
6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 1

8. Generalizing Abstraction Functions

In this handout, we give a number of examples of specs and implementations for which simple
abstraction functions (of the kind we studied in handout 6 on abstraction functions) don’t exist,
so that the abstraction function method doesn’t work to show that the implementation satisfies
the spec. We explain how to generalize the abstraction function method so that it always works.

We begin with an example in which the spec maintains state that doesn’t actually affect its
behavior. An optimized implementation can simulate the spec without having enough state to
generate all the state of the spec. By adding history variables to the implementation, we can
extend its state enough to define an abstraction function, without changing its behavior. An
equivalent way to get the same result is to define an abstraction relation from the
implementation to the spec.

Next we look at implementations that simulate a spec without taking exactly one step for each
step of the spec. As long as the external behavior is the same in each step of the simulation, an
abstraction function (or relation) is still enough to show correctness, even when an arbitrary
number of transitions in the specification correspond to a single transition in the implementation.

Finally, we look at an example in which the spec makes a non-deterministic choice earlier than
the choice is exposed in the external behavior. An implementation may make this choice later, so
that there is no abstraction relation that generates the premature choice in the spec’s state. By
adding prophecy variables to the implementation, we can extend its state enough to define an
abstraction function, without changing its behavior. An equivalent way to get the same result is
to define a backward simulation from the implementation to the spec.

If we avoided extra state, too few or too many transitions, and premature choices in the spec, the
simple abstraction function method would always work. You might therefore think that all these
problems are not worth solving, because it sounds as though they are caused by bad choices in
the way the spec is written. But this is wrong. A spec should be written to be as clear as possible
to the clients, not to make it easy to prove the correctness of an implementation. The reason for
these priorities is that we expect to have many more clients for the spec than implementers. The
examples below should make it clear that there are good reasons to write specs that create these
problems for abstraction functions. Fortunately, with all three of these extensions we can always
find an abstraction function to show the correctness of any implementation that actually is
correct.

A statistical database

Consider the following specification of a “statistical database” module, which maintains a
collection of values and allows the size, mean, and variance of the collection to be extracted.

Recall that the mean m of a sequence db of size n > 0 is just the average
n

idb
i
∑)(

, and the

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 2

variance is
()

2

22)()(
m

n

idb

n

midb
ii −=

− ∑∑
. (We make the standard assumptions of

commutativity, associativity, and distributivity for the arithmetic here.)

MODULE StatDB [V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,
 "/": (V,Int)->V}] EXPORT Add, Size, Mean, Variance =

VAR db : SEQ V := {} % a multiset

APROC Add(v) = << db + := {v}; RET >>

APROC Size() -> Int = << RET db.size >>

APROC Mean() -> V RAISES {empty} = <<
IF db = {} => RAISE empty [*] VAR sum := (+ : db) | RET sum/Size() FI >>

APROC Variance() -> V RAISES {empty} = <<
IF db = {} => RAISE empty
[*] VAR avg := Mean(), sum := (+ : {v :IN db | | (v - avg)**2}) |

RET sum/Size()
FI >>

END StatDB

This spec is a very natural one that directly follows the definitions of mean and variance.

The following implementation of the StatDB module does not retain the entire collection of
values. Instead, it keeps track of the size, sum, and sum of squares of the values in the collection.
Simple algebra shows that this is enough to compute the mean and variance in the manner done
below.

MODULE StatDBImpl % implements StatDB
 [V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,
 "/": (V,Int)->V}] EXPORT Add, Size, Mean, Variance =

VAR count := 0
sum := V.Zero()
sumSquare := V.Zero()

APROC Add(v) = <<
count + := 1; sum + := v; sumSquare + := v**2; RET >>

APROC Size() -> Int = << RET count >>

APROC Mean() -> V RAISES {empty} =
<< IF count = 0 => RAISE empty [*] RET sum/count FI >>

APROC Variance() -> V RAISES {empty} = <<
IF count = 0 => RAISE empty
[*] VAR avg := Mean() | RET sumSquare/count – avg**2
FI >>

END StatDBImpl

StatDBImpl implements StatDB, in the sense of trace set inclusion. However we cannot prove
this using an abstraction function, because each nontrivial state of the implementation

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 3

corresponds to many states of the specification. This happens because the specification contains
more information than is needed to generate the desired external behavior. In this example, the
states of the specification could be partitioned into equivalence classes based on the possible
future behavior: two states are equivalent if they give rise to the same future behavior. Then any
two equivalent states yield the same future behavior of the module. Each of these equivalence
classes corresponds to a state of the implementation.

To get an abstraction function we must add history variables, as explained in the next section.

History variables

The problem in the StatDB example is that the specification states contain more information than
the implementation states. A history variable is a variable that is added to the state of the
implementation T in order to keep track of the extra information in the specification S that was
left out of the implementation. Even though the implementation has been optimized not to retain
certain information, we can put it back in to prove the implementation correct, as long as we do it
in a way that does not change the behavior of the implementation. What we do is to construct a
new implementation TH that has the same behavior as T, but a bigger state. If we can show that
TH implements S, it follows that T implements S, since traces of T = traces of TH ⊆ traces of S.

In this example, we can simply add an extra state component db to the implementation
StatDBImpl, and use it to keep track of the entire collection of elements, that is, of the entire
state of StatDB. This gives the following module:

MODULE StatDBImplH ... = % implements StatDB

VAR count := 0 % as before
sum := V.Zero() % as before
sumSquare := V.Zero() % as before
db : SEQ V := {} % history: state of StatDB

APROC Add(v) = <<
count + := 1; sum + := v; sumSquare + := v**2;
db + := {v}; RET >>

% The remaining procedures are as before

END StatDBImplH

All we have done here is to record some additional information in the state. We have not
changed the way existing state components are initialized or updated, or the way results of
procedures are computed. So it should be clear that this module exhibits the same external
behaviors as the implementation StatDBImpl given earlier. Thus, if we can prove that
StatDBImplH implements StatDB, then it follows immediately that StatDBImpl implements
StatDB.

However, we can prove that StatDBImplH implements StatDB using an abstraction function.
The abstraction function, AF, simply discards all components of the state except db. The
following invariant of StatDBImplH describes how db is related to the other state:

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 4

 count = db.size
/\ sum = (+ : db)
/\ sumSquare = (+ : {v :IN db | | Square(v)})

That is, count, sum and sumSquare contain the number of elements in db, the sum of the
elements in db, and the sum of the squares of the elements in db, respectively.

With this invariant, it is easy to prove that AF is an abstraction function from StatDBImplH to
StatDB. In this proof, it is easy to show that the abstraction function is preserved by every step,
because the only variable in StatDB, db, is changed in exactly the same way in both modules.
The interesting thing to show is that the Size, Mean, and Variance operations produce the same
results in both modules. But this is easy to see because of the invariant.

In general, we can augment the state of an implementation with additional components, called
history variables (because they keep track of additional information about the history of
execution), subject to the following constraints:

1. Every initial state has at least one value for the history variables.

2. No existing step is disabled by the addition of predicates involving history variables.

3. A value assigned to an existing state component must not depend on the value of a history
variable. One important case of this is that a return value must not depend on a history
variable.

These constraints guarantee that the history variables simply record additional state information
and do not otherwise affect the behaviors exhibited by the module. If the module augmented with
history variables can be shown correct, it follows that the original module without the history
variables is also correct, because they have the same traces.

This definition is formulated in terms of the underlying state machine model. However, most
people think of history variables as syntactic constructs in their own particular programming
languages; in this case, the restrictions on their use must be defined in terms of the language
syntax.

In the StatDB example, we have simply added a history variable that records the entire state of
the specification. This is not necessary; sometimes there might be only a small piece of the state
that is missing from the implementation. However, the brute-force strategy of using the entire
specification state as a history variable will work whenever any addition of history variables will
work.

Abstraction relations

If you don’t like history variables, you can define an abstraction relation between the
implementation and the spec; it’s the same thing in different clothing.

An abstraction relation is a simple generalization of an abstraction function, allowing several
states in S to correspond to the same state in T. An abstraction relation is a subset of
states(T) × states(S) that satisfies the following two conditions:

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 5

1. If t is any initial state of T, then there is an initial state s of S such that (t, s) ∈ R.

2. If t and s are reachable states of T and S respectively, with (t, s) ∈ R, and (t, π, t') is a step of
T, then there is a step of S from s to some s', having the same trace, and with (t', s') ∈ R.

