in upper case, budgu can write them in lower case if you
like; the same strings with mixed case are not keywords, however. The keywords are

ALL APROC AS BEGIN BY CLASS
CONST DO END ENUM EXCEPT EXCEPTION
EXISTS EXPORT Fl FUNC HAVOC IF

IN IS LAMBDA MODULE oD PROC

RAISE RAISES RET SEQ SET SKIP
SUCHTHAT THREAD TYPE VAR WHILE WITH

An operatoris any sequence of the charact@ss"&*-+=:.<>?\|~ except the sequences

L << >> == > (these are punctuation), or one of the keyword operasrs , andis .

A comment in a Spec program runs fromautside of quotes to the end of the line. It does not
change the meaning of the program.

Handout 4. Spec Reference Manual 3

6.826—Principles of Computer Systems 2000

4. Types

A type defines a set of values; we say that a val@s typeT if v is inT’s set. The sets are not
disjoint, so a value can belong to more than one set and therefore can have more than one type.
In addition to its value set, a type also defines a set of routines (functions or procedures) called
its methodsa method normally takes a value of the type as its first argument.

An expression has exactly one type, determined by the rules in section 5; the result of the
expression has this type unless it is an exception.

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. You
can skip them on first reading, or if you don’t care about type-checking.

About unions: If the expressi@nhas typer we say thagé has a routine typeif T is a routine
typewor if T is a union type and exactly one tywen the union is a routine type. Under
corresponding conditions we say thatas a sequence or set type, or a record type with 4 field

Two types arequalif their definitions are the same (that is, have the same parse trees) after all
type names have been replaced by their definitions amdTaliclauses have been discarded.
Recursion is allowed; thus the expanded definitions might be infinite. Equal types define the
same value set. Ideally the reverse would also be true, but type equality is meant to be decided by
a type checker, whereas the set equality is intractable.

A typeT fits a typeu if the type-checker thinks they may have some values in common. This can
only happen if they have the same structure, and each pafitothe corresponding part of
‘Fits’ is an equivalence relation. Precisetyfits U if:

T=U.

TIST SUCHTHATF Of(..+T'+..) andT' fits U, or vice versa. There may be no

values in common, but the type-checker can't analyzsuloeiTHATlauses to find out.

T andu are tuples of the same length and each componaerfitefthe corresponding
component of).

T andu are record types, and for evelel id: T'
U' inuUsuch thatr fits U, or vice versa.

in T there is a correspondirgcl id:

T=T1->T2 RAISES EXt andu=U1->U2 RAISES EXu , Or one or botiRAISES are missing, and
T1 fits U1 andT2 fits U2. Similar rules apply foPROCandAPROQypes.

T=SETT' andu=SETU' andT' fitsu'.

T=Int->T OrSEQT anduU=SEQU' andT fitsu'.

T includesu if the same conditions apply with “fits” replaced by “includes”, all the “vice versa”
clauses dropped, and in therule “T1 fits U1” replaced by U1 includesT1 andexXt is a superset
of Exu”. If T includesu thenT’s value set included's value set; again, the reverse is intractable.

An expressior fits a typeu in states if e’s type fitsu and the result of in states has typeJ or

is an exception; in general this can only be checked at runtime uniedsdese’s type. The
check that fits T is required for assignment and routine invocation; together with a few other
checks it is calletlype-checkingThe rules for type-checking are given in sections 5 and 6.

Handout 4. Spec Reference Manual 4

6.826—Principles of Computer Systems

type =name
"Any"
"Null*
"Bool"
"Char"
"String"
"Int"
"Nat"
SEQ type
SET type
(typelList)
[declList]
(union)
aType -> type raises
APROC aType returns raises
PROC aType returns raises
type WITH { methodDefList }
type SUCHTHAT primary
IN exp

id [typeList] . id

name s=id . id

id

type . id
decl i=id : type

id
union i=type + type

union + type
aType 2=()

type
returns =empty

-> type
raises i=empty

RAISES exceptionSet

exceptionSet::={ exceptionList }
name
exceptionSet V/ exceptionSet
exceptionSet - exceptionSet

exception r=id
method r=id

stringLiteral
methodDef ::=method := name

Handout 4. Spec Reference Manual

% name of a type

% every value has this type

% with value sefnil}

% with value seftrue, false}

% like an enumeration

% = SEQ Char

% integers

% naturals: non-negative integers
% sequence [1]

% set

% tuple;(T) is the same ab

% record with declared fields

% union of the types

% function [2]

% atomic procedure

% non-atomic procedure

% attach methods to a type [3]

% restrict the value set [4]

% =T SUCHTHAT (\t: T | t IN exp)
% whereexp’s type has atN method
% type from a module [5]

% the first id denotes a module

% short form.id if id is declared

% in the current modulm, and for

% Global.id if id is declared globally
% theid method otype

%id has this type

% short forid: Id [6]

% only for procedures

% the exceptions it can return

% a set of exceptions

% declared as an exception set
% set union

% set difference

% meansid"

% the string must be an operator
% other thar’=""or"#" (see section 3)
% name is a routine

2000

6.826—Principles of Computer Systems 2000

The ambiguity of the type grammar is resolved by takingp be right associativend giving
WITH andRAISES higher precedence than.

[1] A SEQ T is just a function frono, 1, ..., size-1} toT. That is, it is short for

(Int->T) SUCHTHAT (\ f: Int->T | (EXISTS size: Int |
(ALL i: Int | fli= (i IN O .. size-1)))
WITH { see section P
This means that invocation, and* work for a sequence just as they do for any function. In
addition, there are many other useful operators on sequences; see sectiogtrthgTheype is
justSEQ Char ; there arestring literals, defined in section 5.

[2] A T->U value is a partial function from a state and a value of tytpea value of type. A
T->URAISES xs value is the same except that the function may raise the exceptiens in

[3] We saymis amethodof T defined byf, and denoteé by T.m, if

T=TWITH{., m:=f, ..} andmis an identifier or iSop" whereop is an operator
(the construct in braces isr@thodDefList), or

T =T WITH { methodDefList }
of T* defined byf, or

, mis not defined immethodDefList , andmis a method

T=(..+T+.)
union with a methoth

, mis a method of" defined byf, and there is no other type in the

There are two special forms for invoking methadsnfixOp e2 orprefixope , and

elid(e2) oreid oreid() .They are explained in notgs and[3] to the expression grammar

in the next section. This notation may be familiar from object-oriented languages. Unlike many
such languages, Spec makes no provision for varying the method in each object, though it does
allow inheritance and overriding.

A method doesn’t have to be a routine, though the special forms won't type-check unless the
method is a routine. Any methatbf T can be referred to bym.

[4] In T SUCHTHAT f, f is a predicate om's, that is, a functio(T ->Bool) . The type
T SUCHTHAT f has the same methodsTaand its value set is the valuesrdbr whichf is true.
See section 5 fqwimary

[5] If a type is defined byn[typeList].id andmis a parameterized module, the meaning is
m'.id wherem' is defined byMODULE m' = m[typeList] END m' . See section 7 for a full
discussion of this kind of type.

[6] 1d is theid of a type, obtained fromd by dropping trailing ' characters and digits, and
capitalizing the first letter or all the letters (it's an error if these capitalizations yield different
identifiers that are both known at this point).

Handout 4. Spec Reference Manual 6

6.826—Principles of Computer Systems 2000

5. Expressions exp
An expression is a partial function from stateseults; results are values or exceptions. That is,

an expression computes a result for a given state. The state is a function from names to values.
This state is supplied by the command containing the expression in a way explained later. The
meaning of an expression (that is, the function it denotes) is defined informally in this section.

The meanings of invocations and lambda function constructors are somewhat tricky, and the
informal explanation here is supplemented by a formal accodtbimic Semantics of Spec

Because expressions don’t have side effects, the order of evaluation of operands is irrelevant (but
seg[5] and[13]).

primary

Every expression has a type. The result of the expression is a member of this type if it is not an
exception. This property is guaranteed bytiipe-checkingules, which require an expression

used as an argument, the right hand side of an assignment, or a routine result to fit the type of the
formal, left hand side, or routine range (see section 4 for the definition of ‘fit"). In addition,
expressions appearing in certain contexts must susv@bletypes: inel(e2) , el must have a

routine type; irel+e2, el must have a type with"a* method, etc. These rules are given in

detail in the rest of this section. A union type is suitable if exactly one of the members is suitable.
Also, if T is suitable in some context, so ar&/ITH{.. } andT SUCHTHATf.

literal

arguments

An expression can be a literal, a variable known in the scope that contains the expression, or a
function invocation. The form of an expression determines both its type and its result in a state:

literal has the type and value of the literal.

name has the declared type efme and its value in the current statege("name”) . The
form T.m (whereT denotes a type) is also a name; it denotemthethod ofr. Note that if
nameisid andid is declared in the current module then it is short fom.id .

invocationf(e) :f must have a function (not procedure) tyseT RAISES EX or U->T (note
that a sequence is a function), anehust fitu; thenf(e) has typer. In more detail, if has
resultrf ande has typeJ' and resulte , thenu' must fitu (checked statically) and must
have typeu (checked dynamically ifi* involves a union o8 UCHTHATIf the dynamic check
fails the result is a fatal error). Thege) has typer.

If eitherrf orre is undefined, so ige) . Otherwise, if either is an exception, that exception
is the result of(e) ; if both aresf is the result.

If bothrf andre are normal, the result ef atre can be:

constructor

fieldDef
result

A normal value, which becomes the result(@f .

An exception, which becomes the resultef . If rf is defined by a function body that
loops, the result is a special looping exception that you cannot handle.

Undefined, in which casé) is undefined and the command containing it fiibss no
outcome) —failure is explained in section 6.

A function invocation in an expression never affects the state. If the result is an exception,
the containing command has an exceptional outcome; for details see section 6.

seqGen

pred
quantif

The other forms of expressionsiq , constructor s, prefix and infix operators, combinations,

and quantifications) are all syntactic sugar for function invocations, and their results are obtained
by the rule used for invocations. There is a small exception for conditjshated for the

conditional logical operators ,v , and==> that are defined in terms of conditiona!s).

Handout 4. Spec Reference Manual 7

6.826—Principles of Computer Systems

=primary
prefixOp exp
exp infixOp exp
infixOp : exp
exp IS type
exp AS type

=literal
primary . id
primary arguments
constructor
(exp)
(quantif declList | pred)
(pred => exp 1 [exp
(pred => exp 1)

:=intLiteral
charlLiteral
stringLiteral

:=(expList)
0

w={}
{ expList }
(‘expList)
name {}
name {expList}
primary { fieldDefList }
primary { exp -> result }
primary {* ->result}
(LAMBDA signature = cmd)
(\declList | exp)
{ declList | pred|exp}
{'seqGenlList | pred | exp }

=id = exp
=empty
exp

RAISE exception

:=id := exp BY exp WHILE exp
id :IN exp

n=exp
“=ALL
EXISTS

Handout 4. Spec Reference Manual

2)

% [1]

% [1]

% exp's elements combined yp [2]
% (EXISTS x: type | exp = x)

% error unlesgexp IS type) [14]

% method invocation [3] or record field
% function invocation

% N\:{d | p} for ALL,V for EXISTS [4]
% if pred thenexp 1 elseexp 2 [5]
% undefined ifored is false

% sequence of decimal digits
%'x' , x a printing character
% "xxx" , with\ escapes asin C

% the arg is the tupl@xpList)

% empty function/sequence/set [6]

% sequence/set constructor [6]

% tuple constructor

% name denotes a func/seq/set type [6]
% name denotes a seq/set/record type [6]
% record constructor [7]

% function or sequence constructor [8]
% function constructor [8]

% function with the local state [9]

% short forfLAMBDA(d)->T=RET exp) [9]
% set constructor [10]

% sequence constructor [11]

% the function is undefined
% the function yieldexp
% the function yieldexception

% sequence generator [11]

% predicate, of typ8ool

2000

6.826—Principles of Computer Systems

(precedence)
infixOp B % (8)
* % (7)
%
/ % (7)
I % (7)
+ % (6)
%
%
- % (6)
%
%
! % (6)
I % (6)
. % (5)
<= % (4)
%
%
< % (4)
%
> % (4)
%
> %)
%
= % (4)
% (4)
%
<<= % (4)
IN % (4)
A\ % (2)
%
v % (1)
%
==> % (0)
op % (5)
prefixOp n=- % (6)
~ % (3)
op % (5)

Handout 4. Spec Reference Manual

argument/result types

(Int, Int)->Int
(Int, Int)->Int
(T->U, U->V)->(T->V)
(Int, Int)->Int
(Int, Int)->Int
(Int, Int)->Int
(SEQT,SEQT)->SEQT
(T->U, T->U)->(T->U)
(Int, Int)->Int
(SETT,SETT)->SETT
(SEQT,SEQT)->SEQT
(T->U, T)->Bool
(T->U, T)->Bool
(Int, Int)->SEQ Int
(Int, Int)->Bool
(SET T, SET T)->Bool
(SEQ T, SEQ T)->Bool
(T, T)->Bool, T with <=
el<e2 = (el<=e2 N\ el#e2)
(T, T)->Bool, T with <=
el>e2 = e2<el
(T, T)->Bool, T with <=
el>=e2 = e2<=el
(Any, Any)->Bool
(Any, Any)->Bool
el#e2 = ~ (el=e2)
(SEQ T, SEQ T)->Bool
(T, SET T)->Bool
(Bool, Bool)->Bool
(SETT,SETT)->SETT
(Bool, Bool)->Bool
(SETT,SETT)->SETT
(Bool, Bool)->Bool
not one of the above

Int->Int
Bool->Bool
not one of the above

2000

operation

exponentiate
multiply
[12] function composition
divide
remainder
add
[12] concatenation
[12] function overlay
subtract
[12] set difference
[12] multiset difference
[12] function is defined
[12] func has normal value
[12] subrange
less than or equal

[12] subset
[12] prefix
less than

greater than
greater or equal

[1] equal
not equal

[12] non<ontiguous sub-seq
[12] membership

[13] conditional and

[12] intersection

[13] conditional or

[12] union

[13] conditional implies

(1]

negation
complement

[1]

6.826—Principles of Computer Systems 2000
The ambiguity of the expression grammar is resolved by takinigfit@ms to be left
associative and using the indicated precedences fpreth®ps andinfixops (with 8 foris

andAs and 5 for: or any operator not listed); higher numbers correspond to tighter binding. The
precedence is determined by the operator symbol and doesn’t depend on the operand types.

[1] The meaning ofrefixOpe iST."prefixOp"(e)
el infixOp e2 IS T1."infixOp"(e1, e2) , WhereT1 isel’s type. The built-in typesit (and

Nat with the same operationgpol, sequences, sets, and functions have the operations given
in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than
Int andBool . Special case&1 INe2 meansr2."IN"(el, e2) , WhereT2 ise2’s type.

, WhereT ise’s type, and of

Note that the- operator does not require that the types of its arguments agree, since bath are
Also, = and# cannot be overridden hwyITH. To define your own abstract equality, use a different
operator such as=".

[2] Theexp must have typSEQ T or SET T. The value is the elementsexp combined into a
single value bynfixOp , which must be associative and have an identity, and must also be
commutative ifexp is a set. Thus

+:{i:Int|O<iNi<5|i*2}=1+4+9+16=30 s
and ifs is a sequence of strings,s is the concatenation of the strings. For another example,
see the definition of quantifications[#]. Note that the entire set is evaluated;[sele

[3] Methods can be invoked by dot notation.
The meaning of.id ore.id() isT.ide) ,whereTise’s type.
The meaning ofl.id(e2) IisT.id(el, e2) , WhereT isel’s type.
Section 9 on built-in methods gives the methods for built-in types othemthamdBool .

[4] A quantification is a conjunction (if the quantifierasL) or disjunction (if it iSEXISTS) of
thepred with theid ’s in thedeclList bound to every possible value (that is, every value in
their types); see section 4 fdwcl . Precisely(ALLd |p)=A:{d|p} and

(EXISTS d | p)=V:{d|p} . All the expressions in these expansions are eealyat
unlikee2 in the expressionsl Ae2 andelVe2 (see€10] and[13]).

[5] A conditional(pred => el [*] e2) is not exactly an invocation. ffed is true, the result
is the result oé1 even ife2 is undefined or exceptional;gfed is false, the result is the result of
e2 even ifel is undefined or exceptional.dfed is undefined, so is the resultpitd raises an
exception, that is the result.[ffe2 is omitted andgred is false, the result is undefined.

[6] In aconstructor {expListt ~ eachexp must have the same typethe type of the
constructor IS(SEQT+SETT) , and its value is the sequence containing the values of the
exp S in the given order, which can also be viewed as the set containing these values.

If expList is empty the type is the union of all function, sequence and set types, and the value is
the empty sequence or set, or a function undefined everywhere. If desired, these constructors can
be prefixed by aame denoting a suitable set or sequence type.

A constructort{ed, ..., en} , WhereT is a record typl: T1, ..., fn: Tn], is short for

a record constructor (S€g) T{fl:=edl, ..., fn:=en}

[7] Theprimary must have a record type, and the constructor has the same typeiaarits
and denotes the same value except that the fields namediéfthesList have the given

Handout 4. Spec Reference Manual 10

6.826—Principles of Computer Systems 2000

values. Each value must fit the type declared fad ité the record type. Theimary may also
denote a reard type, in which case any fields missing fromftél@DefList are given
arbitrary (but deterministic) values. ThuR#{a: Int, b: Int] ,R{a:=3,b:=4} isa
record of typer with a=3 andb=4, andR{a := 3, b := 4{a := 5} is a record of type with
a=5 andb=4. If the record type is qualified bysucHTHATthe fields get values that satisfy it,
and the constructor is undefined if that's not possible.

[8] Theprimary must have a function or sequence type, and the constructor has the same type as

itsprimary and denotes a value equal to the value denoted Ipyirtleey except that it maps

the argument value given leyp (which must fit the domain type of the function or sequence) to
result (which must fit the range type if it is @rp). For a function, ifesult isempty the
constructed function is undefinedeap , and ifresult IS RAISE exception , thenexception

must be in th®AISES set ofprimary ’s type. For a sequenessult must not bempty or

RAISE, andexp must be irprimary.dom or the constructor expression is undefined.

In the* form theprimary must be a function type or a function, and the value of the constructor
is a function whose resultissult at every value of the function’s domain type (the type on the
left of the->). Thus ifF=(Int->Int) andf=F{*->0} , thenf is zero everywhere an@->1} is

zero except at, where it isl. If this value doesn't have the function type, the constructor is
undefined; this can happen if the type hawaHTHATlause. For example, the type can’t be a
sequence.

[9] A LAMBDAconstructor is a statically scoped function definition. When it is invoked, the
meaning of the body is determined by the local state wharntheDAvas evaluated and the
global state when it is invoked,; this is ad-hoc but convenient. See sectiosighdore and
section 6 foremd. Thereturns in thesignature may not beempty . Note that a function can'’t
have side effects.

The form(\ declList | exp) is short fOLAMBDA (declList) -> T = RET exp) , WhereT

is the type okxp. See section 4 farec .

[10] A setconstructor { declList | pred | exp } has typeseT T, whereexp has typer
in the current state augmenteddayiList ; see section 4 fafecl . Its value is a set that
containsx iff (EXISTS declList | pred A x = exp) . Thus

{i: Int | 0<i \i<5 | i*2} = {1, 4, 9, 16}
and both have typgET Int . If pred is omitted it defaults toue . If |exp
defaults to the lastt declared:

{iInt| O<iNi<5}={1,2,3,4}
Note that ifs is a set or sequenas,s is a type (see section 4), so you can write a constructor

like {i:INs|i>4} for the elements af greater than 4. This is shorter and clearer than
{i|iINsNi>4}

is omitted it

If there are any values of the declaieds for whichpred is undefined, opred is true ancxp
is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions;
if more than one exception is raised, the result exception is an arbitrary choice among them.

[11] A sequence constructpseqGenList | pred | exp } has typesEQ T, whereexp has
typeT in the current state augmenteddeyGenList , as follows. The value of
{x1 :=e01 BY el WHILE p1, ..., xn := eOn BY en WHILE pn | pred | exp}

Handout 4. Spec Reference Manual 11

6.826—Principles of Computer Systems 2000

is the sequence which is the valueesfit produced by the following program. Hess has
typeT andresult is a fresh identifier (that is, one that doesn’t appear elsewhere in the program).
There’s an informal explanation after the program.
VAR x2 := €02, ..., xn := e0n, result := T{}, x1 := e01 |
DO pl =>x2:=e2; p2=>..=>Xxn:=en; pn=>
IF pred => result := result + {exp} [*] SKIP FI;
x1l:=el
oD
However,e0i andei are not allowed to refer t¢ if j>i . Thus then sequences are unrolled
in parallel until one of them ends, as follows. All but the first are initialized; then the first is
initialized and all the others computed, then all are computed repeatedly. In each iteration, once
all thexi have been set, fiied is true the value afxp is appended to the result sequence; thus
pred serves to filter the result. As with set constructors, an onpitted defaults tarue , and an
omitted| exp defaults tg xn . An omittedwHILE pi defaults tovHILE true . An omitted
:=e0i defaults to
= {x: Ti | true}.choose
whereTi is the type o#i ; that is, it defaults to an arbitrary value of the right type.

The generatoi :IN ei generates the elements of the sequende order. It is short for
j:=0BYj+ 1WHILE j < ei.size, xi BY ei(j)

wherej is a fresh identifier. Note that if thiel isn’t the first generator then the first element of

ei is skipped, which is probably not what you want. Note:tRatin a sequence constructor

overrides the normal use iofs as a type (s€eo]).

Undefined and exceptional results are handled the same way as in set constructors.

Examples
{i:=0BY i+1 WHILE i <= n}
(r := head BY r.next WHILE r # nil | | r.val}
{X:IN's, sum := 0 BY sum + x}

=0.n={0, 1, ..., n}
theval fields of a list starting atead
partialsums ofs

{X:IN's, sum := 0 BY sum + x}.last +:s , the last partial sum
{X:IN s, rev := {} BY {x} + rev}.last reverse of
{X:INs|[f(x)} s*f

{izINL1.n|i/f2#0]i*i}
{i :IN 1..n, iter := e BY f(iter)}

squares of odd numbess n

ffte), f 2(e), ..., f "e)}

[12] These operations are defined in section 9.