The picture illustrates the idea; it is an elaboration of the picture for an abstraction function in
handout 6. It shows t related to s1 and s2, and an action π taking each of them into a state
related to t'.

It turns out that the same theorem holds as for abstraction functions:

Theorem 1: If there is an abstraction relation from T to S, then T implements S, that is, every
trace of T is a trace of S.

The reason is that for T to simulate S it isn’t necessary to have a function from T states to S
states; it’s sufficient to have a relation. A way to think of this is that the two modules, T and S,
are running in parallel. The execution is driven by module T, which executes in any arbitrary
way. S follows along, producing the same externally visible behavior. The two conditions above
guarantee that there is always some way for S to do this. Namely, if T begins in any initial state t,
we just allow S to begin in some related initial state s, as given by (1). Then as T performs each
of its transitions, we mimic the transition with a corresponding transition of S having the same
externally visible behavior; (2) says we can do so. In this way, we can mimic the entire execution
of T with an execution of S.

An abstraction relation for StatDB

Recall that in the StatDB example we couldn’t use an abstraction function to prove that the
implementation satisfies the spec, because each nontrivial state of the implementation
corresponds to many states of the specification. We can capture this connection with an
abstraction relation. The relation that works is described in Spec1 as:

TYPE T = [count: Int, sum: V, sumSquare: V] % state of StatDBImpl
 S = [db: SEQ V] % state of StatDB

1 This is one of several ways to represent a relation, but it is the standard one in Spec. Earlier we described the
abstraction relation as a set of pairs (t, s). In terms of AR, this set is {t, s | AR(t, s) | (t, s)} or simply
AR.set, using one of Spec’s built-in methods on predicates. Yet another way to write it is as a function T ->
SET S. In terms of AR, this function is (\ t | {s | AR(t, s)} or simply AR.setF, using another built-in
method. These different representations can be confusing, but different aspects of the relation are most easily
described using different representations.

s2 s2'

t't

AR
AR

π

π

s1 s1'
π

AR
AR

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 6

FUNC AR(t, s) -> Bool =
RET db.size = count
 /\ (+ : db)) = sum
 /\ (+ : {v :IN db | | Square(v)}) = sumSquare

The proof that AR is an abstraction relation is straightforward. We must show that the two
properties in the definition of an abstraction relation are satisfied. In this proof, the abstraction
relation is used to show that every response to a size, mean or variance query that can be given
by StatDBImpl can also be given by StatDB. The new state of StatDB is uniquely determined by
the code of StatDB. Then the abstraction relation in the prior states together with the code
performed by both modules shows that the abstraction relation still holds for the new states.

An abstraction relation for MajorityRegister

Consider the abstraction function given for MajorityRegister in handout 5. We can easily
write it as an abstraction relation from MajorityRegister to Register, not depending on the
invariant to make it a function.

FUNC AR(m, d) -> Bool = VAR seqno := {p' :IN m.rng | | p'.seqno}.max |
RET (P{d, seqno} IN m.rng)

For (1), suppose that t is any initial state of MajorityRegister. Then there is some default value
d such that all copies have value d and seqno 0 in t. Let s be the state of Register with value d;
then s is an initial state of Register and (t, s) ∈ AR, as needed.

For (2), suppose that t and s are reachable states of MajorityRegister and Register,
respectively, with (t, s) ∈ AR, and (t, π, t') a step of MajorityRegister. Because t is a reachable
state, it must satisfy the invariants given for MajorityRegister. We consider cases, based on π.
Again, the interesting cases are the procedure bodies.

Abstraction relations vs. history variables

Notice that the invariant for the history variable db above bears an uncanny resemblance to the
abstraction relation AR. This is not an accident—the same ideas are used in both proofs, only
they appear in slightly different places. The following table makes the correspondence explicit.

Abstraction relation to history variable History variable to abstraction relation

Given an abstraction relation AR, define TH by
adding the abstract state s as a state variable to
T. AR defines an invariant on the state of TH:
AR(t, s).

Given TH, T extended with a history variable h,
there’s an invariant I(t, h) relating h to the
state of T, and an abstraction function
AF(t, h) -> S such that TH simulates S.

Define AF((t, s)) = s Define AR(t, s) =
 (EXISTS h | I(t, h) /\ AF(t, h) = s)

That is, t is related to s if there’s a value for h
in state t that AF maps to s.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 7

For each step (t, π, t') of T, and s such that
AR(t, s) holds, the abstraction relation gives
us s' such that (t, π, t') simulates (s, π,
s'). Add ((t, s), p, (t', s')) as a
transition of TH. This maintains the invariant.

For each step (t, π, t') of T, and h such that
the invariant I(t, h) holds, TH has a step
((t, h), π, (t', h')) that simulates (s,
π, s') where s = AF(t, h) and s' =
AF(t', h'). So AR(t', s') as required.

This correspondence makes it clear that any implementation that can be proved correct using
history variables can also be proved correct using an abstraction relation, and vice-versa. Some
people prefer using history variables because it allows them to use an abstraction function, which
may be simpler (especially in terms of notation) to work with than an abstraction relation. Others
prefer using an abstraction relation because it allows them to avoid introducing extra state
components and explaining how and when those components are updated. Which you use is just
a matter of taste.

Taking several steps in the spec

A simple generalization of the definition of an abstraction relation (or function) allows for the
possibility that a particular step of T may correspond to more or less than one step of S. This is
fine, as long as the externally-visible actions are the same in both cases. Thus this distinction is
only interesting when there are internal actions.

Formally, a (generalized) abstraction relation R satisfies the following two conditions:

1. If t is any initial state of T, then there is an initial state s of S such that (t, s) ∈ R.

2. If t and s are reachable states of T and S respectively, with (t, s) ∈ R, and (t, π, t') is a step of
T, then there is an execution fragment of S from s to some s', having the same trace, and with
(t', s') ∈ R.

Only the second condition has changed, and the only difference is that an execution fragment (of
any number of steps, including zero) is allowed instead of just one step, as long as it has the
same trace, that is, as long as it looks the same from the outside. We generalize the definition of
an abstraction function in the same way. The same theorem still holds:

Theorem 2: If there is a generalized abstraction function or relation from T to S, then T
implements S, that is, every trace of T is a trace of S.

From now on in the course, when we say “abstraction function” or “abstraction relation”, we will
mean the generalized versions.

Some examples of the use of these generalized definitions appear in handout 7 on file systems,
where there are internal transitions of implementations that have no counterpart in the
corresponding specifications. We will see examples later in the course in which single steps of
implementations correspond to several steps of the specifications.

Here, we give a simple example involving a large write to a memory, which is done in one step
in the spec but in individual steps in the implementation. The spec is:

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 8

MODULE RWMem [A, D] EXPORT BigRead, BigWrite =

TYPE M = A -> D
VAR memory : M

FUNC BigRead() -> M = RET memory

APROC BigWrite(m: M) = << memory := m; RET >>

END RWMem

The implementation is:

MODULE RWMemImpl [A, D] EXPORT BigRead, BigWrite =

TYPE M = A -> D
VAR memory : M

done : SET A := {}

FUNC BigRead() -> M = RET memory

PROC BigWrite(m) =
<< done := {} >>;
DO << VAR a | ~(a IN done) => memory(a) := m(a); done \/ := {a} >> OD;
RET

END RWMemImpl

We can prove that RWMemImpl implements RWMem using an abstraction function. The state of
RWMemImpl includes program counter values to indicate intermediate positions in the code, as
well as the values of the ordinary state components. The abstraction function cannot yield partial
changes to memory; therefore, we define the function as if an entire abstract BigWrite occurred
at the point where the first change occurs to the memory occurs in RWMemImpl. (Alternative
definitions are possible; for instance, we could have chosen the last change.) The abstraction
function is defined by:

RWMem.memory = RWMemImpl.memory unless there is an active BigWrite and done is
nonempty. In this case RWMem.memory = m, where BigWrite(m) is the active BigWrite.
RWMem’s pc for an active BigRead is the same as that for RWMemImpl. RWMem's pc for an active
BigWrite is before the body if the pc in RWMemImpl is at the beginning of the body;
otherwise it is after the body.

In the proof that this is an abstraction function, all the atomic steps in a BigWrite of RWMemImpl
except for the step that writes to memory correspond to no steps of RWMem. This is typical: an
implementation usually has many more transitions than a spec, because the implementation is
limited to the atomic actions of the machine it runs on, but the spec has the biggest atomic
actions possible because that is the simplest to understand.

In this example, it is also possible to interchange the implementation and the specification, and
show that RWMem implements RWMemImpl. This can be done using an abstraction function. In the
proof that this is an abstraction function, the body of a BigWrite in RWMem corresponds to the
entire sequence of steps comprising the body of the BigWrite in RWMemImpl.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 9

Exercise: Add crashes to this example. The specification should contain a component
OldStates that keeps track of the results of partial changes that could result from a crash during
the current BigWrite. A Crash during a BigWrite in the specification can set the memory
nondeterministically to any of the states in OldStates. A Crash in the implementation simply
discards any active procedure. Prove the correctness of your implementation using an abstraction
function. Compare this to the specs for file system crashes in handout 7.

Premature choice

In all the examples we have done so far, whenever we have wanted to prove that one module
implements another (in the sense of trace inclusion), we have been able to do this using either an
abstraction function or else its slightly generalized version, an abstraction relation. Will this
always work? That is, do there exist modules T and S such that the traces of T are all included
among the traces of S, yet there is no abstraction function or relation from T to S? It turns out that
there do—abstraction functions and relations aren't quite enough.

To illustrate the problem, we give a very simple example. It is trivial, since its only point is to
illustrate the limitations of the previous proof methods.

Example: Let NonDet be a state machine that makes a nondeterministic choice of 2 or 3. Then it
outputs 1, and subsequently it outputs whatever it chose.

MODULE NonDet EXPORT Out =

VAR i := 0

APROC Out() -> Int = <<
IF i = 0 => BEGIN i := 2 [] i := 3 END; RET 1
[*] RET i FI >>

END NonDet

Let LateNonDet be a state machine that outputs 1 and then nondeterministically chooses whether
to output 2 or 3 thereafter.

MODULE LateNonDet EXPORT Out =

VAR i := 0

APROC Out() -> Int = <<
IF i = 0 => i := 1 [*] i = 1 => BEGIN i := 2 [] i := 3 END [*] SKIP FI;
RET i >>

END LateNonDet

Clearly NonDet and LateNonDet have the same traces: Out() = 1; Out() = 2; ... and
Out() = 1; Out() = 3; Can we show the implementation relationships in both directions
using abstraction relations?

Well, we can show that NonDet implements LateNonDet with an abstraction function that is just
the identity. However, no abstraction relation can be used to show that LateNonDet implements
NonDet. The problem is that the nondeterministic choice in NonDet occurs before the output of 1,

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 10

whereas the choice in LateNonDet occurs later, after the output of 1. It is impossible to use an
abstraction relation to simulate an early choice with a later choice. If you think of constructing an
abstract execution to correspond to a concrete execution, this would mean that the abstract
execution would have to make a choice before it knows what the implementation is going to
choose.

You might think that this example is unrealistic, and that this kind of thing never happens in real
life. The following three examples show that this is wrong; we will study implementations for all
of these examples later in the course. We go into a lot of detail here because most people find
these situations very unfamiliar and hard to understand.

Premature choice: Reliable messages

Here is a realistic example (somewhat simplified) that illustrates the same problem: two specs for
reliable channels, which we will study in detail later, in handout 26 on reliable messages. A
reliable channel accepts messages and delivers them in FIFO order, except that if there is a crash,
it may lose some messages. The straightforward spec drops some queued messages during the
crash.

MODULE ReliableMsg [M] EXPORT Put, Get, Crash =

VAR q : SEQ M := {}

APROC Put(m) = << q + := {m} >>
APROC Get() -> M = << VAR m := q.head | q := q.tail; RET m >>

APROC Crash() = << VAR q' | q' <<= q => q := q' >>
% Drop any of the queued messages (<<= is non-contiguous subsequence)

END ReliableMsg

Most practical implementations (for instance, the Internet’s TCP protocol) have cases in which it
isn’t known whether a message will be lost until long after the crash. This is because they ensure
FIFO delivery, and get rid of retransmitted duplicates, by numbering messages sequentially and
discarding any received message with an earlier sequence number than the largest one already
received. If the underlying message transport is not FIFO (like the Internet) and there are two
undelivered messages outstanding (which can happen after a crash), the earlier one will be lost if
and only if the later one overtakes it. You don’t know until the overtaking happens whether the
first message will be lost. By this time the crash and subsequent recovery may be long since
over.

The following spec models this situation by ‘marking’ the messages that are queued at the time
of a crash, and optionally dropping any marked messages in Get.

MODULE LateReliableMsg [M] EXPORT Put, Get, Crash =

VAR q : SEQ [m, mark: Bool] := {}

APROC Put(m) = << q + := {m} >>
APROC Get() -> M =

<< DO VAR x := q.head | q := q.tail; IF x.mark => SKIP [] RET x.m FI OD >>

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 11

APROC Crash() = << q := {x :IN q | | x{mark := true}} >>
% Mark all the queued messages. This is a sequence, not a set constructor, so it doesn’t reorder the messages.

END LateReliableMsg

Like the simple NonDet example, these two specs are equivalent, but we cannot prove that
LateReliableMsg implements ReliableMsg with an abstraction relation, because ReliableMsg
makes the decision about what messages to drop sooner, in Crash. LateReliableMsg makes this
decision later, in Get, and so do the standard implementations.

Premature choice: Consensus

For another examples, consider the consensus problem of getting a set of process to agree on a
single value chosen from some set of allowed values; we will study this problem in detail later,
in handout 18 on consensus. The spec doesn’t mention the processes at all:

MODULE Consensus [V] EXPORT Allow, Outcome =

VAR outcome : (V + Null) := nil % Data value to agree on

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >>
FUNC Outcome() -> (V + Null) = RET outcome [] RET nil

END Consensus

This spec chooses the value to agree on as soon as the value is allowed. Outcome may return nil
even after the choice is made because in a distributed implementation it’s possible that not all the
participants have heard what the outcome is. An implementation almost certainly saves up the
allowed values and does a lot of communication among the processes to come to an agreement.
The following spec has that form. It is more complicated than the first one (more state and more
operations), and closer to an implementation.

MODULE LateConsensus [V] EXPORT Allow, Outcome =

VAR outcome : (V + Null) := nil % Data value to agree on
allowed : SET V := {}

APROC Allow(v) = << allowed \/ := {v} >>

FUNC Outcome() -> (V + Null) = RET outcome [] RET nil

APROC Agree() = << VAR v | v IN allowed /\ outcome = nil => outcome := v >>

END LateConsensus

It should be clear that these two modules have the same traces: a sequence of Allow(x) and
Outcome() = y actions in which every y is either nil or the same value, and that value is an
argument of some preceding Allow. But there is no abstraction relation from LateConsensus to
Consensus, because there is no way for LateConsensus to come up with the outcome before it
does its internal Agree action.

Note that if Outcome didn’t have the option to return nil even after outcome # nil, these
modules would not be equivalent, because LateConsensus would allow the behavior

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 12

Allow(1); Outcome()=nil, Allow(2), Outcome()=1

and Consensus would not.

Premature choice: Multi-word clock

Here is a third example of premature choice in a spec: reading a clock. The spec is simple:

MODULE Clock EXPORT Read =

VAR t : Int % the current time

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t

PROC Read() -> Int = << RET t >>

END Clock

This is in a concurrent world, in which several threads can invoke Read concurrently, and Tick is
a demon thread that is entirely internal. In that world there are three transitions associated with
each invocation of Read: entry, body, and exit. The entry and exit transitions are external because
Read is exported.

We may want an implementation that allows the clock to have more precision than can be carried
in a single memory location that can be read and written atomically. We could easily achieve this
by locking the clock representation, but then a slow process holding the lock (for instance, one
that gets pre-empted) could block other processes for a long time. A clever ‘wait-free’
implementation of Read (which appears in handout 17 on formal concurrency) reads the various
parts of the clock representation one at a time and puts them together deftly to come up with a
result which is guaranteed to be one of the values that t took on during this process. The
following spec abstracts this strategy; it breaks Read down into two atomic actions and returns
some value, non-deterministically chosen, between the values of t at these two actions.