[13] The conditional logical operators are defined in terms of conditionals:
elV e2=(el=>true [*]e2)
el e2=(~el=>false[]e2)
el==>e2=(~el=>true [*]e2)
Thus the second operand is not evaluated if the value of the first one determines the result.

[14] As changes only the type of the expression, not its value. Tlwe iE type) the value

of (exp AS type) is the value oéxp, but its type isype rather than the type ekp.

Handout 4. Spec Reference Manual 12

6.826—Principles of Computer Systems 2000

6. Commands

A commandchanges the state (or does nothing). Recall that the state is a mapping from names to
values; we denote it byate . Commands are non-deterministic. An atomic command is one
that is insidec<...>> brackets.

The meaning of an atomic command is a set of possible transitions (that is, a relation) between a
state and an outcome (a state plus an optional exception); there can be any number of outcomes
from a given state. One possibility is a looping exceptional outcome. Another is no outcomes. In
this case we say that the atomic commiaild; this happens because all possible choices within

it encounter a false guard or an undefined invocation.

If a subcommand fails, an atomic command containing it may still succeed. This can happen
because it's one operand[pfor[*] and the other operand succeeds. If can also happen because
a non-deterministic construct in the language that might make a different choice. Leaving
exceptions aside, the commands with this property] aardVvAR (because it chooses arbitrary

values for the new variables). If we gave an operational semantics for atomic commands, this
situation would correspond to backtracking. In the relational semantics that we actually give (in
Atomic Semantics of Speit corresponds to the fact that the predicate defining the relation is the
“or” of predicates for the subcommands. Look there for more discussion of this point.

A non-atomic command defines a collection of possible transitions, roughly one for each

<<..>> command that is part of it. If it has simple commands not in atomic brackets, each one
also defines a possible transition, exceptsignment s andinvocation S. Anassignment

defines two transitions, one to evaluate the right hand side, and the other to change the value of
the left hand side. Amvocation ~ defines a transition for evaluating the arguments and doing

the call and one for evaluating the result and doing the return, plus all the transitions of the body.
These rules are somewhat arbitrary and their details are not very important, since you can always
write separate commands to express more transitions, or atomic brackets to express fewer
transitions. The motivation for the rules is to have as many transitions as possible, consistent
with the idea that an expression is evaluated atomically.

A complete collection of possible transitions defines the possible sequences of states or histories;
there can be any number of histories from a given state. A non-atomic command still makes
choices, but it does not backtrack and therefore can have histories in which it gets stuck, even
though in other histories a different choice allows it to run to completion. For the details, see
handout 17 on formal concurrency.

Handout 4. Spec Reference Manual 13

6.826—Principles of Computer Systems

cmd 1=SKIP
HAVOC
RET
RET exp
RAISE exception
CRASH
invocation
assignment

cmd [l emd
cmd [*] ecmd
pred => cmd
VAR decllnitList | cmd
cmd ; cmd
cmd EXCEPT handler

<< cmd >>
BEGIN cmd END
IF cmd FI
DO cmd OD

invocation ::=primary arguments

assignment :=lhs = exp
Ihs infixOp := exp
lhs = invocation
(IhsList) := exp
(IhsList) := invocation
lhs =name
lhs . id
lhs arguments

declinit :=decl
id : type := exp
id = exp

handler ;= exceptionSet => cmd

The ambiguity of the command grammar is resolved by taking the command composition opera-

2000

% or [5]

% else [5]

% guarded cmd: ipred thencmd [5]
% variable introduction [6]

% sequential composition

% handle exception [9]

% atomic brackets [7]

% just brackets

% just brackets [5]

% repeat untitmd fails [8]

% primary has a routine type [3]

% state := state{name -> exp} [4]
% short forlhs := Ihs infixOp exp

% of aPROCor APROC

% exp a tuple that fitshsList

% defined in section 4

% record field [4]

% function [4]

% initially any value of the type [6]

% initially exp , which must fittype [6]
% short forid: T := exp , Where

% T is the type oexp

% [9]. See section 4 faxceptionSet

tions;, 1 ,and[¥ to be left-associative ammkCEPTto be right associativend giving] and
[lowest precedence; and| next (to the right only, since their left operand i), ;

next, andEXCEPThighest precedence.

[1] The empty command argkiP make no change in the statavogroduces an arbitrary
outcome from any state; if you want to specify undefined behavior when a precondition is not

satisfied, write-precondition => HAVOC

[2] A RETmay only appear in a routine body, anddke must fit the result type of the routine.
Theexp is omitted iff thereturns ~ of the routine’ssignature is empty.

[3] Forarguments see section 5. The argument are passed by value, that is, assigned to the
formals of the procedure A function body cannot invoke@cor APROCtogether with the rule
for assignments (s¢#) this ensures that it can’t affect the state. An atomic command can
invoke anAPROMut not aPROC A command is atomic iff it i8< cmd >> , a subcommand of an

Handout 4. Spec Reference Manual

14

6.826—Principles of Computer Systems 2000

atomic command, or one of the simple commaside, HAVOGRET, or RAISE . The type-
checking rule foinvocation s is the same as for function invocations in expressions.

[4] You can only assign to a name declared WitRor in asignature . In anassignment the
exp must fit the type of thias , or there is a fatal error. In a function badgignments must be

to names declared in the signature or the body, to ensure that the function can’t have side effects.

An assignment to a left hand side that is not a name is short for assigning a constructor to a
name. In particular,
Ihs(arguments) := exp is short fofhs := Ins{arguments->exp}
lhs . id =exp is short fonhs := Ins{id := exp}
These abbreviations are expanded repeatedlyltntils aname.

In an assignment the right hand side may bievanation ~ (of a procedure) as well as an
ordinary expression (which can only invoke a function). The meaniihg efexp or

Ihs := invocation is to first evaluate thexp or do theinvocation and assign the result to a
temporary variable, and then dths :=v . Thus the assignment command is not atomic unless
itis inside<<...>>

,and

If the left hand side of asssignment is a(lhsList) , theexp must be a tpie of the same
length, and each component must fit the type of the correspanslindlote that you cannot
write a tuple constructor that contains procedure invocations.

[5] A guarded command fails if the resultppéd is undefined ofalse . It is equivalent temd if
the result opred istrue . A pred is just a Booleaexp ; see section 4.

S1[1S2 chooses one of th& to execute. It chooses one that doesn't fail. Usisllgnds?2
will be guarded. For example,
x=1=>y:=0[]x>1=>y:=1
x=1=>y:=0[| x>=1=>y:=1

setsy to 0 if x=1, to 1 if x>1, and has no outcomexi€1. But
might sety to0 or 1 if x=1.

S1[*]S2 is the same a&l unlesssi fails, in which case it's the samess

IF...FI are just command brackets, but it often makes the program clearer to put them
around a sequence of guarded commands, thus:

IF x<0=>y:=3

I x=0=>y:=4

[y:=5

Fl
[6] In avARthe unadorned form akclinit initializes a new variable to arbitrary value of
the declared type. The form initializes a new variable texp . Precisely,

VARId: T:=exp|c
is equivalent to

VAR id: T | id := exp; c
Theexp could also be a procedure invocation, as iasaignment .

Severabeclinit s aftervARis short for nestedARs. Precisely,
VAR declinit, decllnitList | cmd

is short for
VAR declinit | VAR declinitList | cmd

This is unlike a module, where all the names are introduced in parallel.

[7] In an atomic command the atomic brackets can be used for grouping insseaiNof.

END since the command can’t be any more atomic, they have no other meaning in this context.

Handout 4. Spec Reference Manual 15

6.826—Principles of Computer Systems 2000

[8] Executecmd repeatedly until it fails. [émd never fails, the result is a looping exception that
doesn’'t have a name and therefore can't be handled. Note thatthishie same as failure.

[9] Exception handling is as in Clu, but a bit simplified. Exceptions are named by literal strings
(which are written without the enclosing quotes). A module can also declare an identifier that
denotes a set of exceptions. A command can have an attached exeepiion , which gets to

look at any exceptions produced in the commandR@gE or by an invocation) and not handled
closer to the point of origin. If an exception is not handled in the body of a routine, it is raised by
the routine’s invocation.

An exceptiorex must be in th@®AISES set of a routine if eitherRAISE ex or an invocation of a
routine withex in its RAISES set occurs in the body ofoutside the scope of a handler éar

[10] crAsHstops theexecution ofanycurrent invocations in the module other than the one that
executes therRASH and discards their local state. The same thing happens to any invocations
outside the module from within it. Aft@RASH no procedure in the module can be invoked from
outside until the routine that invokes it returaRASHs meant to be invoked from within a
specialcrash procedure in the module that models the effects of a failure.

7. Modules

A program is some global declarations plus a set of modules. Each module contains variable,
routine, exception, and type declarations.

Module definitions can be parameterized wihrmals after the modul@l , and a

parameterized module can be instantiated. Instantiation is like macro expansion: the formal
parameters are replaced by the arguments throughout the body to yield the expanded body. The
parameters must be types, and the body must type-check without any assumptions about the
argument that replaces a formal other than the presenc#iofialause that contains all the

methods mentioned in the formal parameter list (that is, formals are treated as distinct from all
other types).

Each module is a separate scope, and there is alsbaas scope for the identifiers declared at
the top level of therogram . An identifierid declared at the top level of a non-parameterized
modulemis short form.id when it occurs im If it appears in thexports , it can be denoted by
m.id anywhere. When an identifier that is declared globally occurs anywhere, it is stoort
Global.id . Global cannot be used as a modidle

An exportedd must be declared in the module. If an expoitetas awiTH clause, it must be
declared in the module as a type with at least those methods, and only those methods are
accessible outside the module; if there ismoH clause, all its methods and constructors are
accessible. This is Spec’s version of data abstraction.

Handout 4. Spec Reference Manual 16

6.826—Principles of Computer Systems

program
module

modclass

exports
export

mformals

mfp

body

toplevel

routineDecl

signature

exSetDecl

typeDecl

[1] The “=exp "in adeclinit

:=toplevel* module* END

2000

::=modclass id mformals exports = body END id

:=MODULE
CLASS

::=EXPORT exportList
r=id
id WITH {methodList}

=empty
[mfpList]
s=id
id WITH { declList }

::=toplevel*
id [typelList]

::=VAR declinit*
CONST decllnit*
routineDecl
EXCEPTION exSetDecl*
TYPE typeDecl*

:=FUNC id signature = cmd
APROC id signature =<<cmd>>
PROC id signature = cmd
THREAD id signature = cmd

:=(declList) returns raises
0) returns raises

:=id = exceptionSet

:=id = type
id = ENUM [idList]

% [4]

% see section 4 fanethod

% module formal parameter
% see section 4 fatecl

% id must be the module id
% instance of parameterized module

% declares thdecl ids [1]

% declares thdecl ids as constant
% declares theoutine id

% declares the exception set ids
% declares thgype ids and any

% ids inENUM

% function

% atomic procedure

% non-atomic procedure

% one thread for each possible
% invocation of the routine [2]
% see section 4 foeturns

% andraises

% see section 4 faxceptionSet

% see section 4 faype
% a value is one of thd 's [3]

(defined in section 6) specifies an initial value for the variable.

Theexp is evaluated in a state in which each variable used during the evaluation has been
initialized, and the result must be a normal value, not an exceptiorxdtsees all the names
known in the scope, not just the ones that textually precede it, but the relation “usgd dur
evaluation of initial values” on the variables must be a partial order so that initialization makes
sense. As in aassignment , theexp may be a procedure invocation as well as an ordinary
expression. It's a fatal error if thep is undefined or the invocation fails.

[2] Instead of being invoked by the client of the module or by another procedure, a thread is
automatically invoked in parallel once for every possible value of its arguments. The thread is
named by th& in the declaration together with the argument values. So
VAR sum :=0, count:=0
THREAD P(i: Int) =iIN0 .. 9 =>
VAR t |t := F(i); <<sum := sum + t>>; <<count := count + 1>>

Handout 4. Spec Reference Manual

17

6.826—Principles of Computer Systems 2000

adds up the values B{0) ... F(9) in parallel. It creates a thread)
threadsP(0), ..., P(9) for which the guard is true involkgo), ..., F(9)
total the results isum. Whencount=10 the total is complete.

for every integer ; the
in parallel and

A thread is the only way to get an entire program to do anything (except evaluate initializing

expressions, which could have side effects), since transitions only happen as part of some thread.

[3] Theid ’s in the list are declared in the module; their type istiieMype. There are no
operations on enumeration values except the ones that apply to all types: equality, assignment,
and routine argument and result communication.

[4] A class is shorthand for a module that declares a convenient object type. The next few
paragraphs specify the shorthand, and the last one explains the intended usage.

If the classd is Obj, the moduled is ObjMod. Each variable declared in a top leveRin the
class becomes a field of thejrec record type in the module. The module exports only a type
Obj that is also declared globallybj indexes a collection of state records of tgpfgRec stored

in the module’sbjs variable, which is a functioobj->ObjRec . Obj’s methods are all the
names declared at top level in the class except the variables, ptew thethod described
below; the exportedbj’'s methods are all the ones that the class exportaigius

To make a class routine suitable as a method, it needs accessbfReanthat holds the state of

the object. It gets this access througlela parameter of typebj, which it uses to refer to the
object statebjs(selfy . To carry out this scheme, each routine in the module, unless it appears
in awITH clause in the class, is ‘objectified’ by giving it an extia parameter of typeb;. In
addition, in a routine body every occurrence of a varialleclared at top level in the class is
replaced bybjs(self).v in the module, and every invocation of an objectified class routine
getsself as an extra first parameter.

The module also gets a synthesized and objectfi#tew procedure that adds a state record to
objs , initializes it from the class’s variable initializations (rewritten like the routine bodies), and
returns itsobj index; this procedure becomes tle@ method ofobj unless the class already has
anew routine.

A class cannot declareTelREAD

The effect of this transformation is that a variadtle of typeobj behaves like an object. The
state of the object ishjs(obj) . The invocatiorobj.m or obj.m(x) is short forobjMod.m(obj)

or ObjMod.m(obj, x) by the usual rule for methods, and it thus invokes the mettindis

body each occurrence of a class variable refers to the corresponding diglcsistate.

obj.new() returns a new and initializembj object. The following example shows how a class is
transformed into a module.

Handout 4. Spec Reference Manual 18

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

8. Scope
CLASS Obj EXPORT T1,f, p, ... = MODULE ObjMod EXPORT Obj WITH {T1, f, p, new } = The declaration of an identifier is knowlroughout the smallest scope in which the declaration
TYPETL1 = ... WITH {add:=AddT} TYPE T1 = ... WITH {add:=AddT} appears (redeclaration is not allowed). This section summarizes how scopes work in Spec; terms
CONSTc:= ... CONSTc:= ... defined before section 7 have pointers to their definitions. A scope is one of

VAR v1:T1l:=ei, v2:T2:=pi(v1), ... TYPE ObjRec =[v1: T1,v2: T2, ...] . L . .
Obj = Int WITH {T1. ¢, f-=f, p:=p, the wholeprogram , in which just the predefined (section 3), module, and globally declared

AddT:=AddT, ..., new:=StdNew} identifiers are declared;
VAR objs: Obj -> ObjRec = {}

amodule ;
FUNC f(p1: RT1, ...)=... vl ... FUNC f(self: Obj, p1: RT1, ...) = ... objs(self).v1 ...
PROC p(p2: RT2, ...)=... V2 ... PROC p(self: Obj, p2: RT2, ...) = ... objs(self).v2 ... the part of aoutineDecl or LAMBDAexpression (section 5) after the
FUNC AddT(t1, t2) = ... FUNC AddT(t1, t2) = ... % in T1's WITH, so not objectified
the part of avARdeclinit | cmd command after thie (section 6);
PROC StdNew(self: Obj) -> Obj =
VAR obj: Obj | ~ obj IN objs.dom => the part of a constructor or quantification after the fir&ection 5).
objs(obj) := ObjRec{};
objs(obj).v1 := ei; a recordype or methodDefList (section 4);

objs(obj).v2 := pi(objs(obj).v1); . o
An identifier is declared by
RET obj _
)) a moduled , mfp, ortoplevel (for types, exception sesNUMelements, and named
END Obj END ObjMod ;
routines),
TYPE Obj = ObjMod.Obj . . T .
!) ! adecl in arecordype (section 4)] constructor or quantification (section 5geclinit
In abstraction functions and invariants we also vatiie for field n in obj 's state, that is, for (section 6), routineignature , or WITH clause of anfp, or
ObjMod.objs(obj).n . .
) Js(ob) amethodDef in thewITH clause of aype (section 4).
An identifier may not be declared in a scope where it is already known. An occurrence of an
identifierid always refers to the declarationi@ofwhich is known at that point, except when
is being declared (precedes,ahe= of atoplevel , the:= of a record constructor, or tke or

BY in aseqGen), or follows a dot. There are four cases for dot:

moduleld . id — theid must be exported from the basic moduteluleld , and this
expression denotes the meaningdofn that module.

record . id — theid must be declared as a field of the record type, and this expression
denotes that field akcord . In anassignment 's Ihs seg7] in section 6 for the meaning.
typeld . id — thetypeld denotes a typed must be a method of this type, and this
expression denotes that method.

primary . id — theid must be a method efimary 's type, and this expression, together
with any following arguments, denotes an invocation of that methog]seesection 5 on
expressions.

If id refers to an identifier declared byoglevel in the current module it is short form.id .

If it refers to an identifier declared bytaplevel in theprogram , it is short forGlobal.id

Once these abbreviations have been expanded, every name in the state is either global (contains a
dot and is declared inteplevel), or local (does not contain a dot and is declared in some other
way).

Exceptions look like identifiers, but they are actually string literals, written without the enclosing
quotes for convenience. Therefore they do not have scope.

Handout 4. Spec Reference Manual 19 Handout 4. Spec Reference Manual 20

6.826—Principles of Computer Systems 2000

9. Built-in methods

Some of the type constructors have built-in methods, among them the operators defined in the
expression grammar. The built-in methods for types otherithaandBool are defined below.
Note that these are not complete definitions of the types; they do not include the constructors.

Sets
A set has methods for

computing union, intersection, and set difference, and adding or removing an element, testing
for membership and subset,

choosing (deterministically) a single element from a set, or a sequence with the same
members, or a maximum or minimum element, and turning a set into its characteristic
predicate (the inverse is the predicatets method).

We define these operations using a module that represents a set by its characteristic predicate.
PreciselySET T behaves as though it wese[T].S , where

MODULE Set[T]

TYPE S = Any->Bool SUCHTHAT (\'s | (ALL any | s(any) ==> (any IS T)))
% Defined everywhere so that type inclusion will work; see section 4.
WITH {"V":=Union, "\":=Intersection, "-":=Difference,
"IN":=In, "<=":=Subset, choose:=Choose, seq:=Seq,
pred:=Pred, perms:=Perms, fsort:=FSort, sort:=Sort,
fmax:=FMax, fmin:=FMin, max:=Max, min:=Min}

EXPORT S =

FUNC Union(sl, s2)->S =RET (\t|s1(t) V s2(t)) %s1\Vs2
FUNC Intersection(s1, s2)->S = RET (\t | s1(t) \ s2(t)) % s1/Ns2
FUNC Difference(sl, s2)->S =RET (\t| s1(t) A ~s2(t)) %sl-s2
FUNC In(s, t)->Bool = RET s(t) %tINs
FUNC Subset(s1, s2)->Bool = RET (ALL t| s1(t) ==> s2(t)) % sl <=s2
FUNC Size(s)->Int = % s.size

VAR t | s(t) => RET Size(s-{t}) + 1 [{] RET 0
FUNC Choose(s)->T =VAR1t|s(t) =>RETt
% Not really, sinc&/ ARmakes a non-deterministic choice,
% butchoose makes a deterministic one. It is undefined i empty.

% s.choose

FUNC Seq(s)->SEQ T = % s.seq
% Defined only for finite sets.

RET {q: SEQ T | g.set = s \ g.size = s.size}.choose
FUNC Pred(s)->(T->Bool) =RETs % s.pred
% s.pred s justs. pred is for symmetry wittseq, set , etc.
FUNC Perms(s)->SET SEQ T = RET s.seq.perms % s.perms
FUNC FSort(s, f: (T,T)->Bool)->S = RET s.seq.fsort(f) % s.fsort(f) ; f is compare
FUNC Sort(s)->S = RET s.seqg.sort % s.sort ;only if T has<=
FUNC FMax(s, f: (T,T)->Bool)->T = RET s.fsort(f).last % s.fmax(f) ; a max undef
FUNC FMin(s, f: (T,T)->Bool)->T = RET s.fsort(f).head % s.fmin(f) ; a min undef

FUNC Max(s)->T = RET s.fmax(T."<=")

FUNC Min(s)->T = RET s.fmin(T."<=")

% Note that these functions are undefinesl i empty. If there are extremal
% elements not distinguished byor "<=" , they make an arbitrary deterministic choice.

% s.max ; only if T has<=
% s.min ; only if T has<=

END Set

Handout 4. Spec Reference Manual 21

6.826—FPrinciples of Computer Systems 2000

There are constructofs for the empty sefel, e2, ...} for a set with specific elements, and
{declList | pred | exp} for a set whose elements satisfy a predicate. These constructors are
described in6] and[10] of section 5. Note thdit| p}.pred = (\t| p) , and similarlyq t

| p).set={t|p}

Functions

The function types->U andT->U RAISES XS have methods for
composition, overlay, inverse, and restriction;

testing whether a function defined at amrgument and whether it produces a normal (non-
exceptional) result at an argument, and for the domain and range;

converting a function to a relation (the inverse is the relatioms method).