MODULE LateClock EXPORT Read =

VAR t : Int % the current time

THREAD Tick() = DO << t := t + 1 >> OD % demon thread advances t

PROC Read() -> Int = VAR t1: Int |
<< t1 := t >>; << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >>

END LateClock

Again both specs have the same traces: a sequence of invocations and responses from Read, such
that for any two Reads that don’t overlap, the earlier one returns a smaller value tr. In Clock the
choice of tr depends on when the body of Read runs relative to the various Ticks. In LateClock
the VAR t2 makes the choice of tr, and it may choose a value of t some time ago. Any
abstraction relation from LateClock to Clock has to preserve t, because a thread that does a
complete Read exposes the value of t, and this can happen between any two other transitions.
But LateClock doesn’t decide its return value until its last atomic command, and when it does, it
may choose an earlier value than the current t; no abstraction relation can explain this.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 13

Prophecy variables

One way to cope with these examples and others like them is to use ad hoc reasoning to show
that LateX implements X; we did this informally in each example above. This strategy is much
easier if we make the transition from premature choice to late choice at the highest level
possible, as we did in these examples. It’s usually too hard to show directly that a complicated
module that makes a late choice implements a spec that makes a premature choice.

But it isn’t necessary to resort to ad hoc reasoning. Our trusty method of abstraction functions
can also do the job. However, we have to use a different sort of auxiliary variable, one that can
look into the future just as a history variable looks into the past. Just as we did with history
variables, we will show that a module TP augmented with a prophecy variable has the same
traces as the original module T. Actually, we can show that it has the same finite traces, which is
enough to take care of safety properties. It also has the same infinite traces provided certain
technical conditions are satisfied, but we won’t worry about this because we are not interested in
liveness. To show that the traces are the same, however, we have to work backward from the end
of the trace instead of forward from the beginning.

A prophecy variable guesses in advance some non-deterministic choice that T is going to make
later. The guess gives enough information to construct an abstraction function to the spec that is
making a premature choice. When execution reaches the choice that T makes non-
deterministically, TP makes it deterministically according to the value of the prophecy variable.
TP has to choose enough different values for the prophecy variable to keep from ruling out any
executions of T.

The conditions for an added variable to be a prophecy variable are closely related to the ones for
a history variable, as the following table shows.

History variable Prophecy variable

1. Every initial state has at least one value for
the history variable.

1. Every state has at least one value for the
prophecy variable.

2. No existing step is disabled by new guards
involving a history variable.

2. No existing step is disabled in the
backward direction by new guards
involving a prophecy variable. More
precisely, for each step (t, π, t') and state
(t', p') there must be a p such that there is a
step ((t, p), π, (t', p')).

3. A value assigned to an existing state
component must not depend on the value of
a history variable. One important case of
this is that a return value must not depend
on a history variable.

3. Same condition

 4. If t is an initial state of T and (t, p) is a state
of TP, it must be an initial state.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 14

If these conditions are satisfied, the state machine TP with the prophecy variable will have the
same traces as the state machine T without it. You can see this intuitively by considering any
finite execution of T and constructing a corresponding execution of TP, starting from the end.
Condition (1) ensures that we can find a last state for TP. Condition (2) says that for each
backward step of T there is a corresponding backward step of TP, and condition (3) says that in
this step p doesn’t affect what happens to t. Finally, condition (4) ensures that we end up in an
initial state of TP.

Let’s review our examples and see how to add prophecy variables, marking the additions with
boxes. For LateNonDetP we add pI that guesses the choice between 2 and 3. The abstraction
function is just NonDet.i = LateNonDetP.pI.

VAR i := 0
pI := 0

APROC Out() -> Int = <<
IF i = 0 => i := 1; BEGIN pI := 2 [] pI := 3 END
[*] i = 1 => BEGIN pI = 2 => i := 2 [] pI = 3 => i := 3 END [*] SKIP FI;
RET i >>

For LateReliableMsgP we add a pDead flag to each marked message that forces Get to discard
it. Crash chooses which dead flags to set. The abstraction function just discards the marks and
the dead messages.

VAR q : SEQ [m, mark: Bool, pDead: Bool] := {}

% ABSTRACTION FUNCTION ReliableMsg.q = {x :IN LateReliableMsg.q | ~ x.dead | x.m}

% INVARIANT (ALL i :IN q.dom | q(i).dead ==> q(i).mark)

APROC Get() -> M =
<< DO VAR x := q.head |

q := q.tail; IF x.mark => SKIP [] ~ x.pDead => RET x.m FI OD >>

APROC Crash() = << VAR pDeads: SEQ Bool | pDeads.size = q.size =>
q := {x :IN q, pD :IN pDeads | | x{mark := true, pDead := pD}

Alternatively, we can prophesy the entire state of ReliableMsg as we did with db in StatDB,
which is a little less natural in this case:

VAR pQ : SEQ M := {}

% INVARIANT {x :IN q | ~ x.mark | x.m} <<= pQ /\ pQ <<= {x :IN q | | x.m}

APROC Get() -> M =
<< DO VAR x := q.head |

q := q.tail;
IF x.mark /\ (pQ = {} \/ x.m # pQ.head) => SKIP
[] pQ := pQ.tail; RET x.m
FI OD >>

APROC Crash() =
<< VAR q' | q' <<= q => pQ := q'; q := {x :IN q | | x{mark := true}} >>

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 15

For LateConsensusP we follow the example of NonDet and just prophesy the outcome in Allow.
The abstraction function is Consensus.outcome = LateConsensusP.pOutcome

VAR outcome : (V + Null) := nil % Data value to agree on
pOutcome : (V + Null) := nil
allowed : SET V := {}

APROC Allow(v) =
<< allowed \/ := {v}; IF pOutcome = nil => pOutcome := v [] SKIP FI >>

APROC Agree() =
<< VAR v | v IN allowed /\ outcome = nil /\ v = pOutcome => outcome := v >>

For LateClockP we choose the result at the beginning of Read. The second command of Read
has to choose this value, which means it has to wait until Tick has advanced t far enough. The
transition of LateClockP that corresponds to the body of Clock.Read is the Tick that gives t the
pre-chosen value. This seems odd, but since all these transitions are internal, they all have empty
external traces, so it is perfectly OK.

VAR t : Int % the current time
pT : Int

PROC Read() -> Int = VAR t1: Int |
<< t1 := t; VAR t': Int | pT := t' >>;
<< VAR t2 | t1 <= t2 /\ t2 <= t /\ t2 = pT => RET t2 >>

Most people find it much harder to think about prophecy variables than to think about history
variables, because thinking about backward execution does not come naturally. It’s easy to see
that it’s harmless to carry on extra information in the history variables that isn’t allowed to affect
the main computation. A prophecy variable, however, is allowed to affect the main computation,
by forcing a choice that was non-deterministic to be taken in a particular way. Condition (2)
ensures that in spite of this, no traces of T are ruled out in TP. It requires us to use a prophecy
variable in such a way that for any possible choice that T could make later, there’s some choice
that TP can make for the prophecy variable’s value that allows TP to later do what T does.

Here is another way of looking at this. Condition (2) requires enough different values for the
prophecy variables pi to be carried forward from the points where they are set to the points where
they are used to ensure that as they are used, any set of choices that T could have made is
possible for some execution of TP. So for each command that uses a pi to make a choice, we can
calculate the set of different values of the pi that are needed to allow all the possible choices.
Then we can propagate this set back through earlier commands until we get to the one that
chooses pi, and check that it makes enough different choices.

Because prophecy variables are confusing, it’s important to use them only at the highest possible
level. If you write a spec SE that makes an early choice, and implement it with a module T, don’t
try to show that T satisfies SE; that will be too confusing. Instead, write another spec SL that
makes the choice later, and use prophecy variables to show that SL implements SE. Then show
that T implements SL; this shouldn’t require prophecy. We have given three examples of this
strategy.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 16

Backward simulation

Just as we could use abstraction relations instead of adding history variables, we can use a
different kind of relation, satisfying different start and step conditions, instead of prophecy
variables. This new sort of relation also guarantees trace inclusion. Like an ordinary abstraction
relation, it allows construction of an execution of the specification, working from an execution of
the implementation. Not surprisingly, however, the construction works backwards in the
execution of the implementation instead of forwards. (Recall the inductive proof for abstraction
relations.) Therefore, it is called a backward simulation.

The following table gives the conditions for a backward simulation using relation R to show that
T implements S, aligning each condition with the corresponding one for an ordinary abstraction
relation. To highlight the relationship between the two kinds of abstraction mappings, an
ordinary abstraction relation is also called a forward simulation.

Forward simulation Backward simulation

1. If t is any initial state of T, then there is an
initial state s of S such that (t, s) ∈ R.

1. If t is any reachable state of T, then there a
state s of S such that (t, s) ∈ R.

2. If t and s are reachable states of T and S
respectively, with (t, s) ∈ R, and (t, π, t') is
a step of T, then there is an execution
fragment of S from s to some s', having the
same trace, and with (t', s') ∈ R.

2. If t' and s' are states of T and S respectively,
with (t', s') ∈ R, (t, π, t') is a step of T, and t
is reachable, then there is an execution
fragment of S from some s to s', having the
same trace, and with (t, s) ∈ R.

 3. If t is an initial state of T and (t, s) ∈ R then
s is an initial state of S.

(1) applies to any reachable state t rather than any initial state, since running backwards we can
start in any reachable state, while running forwards we start in an initial state. (2) requires that
every backward (instead of forward) step of T be a simulation of a step of S. (3) is a new
condition ensuring that a backward run of T ending in an initial state simulates a backward run of
S ending in an initial state; since a forward simulation never ends, it has no analogous condition.

Theorem 3: If there exists a backward simulation from T to S then every finite trace of T is also
a trace of S.

Proof: Start at the end of a finite execution and work backward, exactly as we did for forward
simulations.

Notice that Theorem 3 only yields finite trace inclusion. That’s different from the forward case,
where we get infinite trace inclusion as well. Can we use backward simulations to help us prove
general trace inclusion? It turns out that this doesn’t always work, for technical reasons, but it
works in two situations that cover all the cases you are likely to encounter:

• The infinite traces are exactly the limits of finite traces. Formally, we have the condition that
for every sequence of successively extended finite traces of S, the limit is also a trace of S.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 17

• The correspondence relation relates only finitely many states of S to each state of T.

In the NonDet example above, a backward simulation can be used to show that LateNonDet
implements NonDet. In fact, the inverse of the relation used to show that NonDet implements
LateNonDet will work. You should check that the three conditions are satisfied.

Backward simulations vs. prophecy variables

The same equivalence that holds between abstraction relations and history variables also holds
between backward simulations and prophecy variables. The invariant on the prophecy variable
becomes the abstraction relation for the backward simulation.

Completeness

Earlier we asked whether forward simulations always work to show trace inclusion. Now we can
ask whether it is always possible to use either a forward or a backward simulation to show trace
inclusion. The satisfying answer is that a combination of a forward and a backward simulation,
one after the other, will always work, at least to show finite trace inclusion. (Technicalities again
arise in the infinite case.) For proofs of this result and discussion of the technicalities, see the
papers by Abadi and Lamport and by Lynch and Vondrager cited below.

History and further reading

The idea of abstraction functions has been around since the early 1970’s. Tony Hoare introduced
it in a classic paper (C.A.R. Hoare, Proof of correctness of data representations. Acta Informatica
1 (1972), pp 271-281). It was not until the early 1980’s that Lamport (L. Lamport, Specifying
concurrent program modules. ACM Transactions on Programming Languages and Systems 5, 2
(Apr. 1983), pp 190-222) and Lam and Shankar (S. Lam and A. Shankar, Protocol verification
via projections. IEEE Transactions on Software Engineering SE-10, 4 (July 1984), pp 325-342)
pointed out that abstraction functions can also be used for concurrent systems.

People call abstraction functions and relations by various names. ‘Refinement mapping’ is
popular, especially among European writers. Some people say ‘abstraction mapping’.

History variables are an old idea. They were first formalized (as far as I know), in Abadi and
Lamport, The existence of refinement mappings. Theoretical Computer Science 2, 82 (1991), pp
253-284. The same paper introduced prophecy variables and proved the first completeness result.
For more on backward and forward simulations see N. Lynch and F. Vondrager, Forward and
backward simulations—Part I: Untimed systems. Information and Computation 121, 2 (Sep.
1995), pp 214-233.

6.826—Principles of Computer Systems 2000

Handout 8. Generalizing Abstraction Functions 18

.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 1

9. Atomic Semantics of Spec

This handout defines the semantics of the atomic part of the Spec language fairly carefully. It
tries to be precise about all difficult points, but is sloppy about some things that seem obvious in
order to keep the description short and readable. For the syntax and an informal account of the
semantics, see the Spec reference manual, handout 4.

There are three reasons for giving a careful semantics of Spec:

1. To give a clear and unambiguous meaning for Spec programs.

2. To make it clear that there is no magic in Spec; its meaning can be given fairly easily and
without any exotic methods.

3. To show the versatility of Spec by using it to define itself, which is quite different from the
way we use it in the rest of the course.

This handout is divided into two parts. In the first half we describe semi-formally the essential
ideas and most of the important details. Then in the second half we present the atomic semantics
precisely, with a small amount of accompanying explanation.

Semi-formal atomic semantics of Spec1

Our purpose is to make it clear that there is no arm waving in the Spec notation that we have
given you. A translation of this into fancy words is that we are going to study a formal semantics
of the Spec language.

Now that is a formidable sounding term, and if you take a course on the semantics of pro-
gramming languages (6.821—Gifford, 6.830J—Meyer) you will learn all kinds of fancy stuff
about bottom and stack domains and fixed points and things like that. You are not going to see
any of that here. We are going to do a very simple minded, garden-variety semantics. We are just
going to explain, very carefully and clearly, how it is that every Spec construct can be
understood, as a transition of a state machine. So if you understand state machines you should be
able to understand all this without any trouble.

One reason for doing this is to make sure that we really do know what we are talking about. In
general, descriptions of programming languages are not in that state of grace. If you read the
Pascal manual or the C manual carefully you will come away with a number of questions about
exactly what happens if I do this and this, questions which the manual will not answer
adequately. Two reasonably intelligent people who have studied it carefully can come to
different conclusions, argue for a long time, and not be able to decide what is the right answer by
reading the manual.

1 These semi-formal notes take the form of a dialogue between the lecturer and the class. They were originally
written by Mitchell Charity for the 1992 edition of this course, and have been edited for this handout.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 2

There is one class of mechanisms for saying what the computer should do that often does answer
your questions precisely, and that is the instruction sets of computers (or, in more modern
language, the architecture). These specs are usually written as state machines with fairly simple
transitions, which are not beyond the power of the guy who is writing the manual to describe
properly. A programming language, on the other hand, is not like that. It has much more power,
generality, and wonderfulness, and also much more room for confusion.

Another reason for doing this is to show you that our methods can be applied to a different kind
of system than the ones we usually study, that is, to a programming language, a notation for
writing programs or a notation for writing specifications. We are going to learn how to write a
spec for that particular class of computer systems. This is a very different application of Spec
from the last one we looked at, which was file systems. For describing a programming language,
Spec is not the ideal descriptive notation. If you were in the business of giving the semantics of
programming languages, you wouldn’t use Spec. There are many other notations, some of them
better than Spec (although most are far worse). But Spec is good enough; it will do the job. And
there is a lot to be said for just having one notation you can use over and over again, as opposed
to picking up a new one each time. There are many pitfalls in devising a new notation.

Those are the two themes of this lecture. We are going to get down to the foundations of Spec,
and we are going to see another, very different application of Spec. Certainly a programming
language is very different from a file system.

For this lecture, we will only talk about the sequential or atomic semantics of Spec, not about
concurrent semantics. Consider the program:

 x, y = 0
thread 1: thread 2:
<< x := 3 >> << z := x + y >>
<< y := 4 >>

In the concurrent world, it is possible to get any of the values 0, 3, or 7 for z. In the sequential
world, which we are in today, the only possible values are 0 and 7. It is a simpler world. We will
be talking later (in handout 17 on formal concurrency) about the semantics of concurrency,
which is unavoidably more complicated.