In other words, they behave as though they \werietion[T, U].F
for the fact thaks andv are pulled out of thin air):

, where (making allowances

MODULE Function[T, U]

TYPE F = T->U RAISES XS WITH {"*":=Compose, "+":=Overlay,
inv:=Inverse, restrict:=Restrict,
"I'":=Defined, "!I":=Normal,
dom:=Domain, rng:=Range, rel:=Rel}
R = (T, U) -> Bool

FUNC Compose(f, g: U -> V) -> (T -> V) = RET (\ t | g(f(t)))

FUNC Overlay(f1, f2) -> F = RET (\ t | (f2!t => f2(t) [*] f1(t)))
% (f1 + 2) isf2(x) if that is defined, otherwis(x)

EXPORT F =

FUNC Inverse(f) -> (U -> T) = RET f.rel.inv.func
FUNC Restrict(f, s: SETT) -> F=RET (\t| (t IN s => f(t)))

FUNC Defined(f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET true

FUNC Normal(f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET false

FUNC Domain(f) -> SET T = RET {t | fit}
FUNC Range (f) -> SET U = RET {t | fllt | f(t)}
FUNC Rel(f) > R=RET (\t, u | f(t) = u)

END Function

Note that there are construct@rsfor the function undefined everywhem -> result} for

a function of type whose value igesult everywhere, antfexp -> result} for a function
which is the same asexcept akxp, where its value igsult . These constructors are described
in [6] and[8] of section 5. There are also lambda constructors for defining a function by a
computation, described jg] of section 5.

Handout 4. Spec Reference Manual 22

6.826—Principles of Computer Systems 2000

A total functionT->Bool is a predicate and has an additional method to compute ther&et of
that satisfy the predicate (the inverse is the getts method). In other words, a predicate
behaves as though it wepeedicate[T].P , Where

MODULE Predicate[T]

TYPE P =T -> Bool WITH {set:=Set}
FUNC Set(p) -> SET T = RET {t | p(t)}
END Predicate

EXPORT P =

A predicate withr = (T0, U0) is a relation and has additional methods to turn it into a
function, a total function, or a function to setsofs, and to get its domain and range, invert it
or compose it (overriding the methods for a function). In other words, it behaves as though it
wereRelation[T0, UOL.R , where (making allowances for the fact thag pulled out of thin air

in Compose):

MODULE Relation[T, U]
TYPE R = (T, U) -> Bool WITH {func:=Func, totalF:=TotalFunc, setF:=SetFunc,

dom:=Domain, rng :=Range,
inv:=Inverse, "*":=Compose}

EXPORTR =

FUNC Func(r) -> (T -> U) =
% The result function is defined @tiff r relates to a singleu.
RET (\t | (r.setF(t).size = 1 => r.setF(t).choose))

FUNC TotalFunc(r) -> (T -> (U + Null)) =

% The result function is defined everywhere, returning some rdlatechil if there is none.
RET (\t| (r.setF(t) #{} => r.setF(t).choose [*] nil))

FUNC SetFunc(r) -> (T -> SET U) = RET (\ t | {u | r(t, u)})

% The result function is defined everywhere, returning the set of réfated

FUNC Domain(r) -> SET T=RET {t, u | r(t, u) | t}
FUNC Range (r) -> SET U = RET {t, u | r(t, u) | u}

FUNC Inverse(r) -> ((U, T) -> Bool) = RET (\u, t | r(t, u))

FUNC Compose(r: R, s: (U, V)->Bool) -> (T, V)->Bool =
RET (\t, v | (EXISTS u | r(t, u) A s(u, v)))

END Relation

A relation withT =U is a graph and has additional methods to test whether a sequetcis of

a path in the graph and to compute the transitive closure . In other words, it behaves as though it

wereGraph[T].G , where

MODULE Graph[T] EXPORT G =

TYPE G = (T, T) -> Bool WITH {isPath:=IsPath, closure:=TransitiveClosure }
P=SEQT

FUNC IsPath(g, p) = RET (ALL i :IN p.dom - {0} | g(p(i-1), p(i)))
% Any p of size<=1 is a path by this definition.
FUNC TransitiveClosure(g) -> G = RET (\ t1, t2 |
(EXISTS p | p.size > 1 \ p.head =t1 A\ p.last = t2 /\ g.isPath(p)))

END Graph

Handout 4. Spec Reference Manual 23

6.826—Principles of Computer Systems 2000

Sequences

A function is called a sequence if its domain is a fiséeof consecutivet 's starting at 0, that
is, if it has type

Q =Int->T SUCHTHAT (\ g | (EXISTS size: Int | g.dom = (0 .. size-1).set))
We denote this type (with the methods defined belowgeuy T. A sequence inherits the
methods of the function (though it overridgsand it also has methods for

detaching or attaching the first or last element,
extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same
making a sequence into a tuple or s (also makes it into a set),
testing for empty, prefix, or sub-sequence (not necessarily contiguous),
lexical comparison, permuting, and sorting,
treating a sequence as a multiset with operations to:
count the number of times an element appears, test membership and multiset equality,
take differences, and remove an element ©r"v* is union anchddl adds an
element).

All these operations are undefingdhey use out-of-range subscripts, except that an empty sub-
sequence is defined regardless of the subscripts.

We define the sequence methods with a module. Preci&&yT is Sequence[T].Q , where:

MODULE Sequence[T] EXPORTSQ =
TYPEI = Int
Q = (1->T7)

SUCHTHAT (\q | (ALL i]| g'i= (0 <=i /i< qg.size)))
WITH { size:=Size, sub:=Sub, "+":=Concatenate,
head:=Head, tail:=Tail, addh:=AddHead, remh:=Tall,
last:=Last, reml:=Removelast, addl:=AddLast,
seg:=Seg, fill:=Fill, tuple:=Tuple,
isEmpty:=IsEmpty, "<=":=Prefix, "<<=":=SubSeq,
lexLE:=LexLE, perms:=Perms,
fsorter:=FSorter, fsort:=FSort, sort:=Sort,

% These methods treat a sequence as a multiset (or bag).
count:=Count, "IN":=In, "==":=EqElem,
"\":=Concatenate, "-":=Diff, set:=Q.rng }

FUNC Size(q)-> Int = RET g.dom.size

FUNC Sub(q, i1,i2) ->Q = % q.sub(i1, i2); yields
RET ({0, i1}.max .. {i2, g.size-1}.min) * q % {q(i1),...,q(i2)}

FUNC Concatenate(ql, gq2) -> Q = VAR q | %ql +qg2
q.sub(0, ql.size-1) = q1 /\ g.sub(ql.size, g.size-1) = g2 => RET q

FUNC Head(q) -> T = RET q(0) % g.head; first element

FUNC Tail(g) ->Q = % q.tail; all but first
g.size > 0 => RET q.sub(1, g.size-1)
FUNC AddHead(q, t) -> Q = RET {t} + q % g.addh(t)
Handout 4. Spec Reference Manual 24

6.826—Principles of Computer Systems 2000

FUNC Last(q) -> T = RET q(q.size-1)
FUNC Removelast(q) -> Q =

g #{} => RET q.sub(0, g.size-2)
FUNC AddLast(q, t) -> Q = RET g + {t}

%aq.last ; last element
% q.reml ; all but last

% g.addl(t)

FUNC Seg(q, i, n: I) -> Q = RET q.sub(j, i+n-1) % g.seg(i,n) ;n T 's fromq()

FUNCFill(t, n: 1) > Q=RET{i:INO..n-1 ||t} % yieldsi copies ot

FUNC ISsEmpty(q) -> Bool = RET (g = {})

FUNC Prefix(g1, g2) -> Bool = %ql <=02
RET (EXISTSq|ql+qg=02)
FUNC SubSeq(q1, g2) -> Bool = % gl <<=q2

% Areql’s elements ig2 in the same order, not necessarily contiguously.
RET (EXISTS p: SET Int | p <= g2.dom /A q1 = p.seq.sort * g2)

FUNC LexLE(q1, g2, f: (T,T)->Bool) -> Bool =
% Isqgl lexically less than or equal 42. True ifgl is a prefix ofg2,
% or the first element in whicl differs fromgz2 is less.
RET gl<=0q2
V (EXISTS i :IN gl.dom A g2.dom | ql.sub(0, i-1) = g2.sub(0, i-1)
N q1(i) # q2() A f(g1(), 92(7))

% ql.lexLE(q2, f); f is<=

FUNC Perms(q)->SET Q =
RET {q' | (ALL t | g.count(t) = g'.count(t))}

% q.perms

FUNC FSorter(q, f: (T,T)->Bool)->SEQ Int = % q.fsorter(f) fis<=
% The permutation that somsstably. Note: can't usain to define this, sincein is defined usingort .
VAR ps :={p :IN g.dom.seq.perms % all perms that sog
| (ALL i :IN (g.dom - {0}) | f((p*a)(i-1), (P*a)())) } |
VAR pO :IN ps |
(ALL p :IN ps | pO.lexLE(p, Int."<=")) => RET p0

% the one that reorders the least

FUNC FSort(q, f: (T,T)->Bool) ->Q =
RET q.fsorter(f) * q
FUNC Sort(g)->Q = RET q.fsort(T."<="

% q.fsort(f) ; f is<= for the sort

%q.sort ;only if T has<=

FUNC Count(q, t)->Int = RET {t':IN q | t' = t}.size % g.count(t)

FUNC In(t, gq)->Bool = RET (q.count(t) # 0)
FUNC EqgElem(ql, g2) -> Bool = RET g1 IN g2.perms

%tINq
%ql==q2 ;equal as multisets

FUNC Diff(q1, g2) ->Q = %ql-q2
RET {q | (ALL t | g.count(t) = {g1.count(t) - g2.count(t), 0}.max)}.choose

END Sequence

We can’t progranTuple in Spec, but it is defined as followsglfSEQ T , theng.tuple is a
tuple ofg.size T's, the first equal tg(0) , the second equal tg1) , and so forth. For the
inverse, ifu is a tuple off’s, thenu.seq is aSEQ T such thati.seq.tuple = u .fuis atuplein
which not all the elements have the same declared typey.tegn is aSEQ Any such that
u.seq.tuple =u

Int has a method for making sequences: j={, i+1, ..., j-1, j} fj<io
i.j={ . You can also writée.. j as{k :=iBY k+ 1 WHILE k <= }} ; se€11]in
section 5Int also has aeq methodi.seq=0..i-1

Handout 4. Spec Reference Manual 25

6.826—Principles of Computer Systems 2000

There is a construct@e1, e2, ...} for a sequence with specific elements and a constructor
{} for the empty sequence. There is also a constryetbr>e2} , which is equal tg except
atel (and undefined ié1 is out of range). For the constructors ggeand[8] of section 5. To
generate a sequence there are construgtorsq | pred | exp} and{x := el BY e2

WHILE pred1 | pred2 | exp} . For these sep1] of section 5.

To map each elementof g tof(ty use function compositiom*f . Thus ifq: SEQ Int

g* (\i: Int | i*i) yields a sequence of squares. You can also write this
{i:INq]|i*}
Handout 4. Spec Reference Manual 26

6.826—Principles of Computer Systems

Index
-,9,19,21
1,9, 22

.9, 22
#,9,10

%3

() ,3,8,16
(expList) ,8
(typeList) ,5
*,3,9, 21,22

1, 3,5

=,3,8,14,18

0,14

0,314

[declList] ,5

[* .3,8,14

[n] .3

\,8

V ,9,20

{* ->result} , 8
{} .3.8

{declList | pred | exp},8
{exceptionList} ,5
{exp -> result} , 8
{expList} ,8
{methodDefList} ,5,6
4,21

{el,e2, ..} , 21
|,3,14

~9

+,5,9,19, 21, 22

> 9

</<<, 14,16

<< >> |3

<<=,09, 22

<= 19,21

>> 14

abstract equality, 10
add, 9

add an element, 9

adding an element, 19, 22
addl , 22

ALL, 8

ambiguity, 10, 14
Any, 5, 10

append an element, 9
APROCS5, 16
arguments, 8

AS, 8

assignment, 14
associative, 6, 10, 14
atomic command, 1, 13, 14
atomic procedure, 2
Atomic Semantics of Spek 7, 13
backtracking, 13
bag, 22

BEGIN, 14

body, 16

Bool , 5

built-in methods, 19
capital letter, 3

Char, 5
characteristic predicate, 19
choice, 14

choose , 19

choosing an element, 19
CLASS 16

class, 17

closure, 21

Clu, 15

cmd, 14

command, 1, 13
comment, 3
composition, 20
concatenation, 9
conditional, 10
conditional and, 9
conditional or, 9
CONST17
constructor, 8

count , 22

data abstraction, 6
decl , 5

declaration, 18
defined, 9, 20
difference, 22

divide, 9

DQ 14

dot, 18

e.id ,10

eid() ,10

el infixOp e2 , 10

Handout 4. Spec Reference Manual

2000

elid(e2) ,10

else, 14

empty, 3, 10

empty sequence, 22
empty set, 19

END 14, 16

ENUM16

equal, 9

equal types, 4

EXCEPT 14

exception, 5, 6, 7, 15, 16
exceptionSet , 5, 16
EXISTS, 8

exp, 8

expanded definitions, 4
expression, 1, 7
expression has a type, 7

fail, 7, 13
Fl, 14
fil 22

fit, 4, 7, 11, 14, 15
formal parameters, 16
FUNC 16, 23

function, 2, 6, 14, 19, 20
function undefined everywhere, 20
general procedure, 2
Global.id , 16, 18
grammar, 3

graph, 21

greater or equal, 9
greater than, 9
grouping, 15

guard, 13, 14
handler, 14

has a routine type, 4
has type T, 4
HAVOC14

head, 22

id, 3,6

id:=exp ,8

id [typeList] .5
identifier, 3

if, 14

implies, 9

IN, 9, 19, 22
includes, 4

infixOp , 9

initial value, 17
initialize, 15
instantiate, 16
intersection, 9, 19
Introduction to Specl

27

6.826—Principles of Computer Systems

invocation, 7, 8, 10, 14
IS, 8
iSEmpty , 22
isPath , 21
keyword, 3
known, 20
LAMBDAS, 11
last , 19
lessthan, 9
lexical comparison, 22
List , 3
literal, 3,7, 8
local, 18
logical operators, 12
looping exception, 7, 13
m[typeList].id , 6
max, 19
meaning

of an atomic command, 13

of an expression, 7
membership, 9, 19
method, 4, 5, 6, 19
mfp, 16
min, 19
module, 2, 16
multiply, 9
multiset, 22
multiset difference, 9
name, 1, 5, 18
new variable, 15
non-atomic command, 2, 13
Non-Atomic Semantics of Spéc
non-deterministic, 1
nonterminal symbol, 3
normal result, 20
not equal, 9
Null ,5
oD 14
operator, 3, 6
OrderedSet , 19
organizing your program, 2
outcome, 13
parameterized module, 16
path in the graph, 21
precedence, 6, 9, 14
precondition, 14
pred , 8, 19
predefined identifiers, 3
predicate, 20
prefix, 9, 22
prefixOp , 9
prefixOpe , 10
primary, 8

Handout 4. Spec Reference Manual

PROCS5, 16

program, 2, 16
punctuation, 3

quantif , 8
quantification, 10
quoted character, 3
RAISE, 8, 14

RAISE exception , 11
RAISES, 5, 11

RAISES set , 15
record, 5, 10
redeclaration, 18
relation, 21

remove an element, 9, 19, 22
result, 7

result type, 14

RET, 14

routine, 2, 14, 16
scope, 18

seg, 22

SEQ5, 6, 22

SEQ Char, 6
sequence, 22
sequential composition, 14
sequential program, 2
SET, 5, 10, 11, 19, 20
set difference, 9, 19

set of sequences of states, 2
set of values, 4

set with specific elements, 19
setF , 21

side effects, 15
signature, 15, 16

SKIP, 14
specifications, 1

state, 1, 7, 13, 18

state machine, 1

state variable, 1

String , 5,6
stringLiteral ,5
sub-sequence, 9, 22
subset, 9, 19

subtract, 9

symbol, 3

syntactic sugar, 7

T.m, 6,7

tail , 22

terminal symbol, 3

test membership, 19, 22
thread, 17

toplevel 16, 18
totalF , 21

transition, 1

transitive closure, 21
tuple, 5, 14, 15

tuple constructor, 8
type, 2, 4,5, 16

type equality, 4

type inclusion, 4
typechecking, 4, 7, 14
undefined, 7, 10, 13
UNION 5, 6, 7, 9, 19, 22
upper case, 3

value, 1

variable, 1, 14, 15
white space, 3

WITH, 5, 6, 10, 16

2000

28

6.826—Principles of Computer Systems 2000

5. Examples of Specifications and Implementations

This handout is a supplement for the first two lectures. It contains several example specifications
and implementations, all written using Spec.

Section 1 contains a specification for sorting a sequence. Section 2 contains two specifications
and one implementation for searching for an element in a sequence. Section 3 contains
specifications for a read/write memory. Sections 4 and 5 contain implementations for a
read/write memory based on caching and hashing, respectively. Finally, Section 6 contains an
implementation based on replicated copies.

1. Sorting

The following specification describes the behavior required of a program that sorts sets of some
typeT with a"<=" comparison method. We do not assume st is antisymmetric; in other

words, we can hawe <=t2 andt2<=t1 without havingl=t2 , so that<=" is not

enough to distinguish values TfFor instanceT might be the record tyfeame:String,

salary: Int] with "<=" comparison of thealary field. Severafr's can have differentames

but the samealary

APROC Sort(s: SETT) ->SEQ T = <<
VAR g: SEQ T | (ALL i: T | s.count(i) = g.count(i)) /\ Sorted(b) => RET b >>

This specification uses the auxiliary functiesrted , defined as follows.
FUNC Sorted(q: SEQ T) -> Bool = RET (ALL i :IN g.dom — {0} | q(i-1) <= q(i))

If we madeSort aFUNCrather than R0G what would be wrong2Vhat could we change to
make it aFUNC

We could have written this more concisely as

APROC Sort(s: SETT) ->SEQT =
<< VAR q :IN a.perms | Sorted(q) => RET q >>

using theperms method for sets that returns a set of sequences that contains all the possible
permutations of the set.

2. Searching

Search specification

We begin with a specification for a procedure to search an array for a given element. Again, this
is anAPROQather than #UNCbecause there can be several allowable results for the same inputs.

1 Hint: aFUNCcan't have side effects and must be deterministic (return the same value for the same arguments).

Handout 5. Examples of Specifications and Implementations 1

6.826—Principles of Computer Systems 2000

APROC Search(q: SEQ T, x: T) -> Int RAISES {NotFound} =
<<IF VARIi:Int| (0<=iNi<q.size Nq(i)) =x) => RETi
[*] RAISE NotFound
Fl >>

Or, equivalently but slightly more concisely:

APROC Search(q: SEQ T, x: T) -> Int RAISES {NotFound} =
<< IF VAR :IN §.dom | qi) ¥ x => RET i [] RAISE NotFound FI >>

Sequential search implementation

Here is an implementation of tisearch specification given above. It uses sequential search,
starting at the first element of the input sequence.

APROC SeqSearch(q: SEQ T, x: T) -> Int RAISES {NotFound} = << VAR i:=0 |
DO i< q.size => IF q(i) =x => RET i [*] i + := 1 FI OD; RAISE NotFound >>

Alternative search specification

Some searching algorithms, for example, binary search, assume that the input argument sequence
is sorted. Such algorithms require a different specification, one that expresses this requirement.

APROC Search1(q: SEQ T, x: T) -> Int RAISES {NotFound} = <<
IF ~Sorted(q) => HAVOC
[*] VAR :IN g.dom | q(i)) =x=>RETi
[*] RAISE NotFound
Fl >>

You might consider writing the specification to raise an exception when the array is not sorted:
APROC Search2(q: SEQ T, x: T) -> Int RAISES {NotFound, NotSorted} = <<

IF ~Sorted(q) => RAISE_NotSorted |

This is not a good idea. The whole point of binary search is to obtain Q) (tge performance

(for a sorted input sequence). But any implementation cd¢leh2 specification requires an

O(n) check, even for a sorted input sequence, in order to verify that the input sequence is in fact
sorted.

This is a simple but instructive example of the difference between defensive programming and
efficiency. IfSearch were part of an operating system interface, it would be intolerable to have
HAVOGas a possible transition, because the operating system is not supposed to go off the deep
end no matter how it is called (though it might be OK to return the wrong answer if the input

isn’'t sorted; what would that spec be?). On the other hand, the efficiency of a program often
depends on assumptions that one part of it makes about another, and it's appropriate to express
such an assumption in a spec by saying that yonaeaf it is violated. We don't care to be

more specific about what happens because we intend to ensure that it doesn’t happen. Obviously
a program written in this style will be more prone to undetected or obscure errors than one that
checks the assumptions, as well as more efficient.

Handout 5. Examples of Specifications and Implementations 2

6.826—Principles of Computer Systems 2000

3. Read/write memory

The simplest form of read/write memory is a single read/write register, say af (fgpedata),
with arbitrary initial value. The following Spec module describes this:

MODULE Register [D] EXPORT Read, Write =

VAR x: D % arbitrary initial value

APROC Read() ->D = << RET x >>
APROC Write(d) =<<x:=d>>

END Register

Now we give a specification for a simple addressable memory with elements bf Tye is
like a collection of read/write registers, one for each address imalseither words, it's a
function from addresses to data values. For variety, we includ&esetv andSwap operations
in addition torRead andwrite .

MODULE Memory [A, D]

TYPEM= A->D
VAR m := Init()

EXPORT Read, Write, Reset, Swap =

APROC hnit() ->M =<<VARmM'| (ALL a | m'a) => RET m' >>
% Choose an arbitrary function that is defined everywhere.

FUNC Read(a) -> D = << RET m(a) >>
APROC Write(a, d) =<<m(a) :=d>>

APROC Reset(d) =<<m:=M{*->d}>>
% Set all memory locations th

APROC Swap(a, d) -> D =<< VAR d' :=m(a) | m(a) :=d; RET d' >>
% Set locatiora to the input value and return the previous value.

END Memory

The next three sections describe implementationgeoibry.

Handout 5. Examples of Specifications and Implementations

3

6.826—Principles of Computer Systems 2000

4. Write-back cache implementation

Our first implementation is based on two memory mappings, a main meraaxy awrite-back
cachec. The implementation maintains the invariant that the number of addresses at vghich
defined is constant. A real cache would probably maintain a weaker invariant, perhaps bounding
the number of addresses at whicis defined.

MODULE WBCache[A, D]
% implementsMlemory

EXPORT Read, Write, Reset, Swap =

TYPEM = A->D

C = A->D
CONST Csize ©onti= % cache size
VAR m = InitM()

c = InitC()

APROC InitM() -> M = << VAR m' | (ALL a | m'la)
% Returns Mwith arbitrary values.

=>RET m'>>

APROC nitC() -> C = << VAR ¢' | c".dom.size = CSize => RET c¢' >>
% Returns & that has exactlZSize entries defined, with arbitrary values.

APROC Read(a) -> D = << Load(a); RET c(a) >>
APROC Write(a, d) = << IF ~cla => FlushOne() [*] SKIP FI; c(a) := d >>
% Makes room in the cache if necessary, then writes to the cache.

APROC Reset(d) = <<...>> % exercise for the reader
APROC Swap(a, d) -> D = << VAR d' | Load(a); d' := c(a); c(a) := d; RET d' >>
% Internal procedures.

APROC Load(a) = << IF ~cla => FlushOne(); c(a) := m(a) [*] SKIP FI >>
% Ensures that addreasappears in the cache.

APROC FlushOne() =
% Removes one (arbitrary) address from the cache, writing the data value back to main memory if necessary.
<< VAR a | cla => IF Dirty(a) => m(a) := c(a) [*] SKIP FI; c :=c{a ->} >>

FUNC Dirty(a) -> Bool = RET cla /\ c(a) # m(a)
% Returndrue if the cache is more up-to-date than the main memory.

END WBCache

The following Spec function is an abstraction function mapping a state wBtbechemodule to
a state of th&temory module. It's written to live inside the module. It says that the contents of
locationa isc(a) if a is in the cache, and(a) otherwise

FUNC AF() -> M =RET (\a| cla=>c(a) [*] m(a))

Handout 5. Examples of Specifications and Implementations 4

6.826—Principles of Computer Systems 2000

5. Hash table implementation
Our second implementation @emory uses a hash table for the representation.

MODULE HashMemory [A WITH {nhf: A->Int}, D] EXPORT Read, Write, Reset, Swap =
% ImplementdVemory.

% The module expects that the hash funcfidif is total and that its range@s..n for somen.
TYPEPair = [a,d]
B = SEQ Pair % Bucket in hash table
HashT = SEQB
VAR nb = NumB() % Number of Buckets
m := HashT fill(B{}, nb) % Memory hash table; initially empty
default . D % arbitrary default value

APROC Read(a) -> D = << VAR b := m(a.hf), i: Int |
i := FindEntry(a, b) EXCEPT NotFound => RET default ; RET b(i).d >>

APROC Write(a, d) = << VAR b := DeleteEntry(a, m(a.hf)) |
m(a.hf) := b + {Pair{a, d}} >>

APROC Reset(d) = << m := HashT.fill(B{}, nb); default := d >>
APROC Swap(a, d) -> D = << VAR d' | d' := Read(a); Write(a, d); RET d' >>
% Internal procedures.

FUNC NumBs() -> Int =
% Returns the number of buckets needed by the hash function; havoc if the hash function is not as expected.
IF VAR n: Nat | A.hf.rng = (0 .. n).set => RET n + 1 [*] HAVOC FI

APROC FindEntry(a, b) -> Int RAISES (NotFound) =
% If a appears in a pair in b, returns the index of some pair containiottperwise raiseslotFound .
<<VAR:IN b.dom | b(ij).a = a => RET i [*] RAISE NotFound >>

APROC DeleteEntry(a, b) -> B << VAR i: Int |

% Removes some pair with address a from b, if any exists.
i := FindEntry(a, b) EXCEPT NotFound => RET b ;
RET b.sub(0, i-1) + b.sub(i+1, b.size-1) >>

END HashMemory

Note thatFindEntry andDeleteEntry
given arbitrarnyp arguments.

areAPROG because they are not deterministic when

The following is a key invariant that holds between invocations of the operatiaashofemory:

FUNC Inv() -> Bool = RET
(nb>0
N\ m.size = nb
N (ALL a | a.hf IN m.dom)
N (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf =)
N (ALL a | {] :IN m(a.hf).dom | m(a.hf)(j).a = a }.size <= 1))

This says that the number of buckets is positive, that the hash function maps all addresses to
actual buckets, that a pair containing addseagpears only in the bucket at indedxf inm and

Handout 5. Examples of Specifications and Implementations 5

6.826—Principles of Computer Systems 2000

that at most one pair for an address appears in the bucket for that address. Note that these
conditions imply that in any reachable stateéiahMemory, each address appears in at most one
pair in the entire memory.

The following Spec function is an abstraction function between states ieddti@emory module
and states of th@emory module:

FUNC AF() -> M = RET
(LAMBDA(a) ->D =
IF VAR :IN m.dom, p :IN m(i).rng | p.a = a=>RET p.d
[*] RET default
)]
That is, the data value for addresis any value associated with address the hash table; if
there is none, the data value is the default value. Spec says that a function is undefined at an

argument if its body can yield more than one result value. The invariants given above ensure that

the LAMBDAis actually single-valued for dlhe reachable states tadshMemory.

Of courseHashMemory is not a fully detailed implementation. Its main deficiency is that it
doesn’t explain how to maintain the variable-length bucket sequences, which is usually done
with a linked list. However, the implementation does capture all the essential details.

6. Replicated copies

Our final implementation is based on some nurklzed of copies of each memory location.
Initially, all copies have the same default valuevite operation only modifies an arbitrary
majority of the copies. ARRead reads an arbitrary majority, and selects and returns the most
recent of the values it sees. In order to allowRél to determine which value is the most
recent, eaclvrite records not only its value, but also a sequence number.

For simplicity, we just show the module for a single read/write register. The cdnstant
determines the number of copies.

MODULE MajorityRegister [D] = % implementsRegister
CONST k =5
TYPEN = Nat
Kint = IN1.k % int s betweerl andk
Maj = SET Kint % all majority subsets dfint

SUCHTHAT (\m: Maj | m.size>k/2)

TYPEP = [D, segno: N] % Pair
M = Kint->P % Memory
S = SETP

VAR default D
m = M{* -> P{d := default, seqno := 0}

APROC Read() -> D = << RET ReadPair().d >>

APROC Write(d) = << VAR i Int, maj |
% Determines the highest sequence numbénen writesd paired withi+1 to some majoritynaj of the copies.

Handout 5. Examples of Specifications and Implementations 6

6.826—Principles of Computer Systems 2000

i := ReadPair().seqno;
DO VAR j :IN maj | m(j).seqno # i+1 => m(j) := P{d := d, segno := i+1} OD >>

% Internal procedures.

APROC ReadPair() -> P = << VAR s := ReadMaj () |

% Returns a pair with the largest sequence number from some majority of the copies.
VAR p:INs | p.segno ={p":IN s | | p'.segno}.max => RET p >>

APROC ReadMaj () -> S = << VAR maj | RET {i:IN maj | | m(i) } >>

% Returns the set of pairs belonging to some majority of the copies.

END MajorityRegister

We could have written the body RéadPair as

<< VAR s := ReadMaj() | RET s.fmax((\ p1, p2 | pl.segno <= p2.seqno)) >>
except thatmax always returns the sameaximalp from the same, whereas theARin
ReadPair chooses one noteterministically.

The following is a key invariant fanajorityRegister

FUNC Inv(m: M) -> Bool = RET
(ALL p :IN m.rng, p' :IN m.rng | p.segqno = p'.seqno ==> p.d = p'.d)
N (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).segno >= p.seqno)))

The first conjunct says that any two pairs having the same sequence number also have the same

6.826—Principles of Computer Systems

data. The second conjunct says that the highest sequence number appears in some majority of the

copies.

The following Spec function is an abstraction function between states \éjthie/Register
module and states of tiRegister module.

FUNC AF() -> D = RET m.rng.fmax((\ p1, p2 | pl.seqno <= p2.seqno)).d

That is, the abstract register data value is the data component of a copy with the highest sequence

number. Again, because of the invariants, there is only.ang¢hat will be returned.

Handout 5. Examples of Specifications and Implementations

7

Handout 5. Examples of Specifications and Implementations

2000

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

6. Abstraction Functions and Invariants

Init
(Read(2),a)
This handout describes the main techniques used to prove correctness of state machines:
abstraction functions and invariant assertions. We demonstrate the use of these techniques for
some of thevemory examples from handout 5.

Throughout this handout, we consider modules all of whose externally invocable procedures are
APROG. We assume that the body of each such procedure is executed all at once. Also, we do not
consider procedures that modify global variables declared outside the module under
consideration.

(Read(1),b)

(Read(3),a)
Modules as state machines (Read(1).b)
Our methods apply to an arbitrary state machine or automaton. In this course, however, we use a
Spec module to define a state machine. Each state of the automaton designates values for all the
variables declared in the module. The initial states of the automaton consist of initial values
assigned to all the module’s variables by the Spec code. The transitions of the automaton

correspond to the invocations A#ROG together with their result values.

Figure 1: Part of theemory state machine

An execution fragmertf a state machine is a sequence of the fgrmy, s;, 10, ..., where each

sis a state, eachis a label for a transition (an invocation of a procedure), and each consecutive
(s, T5,1, S, triple follows the rules specified by the Spec code. (We do not define these rules
here—wait for the lecture on atomic semantics.)eXacutionis an execution fragment that

begins in an initial state.

TheT are labels for the transitions; we often call traations When the state machine is

written in Spec, each transition is generated by some atomic command, and we can use some
unambiguous identification of the command for the action. At the moment we are studying
sequential Spec, in which every transition is the invocation of an exported atomic procedure. We
use the name of the procedure, the arguments, and the results as the label.

Figure 1 shows some of the states and transitions of the state machinevianéhemodule
With A=IN1.. 4 , and Figure 2 does likewise for th@Cachemodule withcCsize=2 . The & (Read(1),b
arrow for each transition is labeled byiitsthat is, by the procedure name, arguments, and blb
result.

a
a
C

Figure 2: Part of thesecachestate machine

Handout 6. Abstraction Functions and Invariants 1 Handout 6. Abstraction Functions and Invariants 2

6.826—Principles of Computer Systems 2000

External behavior

Usually, a client of a module is not interested in all aspects of its execution, but only in some
kind of external behavior. Here, we formalize the external behavior as atisetesf That is,

from an execution (or execution fragment) of a module, we discard both the states and the
internal actions, and extract ttrace This is the sequence of labglgor external actions (that

is, invocations of exported routines) that occur in the execution (or fragment). Then the external
behavior of the module is the set of traces that are obtained from all of its executions.

It's important to realize that in going from the execution to the trace we are discarding a great
deal of information. First, we discard all the states, keeping only the actions or labels. Second,
we discard all the internal actions, keeping only the external ones. Thus the only information we
keep in the trace is the behavior of the state machine at its external interface. This is appropriate,
since we want to study state machines that have the same behavior at the external interface; we
shall see shortly exactly what we main by ‘the same’ here. Two machines can have the same
traces even though they have very different state spaces.

In the sequential Spec that we are studying now, a module only makes a transition when an
exported routine is invoked, so all the transitions appear in the trace. Later, however, we will
introduce modules with internal transitions, and then the distinction between the executions and
the external behavior will be important.

For example, the set of traces generated byighery module includes the following trace:
(Reset(d),)
(Read(al),d)
(Write(a2,d")
(Read(a2),d")

However, the following trace is not includedii# d'
(Reset(d))
(Read(al),d)
(Write(a2,d")
(Read(a2),d)

should have returned
should have returned

In general, a trace is included in the external behavigeobry if everyRead(a) or Swap(a,

d) operation returns the last value writteratby awrite , Reset or Swap operation, or returned
by aRead operation; if there is no such previous operation, Head(a) or Swap(a, d) returns
an arbitrary value.

Implements relation

In order to understand what it means for one state machine to implement another one, it is
helpful to begin by considering what it means for one atomic procedure to implement another.
The meaning of an atomic procedure is a relation between an initial state just before the
procedure starts (sometimes called a ‘pre-state’) and a final state just after the procedure has
finished (sometimes called a ‘post-state’). This is often called an ‘mpptit relation’. For

example, the relation defined by a squaret procedure is that the post-state is the same as the
pre-state, except that the square of the procedure result is close enough to the argument. This
meaning makes sense for an arbitrary atomic procedure, not just for one in a trace.

Handout 6. Abstraction Functions and Invariants 3

6.826—Principles of Computer Systems 2000

We say that procedufeimplements spe8 if the relation defined b (considered as a set of
ordered pairs of states) is a subset of the relation defin€dTys means tha& never does

anything that S couldn’t do. However, P doesn't have to do everything that S can do. An
implementation of square root is probably deterministic and always returns the same result for a
given argument. Even though the spec allows several results (all the ones that are within the
specified tolerance), we don’t require an implementation to be able to produce all of them;
instead we are satisfied with one.

Actually this is not enough. The definition we have given allB¥ggelation to be empty, that is,

it allows P not to terminate. This is usually called ‘partial correctness’. In addition, we usually
want to require tha®'s relation be total on the domain &fthat is,P must produce some result
whenevelS does. The combination of partial correctness and termination is usually called ‘total
correctness’.

If we are only interested in external behavior of a procedure that is part of a stateless module, the
only state we care about is the arguments and results of the procedure. In this case, a transition is
completely described by a single entry in a trace, su@keas(al),d)

Now we are ready to consider modules with state. Our idea is to generalize what we did with

pairs of states described by single trace entries to sequences of states described by longer traces.
Suppose that andS are any modules that have the same external interface (set of procedures

that are exported and hence may be invoked externally). In this discussion, we will often refer to

S as thespecificationmodule and’ as thamplementationThen we say that implementsSif

every trace of is also a trace & That is, the set of traces generated liy a subset of the set

of traces generated IS/

This says that any external behavior of the implementatimist also be an external behavior

of the spe& Another way of looking at this is that we shouldn’t be able to tell by looking at the
implementation that we aren't looking at the spec, so we have to be able to explain every
behavior ofT as a possible behavior &f

The reverse, however, is not true. We do not insist that the implementation must exhibit every
behavior allowed by the spec. In the case of the simple memory the spec is completely
deterministic, so the implementations cannot take advantage of this freedom. In general,
however, the spec may allow lots of behaviors and the implementation choose just one. The spec
for sorting, for instance, allows any sorted sequence as the resuit othere may be many

such sequences if the ordering relation is not total. The implementation will usually be
deterministic and return exactly one of them, so it doesn’t exhibit all the behavior allowed by the
spec.

Safety and liveness

Just as with procedures, this subset requirement is not strong enough to satisfy our intuitive
notion of implementation. In particular, it allows the set of traces generatetbdye empty; in

other word, the implementation might do nothing at all, or it might do some things and then stop.
As we saw, the analog of this for a simple sequential procedure is non-termination. Usually we
want to say that the implementation of a procedure should terminate, and similarly we want to
say that the implementation of a module should keep doing things. More generally, when we

Handout 6. Abstraction Functions and Invariants 4

6.826—Principles of Computer Systems 2000

have concurrency we usually want the implementation faibethat is, to eventually service all
its clients, and more generally to eventually make any transition that continues to be enabled.

It turns out that any external behavior (that is, any set of traces) can be described as the
intersection of two sets of traces, one defined bgfatyproperty and the other defined by a
livenessproperty! A safety property says that in the trace nothing bad ever happens, or more
precisely, that no bad transition occurs in the trace. It is analogous to partial correctness for a
stateless procedure; a state machine that never makes a bad transition can define any safety
property. If a trace doesn't satisfy a safety property, you can always find this out by looking at a
finite prefix of the trace, in particular, at a prefix that includes the first bad transition.

A liveness property says that in the trace something goedtuallyhappens. It is analogous to
termination for a stateless procedure. You can never tell that a trace doesn’'t have a liveness
property by looking at a finite prefix, since the good thing might happen later. A liveness

property cannot be defined by a state machine. It is usual to express liveness properties in terms
of fairness that is, in terms of a requirement that if some transition stays enabled continuously it
eventually occurs (weak fairness), or that if some transition stays enabled intermittently it
eventually occurs (strong fairness).

With a few exceptions, we don't deal with liveness in this course. There are two reasons for this.
First, it is usually not what you want. Instead, you want a result within some time bound, which
is a safety property, or you want a result with some probability, which is altogether outside the
framework we have set up. Second, liveness proofs are usually hard.

Abstraction functions and simulation

The definition of ‘implements’ as inclusion of external behavior is a sound formalization of our
intuition. It is difficult to work with directly, however, since it requires reasoning about infinite
sets of infinite sequences of actions. We would like to have a way of provirigithlements
Sthat allows us to deal with one T actions at a time. Our method is base@lstraction
functions

An abstraction function maps each state of the implemenfatiora state of the specificati@

For example, each state of teCachemodule gets mapped to a state ofifeemory module.

The abstraction function explains how to interpret each state of the implementation as a state of
the specification. For example, Figure 3 depicts part of the abstraction functiowsacheto

Memory. Here is its definition in Spec, copied from handout 5.

FUNC AF() -> M =RET (\a| cla=>c(a) [*] m(a))

1 B. Alpern and F. Schneider. Recognizing safety and livelBgssibuted Computing, 3 (1987), pp 117-126.

Handout 6. Abstraction Functions and Invariants 5

6.826—Principles of Computer Systems

TH
*e
Leseseteiline

sees,

sesssvesevecssen,
.

e,

(Read(1),b)

: Reset(a) m
& i B
a| a|
al
| a :

4

ol

:i)(Read(Z),a)

"':.. bla byb

o cla
Write(4,c)s a

.. c

Figure 3: Abstraction function favscache

Handout 6. Abstraction Functions and Invariants

2000

6.826—Principles of Computer Systems 2000

You might think that an abstraction function should map the other way, from states of the
specification to states of the implementation, explaining how to represent each state of the
specification. This doesn’t work, however, because there is usually more than one way of
representing each state of the specification. For example, farsthecheimplementation of

Memory, if an address is in the cache, then the value stored for that address in memory does not
matter. There are also choices about which addresses appear in the cache. Thus, many states of
the implementation can represent the same state of the specification. In other words, the
abstraction function is many-tmne.

An abstraction functiof is required to satisfy the following two conditions.
1. Iftis any initial state of, thenF(t) is an initial state o

2. Iftis a reachable state ©fand ¢, m, t') is a step off, then there is a step 8ffrom F(t) to
F(t"), having the same trace.

Condition 2 says that simulatesS; every step of faithfully copies a step @&. It is stated in a
particularly simple way, forcing the given stepla simulate a single step 8f That is enough
for the special case we are considering right now. Later, when we consider concurrent
invocations for modules, we will generalize condition 2 to allow any number of st§patbier
than just a single step.

The diagram in Figure 4 represents condition 2. The dashed arrows represent the abstraction
functionF, and the solid arrows represent the transitions; if the lower (double) solid arrow exists
in the implementation, the upper (single) solid arrow must exist in the specification. The diagram
is sometimes called a “commutative diagram” because if you start at the lower left and follow
arrows, you will end up in the same state regardless of which way you go.

Tt

F(Y) p F(t)

>
>

~+ ©0000000000000000000000
0000000 cc00cccs00cccoe

A

>

Figure 4; Commutative diagram for correctness

Handout 6. Abstraction Functions and Invariants 7

6.826—Principles of Computer Systems 2000

An abstraction function is important because it can be used to show that one module implements
another:

Theorem 1:If there is an abstraction function frofrto S, thenT implementsS, i.e., every trace
of Tis a trace ofs

Note that this theorempplies to both finite and infinite traces.

Proof: (Sketch) Le3 be any trace of, and leta be any execution df that generates trae
Use Conditions 1 and 2 above to construct an execatiohSwith the same trace. That ist i
the initial state ofa, then let-(t) be the initial state af'. For each step af in turn, use
Condition 2 to add a corresponding step'to

More formally, this proof is an induction on the length of the execution. Condition 1 gives the
basis: any initial state d maps to an initial state & Condition 2 gives the inductive step: if

we have an execution @fof lengthn that simulates an execution@fany next step by

simulates a next step I8/ so any execution af of lengthn+1 simulates an execution 8f

We would like to have an inverse of Theorem 1: if every tradei®f trace o8, then there is an
abstraction function that shows it. This is not true for the simple abstraction functions and
simulations we have defined here. Later on, in handout 8, we will generalize them to a
simulation method that is strong enough to prove ThatplementsS whenever that is true.

Invariants

An invariant of a module is any property that is true ofralichablestates of the module, i.e., all
states that can be reached in executions of the module (starting from initial states). Invariants are
important because condition 2 for an abstraction function requires us to show that the
implementation simulates the spec from every reachable state, and the invariants characterize the
reachable states. It usually isn’t true that the implementation simulates the spec from every state.

Here are examples of invariants for theshMemory andMajorityRegister
Spec and copied from handout 5.

modules, written in

FUNC HashMemory.Inv(nb: Int, m: HashT, default: D) -> Bool = RET
(nb>0
N\ m.size = nb
N (ALL a | a.hf IN m.dom)
N (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf =1i)
N (ALL a | {j :IN m(a.hf) | m(a.hf)(j).a = a }.size <= 1))

FUNC MajorityRegister.Inv(m: M) -> Bool = RET
(ALL p :IN m.rng, p' :IN m.rng | p.segno = p'.seqno ==> p.d = p".d)
N (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).segno >= p.seqno)))

For example, for thelashMemory module, the invariant says (among other things) that a pair
containing address appears only in the appropriate bucket , and that at most one pair for an
address appears in the bucket for that address.

The usual way to prove that a propéPtis an invariant is by induction on the length of finite
executions leading to the states in question. That is, we must show the following:

Handout 6. Abstraction Functions and Invariants 8

6.826—Principles of Computer Systems 2000

(Basis, length = O is true in every initial state.