In a sequential Spec program, there are three basic constructs (corresponding to sections 5, 6, and
7 of the reference manual):

Expressions

Commands

Routines

In order to describe what each of these things means, we first of all need some notion of what
kind of thing the meaning of an expression or command might be. Then we have to explain in
detail exactly what the meaning of each possible kind of expression is. The basic technique we
use is the standard one for a situation where you have things that are made up out of smaller
things: structural induction.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 3

The idea of structural induction is this. If you have something which is made up of an A and a B,
and you know the meaning of each, and have a way to put them together, you know how to get
the meaning of the bigger thing.

Some ways to put things together in Spec:

A , B
A ; B
a + b
A [] B

State

What are the meanings going to be? Our basic notion is that what we are doing when writing a
Spec program is describing a state machine. The central properties of a state machine are that it
has states and it has transitions.

A state is a function from names to values: State: Name -> Value. For example:

VAR x: Int
y: Int

If there are no other variables, the state simply consists of the mapping of the names "x" and "y"
to their corresponding values. Initially, we don’t know what their values are. Somehow the
meaning we give to this whole construct has to express that.

Next, if we write x := 1, after that the value of x is 1. So the meaning of this had better look
something like a transition that changes the state, so that no matter what the x was before, it is 1
afterwards. That’s what we want this assignment to mean.

Spec is much simpler than C. In particular, it does not have “references” or “pointers”. When
you are doing problems, if you feel the urge to call malloc, the correct thing to do is to make a
function whose range is whatever sort of thing you want to allocate, and then choose a new
element of the domain that isn’t being used already. You can use the integers or any convenient
sort of name for the domain, that is, to name the values. If you define a CLASS, Spec will do this
for you automatically.

So this is the state, just these name to value mappings.

Names

Spec has a module structure, so that names have two parts, the module name and the simple
name. When referring to a variable in another module, both parts must be used.

MODULE M MODULE N

VAR x M.x := 3
x := 3
...
M.x := 3

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 4

To simplify the semantics, we are going to use M.x as the name everywhere. In order to apply the
semantics, you first must go through the program and replace every x declared in the current
module M with M.x. You convert all references to global variables to these two part names, so
that each name refers to exactly one thing. This makes things simpler to describe and understand,
but uglier to read. This transformation doesn’t change the meaning of the program; it could have
been written with two part names in the first place.

All the global variables have these two part names. However, local variables are not prefixed by
the module name:

PROC
VAR i | ... i

This is how we tell the global state apart from the local state. Global state names have dots, local
state names do not.

Question: Can modules be nested?

No. Spec is meant to be suitable for the kinds of specs and implementations that we do in this
course, which are no more than moderately complex. Features not really needed to write our
specs are left out to keep it simpler.

Expressions

What should the meaning of an expression be? Note that expressions do not affect the state.

Question: What about assignments?

Assignments are not expressions. If you have been programming in C, you have the weird idea
that assignments are expressions. But not in the rest of the world. Spec in particular takes a hard
line that not only are assignments not expressions, but functions are not allowed to affect the
state.

What are the semantics of an expression? Well, the type for the meaning of an expression is
S -> V. An expression is a function from state to value. It can be a partial function, since Spec
does not require that all expressions be defined. But it has to be a function—we do require that
expressions are deterministic. We want determinism so something like f(x) = f(x) always
comes out true. Reasoning is just too hard if this isn’t true. If a function is nondeterministic then
obviously this needn’t come out true. (The classic example of a nondeterministic function is a
random number generator.)

So, expressions are deterministic and do not affect state.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 5

There are three types of expressions:

Type Example Meaning

constant 1 (\ s | 1)

variable x (\ s | s("x"))

function invocation f(x) next sub-section

(The type of these lambda’s is not quite right, as we will see later).

Note that we have to keep the Spec in which we are writing the semantics separate from the Spec
of the semantics we are describing. Therefore, we had to write s("x") instead of just x, because
it is the x of the target system we are talking about, not the x of the describing system.

The third type of expression is function invocation. We will only talk about functions with a
single argument. If you want a function with two arguments, you can make one by combining the
two arguments into a tuple or record, or by currying: defining a function of the first argument
that returns a function of the second argument.

What about x + y? This is just shorthand for T."+"(x, y), where T is the type of x. Everything
that is not a constant or a variable is an invocation. This should be a familiar concept for those of
you who know Scheme.

Semantics of function invocation

What are the semantics of function invocation? Given a function T -> U, the correct type of its
meaning is (T, S) -> U, since the function can read the state but not modify it. Next, how are
we going to attach a meaning to an invocation f(x)? Remember the rule of structural induction.
In order to explain the meaning of a complicated thing, you are supposed to build it out of the
meaning of simpler things. We know the meaning of x and of f. We need to come up with a map
from states to values that is the meaning of f(x). That is, we get our hands on the meaning of f
and the meaning of x, and then put them together appropriately. What is the meaning of f?
s("f"). So,

 f(x) means ... s("f") ... s("x")

How are we going to put it together, remembering the type we want for f(x)?

 f(x) means (\ s | s("f") (s("x"), s)))

Now this could be complete nonsense, for instance if s("f") evaluates to an integer. If s("f")
isn’t a function then this doesn’t typecheck. But there is no doubt about what this means if it is
legal. It means invoke the function.

That takes care of expressions, because there are no other expressions besides these. Structural
induction says you work your way through all the different ways to put little things together to
make big things, and when you have done them all, you are finished.

Question: What about undefined functions?

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 6

Then the (T, S) -> U mapping is partial.

Question: Is f(x) = f(x) if f(x) is undefined?

No, it’s undefined. But those are deep waters and I propose to stay out of them.

Commands

What is the type of the meaning of a command? Well, we have states and values to play with,
and we have used up S -> V on expressions. What sort of thing is a command? It’s a transition
from one state to another.

Expressions: S -> V

Commands: S -> S ?

This is good for a subset of commands. But what about this one?

x := 1 [] x := 2

Is its meaning a function from states to states? No, from states to sets of states. It can’t just be a
function. It has to be a relation. Of course, there are lots of ways to code relations as functions.
The way we use is:

Commands: (S, S) -> Bool

There is a small complication because Spec has exceptions, which are useful for writing many
kinds of specifications, not to mention programs. So we have to deal with the possibility that the
result of a command is not a garden-variety state, but involves an exception.

To handle this we make a slight extension and invent a thing called an outcome, which is very
much like a state except that it has some way of coding that an exception has happened. Again,
there are many ways to code that. The way we use is that an outcome has the same type as a
state: it’s a function from names to values. However, there are a couple of funny names that you
can’t actually write in the program. One of them is $x, and we adopt the convention that if
o("$x") = "" (empty string), then o is a garden-variety state. If o("$x") = "exception-
name", then there is that exception in outcome o. Some Spec commands, in particular ";" and
EXCEPT, do something different if one of their pieces produces an exception.

Now we just work our way through the command constructs (with an occasional digression).

Commands — assignment

x := 1

or in general

variable := expression

What we have to come up with for the meaning is an expression of the form

(\ s, o | ...)

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 7

How do we say that o is related to s? The function returns true. We are encoding a relation
between states and outcomes as a function from a state and outcome to a Bool. The function is
supposed to give back true exactly when the relation holds.

So when does the relation hold for x := exp? Well, perhaps when o(x) = exp? (ME is the
meaning function for expressions.)

o("x") = ME(e)(s)

. Well, the valid transition

x=0 x=1
 ->
y=0 y=0

would certainly be allowed. But what others would be allowed? What about:

x=0 x=1
 ->
y=0 y=94

It would also be allowed, so this can’t be quite right. Half right, but missing something
important. You have to say that you don’t mess around with the rest of the state. The way you do
that is to say that the outcome is equal to the state except at the variable.

o = s{"x" -> ME(e)(s)}

This is just a Spec function constructor, of the form f{arg -> value}.

Aside—an alternate encoding for commands

As we said before, there are many ways to code the command relation. Another possibility is:

Commands: S -> SET S

This encoding seems to make the meanings of commands clumsier to write, though it is entirely
equivalent to the one we have chosen.

There is a third approach, which has a lot of advantages: write predicates on the state values. If x
and y are the state variables in the pre-state, and x' and y' the state variables in the post-state,
then

 (x' = 1 /\ y' = y)

is another way of writing

o = s{"x" -> 1}

In fact, this approach is another way of writing programs. I could write everything just as pred-
icates. Of course, I could also write everything as this o = s{...} sort of cruft, but that would
look pretty awful. It is more conceivable that we would want to write things as predicates,
because it doesn’t look so bad.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 8

Sometimes it’s actually nice to do this. Say you want to write the predicate that says you can
have any value at all for x. The spec

VAR z | x := z

is just

(y' = y)

(in the simple world where the only state variables are x and y). This is much simpler that the
previous, rather inscrutable, piece of program. So sometimes this predicate way of doing things
can be a lot nicer, but in general it seems to be not as satisfactory, mainly because the y'=y stuff
clutters things up an awful lot.

That was just an aside, but sometimes it’s convenient to describe the things that can go on in a
specification using predicates rather than functions from state pairs to Bool.

Commands — routine invocation p(x)

What are the semantics of routine invocation? Well, it has to do something with s. What about
the argument? There are many ways to deal with the argument. The way we do it is to use
another pseudo-variable $a to pass the argument and get back the result.

The meaning of p(e) is going to be

LAMBDA (s, o) = RET (s Take the state,
 {"$a" -> ME(e)(s)} append the argument,
 ME(p)(s) get the routine
 , o) and invoke it
or, writing the whole thing on one line in the normal way,

LAMBDA (s, o) = RET ME(p)(s)(s{"$a" -> ME(e)(s)}, o)

What does this say? This invocation relates a state to an outcome if, when you take that state, and
modify its $a component to be equal to the value of the argument, the meaning of the routine
relates that state to the outcome. Another way of writing this, which isn’t so nested and might be
clearer, would be to introduce an intermediate state s':

VAR s' = s{"$a" -> ME(e)(s)} | ME(p)(s)(s', o)

These two are exactly the same thing. The invocation relates s to o iff the routine relates s' to o,
where s' is just s with the argument passing component modified. $a is just a way of
communicating the argument value to the routine.

Question: Why use ME(p)(s) rather than MR?

MR is the meaning function for routines, that is, it turns the syntax of a routine declaration into a
function on states and arguments that is the meaning of that syntax. We would use MR if we were
looking at a FUNC. But p is just a variable (of course it had better be bound to a routine value, or
this won’t typecheck).

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 9

Aside—an alternate encoding for invocation

Here is a different way of communicating the argument value to the function; you can skip this
section if you like. We could take the view that the routine definition

 PROC P(i: Int) = ...

is defining a whole flock of different commands, one for every possible argument value. Then
we need to pick out the right one based on the argument value we have. If we coded it this way
(and it is merely a coding thing) we would get:

ME(p)(s)(ME(e)(s)) (s,o)

This says, first get ME(p), the meaning of p. This is not a transition but a function from argument
values to transitions, because the idea is that for every possible argument value, we are going to
get a different meaning for the routine, namely what that routine does when given that particular
argument value. So we pass it the argument value ME(e)(s), and invoke the resulting transition.

These two alternatives are based on different choices about how to code the meaning of routines.
If you code the meaning of a routine simply as a transition, then Spec picks up the argument
value out of the magic $a variable. But there is nothing mystical going on here. Setting $a
corresponds exactly to what we would do if we were designing a calling sequence. We would
say “I am going to pass the argument in register 1”. Here, register 1 is $a.

The second approach is a little bit more mystical. We are taking more advantage of the won-
derful abstract power and generality that we have. If someone writes a factorial function, we will
treat it as an infinite supply of different functions; one computes the factorial of 1, another the
factorial of 2, another the factorial of 3, and so forth. In ME(p)(s)(ME(e)(s))(s, o),
ME(p)(s) is the infinite supply, ME(e)(s) is the argument that picks out a particular function,
to which we finally pass (s, o).

However, there are lots of other ways to do this. One of the things which makes the semantics
game hard is that there are many choices you can make. They don’t really make that much
difference, but they can create a lot of confusion, both because a bad choice can leave you in a
briar patch of notation, and because you can get confused about what choice was made.

So, while this

RET ME(p) (S) (S("$a" -> ME(e) (s)),o)

and this

VAR s' := s{"$a" -> ME(e)(s)} | RET ME(p)(s) (s',o)

are two ways of writing exactly the same thing, this

ME(p)(s)(ME(e)(s)) (s,o)

is different, and only makes sense with a different choice about what the meaning of a function
is. The latter is more elegant, but we use the former because it is less confusing.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 10

Stepping back from these technical details, what the meaning function is doing is taking an
expression and producing its meaning. The expression is a piece of syntax, and there are a lot of
possible ways of coding the syntax. Which exact way we chose isn’t that important.

Commands — SKIP

LAMBDA (s, o) = RET s = o

In other words, the outcome after SKIP is the same as the pre-state. Later on, in the formal half of
the handout, we give a table for the commands which takes advantage of the fact that there is a
lot of boilerplate—the LAMBDA (s, o) = RET stuff is always the same, and so is the treatment
of exceptions. So the table just shows, for each syntactic form, what goes after the RET.

Commands — HAVOC

LAMBDA (s, o) = true

In other words, after HAVOC you can have any outcome. Actually this isn’t quite good enough,
since we want to be able to have any sequence of outcomes. We deal with this by introducing
another magic state component $havoc with a Bool value. Once $havoc is true, any transition
can happen, including one that leaves it true and therefore allows havoc to continue. We express
this by adding to the command boilerplate the disjunct s("$havoc"), so that if $havoc is true in
s, any command relates s to any o.

Now for the compound commands.

Commands — c1 [] c2

MC(c1) MC(c2)

 (s, o) (s, o)

 \/

or on one line,

MC(c1)(s, o) \/ MC(c2)(s, o)

Non-deterministic choice is the ‘or’ of the relations.

Commands — c1 [*] c2

It is clear we should begin with

MC(c1)(s, o) \/ …

But what next? One possibility is

 ~ MC(c1)(s, o) ==> ...

This is in the right direction, but not correct. Else means that if there is no possible outcome of
c1, then you get to try c2. So there are two possible ways for an else to relate a state to an
outcome. One is for c1 to relate the state to the outcome, the other is that there is no possible way
to make progress with cl in the state, and c2 to relates the state to the outcome.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 11

The correct encoding is

MC(cl)(s,o) \/ (ALL o' | ~ MC(cl) (s, o')) /\ MC(c2)(s,o))

Commands — c1 ; c2

Although the meaning of semicolon may seem intuitively obvious, it is more complex than one
might first suspect—more complicated than or, for instance. We interpreted the command
c1 [] c2 as MC(cl) \/ MC(c2). Because semicolon is a sequential composition, it requires that
our semantics move through an intermediate state.

If these were functions (if we could describe the commands as functions) then we could simply
describe a sequential composition as (F2 (Fl s)). However, because Spec is not a functional
language, we need to compose relations, in other words, to establish an intermediate state as a
precursor to the final output state. As a first attempt, we might try:

(LAMBDA (s, o) -> Bool = RET
(EXISTS o' | MC(cl)(s, o') /\ MC(c2)(o', o)))

In words, this says that you can get from s to o via c1 ; c2 if there exists an intermediate state
o' such that c1 takes you from s to o' and c2 takes you from o' to o. This is indeed the
composition of the relations. But is this always the meaning of ";"? In particular, what if c1
produces an exception? When c1 produces an exception, we should not execute c2. Our first try
does not capture that possibility. To correct for this, we need to verify that o' is a normal state. If
it is an exceptional state, then it is the result of the composition and we ignore c2.

(EXISTS o' | MC(cl)(s, o') /\ (~IsX(o') /\ MC(c2)
 \/ IsX(o') /\ o' = o))

Commands — c1 EXCEPT xs => c2

Now, what if we have a handler for the exception? If we assume (for simplicity) that all
exceptions are handled, we would simply implement the complement of the semicolon case. If
we get an exception, then do c2. If there is no exception, do not do c2. We also need to include
an additional check to insure that the exception considered is an element of the exception set—
that is to say, that it is a handled exception.