(Inductive step) Iff, m, t') is a transition an@ is true int, thenP is also true int'.

Not all invariants are proved directly by induction, however. It is often better to prove invariants

in groups, starting with the simplest invariants. Then the proofs of the invariants in the later
groups can assume the invariants in the earlier groups.

Example: We sketch a proof that the propewtgjorityRegister JInv is in fact an invariant.

Basis In any initial state, a single (arbitrarily chosen) default velappears in all the copies,
along with thesegno 0. This immediately implies both parts of the invariant.

Inductive stepSuppose that,(m, t') is a transition and Inv is true in We consider cases based
onTt If Ttis an invocation or response, or the body Béad procedure, then the step does not
affect the truth of Inv. So it remains to consider the case whisrawrite , sayWrite(d)

In this case, the second part of the invariant foe., the fact that the highesgno appears in
more than half the copies), together with the fact thatiiie reads a majority of the copies,
imply that thewrite obtains the highesegno , sayi. Then the newegno that thewrite

chooses must be the new highesfo . Since thewnrite writesi+1 to a majority of the copies, it
ensures the second part of the invariant. Also, since it associates thesitiminesegno i+1
everywhere it writes, it preserves the first part of the invariant.

Proofs using abstraction functions

Example: We sketch a proof that the functisrBCache.AF given above is an abstraction
function fromwBCacheto Memory. In this proof, we get by without any invariants.

For Condition 1, suppose thiai any initial state ofvBCache ThenAF(t) is some (memory) state
of Memory. But all memory states are allowable in initial stategeafiory. Thus,AF(t) is an initial
state ofMemory, as needed. For Condition 2, supposetthatAr(t) are states ofvBCacheand
Memory, respectively, and suppose that(t') is a step ofvBCache We consider cases, based on
T

For example, supposeis Read(a) . Then the step aflBCachemay change the cache and
memory by writing a value back to memory. However, these changes don’t change the
corresponding abstract memory. Therefore, the memory correspondence gireimotys after
the step. It remains to show that batiads give the same result. This follows because:

TheRead(a) in WBCachereturns the valuec(a) if it is defined, otherwisém(a) .
TheRead(a) in Memory returns the value afF(t).m(a) .

The value ofar(t).m(a) is equal td.c(a) if it is defined, otherwisém(a). This is by the
definition of AF.

For another example, suppasés Write(a,d) . Then the step of/BCachewrites valued to
locationa in the cache. It may also write some other value back to memory. Since writing a

6.826—Principles of Computer Systems 2000

is that the value in locationis changed td. On the other hand, the effectwfite(a,d) in
Memory is to change the value in locatiarto d. It follows that the memory correspondence,
given byAF, holds after the step.

We leave the other cases, for the other types of operations, to the reader. It follawsstihaat
abstraction function fromBCacheto Memory. Then Theorem 1 implies thaBCacheimplements
Memory, in the sense of trace set inclusion.

Example: Here is a similar analysis fotajorityRegister
the abstraction function.

, usingMajorityRegister.AF as

FUNC AF() -> D = RET m.rng.fmax((\ p1, p2 | p1.seqno <= p2.seqno)).d

This time we depend on the invariargjorityRegister.Inv . Supposetis Read(a) . No state

changes occur in either module, so the only thing to show is that the return values are the same in
both modules. IMajorityRegister , theRead collects a majority of values and returns a value
associated with the highesigno from among that majority. By the invariant that says that the
highestsegno appears in a majority of the copies, it must be thakéhe in fact obtains the
highestsegno that is present in the system. That is,Rb&d in MajorityRegister returns a

value associated with the highestno that appears in state

On the other hand, ttread in Register just returns the value of the single variabie states.
SinceAF(t) = s, it must be thas.x is a value associated with the highesiho int. But the
uniqueness invariant says that there is only one such value, so this is the same as the value
returned by th&®ead in MajorityRegister

Now supposetis Write(d) . Then the key thing to show is thet(t") =s. The majority invariant
implies that thewrite in MajorityRegister sees the highestgno i and thus+1 is the new
highestsegno . It writes(i+1,d) to a majority of the copies. On the other handwifie in
Register just setx to d. But clearlyd is a value associated with the largesfo after the
step, S;AF(t") =S as required.

It follows thatAF is an abstraction function frommjorityRegister
Theorem 1 implies thatajorityRegister implementsRegister

to Register . Then

value back does not change the corresponding abstract state, the only change to the abstract state

Handout 6. Abstraction Functions and Invariants 9

Handout 6. Abstraction Functions and Invariants 10

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

When a crash happens, the volatile global state is reset, but the stable state is normally
7. Disks and File Systems unaffected. We express precisely what happens to the global state as well as how the module
recovers by including arash procedure in the module. When a crash happens:

1. Thecrash procedure is invoked. It need not be atomic.

Motivation 2. Ifthecrash procedure does@AsSHcommand, the execution of the current invocat{gns

any) stop, and their local state is discarded; the same thing happens to any invocations

) o outside the module from within it. Aft@RASH no procedure in the module can be invoked
Some semi-realistic examples of specs. from outside untiCrash returns.

The two lectures on disks and file systems are intended to show you a number of things:

Many important implementation techniques for file systems. 3. Thecrash procedure may do other actions, and eventually it returns.

Some of the tradeoffs between a simple spec and an efficient implementation.
_ i o 4. Normal operation of the module resumes; that is, external invocations are now possible.

Examples of abstraction functions and invariants.

You can tell which parts of the state are volatile by looking at wfah does; it will reset the

Encoding: a general technique for representing arbitrary types as byte sequences. volatile variables.

How to model crashes. . . T
Because crashes are possible between any two atomic commands, atomicity is important for any

Transactions: a general technigue for making big actions atomic. operation that involves a change to stable state.
There are a lot of ideas here. After you have read this handout and listened to the lectures, it's @ The meaning of a Spec program with this limited kind of concurrency is that each atomic
good idea to go back and reread the handout with this list of themes in mind. command corresponds to a transition. A hidden piece of state called the program counter keeps
)) track of what transitions are enabled next: they are the atomic commands right after the program
Outline of topics counter. There may be several if the command after the program courterasass operator.
) o) o] . In addition, a crash transition is always possible; it resets the program counter to a null value
We give the specifications of disks and files indi& andrile modules, and we discuss a from which no transition is possible until some external routine is invoked and then invokes the
variety of implementation issues: Crash routine.
Crashes

If there are non-atomic procedures in the spec with many atomic commands, it can be rather
Disks difficult to see the consequences of a crash. It is therefore clearer to write a spec with as much
atomicity as possible, making it explicit exactly what unusual transitions are possible when

Files there’s a crash. We don't always follow this style, but we give some examples of it, notably at
Caching and buffering of disks and files the end of the section on disks.
Representing files by trees and extents .
, Disks
Allocation
Encoding and decoding Essential properties of a disk:
Directaies Storage is stable across crashes (we discuss error models for disksisk tkpec).
Transactions It's organized in blocks, and the only atomic update is to write one block.
Random access is about 100k times slower than random access to RAM (10 ms vs. 100 ns)
Redundancy Sequential access is 10-50 times slower than sequential access to RAM (20 MB/s vs. 200-
1000 MB/s)
Crashes Costs 50 times less than RAM ($.01 MB vs. $1/MB from the back of a PC magazine) in
. .) January 2000.
The specs and implementations here are without concurrency. However, they do allow for MTBF 1 million hours = 100 years.

crashes. A crash can happen between any two atomic commands. Thus the possibility of crashes
introduces a limited kind of concurrency.

Handout 7. Disks and File Systems 1 Handout 7. Disks and File Systems 2

6.826—Principles of Computer Systems 2000

Performance numbers:

Blocks of .5k - 4k bytes

20 MB/sec sequential, sustained (more with parallel disks)

3 ms average rotational delay (10000 rpm = 6 ms rotation time)
7 ms average seek time; 3 ms minimum

It takes 10 ms to get anything at all from a random place on the disk. In anotheyd0 cas
transfer 200 KB. Hence the cost to get 200 KB is only twice the cost to get 1 byte. By reading
from several disks in parallel (callsttiping or RAID) you careasilyincrease the transfer rate

by a factor of 5-10.

Performance techniques:

Avoid disk operations: use caching
Do sequential operations: allocate contiguously, prefetch, write to log
Write in background (write-behind)

A spec for disks

The following module describes a diskk as a function from aAto a disk blocko, which is

just a sequence 0BSize bytes. Thebsk function can also yieldil , which represents a
permanent read error. The module is a class, so you can instantiate assinargs needed.

The state is onbsk for eachDisk . There is alew method for making a new disk; think of this as
ordering a new disk drive and plugging it in. An extenépresents a set of consecutive disk
addresses. The main routines arer¢he andwrite methods obisk : read , which reads an
extent, andvrite , which writesn disk blocks worth of data sequentially to the extu4, n}

The write is not atomic, but can be interrupted by a failure after each single block is written.

Usually a spec like this is written with a concurrent thread that introduces permanent errors in the
recorded data. Since we haven't discussed concurrency yet, in this spec we introduce the errors
in reads , using theaddErrors procedure. An error sets a blockntio , after which any read that
includes that block raises the exceptianr . Strictly speaking this is illegal, sinesad is a

function and therefore can't call the procedateErrors . When we learn about concurrency we

can moveAddErrors to a separate thread; in the meantime we take the liberty, since it would be
a real nuisance foead to be a procedure rather than a function.

Since neither Spec nor our underlying model deals with probabilities, we don’t have any way to
say how likely an error is. We duck this problem by makiaderrors completely non-

deterministic; it can do anything from introducing no errors (which we must hope is the usual
case) to clobbering the entire disk. Characterizing errors would be quite tricky, since disks
usually have at least two classes of error: failures of single blocks and failures of an entire disk.
However, any user of this module must assume something about the probability and distribution
of errors.

Transient errors are less interesting because they can be masked by retries. We don’t model
them, and we also don’t model errors reportediays . Finally, a realistic error model would
include the possibility that a block that reports a read error might later be readable after all.

Handout 7. Disks and File Systems 3

6.826—Principles of Computer Systems

2000

CLASS Disk EXPORT Byte, Data, DA, E, DBSize, read, write, size, check, Crash =

% Disk block Address
% Disk Block
% Extent, in disk blocks

% aDBornil (error) for eactbA

TYPEByte = INO..255
Data = SEQ Byte
DA = Nat
DB = SEQ Byte
SUCHTHAT (\db| db.size = DBSize)
Blocks = SEQDB
E = [da, size: Nat]
WITH {das:=EToDAs, "IN":=(\ e, da | da IN e.das)}
Dsk = DA -> (DB + Null)
CONST DBSize :=1024
VAR disk . Dsk

APROC new(size: Int) -> Disk = <<
VAR dsk | dsk.dom = size.seq.set =>
self := StdNew(); disk := dsk; RET self >>

FUNC read(e) -> Data RAISES {notThere, error} =
check(e); AddErrors();
VAR dbs := e.das * disk |
IF nil IN dbs => RAISE error [*] RET BToD(dbs) FI

PROC write(da, data) RAISES {notThere} =
VAR blocks := DToB(data), i := 0|
% Atomic by block, and in order
check(E{da, blocks.size});
DO blocks!i => WriteBlock(da + i, blocks(i)); i + := 1 OD
APROC WriteBlock(da, db) = << disk(da) := db >>
FUNC size() -> Int = RET disk.dom.size

APROC check(e) RAISES {notThere} =
<< e.das.set <= disk.dom => RET [*] RAISE notThere >>

PROC Crash() = CRASH
FUNC EToDAs(e) -> SEQ DA = RET e.da .. e.da+e.size-1
% Internal routines

% Functions to convert betweBata andBlocks .
FUNC BToD(blocks) -> Data = RET + : blocks

% overridesStdNew
% size blocks, arbitrary contents

% contents of the blocks &

% fails if data not a multiple oDBsize

% the atomic updat®RE: disk!da

% everyDAiIn e is indisk.dom

% no global volatile state

%e.das

FUNC DToB(data) -> Blocks = VAR blocks | BToD(blocks) = data => RET blocks

% Undefined ifdata.size is not a multiple oDBsize

APROC AddErrors() =
<< DO RET [] VAR da :IN disk.dom | disk(da) := nil OD >>

END Disk

Handout 7. Disks and File Systems

% clobber some blocks

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

This module doesn’t worry about the possibility that a disk may fail in such a way that the client PROC Crash() = crgshed := true; CRASH] crashed :
can't tell whether a write is still in progress; this is a significant problem in fault tolerant systems
that want to allow a backup processor to start running a disk as soon as possible after the primary
fails.

For unordered writes we need only a slight change, to write an arbitrary subset of the blocks if

there’s a crash, rather than a prefix:
IF crashed => % if crashed, write some subset
VAR |w: SET I | w <= blocks.dom => blocks := blocks.restrict(w)

Many disks do not guarantee the order in which blocks are written (why?) and thus do not
implement this spec, but instead one with a weakex

PROC writeUnordered(da, data) RAISES {notThere} = Files
VAR blocks := DToB(data) |
% Atomic by block, in arbitrary order; assumes no concurrent writing.
check(E{da, blocks.size});
DO VAR [blocks(i) # disk(da + i) => WriteBlock(da + i, blocks(i)) OD

This section gives a variety of specifications for files. Implementations follow in later sections.

We treat a file as just a sequence of bytes. Files have names, and for now we confine ourselves to

In both specsrite establisheslocks = E{da, blocks.size}.das * disk , which is the a single directory that maps names to files. We call the name a ‘pathrramith an eye .
same aslata = read(E{da, blocks.size}) and both change each disk block atomically. toward later introducing multiple directories, but for now we just treat the path name as a string
writeUnordered says nothing about the order of changes to the disk, so after a crash any subset Without any structure. We package the operations on files as metiudsToie main methods

of the blocks being written might be changedte guarantees that the blocks changed are a areread andwrite ; we define the latter initially asriteAtomic , and later introduce less

prefix of all the blocks being writtenwiiteUnordered ~ would have other differences from atomic variationsvrite andwriteUnordered . There are also boring operations that deal with

write if concurrent access to the disk were possible, but we have ruled that out for the moment.) the size and with file names.

Clarifying crashes MODULE File EXPORT PN, Byte, Data, X, F, Crash =

. . . . = i 0
In this spec, what happens when there’s a crash is expressed by the faité thi not atomic TYPEPN V\ﬁt{'ﬂ%read_:Read write:=WriteAtomic Size:GegEgth Name
and _changes the disk one block at a time in the_ amm‘m_alock - We can make this more setSize:=SetSize, create:=Create, remove:=Remove,
explicit by making the occurrence of a crash visible inside the spec in the valueraiihe rename:=Rename}
variable. To do this, we modifgrash so that it temporarily makegashed true, to givewrite ' = Int
a chance to see it. Therite can be atomic; it writes all the blocks unlegshed is true, in g;ttz Z ”S\‘E%"BZ),?S
which case it writes some prefix; this will happen on_kyrlfe is invoked betvvee_n theashed X - Nat % byte-infile indeX
=true and theCRASHcommands o€rash . To describe the changes to the disk neatly, we F = Data % File
introduce an internal functiowewDisk that maps a@sk value into another one in which disk
blocks atda are replaced by corresponding blodkfined inbs . Dir = PN->F % Directory
Again, this wouldn’t be right if there were concurrent accesseskq since we have made all VAR dir = Dirf} % undefined everywhere

the changes atomically, but it gives the possible behavior if the only concurrency is in crashes. Note that the only state of the spediis, since files are only reachable throutsh.

VAR frashed - Bool = false | There are tiresome complicationsviite caused by the fact that the arguments may extend
beyond the end of the file. These can be handled by imposing preconditions (that is, writing the
.) _ o foile ') spec to da1Avoawhen the precondition isn’t satisfied), by raising exceptions, or by defining
A\gﬁégg ?ftg)nggc?;i)ﬁanhere} - s [Y falls ifdata notamultiple obBsize some sensible behavior. This spec takes the third appreadhile computes the desired
check(E{da, blocks.size}); contents of the file after the write. So that it will work for unordered writes as well, it handles
IF crashed => % if crashed, write some prefix sparsedata by choosing an arbitragata’ that agrees withata wheredata is defined.
VAR i | i < blocks.size => blocks := blocks.sub(0, i) Compare it withDisk.NewDisk
[*] SKIP FI;
disk := NewDisk(disk, da, blocks) FUNC Read(pn, x, i) -> Data = RET dir(pn).seg(x, i)
% Returns as much data as available, uphgtes, starting at.
FUNC NewDisk(dsk, da, bs: (Int -> DB)) -> Dsk = % result isdsk overwritten withbs atdg APROC WriteAtomic(pn, X, data) = << dir(pn) := NewFile(dir(pn), x, data) >>

RET dsk + (\da' | da' — da) * bs

Handout 7. Disks and File Systems 5 Handout 7. Disks and File Systems 6

6.826—Principles of Computer Systems 2000

FUNC NeweFile(f0, x, data: Int -> Byte) -> F =
% f is the desired final file. Fill in space betwd®nandx with zeros, and undefinethta elements arbitrarily.
VAR z := data.dom.max, z0 := fO.size , f, data' |
data'.size = z /\ data'.restrict(data.dom) = data
N f.size = {z0, x+z}.max
NALLi| (iINO .. {x, zO}min-1==>f(i) =fO(i))
N (iINzO .. x-1 ==>f(@i)=0)
N (iINX .. x+z-1 ==> (i) = data'(i-x))
N (iINx+z..z0-1 ==>f(i) =f0(i)))
=>RET f

FUNC GetSize(pn) -> X = RET dir(pn).size

APROC SetSize(pn, x) = << VAR z := pn.size |
IF x <=2z =><<dir(pn) := pn.read(0, z) >>
[*] pn.write(z, Ffill(O, x - z + 1))
Fl >>

% truncate
% handles crashes likerite

APROC Create(pn) = << dir(pn) := F{} >>
APROC Remove(pn) = << dir := dir{pn -> } >>
APROC Rename(pnl, pn2) = << dir(pn2) := dir(pnl); Remove(pnl) >>

PROC Crash() = SKIP % no volatile state or non-atomic changes

END File

WriteAtomic ~ changes the entire file contents at once, so that a crash can never leave the file in
an intermediate state. This would be quite expensive in most implementations. For instance,
consider what is involved in making a write of 20 megabytes to an existing file atomic; certainly
you can’t overwrite the existing disk blocks one by one. For this reason, real file systems don't
implementwriteAtomic . Instead, they change the file contents a little at a time, reflecting the
fact that the underlying disk writes blocks one at a time. Later we will see how an atamic

could be implemented in spite of the fact that it takes several atomic disk writes. In the
meantime, here is a more realistic specNfore that writes the new bytes in order. It is just like
Disk.write except for the added complication of extending the file when necessary, which is
taken care of ilNewFile .

APROC Write(pn, X, data) = <<

IF crashed => % if crashed, write some prefix
VAR i | i < data.size => data := data.sub(0, i)
[*] SKIP FI;

dir(pn) := NewFile(dir(pn), x, data) >>

PROC Crash() = crdshed := true; CRASH; crashed := false |

This spec reflects the fact that only a single disk block can be written atomically, so there is no
guarantee that all of the data makes it to the file before a crash. At the file level it isn't
appropriate to deal in disk blocks, so the spec promises only bytewise atomicity. An actually
implementation would probably make changes one page at a time, so it would not exhibit all the
behavior allowed by the spec. There’s nothing wrong with this, as long as the spec is restrictive
enough to satisfy its clients.

Handout 7. Disks and File Systems 7

6.826—Principles of Computer Systems 2000

write does promise, however, that is changed no later thag¥1)
make no ordering guarantee; for them the followingeUnordered
like Disk.writeUnordered

. Some file systems
is appropriate; it is just

APROC WriteUnordered(pn, x, data) = <<
IF crashed =>
VAR : SET I [w <= data.dom => dath := data.restrict(w)
[¥] SKIP FI;
dir(pn) := NewFile(dir(pn), x, data) >>

% if crashed, write some subset

Notice that although writing a file is not atonfige ’s directory operations are atomic. This
corresponds to the semantics that file systems usually attempt to provide: if there is a failure
during aCreate , Remove, Or Rename, the operation is either completed or not done at all, but if
there is a failure during\arite , any amount of the data may be written. The other reason for
making this choice in the spec is simple: with the abstractions available there’s no way to express
any sensible intermediate state of a directory operation otheréhame (of course a sloppy
implementation might leave the directory scrambled, but that has to count as a bug; think what it
would look like in the spec).

The spec we gave faetSize made it as atomic asite . The following spec fogetSize is
unconditionally atomic; this might be appropriate because an agzsice is easier to
implement than a general atormigite :

APROC SetSize(pn, x) = << dir(pn) := (dir(pn) + F.fill(0, x)).seg(0, x) >>
Here is another version §ewFile , written in @ more operational style just for comparison. It is
a bit shorter, but less explicit about the relation between the initial and final states.

FUNC NewFile(fO, x, data: Int -> Byte) -> F = VAR z0 := f0.size, data’ |
data'.size = data.dom.max =>
data' := data' + data;
RET (x> z0 => f0 + F.fill(0, x - z0) [*] f0.sub(0, x - 1))
+ data’
+ fO.sub(f.size, z0-1)

OurFile spec is missing some things that are important in real file systems:

Access control: permissions or access control lists on files, ways of defaulting these when a
file is created and of changing them, an identity for the requester that can be checked against
the permissions, and a way to establish group identities.

Multiple directories. We will discuss this when we talk about naming.
Quotas, and what to do when the disk fills up.
Multiple volumes or file systems.

Backup. We will discuss this near the end of this handout when we describe the copying file
system.

Handout 7. Disks and File Systems 8

6.826—Principles of Computer Systems 2000

Cached and buffered disks

The simplest way to decouple the file system client from the slow disk is to provide a cached and
write buffered implementation of timésk abstraction; then the file system implementation need

not change. The basic ideas are very similar to the ideas for cached memory, although for the
disk we preserve the order of writes. We didn’t do this for the memory because we didn’t worry
about failures.

Failures add complications; in particular, the spec must change, since buffering writes means that
some writes may be lost if there is a crash. Furthermore, the client needs a way to ensure that its
writes are actually stable. We therefore need a newsspsic. To get it, we add toisk a
variableoldDisks that remembers the previous states that the disk might revert to after a crash
(note that this is not necessarily all the previous states) and codeotdDits® appropriately.
BDisk.write Nno longer needs to testshed , since it's now possible to lose writes even if the

crash happens after thete

CLASS BDisk EXPORT ..., sync = % write-buffered disk

TYPE ...

CONST ...

VAR disk Dsk % as inDisk
[oldDisks SET Dsk = {}

APROC write(da, data) RAISES {notThere} = <<
<< VAR blocks := DToB(data) |
check(E{da, blocks.size});
disk := NewDisk(disk, da, blocks);
oldDisks V := {i | i < blocks.size |
NewnDisk(disk, da, blocks.sub(0, i))};
Forget()

% fails if data not a multiple oDBsize

>>

FUNC NewDisk(dsk, da, bs: (Int -> DB)) -> Dsk =
RET dsk + (\da' | da' — da) * bs

% result isdsk overwritten withbs atda

PROC sync() = oldDisks := {} % makedisk stableg

PROC Forget() = VAR ds: SET Dsk | oldDisks - := ds
% Discards an arbitrary subset of the remembered disk states.

PROC Crash() = CRASH; << VAR d :IN oldDisks [disk := d; sync() [*] SKIP >> |

END BDisk

Forget is there so that we can write an abstraction function for an implementation that doesn’t
defer all its disk writes until they are forced &ync . A write that actually changes the disk

needs to changgdDisks , becauseldDisks contains the old state of the disk block being
overwritten, and there is nothing in the state of the implementation after the write from which to
compute that old state. Later we will study a better way to handle this problem: history variables
or multi-valued mappings. They complicate the implementation rather than the spec, which is
preferable. Furthermore, they do not affect the performance of the implementation at all.

Handout 7. Disks and File Systems 9

6.826—Principles of Computer Systems 2000

A weaker spec would revert to a state in which any subset of the writes has been done. For this,
change the assignmentdidDisks inwrite , along the lines we have seen before.

oldDisks V := {w: SET[I [w <= blocks.dom | |
NewDisk(disk, da, blocks.restrict(w))};

The moduleBufferedDisk below is an implementation 8bisk . It copies newly written data

into the cache and does the writes later, preserving the original order so that the state of the disk
after a crash will always be the state at some time in the past. In the absence of crashes this
implementDisk and is completely deterministic. We keep track of the order of writes with a

queue variable, instead of keepingiety bit for each cache entry as we did for cached

memory. If we didn't do the writes in order, there would be many more possible states after a
crash, and it would be much more difficult for a client to use this module. Many real disks have
this unpleasant property, and many real systems deal with it by ignoring it.

A striking feature of this implementation is that it uses the same abstraction that it implements,
namelyBDisk . The implementation ®&Disk that it uses we calibisk (U for ‘underlying’). We

think of it as a ‘physical’ disk, and of course it is quite different fRufferedDisk : it contains

SCSI controllers, magnetic heads, etc. A module that implements the same interface that it uses
is sometimes calledfdter or astackable moduleA Unix filter is a familiar example that uses

and implements the byte stream interface. We will see many other examples of this in the course.

Invocations ofuDisk are in bold type, so you can easily see how the module depends on the
lowerdevel implementation a8Disk .

CLASS BufferedDisk % implementsBDisk
EXPORTBYyte, Data, DA, E, DBSize, read, write, size, check, sync, Crash =

TYPE% Data, DA, DB, Blocks, E
| = Int
J = Int

as inDisk

Queue = SEQDA % data is ircache
CONST

cacheSize :=1000

queueSize =50
VAR udisk Disk

cache DA->DB:={}

queue = Queue{}

% ABSTRACTION FUNCTION bdisk.disk = udisk.disk + cache
% ABSTRACTION FUNCTION bdisk.oldDisks =
{g: Queue | g <= queue | udisk.disk + cache.restrict(g.set) }

% INVARIANT queue.set <= cache.dom

% INVARIANT queue.size = queue.set.size
% INVARIANT cache.dom.size <= cacheSize
% INVARIANT queue.size <= queueSize

% if queued then cached
% no duplicates igueue
% cache not too big

% queue not too big

APROC new(size: Int) -> BDisk = <<
self := StdNew(); udisk :=

% overridesStdNew
udisk .new(size); RET self >>

Handout 7. Disks and File Systems 10

6.826—Principles of Computer Systems

PROC read(e) -> Data RAISES {notThere} =
% We could make provision for read-ahead, but do not.
check(e);
VAR data := Dataf}, da := e.da, upTo := e.da + e.size |
DO da < upTo =>
IF cachelda => data + := cache(da); da +:= 1
[*1% read as many blocks from disk as possible
VAR i := RunNotInCache(da, upTo),
buffer := udisk .read(E{da, i}),
k := MakeCacheSpace(i) |
% k blocks will fit in cache; add them.
DO VAR j:IN k.seq | ~ cachel(da + j) =>
cache(da +j) := udisk .DToB(buffer)(j)
OD;
data + := buffer; da + =i
Fl
OD; RET data

PROC write(da, data) RAISES {notThere} =
VAR blocks := udisk .DToB(data) |
check(E{da, blocks.size});
DO VAR i :IN queue.dom | queue(i) IN da .. da+size-1 => FlushQueue(i) OD;
% Do any previously buffered writes to these addresses. Why?
VAR j := MakeCacheSpace(blocks.size), i :=0 |
IF j < blocks.size => udisk .write(da, data)
% Don't cache if the write is bigger than the cache.
[*] DO blocks!i =>
cache(da+i) := blocks(i); queue + := {da+i}; i+:=1
oD
Fl

PROC Sync() = FlushQueue(queue.size - 1)
PROC Crash() = CRASH; cache := {}; queue := {}

FUNC RunNotinCache(da, upTo: DA) -> | =
RET {i | da +i<=upTo A\ (ALL j:INi.seq | ~ cache!(da + j)}.max

PROC MakeCacheSpace(i) -> Int =

% Make room foi new blocks in the cache; returniman(i, the number of blocks now availaple
% May flush queue entries.

% POST: cache.dom.size + result <= cacheSize

PROC FlushQueue(i) = VAR g := queue.sub(0, i) |

% Write queue entrie .. i and remove them fromueue .

% Should try to combine writes into the biggest possiliies
DO q # {} => udisk .write(g.head, 1); q := g.tail OD;
queue := queue.sub(i + 1, queue.size - 1)

END BufferedDisk

2000

This code keeps the cache as full as possible with the most recent data, except for gigantic

writes. It would be easy to change it to make non-deterministic choices about which blocks to
keep in the cache, or to take advice from the client about which blocks to keep. The latter would

require changing the interface to accept the advice, of course.

Handout 7. Disks and File Systems

11

6.826—Principles of Computer Systems 2000

Note that the only state 8bisk that this module can actually revert to after a crash is the one in
which none of the queued writes has been done. You might wonder, therefore, why the body of
the abstraction function f@bisk.oldDisks ~ has to involvejueue . Why can't it just be

{udisk.disk} ? The reason is that when the internal proceHuseQueue does a write, it

changes the state that a crash reverts to, and there’s no provisiosimskhapec for adding
anything tooldDisks ~ except duringvrite . SooldDisks has to include all the states that the

disk can reach after a sequence of ‘internal’ writes, that is, writes delashiQueue . And this

is just what the abstraction function says.

Building other kinds of disks

There are other interesting and practical ways to implement a disk abstraction on top of a ‘base’
disk. Some examples that are used in practice:

Mirroring : use two base disks of the same size to implement a single disk of that size, but
with much greater availability and twice the read bandwidth, by doing each write to both
base disks.

Striping usen base disks to implement a single distimes as large and withtimes the
bandwidth, by reading and writing in parallel to all the base disks

RAID:; usen base disks of the same size to implement a singlendistimes as large and

with n-1 times the bandwidth, but with much greater availability, by usingtthdisk to

store the exclusive-or of the others. Then if one disk fails, you can reconstruct its contents
from the others.

Snapshotsuse ‘copy-on-write’ to implement an ordinary disk and some number obréxad-
‘snapshots’ of its previous state.

Buffered files

We need to make changes to Hie spec if we want the option to implement it using buffered
disks without doing too margync s. One possibility is do aisk.sync at the end of each

write . This spec is not what most systems implement, however, because it's too slow. Instead,
they implement a version efle with the following additions. This version allows the data to
revert to any previous state since the 38t . The additions are very much like those we made

to Disk to getBDisk . For simplicity, we don’t changedDirs for operations other thamite
andsetSize (well, except for truncation); real systems differ in how much they buffer the other
operations.

Handout 7. Disks and File Systems 12

6.826—Principles of Computer Systems 2000

MODULE File EXPORT ..., Sync =

TYPE ...
VAR dir = Dir{}
oldDirs : SET Dir:={}

APROC Write(pn, X, byte) = << VAR f0 := dir(pn) |
dir(pn) := NewFile(f0, x, data);
oldDirs V := {i | i < data.size |
dir{pn -> NewFile(f0, x, data.sub(0, i)))} >>

[APROC Sync() = << oldDirs := {} >> |

PROC Crash() = CRASH; << VAR d :IN oldDirs => dir := d; Sync() [] SKIP >>

END File

Henceforth we will us€ile to refer to the modified module. Since we are not giving an
implementation, we leave obbrget for simplicity.

Many file systems do their own caching and buffering. They usually loosen this spec so that a

TY
crash resets each file to some previous state, but does not necessarily reset the entire system to a

previous state. (Actually, of course, real file systems usually don’t have a spec, and it is often
very difficult to find out what they can actually do after a crash.)

MODULE File2 EXPORT ..., Sync =

TYPE ...
OldFiles = PN->SETF

VAR dir = Dir{}
oldFiles := OldFiles{* -> {}}

APROC Write(pn, X, byte) = << VAR f0 := dir(pn) |
dir(pn) := NewFile(f0, x, data);
[oldFiles(pn) VV := {i [i < data.size | NewFile(f0, x, data.sub(0, i)))} >>

APROC Sync() = << oldFiles:= OldFiles{* -> {}} >> |

PROC Crash() =
CRASH,;
<< VAR dir'| dir'.dom = dir.dom
N (ALL pn :IN dir.dom | dir'(pn) IN oldFiles(pn) V {dir(pn)})
=> dir := dir' >>

END File

A picky point about Spec: A function constructor ljken | {dir(pn)}) is no good as a
value foroldriles , because the value of the global varialile in that constructor is not
captured when the constructor is evaluated. Instead, this function uses the dalue/loén it is
invoked. This is a little weird, but it is usually very convenient. Here it is a pain; we avoid the
problem by using #ocal variabled whose valués captured when the constructor is evaluated in
SnapshotDir

Handout 7. Disks and File Systems 13

6.826—Principles of Computer Systems 2000

A still weaker spec allowsir to revert to a state in which any subset of the byte writes has been
done, except that the files still have to be sequences. By analogy with un@oiekedve
change the assignmentdidFiles in Write .

oldFiles(pn) V := {w: SET i [w <= data.dom | |

NewFile(f0, x, data.restrict(w))} >>

Implementing files

The main issue is how to represent the bytes of the file on the disk so that large reads and writes
will be fast, and so that the file will still be there after a crash. The former requires using
contiguous disk blocks to represent the file as much as possible. The latter requires a
representation fabir that can be changed atomically. In other words, the file system state has
typePN -> SEQ Byte , and we have to find a disk representation foista@ Byte that is

efficient, and one for the function that is robust. This section addresses the first problem.

The simplest approach is to represent a file by a sequence of disk blocks, and toikdep an
that is a sequence of tbes of these blocks. Just doing this naively, we have

PEF = [das: SEQ DA, size: N] % Contents and size in bytes

The abstraction function to the spec says that the file is thedirzst bytes in the disk blocks
pointed to bye. Writing this as though botkile and its implementatioAimplo had the file& as
the state, we get

File.f = (+ : (FImplO.f.das * disk.disk)).seg(0, FImplO.f.size)

or, using theliskread method rather than the statedak directly
File.f = (+ : {da :IN FImplO.f.das | | disk.read(E{da, 1})}).seg(0, FImplO0.f.size)

But actually the state @fle isdir , so we should have the same staterfiapl (with the
different representation f@; of course), and

File.dir = (LAMBDA (pn) -> File.F =
VAR f := FImplO.dir(pn) | % fails ifdir is undefined apn
RET (+ : (f.das * disk.disk)).seg(0, f.size)

We need an invariant that says the blocks of each file have enough space for the data.

% INVARIANT (ALL f:IN dir.rng | f.das.size * DBSize >=f.size)

Then it's easy to see how to implemesid :

PROC read(pn, x, i) =
VAR f := dir(pn),
diskData := + : (da :IN f.das | | disk.read(E{da, 1})},
fileData := diskData.seg(0, f.size) |
RET fileData.seg(x, i)

To implementwrite we need a way to allocate fress; we defer this to the next section.

Handout 7. Disks and File Systems 14

6.826—Principles of Computer Systems 2000

There are two problems with using this representation directly:

1. The index takes up quite a lot of space (with 4 by andDBsSize = 1Kbyte it takes .4% of
the disk). Since RAM costs about 50 times as much as disk, keeping it all in RAM will add
about 20% to the cost of the disk, which is a significant dollar cost. On the other hand, if the
index is not in RAM it will take two disk accesses to read from a random file address, which
is significant performance cost.

2. The index is of variable length with no small upper bound, so representing the index on the
disk is not trivial either.

To solve the first problem, stomesk.E ’s in the index rather thabAs. A single extent can

represent lots of disk blocks, so the total size of the index can be much less. Following this idea,
we would represent the file by a sequenceisKE s, stored in a single disk block if it isn’t too

big or in a file otherwise. This recursion obviously terminates. It has the drawback that random
access to the file might become slow if there are many extents, because it's necessary to search
them linearly to find the extent that contains bytef the file.

To solve the second problem, use some kind of tree structure to represent the index. In standard

Unix file systems, for example, the index is a structure callédaatethat contains:

a sequence of 1iBAs (enough for a 10 KB file, which is well above the median file size),
followed by

theDA of anindirect DB that holdsDBSize/4 = 250 or smAs (enough for a 250 KB file),
followed by

the DA of a second-level indirect block that holds thés of 250 indirect blocks and hence
points to 258 = 62500DAs (enough for a 62 MB file),

and so forth. The third level can address an 16 GB file, which is enough for today's systems.

Thus the inode itself has room for &s. These systems duck the first problem; their extents
are always a single disk block.

We give an implementation that incorporates both extents and trees, representing a file by a
generalized extent that is a tree of extents. The leaves of the ttEs@®extentsDisk.E , that

is, references to contiguous sequences of disk blocks, which are the units ofigiaréar
anddisk.write . The purpose of such a general extent is simply to define a sequence of disk
addresses, and tlredas method computes this sequence so that we can use it in invariants and
abstraction functions. The tree structure is there so that the sequence can be storedieshd mod
more efficiently.

An extent that contains a sequence of basic extents is céifedaextent. To do fast i/o

operations, we need a linear extent which includes just the blocks to be read or written, grouped
into the largest possible basic extentststidisk.read anddisk.write can work efficiently.

Flatten ~computes such a linear extent from a general extent; the speatéor given below

flattens the entire extent for the file and then extracts the smallest segment that contains all the
blocks that need to be touched.

Handout 7. Disks and File Systems 15

6.826—Principles of Computer Systems 2000

Read andwrite just callFlatten to get the relevant linear extent and thendisdlread and
disk.write on the basic extentarrite may extend the file first, and it may have to read the

first and last blocks of the linear extent if the data being written does not fill them, since the disk
can only write entire blocks. Extending or truncating a file is more complex, because it requires
changing the extent, and also because it requires allocation. Allocation is described in the next
section. Changing the extent requires changing the tree.

The tree itself must be represented in disk blocks; methods inspired by B-trees can be used to
change it while keeping it balanced. Our implementation shows how to extract information from
the tree, but not how it is represented in disk blocks or how it is changed. In standard Unix file
systems, changing the tree is fairly simple because a basic extent is always a single disk block in
the multi-level indirect block scheme described above.

We give the abstraction function to the simple implementation above. It just says that the das of
a file are the ones you get framatten

The code below makes heavy use of function composition to apply some function to each
element of a sequencerf is{f(s(0)), ..., f(s(s.size-1))} . If f yields an integer or a
sequence, the combinatien (s * f) adds up or concatenates all t{s€))

MODULE FSImpl = % implementgFile

TYPEN = Nat
E = [c: (Disk.DA + SE), size: N] %size= #ofDAsine
SUCHTHAT (\e | Size(e) = e.size)
WITH {das:=EToDAs, le:=EToLE}
BE = E SUCHTHAT (\e| e.c IS Disk.DA) % Basic Extent
LE = E SUCHTHAT (\e| e.c IS SEQ BE) % Linear Extent: sequence BEs
WITH {"+":=Cat}
SE = SEQE % Sequence of Extents: may be tree
X = File.X
F = [e, size: X] %size = # of bytes
PN = File.PN % Path Name
CONST DBSize :=1024

VAR dir
disk

File.PN -> F :={}

% ABSTRACTION FUNCTION File.dir = (LAMBDA (pn) -> File.F = dirlpn =>
% The file is the firsf.size bytes in the disk blocks of the extémt
VAR f := dir(pn),
d :=+: {be :IN Flatten(f.e, 0, f.e.size).c | | disk.read(be)} |
RET d.seg(0, f.size))

% ABSTRACTION FUNCTION FImpl0.dir = (LAMBDA (pn) -> FImpl0.F =
VAR f :=dir(pn) | RET {be :IN Flatten(f.e, O, f.e.size).c | | be.c}

FUNC Size(e) -> Int = RET (e IS BE => e.size [*] + :(e.c * Size))
% # of DAs reachable frone. Should be equal te.size

Handout 7. Disks and File Systems 16

6.826—Principles of Computer Systems

FUNC EToDAs(e) -> SEQ DA = % e.das
% The sequence @fAs defined bye. Just for specs.
RET (e ISBE =>{i :IN e.size.seq | | e.c + i} [*] + :(e.c * EToDASs))

FUNC EToLE(e) -> LE = % e.le
% The sequence &Es defined bye.
RET (e IS BE => LE{SE{e}, e.size} [*] +:(e.c*EToOLE))
FUNC Cat(lel, le2) -> LE =
% The"+" method ofLE. Mergeel ande2 if possible.
IF el={}=>RETle2
0 e2={}=>RETlel
[VAR el:=lel.clast, e2 :=le2.c.head, se |
IF el.c+elsize=e2.c=>
se := lel.c.reml + SE{E{el.c, el.size + e2.size}} + le2.c.tail
[*] se:=lel.c+le2.c
FI;
RET LE{se, lel.size + le2.size}
Fl

FUNC Flatten(e, start: N, size: N) -> LE = VAR le0 :=e.le, lel, le2, l1e3
% The resulte is such thate.das = e.das.seg(start, size) ;
% This is fewer thasize DA s if e gets used up.
% It's empty ifstart >= e.size
% This is not a practical implementation; see below.
le0 =lel +le2 + le3

N lel.size = {start, e.size}.min

Nle2.size = {size, {e.size - start, 0}.max}.min

=> RET le2

END FSImpl

This version oflatten is not very practical; in fact, it is more like a spec than an
implementation. A practical one, given below, searches the tree of extents sequentially, taking
the largest possible jumps, until it finds the extent that containsatheth DA Then it collects
extents until it has gottesize DAS. Note that because eaehize gives the total number of

2000

DAs ine, Flatten only needs timég(e.size) to find the first extent it wants, provided the

tree is balanced. This is a standard trick for doing efficient operations on trees: summarize the
important properties of each subtree in its root node. A further refinement (which we omit) is to
store cumulative sizes in @& so that we can find the point we want with a binary search rather
than the linear search in tbeloop below; we did this in the editor buffer example of handout 3.

FUNC Flatten(e, start: N, size: N) -> LE =
VAR z := {size, {e.size - start, 0}.max}.min |
IF z=0 =>RET E{c:= SE{}, size := 0}
[*] e IS BE => RET E{c := e.c + start, size := z}.le
[*] VAR se := e.c AS SE, sbe : SEQ BE := {}, at := start, want := z |

DO want >0 => % maintainat + want <= Size(se)

VAR el := se.head, e2 := Flatten(el, at, want) |
sbe := sbe + e2.c; want := want - e2.size;
se := se.tail; at := {at - el.size, 0}.max

OD;
RET E{c := sbe, size := 7}

Handout 7. Disks and File Systems

17

6.826—Principles of Computer Systems 2000

Fl

Allocation

We add something to the state to keep track of which disk blocks are free:
VAR free: DA -> Bool

We want to ensure that a free block is not also part of a file. In fact, to keep from losing blocks, a
block should be free iff it isn’'t in a file or some other data structure such as an inode:

PROC IsReachable(da) -> Bool =
RET (EXISTS f:IN dir.rng | da IN f.e.das V ...

% INVARIANT (ALL da | IsReachable(da) = ~ free(da))

This can’t be implemented without some sort of log-like mechanism for atomicity if we want
separate representations fiee andf.e , that is, if we want any implementation fare other

than the brutderce search implied bgReachable itself. The reason is that the only atomic
operation we have on the disk is to write a single block, and we can’t hope to update the
representations of botlee andf.e with a single block write. But IsReachable is not a
satisfactory implementation féee , even though it does not require a separate data structure,
because it's too expensive — it traces the entire extent structure to find out whether a block is
free.

A weaker invariant allows blocks to be lost, but still ensures that the file data will be inviolate.
This isn't as bad as it sounds, because blocks will only be lost if there is a crash between writing
the allocation state and writing the extent. Also, it's possible to garbage-collect the lost blocks.

% INVARIANT (ALL da | IsReachable(da) ==> ~ free(da))

A weaker invariant than this would be a disaster, since it would allow blocks that are part of a
file to be free and therefore to be allocated for another file.

The usual representationfafe is aSEQ Bool (often called it tablé). It can be stored in a
fixed-size file that is allocated by magic (so that the implementation of allocation doesn’t depend
on itself). To reduce the size fefe , the physical disk blocks may be grouped into larger units
(usually called ‘clusters’) that are allocated and deallocated together.

This is a fairly good scheme. The only problem with it is that the table size grows linearly with

the size of the disk, even when there are only a few large files, and concomitantly many bits may
have to be touched to allocate a single extent. This will certainly be true if the extent is large, and
may be true anyway if lots of allocated blocks must be skipped to find a free one.

The alternative is a tree of free extents, usually implemented as a B-tree with the extent size as
the key, so that we can find an extent that exactly fits if there is one. Another possibility is to use
the extent address as the key, since we also care about getting an extent close to some existing
one. These goals are in conflict. Also, updating the B-tree atomically is complicated. There is no
best answer.

Handout 7. Disks and File Systems 18

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

Encoding and decoding Of course ambiguity is not decidable in general. The standard way to get an unambiguous
language for encodings is to use type-length-value (TLV) encoding, in which theirefult

To store complicated values on the disk, such as the function that constitutes a directory, we needenc(x) starts with some sort of encodingxs type, followed by an encoding ¢% own length,

to encode them into a byte sequence, dinkleData iS SEQ Byte . (We also need encoding to followed by aD that contains the rest of the information the decoder needs to recover

send values in messages, an important operation later in the course.) It's convenient to do this

with a pair of functions for each type, calttode andDecode, which turn a value of the type FUNC IsTLV(ed: EncDec) -> Bool =

RET (ALL x :IN ed.enc.dom | (EXISTS d1, d2, d3 |

into a bytg sequence and recover the value from the sequence. We package them up into an ed.enc(x) = d1 + d2 + d3 A\ EncodeType(x) = d1
EncDec pair. N\ (ed.enc(x).size).enc = d2))
TYPED = SEQByte) In many applications there is a grammar that determines each type unambiguously from the
EncDec = EBCC:Q%KTD\' ‘(’f"é D|_3> A“V]EXISTS T SETA % Encode/Decode pair preceding values, and in this case the types can be omitted. For instance, if the sequence is the
ed.e(r1§.don:] : Te el(' v encoding of &EQ T, then it's known that all the types arelf the length is determined from the
A (ALL t:IN T | dec(enc(t)) = t))) type it can be omitted too, but this is done less often, since keeping the length means that the
o) decoder can reliably skip over parts of the encoded sequence that it doesn’t understand. If

Other names for ‘encode’ are ‘serialize’, ‘pickle’, and ‘marshal’. desired, the encodings of different types can make different choices about what to omit.
A particularncDec works only on values of a single type (represented by theisehe There is an international standard called ASN-1 (for Abstract Syntax Notation) that defines a
SUCHTHATSsince you can't quantify over types in Spec). This meansihas defined exactly way of writing a grammar for a language and derivingeifuec pairs automatically from the
on values of that type, anic is the inverse oénc so that the process of encoding and then grammar. Like most such standards, it is rather complicated and often yields somewhat
decoding does not lose information. Wertdit assume thainc is the inverse dfec, since there inefficient encodings, but it is fairly widely used.

may be many byte sequences that decode to the same value; for example, if the value is a set, it . .)) . .
would be pointless and perhaps costly to insist on a canonical ordering of the encoding. In this ~ Another standard way to get an unambiguous language is to encode into S-expressions, in which

course we will generally assume that every type has methodanddec that form arencbec the encoding of each value is delimited by parentheses, and the type, unless it can be omitted, is
pair. given by the first symbol in the S-expression. A variation on this scheme which is popular for
))) . . . Internet Email and Web protocols, is to have a ‘header’ of the form
A type that has other types as its components can haueliisc defined in an obvious way in attributed: valuel
terms of theencDec’s of the component types. For examplsga® T can be encoded as a attribute2: value2
sequence of encodats, provided the decoding is unambiguous. A functieau can be
encoded as a set or sequence of encaded pairs. with various fairly ad-hoc rules for delimiting the values that are derived from early conventions

_ _ o _ _ for the human-readable headers of Email messages.
A directory is one example of a situation in which we need to encode a sequence of values into a

sequence of bytes. A log is another example of this, discussed below, and a stream of messages In both TLV and S-expression encodings, decoding depends on knowing exactly where the byte

is a third. It's necessary to be able to parse the encoded byte sequence unambiguously and sequence starts. This is not a problemdfsrcoming from a file system, but it is a serious
recover the original values. We can express this idea precisely by saying that a parse is an problem ford's coming from a wire or byte stream, since the wire produces a continuous stream
EncDec sequence, a language is a set of parses, and the language is unambiguous if for every ~ Of voltages, bits, bytes, or whatever. The process of delimiting a stream of symbols that
byte sequence the |anguage has at most one parse that can Comp|ete|y decode can be decoded is call&uiming, we will discuss it later in connection with networks.
TYPEM = SEQD % for segmenting B ; ;

P = SE((% EncDec % Parseg o Directories

gﬁgizgzenceff %eECTO [é,ers that parsBsas defined bisParse below Recall that @ir is just aPN->F . We have seen various ways to represeiihe simplest

implementation relies on @ncDec for an entiredir . It represents air as a file containingnc
FUNC IsParse(p, d) -> Bool = RET (EXISTS m | of thePN ->F map as a set of ordered pairs.
+:m=d % msegmentsl
N'm.size = p.size % mis the right size There are two problems with this scheme:
N (ALL i :IN p.dom | (p(i).dec)!m(i)]) % eachp decodes itsn

e Lookup in a largeir will be slow, since it requireslecoding the wholeir . This can be
fixed by using a hash table ortBe. Updating their can still be done as in the simple
scheme, but this will also be slow. Incremental update is possible, if more complex; it also
has atomicity issues.

FUNC IsUnambiguous(l: Language) -> Bool = RET (ALL d, p1, p2|
plINIApP2INIAIsParse(pl, d) A IsParse(p2, d) ==> pl = p2)

Handout 7. Disks and File Systems 19 Handout 7. Disks and File Systems 20

6.826—Principles of Computer Systems 2000

« If we can’'t do an atomic file write, then when updating a directory we are in danger of
scrambling it if there is a crash during the write. There are various ways to solve this
problem. The most general and practical way is to use the transactions explained in the next
section.

It is very common to implement directories with an extra level of indirection called an ‘inode’,
so that we have

TYPEINo = Int % Inode Number
Dir = PN->INo
INoMap = INo->F

VAR dir Dir:={}
inodes INoMap = {}

You can see thatodes is just like a directory except that the namesnwés instead oPNs.
There are three advantages:

BecauséNo’s are integers, they are cheaper to store and manipulate. It's customary to
provide anOpen operation to turn aninto aniNo (usually through yet another level of
indirection called a ‘file descriptor’), and then use itte as the argument &fead and

Write .

BecauseNo ’'s are integers, if is fixed-size (as in the Unix example discussed earlier, for
instance) themodes can be represented as an array on the disk that is just indexed by the
INo .

The enforced level of indirection means that file names automatically get the semantics of
pointers or memory addresses: two of them can point to the same file variable.

The third advantage can be extended by extending the definitimn eb that the value of RN
can be anotheN usually called a “symbolic link”.

TYPEDIr = PN->(INo+PN)[_]

Transactions

We have seen several examples of a general problem: to give a spec for what happens after a
crash that is acceptable to the client, and an implementation that satisfies the spec even though it
has only small atomic actions at its disposal. In writing to a file, in maintaining allocation
information, and in updating a directory, we wanted to make a possibly large state change atomic
in the face of crashes during its execution, even though we can only write a singledisk bl
atomically.

The general technique for dealing with this problem is catitsactions General transactions

make large state changes atomic in the face of arbitrary concurrency as well as crashes; we will
discuss this later. For now we confine ourselves to ‘sequential transactions’, which only take care
of crashes. The idea is to conceal the effects of a crash entirely within the transaction abstraction,
so that its clients can program in a crash-free world.

Handout 7. Disks and File Systems 21

6.826—Principles of Computer Systems 2000

The implementation of sequential transactions is based on the very general idea of a
deterministic state machirtbat has inputs calleattionsand makes a deterministic transition for
every input it sees. The essential observation is that:

If two instances of a deterministic state machine start in the same state and|see the
same inputs, they will make the same transitions and end up in the same state.

This means that if we record the sequence of inputs, we can replay it after a crash and get to the
same state that we reached before the crash. Of course this only works if we start in the same
state, or if the state machine has an ‘idempotency’ property that allows us to repeat the inputs.
More on this below.

Here is the spec for sequential transactions. There’s a state that is queried and updated (read and
written) by actions. We keep a stable versiorand a volatile versioms . Updates act on the

volatile version, which is reset to the stable version after a crash. A ‘commit’ action atomically

sets the stable state to the current volatile state.

MODULE SeqTr [% Sequential Transaction
Vv, % Value of an action
SWITH{s0: ()->S} % State;s0 initially
1 EXPORT Do, Commit, Crash =

TYPEA = S->(V,S) % Action
VAR ss 1= S.s0() % Stable State
Vs = S.s0() % Volatile State

APROC Do(a) -> V = << VARV | (v, vs) := a(vs); RET v >>
APROC Commit() = << ss :=vs >>

APROC Crash () = << vs :=ss >> % Abort is the same

END SeqTr

In other words, you can do a whole series of actions to the volatilestdtdowed by a

commit. Think of the actions as reads and writes, or queries and updates. If there’s a crash before
the Commit, the state reverts to what it was initially. If there’s a crash aftetdienit, the state

reverts to what it was at the time of the commit. An action is just a function from an initial state

to a final state and a result value.

There are many implementation techniques for transactions. Here is the simplest. It breaks each
action down into a sequencewgfdates each one of which can be done atomically; the most
common example of an atomic update is a write of a single disk block. The updates also must
have an ‘idempotency’ property discussed later. Given a sequebgds,@ach applying an

action, the implementation concatenates the update sequences for the actions in boygdtuile

is a representation of the actioosmmit writes this log atomically to a stable log. Once the

stable log is writterRedo applies the volatile log to the stable state and erases botittags.

resets the volatile to the stable log and then applies the log to the stable state to recover the
volatile state. It then us&zdo to update the stable state and erase the logs. Note that veeagive
"+ methods +1 that applies a log to a state.

Handout 7. Disks and File Systems 22

6.826—Principles of Computer Systems 2000

This scheme reduces the problem of implementing arbitrary changes atomically to the problem
of atomically writing an arbitrary amount of stuff to a log. This is easier but still not trivial to do
efficiently; we discuss it at the end of the section.

MODULE LogRecovery [% implementsSeqTr
V, % Value of an action

SO WITH {s0: () -> S0 } % State

] EXPORT Do, Commit, Crash =
TYPEA = S->(V,9) % Action

U = S->8S % atomic Update

L = SEQU % Log

S = SOWITH {"+":=DolLog } % States+l appliesl tos
VAR ss = 8S.s0() % Stable State

Vs = S.s0() % Volatile State

sl =L % Stable Log

vl =L{ % Volatile Log

% ABSTRACTION to SeqTr
SeqTr.ss =ss + sl
SeqTr.vs = vs

% INVARIANT vs =ss + vl

FUNC DolLog(s, l) -> S = % s+l = DoLog(s,)
% Apply the updates ih to the state.

I={} => RET s [*] RET DoLog((l.head)(s),l.tail))

APROC Do(a) ->V =
% Find anl (a sequence of updates) that has the same effaatrashe current state.
<<VARV, || (v, vs + 1) = a(vs) =>
vii=vl+l;vs:=vs+I|;RET v >>

PROC Commit() = << sl := vl >>; Redo()

PROC Redo() =
DO vl # {} => << ss := ss + vl.head; vl := vl.tail >> OD; << sl := {} >>

% replayvl , then cleasl

PROC Crash() =
CRASH;
<<vl:={}; vs:=S.s0() >>;
<< vl:=sl;vs =55 + Vvl >>;
Redo()

% crash erasess, vl
% recovery restores them
% and repeats tHeedo; this is optional

END LogRecovery

For thisredo crash recovery to work, must have the property that repeatedly applying prefixes

of it, followed by the whole thing, has the same effect as applying the whole thing. For example,
suppose = L{a,b,c,d,e} . ThenL{&b, c}d,h[] [a.b.c.d,ap[abicld, ela] b,cde} |

must have the same effectlaiself; here we have grouped the prefixes together for clarity. We
need this property because a crash can happenredilds running; the crash reapplies the

whole log and rungedo again. Another crash can happen while the sereadis running, and

so forth.

Handout 7. Disks and File Systems 23

6.826—Principles of Computer Systems 2000

This ‘hiccup’ property follows from ‘log idempotence’:
s+l+l=s+l| 1)
From this we get (recall that < is the ‘prefix’ predicate for sequences).
k<l==>(s+k+l=s+]))
becaus& <1 implies there is & such thak+1'=1 , and hence
s+k+l=s+k+(k+I)=(s+k+k)+I
=(s+k)+I'=s+Kk+I)=s+I
From (2) we get the property we want:
IsHiccups(k, I) ==> (s +k +1=s+1) 3)
where

FUNC IsHiccups(k, I) -> Bool =
% k is a sequence of attempts to complete
RET k={
V(EXISTSK,I| k=K +IAI#{AI<=|
N lIsHiccups(k', 1))
because we can keep absorbing the last hiccupto the final complete. For example, taking
some liberties with the notation for sequences:
abcaaabcdababcdeaabcde
= abcaaabcdababcde + (a + abcde)
= abcaaabcdababcde + abcde
= abcaaabcdab + (abcde + abcde)
= abcaaabcdab + abcde
= abcaaabcd + (ab + abcde)
= abcaaabcd + abcde

and so forth.

by (2)
by (2)

by (2)

To prove (3), observe that

IsHiccups(k,) ANk # {} ==>k = k' + I' N I' <= | \ IsHiccups(K', I).
Hence

stk = (s+K)+H'+H = s+k'+
andk <k . But we haveésHiccups(k', I)
and we have the desired result.

by (2)
, SO we can proceed by induction urt# {}

We can get log idempotence if tls commute and are idempotent (thauisp=u), or if

they are all writes. More generally, for arbitralg we can attach @b to eachu and record it in

S when theu is applied, so we can tell that it shouldn’t be applied again. Calling the original state
Ss, and defining aneaning method that turns @record into a function, we have

TYPE
S
U

[ss, tags: SET UID]
[uu: SS->SS, tag: UID] WITH { meaning:=Meaning }

FUNC Meaning(u, s)->S =
u.tag IN s.tags => RET s
[*] RET ${ (u.uu)(s.ss), s.tags + {u.tag} }

% u already done

If all theus ini1 have different tags, we get log idempotence. The tags umkestable’ in the
jargon of transaction processing; after a crash we can test to find out whethas Aeen done
or not. In the standard database implementation eaarks on one disk page, the tag is the ‘log

Handout 7. Disks and File Systems 24

6.826—Principles of Computer Systems 2000

sequence number’, the index of the update in the log, and the update writes the tag on the disk
page.

Writing the log atomically

There is still an atomicity problem in this implementatioormmit atomically does

<<sl:=vl>> , and the logs can be large. A simple way to use a disk to implement a log that
requires this assignment of arbitrary-sized sequences is to keep theskize afseparate disk

block, and to write all the data first, then deyac if necessary, and finally write the new size.
Sincesl is always empty before this assignment, in this representation it will remain empty until
the singleDisk.write that sets its size. This is a rather wasteful implementation, since it does an
extra disk write.

A more efficient implementation writes a ‘commit record’ at the end of the log, and treats the log
as empty unless the commit record is present. Now it's only necessary to ensure that the log can
never be mis-parsed if a crash happens while it's being written. An easy way to accomplish this
is to write a distinctive ‘erased value into each disk block that may become part of the log, but
this means that for every disk write to a log block, there will be another write to erase it. To
avoid this cost we can use a ring buffer of disk blocks for the log and a sequence number that
increments each time the ring buffer wraps around; then a block is ‘erased’ if its sequence
number is not the current one. There’s still a cost to initialize the sequence numbers, but it's only
paid once. With careful implementation, a single bit of sequence number is enough.

In some applications it's inconvenient to make room in the data stream for a sequence number
everyDBsize bytes. To get around this, use a ‘displaced’ representation for the log, in which the
first data bit of each block is removed from its normal position to make room for the one bit
sequence number. The displaced bits are written into their own disk blocks at convenient
intervals.

Another approach is to compute a strong checksum for the log contents, write it at the end after
all the other blocks are known to be on the disk, and treat the log as empty unless a correct
checksum is present. With a gaedit checksum, the probability of mis-parsing 15 2

Redundancy

A disk has many blocks. We would like some assurance that the failure of a single block will not
damage a large part of the file system. To get such assurance we must record some critical parts
of the representation redundantly, so that they can be recovered even after a failure.

The simplest way to get this effect is to receverythingredundantly. This gives us more: a
single failure won't damageny part of the file system. Unfortunately, it is expensive. In current
systems this is usually done at the disk abstraction, and is eatheding or shadowinghe

disk.

The alternative is to record redundantly only the information whose loss can damage more than
one file: extent, allocation, and directory information.

Handout 7. Disks and File Systems 25

6.826—Principles of Computer Systems 2000

Another approach is to
do all writes to a log,
keep a copy of the log for a long time (by writing it to tape, usually), and
checkpoint the state of the file system occasionally.

Then the current state can be recovered by restoring the checkpoint and replaying the log from
the moment of the checkpoint. This method is usually used in large database systems, but not in
any file systems that | know of.

We will discuss these methods in more detail near the end of the course.
Copying File Systems

The file system described fsimpl above separates the process of adoBgto the

representation of a file from the process of writing data into the fitmpdingfile system (CFS)
combines these two processes into one. It is called a ‘log-structured’ file system in the Rterature
but as we shall see, the log is not the main idea. A CFS is based on three ideas:

Use a generational copying garbage collector (calleddane) to reclaimbBs that are no
longer reachable and keep all the free space in a single (logically) contiguous region, so that
there is no need for a bit table or free list to keep track of free space.

Do all writes sequentially at one end of this region, so that existing data is never overwritten
and new data is sequential.

¢ Log and cache updates to metadata (the index and directory) so that the metadata doesn’t
have to be rewritten too often.

A CFS is a very interesting example of the subtle interplay among the ideas of sequential
writing, copying garbage collection, and logging. This section describes the essentials of a CFS
in detail and discusses more briefly a number of refinements and practical considerations. It will
repay careful study.

Here is a picture of a disk organized for a CFS:

abc==defgh====ijkl=m=nopqrs-----------------
In this picture letters denote reachable bloelsdenote unreachable blocks that are not part of
the free space, ands denote free blocks (contiguous on the disk viewed as a ring buffer). After
the cleaner copies blocks: the picture is

because the datee has been copied to free space and the blocks that used teehalrk free,
together with the two unreachable blocks which were not copied. Then after dlaotis are
overwritten with new values andJ, the picture is

1 M. Rosenblum and J. Osterhout, The design and implementation of a log-structured file Agdem,
Transactions on Computer Systed® 1, Feb. 1992, pp 26-52.

Handout 7. Disks and File Systems 26

6.826—Principles of Computer Systems 2000

The new dat& andJ has been written into free space, and the blocks that used tg dwdij
are now unreachable. After the cleaner runs to completion the picture is
--------------------- nopgrsabcdeGJfhikim----

Pros and cons
A CFS has two main advantages:

« All writing is done sequentially; as we know, sequential writes are much faster than random
writes. We have a good technique for making disk reads faster: caching. As main memory
caches get bigger, more reads hit in the cache and disks spend more of their time writing, so
we need a technique to make writes faster.

¢ The cleaner can copy reachable blocks to anywhere, not just to the standard free space
region, and can do so without interfering with normal operation of the system. In particular, it
can copy reachable blocks to tape for backup, or to a different disk drive that is faster,
cheaper, less full, or otherwise more suitable as a home for the data.

There are some secondary advantages. Since the writes are sequential, they are not tied to disk
blocks, so it's easy to write items of various different sizes without worrying about how they are
packed intadBs. Furthermore, it's easy to compress the sequential stream as it's being?written
and if the disk is a RAID you never have to read any blocks to recompute the parity. Finally,
there is no bit table or free list of disk blocks to maintain.

There is also one major drawback: unless large amounts of data in the same file are written
sequentially, a file will tend to have lots of small extents, which can cause the problems
discussed on page 13. In Unix file systems most files are written all at once, but this is certainly
not true for databases. Ways of alleviating this drawback are the subject of current research. The
cost of the cleaner is also a potential problem, but in practice the cost of the cleaner seems to be
small compared to the time saved by sequential writes.

Updating metadata

For the CFS to work, it must update the index that points tbEBecontaining the file data on
every write and every copy done by the cleaner, not just when the file is extended. And in order
to keep the writing sequential, we must handle the new index information just like the file data,
writing it into the free space instead of overwriting it. This means that the directory too must be
updated, since it points to the index; we write it into free space as well. Ombothaf the

entire file system is written in a fixed location; this root says where to find the directory.

You might think that all this rewriting of the metadata is too expensive, since a single write to a
file block, whether existing or new, now triggers three additional writes of metadata: for the
index (if it doesn't fit in the directory), the directory, and the root. Previously none of these
writes was needed for an existing block, and only the index write for a new block. However, the
scheme for logging updates that we introduced to implement transactions can also handle this

2 M. Burrows et al., On-line compression in a log-structured file sysene, 5th Conference on Architectural
Support for Programming Languages and Operating Syst@ets 1992, pp 2-9. This does require some blocking
so that the decompressor can obtain the initial state it needs.

Handout 7. Disks and File Systems 27

6.826—Principles of Computer Systems 2000

problem. The idea is to write tlthangedgo the index into a log, and cache the updated index (or
just the updates) only in main memory. An example of a logged change is “block 43 of file
‘alpha’ now has disk address 385672". Later (with any luck, after several changes to the same
piece of the index) we write the index itself and log the consequent changes to the directory;
again, we cache the updated directory. Still later we write the directory and log the changes to
the root. We only write a piece of metadata when:

We run out of main memory space to cache changed metadata, or
The log gets so big (because of many writes) that recovery takes too long.

To recover we replay thective tailof the log, starting before the oldest logged change whose
metadata hasn't been rewritten. This means that we must be able to read the log sequentially
from that point. It's natural to write the log to free space along with everything else. While we
are at it, we can also log other changes like renames.

Note that a CFS can use exactly the same directory and index data as an ordinary file system, and
in fact exactly the same code fsad. To do this we must give up the added flexibility we can
getfrom sequential writing, and write eabB of data into @B on the disk. Several

implementations have done this (but the simple implementation below does not).

The logged changes serve another purpose. Because a file can only be reached from a single
directory entry (or inode), the cleaner need not trace the directory structure in order to find the
reachable blocks. Instead, if the blockiatvas written as block of file f, it's sufficient to look

at the file index and find out whether blagkf file f is still atda. But the triplep, f, da) is

exactly the logged change. To take advantage of this we must keep the logged change as long as
da remains reachable since the cleaner needs it (it's called ‘segment summary’ information in the
literature). We don’t need to replay it on recovery once its metadata is written out, however, and
hence we need the sequential structure of the log only for the active tail.

Existing CFS’s use the extra level of naming called inodes that is described on page 19. The
inode numbers don’t change during writing or copying, s®the INo directory doesn't
change. The root points to index information for the inodes (called the ‘inode map’), which
points to inodes, which point to data blocks or, for large files, to indirect blocks which point to
data blocks.

Segments

Running the cleaner is fairly expensive, since it has to read and write the disk. It's therefore
important to get as much value out of it as possible, by cleaning lots of unreachable data instead
of copying lots of data that is still reachable. To accomplish this, divide the digegitents

large enough (say 1 MB or 10 MB) that the time to seek to a new segment is much smaller than
the time to read or write a whole segment. Clean each segment separately. Keep track of the
amount of unreachable space in each segment, and clean a segment when (unreachable space) *
(age of data) exceeds a threshold. Rosenblum and Osterhout explain this rule, which is similar in

Handout 7. Disks and File Systems 28

6.826—Principles of Computer Systems 2000

spirit to what a generational garbage collettimes; the goal is to recover as much free space as
possible, without allowing too much unreachable space to pile up in old segments.

Now the free space isn't physically contiguous, so we must somehow link the segments in the
active tail together. We also need a table that keeps track for each segment of whether it is free,
and if not, what its unreachable space and age are; this is cheap because segments are so large.

Backup

As we mentioned earlier, one of the major advantages of a CFS is that it is easier to back up.
There are several reasons for this.

1. You can take a snapshot just by stopping the cleaner from freeing cleaned segments, and then

copy the root information and the log to the backup medium, recording the logged data
backward from the end of the log.

2. This backup data structure allows a single file (or a small set of files) to be restored in one
pass.

3. It's only necessary to copy the log back to the point at which the previous backup started.

4. The disks reads done by backup are sequential and therefore fast. This is an important issue
when the file system occupies many terabytes. At the 10 MB/s peak transfer rate of the disk,
it takes 16 seconds, or a bit more than one day, to copy a terabyte. This means that a small
number of disks and tapes running in parallel can do it in a fraction of a day. If the transfer
rate is reduced to 1 MB/s by lots of seeks (which is what you get with random seeks if the
average block size is 10 KB), the copying time becomes 10 days, which is impractical.

5. If alarge file is partially updated, only the updates will be logged and hence appear in the
backup.

6. It's easy to merge several incremental backups to make a full backup.

To get these advantages, we have to retain the ordering of segments in the log even after
recovery no longer needs it.

There have been several research implementations of CFS’s, and at least one commercial one
called Spiralog in Digital Equipment Corporation’s (now Compaq’'s) VMS system. You can read
a good deal about it at http://www.digital.com/info/DTIMQ0/.

3 H. Lieberman and C. Hewitt, A real-time garbage collector based on the lifetimes of dbjgota, ACVR6, 6,
June 1983, pp 419-429.

Handout 7. Disks and File Systems 29

6.826—Principles of Computer Systems 2000

A simple CFS implementation

We give an implementatiatopyingFS of a CFS that contains all the essential ideas (except for
segments, and the rule for choosing which segment to clean), but simplifies the data structures
for the sake of clarityCopyingFS treats the disk as a rooB plus a ring buffer of bytes. Since
writing is sequential this is practical; the only cost is that we may have to pad to the @l of a
occasionally in order to dosync. A DAis therefore a byte address on the disk. We could
dispense with the structure of disk blocks entirely in the representation of files, just write the
data of eachFile.write to the disk, and makeRsImpl.BE point directly to the resulting byte
sequence on the disk. Instead, however, we will stick with traditionp@akeA , and represent

a file as &SEQ DAplus its size.

So the disk consists of a root page, a busy region, and a free region (as we have seen, in a real
system both busy and free regions would be divided into segments); see the figure below. The
busy region is a sequence of encoded 's, where antem s either eir or aChange to aDB

in a file or to thedir . The busy region startstatsy and ends just beforee , which always

points to the start of a disk block. We could wfite into the root, but then making anything
stable would require a (non-sequential) write of the root. Instead, the busy region ends with a
recognizablendDB, put there bysync, so that recovery can find the end of the busy region.

DirDA is the address of the latest directory on the disk. The part of the busy regidmnztteis

the active tail of the log and contains the changes that need to be replayed during recovery to
reconstruct the current directory; this arrangement ensures that we start the replagirwith a
which it makes sense to apply the changes that follow.

P busy region -
) active log tail
4 <
bottom sBusy busy sDirDA next free top
free region _ volatile free,. |, stable N volatile | free region
< “stable bug ¢ > > >
i \ 4 Y Y A 4
i [root . DBs plus oldDir 's Dir DBs and current | MinSpace —_—
by S andDirChange 's DirChange 'S bytes
Logical .
Vi e%v Write
buffer v
in RAM \ buf : same a
logical view
A
DBs cleaned, byt . : end-
100t | umajpe maybe not stably same as logical view DB s
Disk

Handout 7. Disks and File Systems 30

6.826—Principles of Computer Systems 2000

This implementation does bytewise writes that are bufferedfirand flushed to the disk only

by sync. Hence after a crash the state reverts to the state at tBgnlasWithout the replay

done during recovery bypplyLog , it would revert to the state the last time the root was written;
be sure you understand why this is true.

We assume that a sequence of encaded’s followed by arendDB can be decoded
unambiguously. See the earlier discussion of writing logs atomically.

Other simplifications:

1. We store theEQ DAthat points to the fil®Bs right in the directory. In real life it would be a
tree, along one of the lines discusseddmpl , so that it can be searched and updated
efficiently even when it is large. Only the top levels of the tree would be in the directory.

2. We keep the entire directory in main memory and write it all out as a s#ngleln real life
we would cache parts of it in memory and write out only the parts that are dirty (in other
words, that contain changes).

3. We write a data block as part of the log entry for the change to the block, and ntake the
in the file representation point to these log entries. In real life the logged change information
would be batched together (as ‘segment summary information’) and the data written
separately, so that recovery and cleaning can read the changes efficiently without having to
read the file data as well, and so that contiguous data blocks can be read with a single disk
operation and no extra memory-to-memory copying.

4. We allocate space for dataviite , though we buffer the data laf rather than writing it
immediately. In real life we might cache newly written data in the hope that another adjacent
write will come along so that we can allocate contiguous space for both writes, thus reducing
the number of extents and making a later sequential read faster.

5. Because we don’t have segments, the cleaner always copies items stauting latreal life
it would figure out which segments are most profitable to clean.

6. We run the cleaner only when we need space. In real life, it would run in the background to
take advantage of times when the disk is idle, and to maintain a healthy amount of free space
so that writes don’t have to wait for the cleaner to run.

7. We treatvriteData andwriteRoot as atomic. In real life we would use one of the
techniques for making log writes atomic that are described on page 23.

8. We treatnit andCrash as atomic, mainly for convenience in writing invariants and
abstraction functions.In real life they do several disk operations, so we have to lock out
external invocations while they are running.

9. We ignore the possibility of errors.

Handout 7. Disks and File Systems 31

6.826—Principles of Computer Systems

MODULE CopyingFS EXPORTS PN, Sync =

2000

% implementdg=ile , usedDisk

TYPEDA = Nat % Disk Address in bytes
WITH "+":=DAAdd, "-":=DASub}

LE = SEQDA % Linear Extent

Data = File.Data

X = File.X

F = [le, size: X] %size = # of bytes

PN = String WITH[...] % Path Name

Dir = PN->F

Item = (DBChange + DirChange + Dir + Pad) % item on the disk

DBChange = [pn, x, db] % db is data ak in file pn

DirChange = [pn, dirOp, X] % x only for SetSize

DirOp = ENUM]create, delete, setSize]

Pad = [size: X] % For filling up aDB;

% Pad{x}.enc.size = x

IDA = [item, da]

SI = SEQ IDA % for parsing the busy region

Root = [dirDA: DA, busy: DA] % assume encodingBBSize
CONST

DBSize := Disk.DBSize

diskSize ~ := 1000000

rootDA =0

bottom = rootDA + DBSize % smallesDAoutside root

top .= (DBSize * diskSize) AS DA

ringSize := top - bottom

endDB :=DB{...} % starts unlike anftem
VAR % All volatile; stable data is on disk.

dir Dir =}

sDirDA DA :=bottom % = ReadRoot().dirDA

sBusy DA :=Bottom % = ReadRoot().busy

busy : DA :=bottom

free DA := bottom

next DA :=bottom % DAto writebuf at

buf Data := {} % waiting to be written

disk % the disk

ABSTRACTION FUNCTION File.dir = (LAMBDA (pn) -> File.F =
% The file is the data pointed to by tB&s in itsF.
VAR f := dir(pn), diskData := + :(f.le * ReadOneDB) |
RET diskData.seg(0, f.size))

ABSTRACTION FUNCTION File.oldDirs = { SDir(), dir }

INVARIANT 1: (ALL f:IN dir.rng | f.le.size * DBSize >=f.size)
% The blocks of a file have enough space for the data. FRImpl.

The reason thatdDirs doesn’t contain any intermediate states is that the stable state changes
only in aSync, which shrinksldDirs to justdir .

Handout 7. Disks and File Systems 32

6.826—Principles of Computer Systems 2000

During normal operation we need to have the variables that keep track of the region boundaries

and the stable directory arranged in order around the disk ring, and we need to maintain this

condition after a crash. Here are the relevant current and post-crash variables, in order (see below

for MinSpace) . The ‘posterash’ column gives the value that the ‘current’ expression will have
after a crash.

Current Post-crash
busy sBusy start of busy region
sDirDA sDirDA most recent stablér
next end of stable busy region
free next end of busy region

free + minSpace() next + minSpace() end of cushion for writes

In addition, the stable busy region should start and end before or at the start and end of the
volatile busy region, and the stable directory should be contained in both. Also, the global
variables that are supposed to equal various stable variables (their names staljtstittuld in
fact do so. The analysis that leads to this invariant is somewhat tricky; | hope it’s right.

INVARIANT 2:
IsOrdered((SEQ DA){next + MinSpace(), sBusy, busy, sDirDA, next, free,
free + MinSpace(), busy})
N\ EndDA() = next \ next//DBSize = 0 \ Root{sDirDA, sBusy} = ReadRoot()

Finally,

The busy region should contain all the items pointed to fs&siin dir or in global
variables.

The directory on disk abirDA plus the changes between therefesd should agree with
dir .

This condition should still hold after a crash.

INVARIANT 3:
IsAllGood(ParseLog(busy, buf), dir)
N\ IsAllGood(ParseLog(sBusy, {}), SDir())

The following functions are mainly for the invariants, though they are also used in crash
recovery ParseLog expects that the disk frota to the nexbB with contentsndDB, plusdata |,

is the encoding of a sequencateih 's, and it returns the sequergie eachitem paired with its

DA ApplyLog takes ars| that startsvith aDir and returns the result of applying all the changes
in the sequence to thatr .

FUNC ParseLog(da, data) -> S| = VAR si, end: DA |
% Parse the log froma to the nexendDB block, and continue witbata .
+:(si * (\ida | ida.item.enc) = ReadData(da, end - da) + data
N (ALL n :IN si.dom - {0} |
si(n).da = si(n-1).da + si(n-1).item.enc.size)
N si.head.da = da
N\ ReadOneDB(end) = endDB => RET si

Handout 7. Disks and File Systems 33

6.826—Principles of Computer Systems 2000

FUNC ApplyLog(si) -> Dir = VAR dir' := si.head.item AS Dir |
% si must start with ®ir . Apply all the changes to th3ir.
DO VAR item := si.head.item |
IF item IS DBChange => dir'(item.pn).le(item.x/DBSize) := si.head.da
| item IS DirChange => dir' := ... % details omitted
[*] SKIP % ignoreDir andPad
Fl; si := si.tail
OD; RET dir'
FUNC IsAllGood(si, dir') -> Bool = RET
% All dir' entries point tddBChange's andsi agrees wittdir'
(ALL da, pn, item | dir'lpn A da IN dir'(pn).le /A IDA{item, da} IN si
==> jtem IS DBChange)
N ApplyLog(si) = dir'

FUNC SDir() -> Dir = RET ApplyLog(ParseLog(sDirDA), {})
% TheDir encoded by thitem atsDirDA plus the followingDirChange 's

FUNC EndDA() -> DA = VAR ida := ParseLog(sDirDA).last |
% Return theDAof the firstendDB aftersDirDA , assuming a parsable log.
RET ida.da + ida.item.enc.size

The minimum free space we need is room for writingdoutwhen we are about to overwrite the
last previous copy on the disk, plus the wasted space in a disk block that might have only one
byte of data, plus thendDB.

FUNC MinSpace() -> Int = RET dir.enc.size + (DBSize-1) + DBsize

The followingRead andwrite procedures are much the same as they would k&ripl , where

we omitted them. They are full of boring details about fitting things into disk blocks; we include
them here for completeness, and because thewway handles allocation is an important part

of CopyingFs . We continue to omit the otheile procedures liksetSize , as well as the
handling inApplyLog of theDirChange items that they create.

PROC Read(pn, x, size: X) -> Data =
VAR f :=dir(pn),

size :={{size, f.size - x}.min, 0}.max,

n :=x/DBSize,

nSize := NumDBs(x, size),

blocks:=n .. n + nSize -1,

data :=+ :(blocks * f.le * Readltem *
(\ item | (item AS DBChange).db)) |
RET data.seg(x//DBSize, size)

% the available bytes

% first block number

% number of blocks

% blocks we need ifile

% all data in these blocks

% the data requested

PROC Write(pn, X, data) = VAR f := dir(pn) |
% First expandlata to contain all théBs that need to be written
data := Data.fill(0, x - f.size) + data;
x = {x, f.size}.min;
IF VARYy :=x//[DBSize |y # 0 =>
X 1= X - y; data := Read(pn, X, y) + data
[*] SKIP FI;
IF VARYy := data.size//DBSize |y # 0 =>
data + := Read(pn, x + data.size, DBSize - y)
[*] SKIP FI;
% Convertdata into DBs, write it, and compute the nefie

% addO’s to extend tox
% and adjusk to match
% fill to a DBin front

% fill to a DBin back

Handout 7. Disks and File Systems 34

6.826—Principles of Computer Systems 2000

VAR blocks := Disk.DToB(data), n := x/DBSize,
% Extendf.le with 0’s to the right length.
le :=f.le + LE-fill(0, x + blocks.size - le.size),
i:=0]|
DO blocks!i =>
le(n + i) := WriteData(DBChange{pn, x, blocks(i)}.enc);
x +:=DBSize;i+:=1
OD; dir(pn).le :=le

These procedures initialize the system and handle crashsts.is somewhat idealized; a more
realistic implementation would read the log and apply the changes t&s it reads them, but
the logic would be the same.

PROC Init() = disk := disk.new(diskSize); WriteDir() % initially dir is empty

PROC Crash() = << % atomic for simplicity

CRASH;
sDiIrDA := ReadRoot().sDirDA; dir := SDir();
sBusy := ReadRoot().busy; busy := sBusy;

free := EndDA(); next := free; buf := {} >>

These functions read an item, some data, or a $#dtem the disk. They are boringeaditem
is somewhat unrealistic, since it just chooses a suitable size fenthatda so thatitem.dec
works. In real life it would read a few blocksat determine the length of the item from the
header, and then go back for more blocks if necessary. It reads eitheuframfrom the disk,
depending on whethes is in the write buffer, that is, betweeext andfree .

FUNC Readltem(da) -> Item = VAR size: X |
RET Item.dec((DABetween(da, next, free) => buf.seg(da - next, size)
[*] ReadData(da, size)))

FUNC ReadData(da, size: X) -> Data = % 1 or2 disk.read’s
IF size + da <=top => % Int."+" , notDA."+"
% Read the necessary disk blocks, then pick out the bytes requested.
VAR data := disk.read(LE{da/DBSize, NumDBs(da, size)}) |
RET data.seg(da//DBSize, size)
[*] RET ReadData(da, top - da) + ReadData(bottom, size - (top - da))

PROC ReadOneDB(da) = RET disk.read(LE{da/DBSize, 1}))

WriteData ~ writes some data to the disk. It is not boring, since it includes the write buffering, the
cleaning,and the space bookkeeping. The writes are buffered inandSync does the actual

disk write. In this modulsync is only called bywriteDir , but since it's a procedure file it

can also be called by the client. WherteData needs space it calfSean , which does the

basic cleaning step of copying a single item. There should be a check for a full disk, but we omit
it. This check can be done by observing that the loopritaData advancegee all the way

around the ring, or by keeping track of the available free space. The latter is fairly easy, but
Crash would have to restore the information as part of its replay of the log.

These write procedures are the only ones that actually writeuint®ync andwriteRoot
below are the only procedures that write the underlying disk.

Handout 7. Disks and File Systems 35

6.826—Principles of Computer Systems 2000

PROC WriteData(data) -> DA =
DO IsFull(data.size) => Clean() OD;
buf + := data; VAR da := free | free + := data.size; RET da

% just tobuf , not disk

PROC Writeltem(item) = VAR d := item.enc | buf + :=d; free + := d.size
% No check for space because this is only calle@lesn, WriteDir.

PROC Sync() =

% Actually write to disk, irl or 2 disk.write’s (2 if wrapping).

% If we will write pastsBusy , we have to update the root.
IF (sBusy - next) + (free - next) <= MinSpace() => WriteRoot()[] SKIP FI;
% Padbuf to evenDBs. A loop because orfeéad might overflow currenDB.
DO VAR z := buf.size//DBSize | z # 0 => buf := buf + Pad{DBSize-z}.enc OD;
buf := buf + endDB; % add the end mark@&B
<< % atomic for simplicity
IF buf.size + next < top => disk.write(next/DBSize, buf)
[*] disk.write(next /DBSize, buf.seg(0 , top-next));

disk.write(bottom/DBSize, buf.sub(top-next, buf.size-1))

Fl;
>>; free := next + buf.size - DBSize; next := free; buf := {}

The constraints on using free space areclkah must not cause writes beyond the stabley

or into a disk block containingem ’s that haven't yet been copied. {Husy is equal twusy and

in the middle of a disk block, the second condition might be stronger. It's necessary because a
write will clobber the whole block.) Furthermore, there must be room to writenan

containingdir . Invariant 2 expresses all this precisely. In real life, of coatse; would be

called in the background, the system would try to maintain a fairly large amount of free space,
and only small parts afr would be dirtyClean dropsbirChange ’s because they are recorded

in theDir item that must appear later in the busy region.

FUNC IsFuli(size: X) -> Bool = RET busy - free < MinSpace() + size

PROC Clean() = VAR item := Readltem(busy) |
IF item IS DBChange A dir(item.pn).le(item.x/DBSize) = busy =>
dir(item.pn).le(item.x/DBSize) := free; Writeltem(item)
[l item IS Dir A\ da = sDirDA => WriteDir()
[*] SKIP
FI; busy := busy + item.enc.size

% copy the next item

% the latesDir
% dropDirChange , Pad

PROC WriteDir() =

% Called only fronClean andlnit . Could call it more often to speed up recovery

%, afterDO busy - free < MinSpace() => Clean() OD to get space.
sDirDA := free; Writeltem(dir); Sync(); WriteRoot()

The remaining utility functions read and write the root, convert byte sizesctounts, and

provide arithmetic omAs that wraps around from the top to the bottom of the disk. In real life
we don't need the arithmetic because the disk is divided into segments and items don't cross
segment boundaries; if they did the cleaner would have to do something quite special for a
segment that starts with the tail of an item.

Handout 7. Disks and File Systems 36

6.826—Principles of Computer Systems 2000 6.826—FPrinciples of Computer Systems

FUNC ReadRoot() -> Root = VAR root, pad |
ReadOneDB(rootDA) = root.enc + pad.enc => RET root

PROC WriteRoot() = << VAR pad, db | db = Root{sDirDA, busy}.enc + pad.enc =>
disk.write(rootDA, db); sBusy := busy >>

FUNC NumDBs(da, size: X) -> Int = RET (size + da//DBSize + DBSize-1)/DBSize
% The number oDBs needed to holdize bytes starting ada.

FUNC DAAdd(da, i: Int) -> DA = RET ((da - bottom + i) // ringSize) + bottom

FUNC DASub(da, i: Int) -> DA = RET ((da - bottom - i) // ringSize) + bottom
% Arithmetic modulo the data regioabs(i) should be< ringSize.

FUNC DABetween(da, dal, da2) -> Bool = RET da = dal V (da2 - dal) < (dal - da)

FUNC IsOrdered(s: SEQ DA) -> Bool =
RET (ALL i :IN s.dom - {0, 1} | DABetween(s(i-1), s(i-2), s(i)))

END CopyingFS

Handout 7. Disks and File Systems 37 Handout 7. Disks and File Systems

2000

38