(EXISTS o' | MC(cl)(s, o') /\
 (((~IsX(o') \/ ~o'("$x") IN xs) /\ o' = o)
 \/ IsX(o') /\ o'("$x") IN xs) /\ MC(c2)(o'{"$x" -> ""}, o)
)

So, with this semantics for handling exceptions, the meaning of:

 (c1 EXCEPT xs => c2); c3)

is

if normal do c1, no c2, do c3

if exception, handled do c1, do c2, do c3

if exception and not handled do c1, no c2, no c3

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 12

Commands — VAR id: T | c0

The idea is “there exists a value for id such that c0 succeeds”. This intuition suggests something
like

(EXISTS v | v IN T /\ MC(c0)(s{"id" -> v}, o))

However, if we look carefully, we see that id is left defined in the output state o. (Why is this
bad?) To correct this omission we need to introduce an intermediate state o' from which we may
arrive at the final output state o where id is undefined.

 (EXISTS v, o' | v IN T /\ MC(c0)(s("id" -> v}, o') /\ o = o'(id -> })

Routines

In Spec, routines include functions, atomic procedures, and procedures. For simplicity, we focus
on atomic procedures. How do we think about APROCs?

We know that the body of an APROC describes transitions from its input state to its output state.
Given this transition, how do we handle the results? We introduce a pseudo name $a to which a
procedure’s argument value is bound, and the caller also collects the value from $a after the
procedure body’s transition. Refer to the definition of MR below for a more complete discussion.

In reality, Spec is more complex because it attempts to make RET more convenient by allowing it
to occur anywhere in a routine. To accommodate this, the meaning of RET e is to set $a to the
value of e and then raise the special exception $RET, which is handled as part of the invocation.

Formal atomic semantics of Spec

In the rest of the handout, we describe the meaning of atomic Spec commands in complete detail,
except that we do not give precise meanings for the various expression forms other than lambda
expressions; for the most part these are drawn from mathematics, and their meanings should be
clear. We also omit the detailed semantics of modules, which is complicated and uninteresting.

Overview

The semantics of Spec are defined in three stages: expressions, atomic commands, and non-
atomic commands (treated in handout 17 on formal concurrency). For the first two there is no
concurrency: expressions and atomic commands are atomic. This makes it possible to give their
meanings quite simply:

Expressions as functions from states to results, that is, values or exceptions.

Atomic commands as relations between states and outcomes: a command relates an initial
state to every possible outcome of executing the command in the initial state.

An outcome maps names (treated as strings) to values. It also maps three special strings that are
not program names (we call them pseudo-names):

$a, which is used to pass argument and result values in an invocation;

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 13

$x, which records an exceptional outcome;
$havoc, which is true if any sequence of later outcomes is possible.

A state is a normal outcome, that is, an outcome which is not exceptional; it has $x=noX. The
looping outcome of a command is encoded as the exception $loop; since this is not an identifier,
you can’t write it in a handler.

The state is divided into a global state that maps variables of the form m.id (for which id is
declared at the top level in module m) and a local state that maps variables of the form id (those
whose scope is a VAR command or a routine). Routines share only the global state; the ones
defined by LAMBDA also have an initial local state, while the ones declared in a routineDecl start
with an empty local state. We leave as an exercise for the reader the explicit construction of the
global state from the collection of modules that makes up the program.

We give the meaning of a Spec program using Spec itself, by defining functions ME, MC, and MR
that return the meaning of an expression, command, and routine. However, we use only the
functional part of Spec. Spec is not ideally suited for this job, but it is serviceable and by using it
we avoid introducing a new notation. Also, it is instructive to see how the task is writing this
particular kind of specification can be handled in Spec.

You might wonder how this specification is related to an implementation of Spec, that is, to a
compiler or interpreter. It does look a lot like an interpreter. As with other specifications written
in Spec, however, this one is not a practical implementation because it uses existential quantifiers
and other forms of non-determinism too freely. Most of these quantifiers are just there for clarity
and could be replaced by explicit computations of the needed values without much difficulty.
Unfortunately, the quantifier in the definition of VAR does not have this property; it actually
requires a search of all the values of the specified type. Since you have already seen that we
don’t know how to give a practical implementation of Spec, it shouldn’t be surprising that this
handout doesn’t contain one.

Note that before applying these rules to a Spec program, you must apply the syntactic rewriting
rules for constructs like VAR id := e and CLASS that are given in the reference manual. You
must also replace all global names with their fully qualified forms, which include the defining
module, or Global for names declared globally (see section 8 of the reference manual).

Terminology

We begin by giving the types and special values used to represent the Spec program whose
meaning is being defined. We use two methods of functions, + (overlay) and restrict, that are
defined in section 9 of the reference manual.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 14

TYPE V = (Routine + ...) % Value
Routine = aTr % defined as the last type below

Id = String % Identifer
 SUCHTHAT (\ id | (EXISTS c: Char, s1: String, s2: String |
 id = {c} + s1 + s2 /\ c IN letter + digit
 /\ s1.set <= letter\/digit\/{'_'} /\ s2.set <= {'''}))
Name = String
 SUCHTHAT (\ name | name IN ids \/ globals
 \/ {"$a", "$x", "$havoc"})
X = String % eXception
 SUCHTHAT (\ x | x IN ids \/ {noX, retX, loopX, typeX})
XS = SET X % eXception Set

O = Name -> V WITH {isX:=OIsX} % Outcome
S = O SUCHTHAT (\ o | ~ o.isX) % State
ATr = (S, O) -> Bool % Atomic Transition

CONST
letter := "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".set
digit := "0123456789".set
ids := {id | true}
globals := {id1, id2 | id1 + "." + id2}
noX := ""
retX := "$ret"
loopX := "$loop"
typeX := "$type error"
trueV : V % the value true

FUNC OIsX(o) -> Bool = RET o("$x") # noX % o.isX

To write the meaning functions we need types for the representations of the main non-terminals
of the language: id, name, exceptionSet, type, exp, cmd, routineDecl, module, and
program. Rather than giving the detailed representation of these types or a complete set of
operations for making and analyzing their values, we write C« c1 [] c2 » for a command
composed from subcommands c1 and c2 with [], and so forth for the rest of the command
forms. Similarly we write E« e1 + e2 » and R« FUNC Succ(x: INT)->INT = RET x+1 » for
the indicated expression and function, and so forth for the rest of the expression and routine
forms. This notation makes the specification much more readable. Id, Name, and XS are declared
above.

TYPE T = SET V % Type
E = [...] % Expression
C = [...] % Command
R = [id, ...] % RoutineDecl
Mod = [id, tops: SET TopLevel] % Module
TopLevel = (R + ...) % module toplevel decl
Prog = [ms: SET Mod, ts: SET TopLevel] % Program

The meaning of an id or var is just the string, of an exceptionSet the set of strings that are the
exceptions in the set, of a type the set of values of the type. For the other constructs there are
meaning functions defined below: ME for expressions and MC and MR for atomic commands and
routines. The meaning functions for module, toplevel, and program are left as exercises.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 15

Expressions

An expression maps a state to a value or exception. Evaluating an expression does not change the
state. Thus the meaning of expressions is given by a partial function ME with type
E->S->(V + X); that is, given an expression, ME returns a function from states S to results
(values V or exceptions X). ME is defined informally for all of the expression forms in section 5 of
the reference manual. The possible expression forms are literal, variable, and invocation. We
give formal definitions only for invocations and LAMBDA literals; they are written in terms of the
meaning of commands, so we postpone them to the next section

Type checking

For type checking to work we need to ensure that the value of an expression always has the type
of the expression. We do this by structural induction, considering each kind of expression. The
type checking of return values ensures that the result of an invocation will have its declared type.
Literals are trivial, and the only other expression form is a variable. A variable declared with VAR
is initialized to a value of its type. A formal parameter of a routine is initialized to an actual by
an invocation, and the type checking of arguments (see MR below) ensures that this is a value of
the variable’s type. The value of a variable can only be changed by assignment.

An assignment var := e requires that the value of e have the type of var. If the type of e is not
equal to the type of var because it involves a union or a SUCHTHAT, this check can’t be done
statically. To take account of this and to ensure that the meaning of expressions is independent of
the static type checking, we assume that in the context var := e the expression e is replaced by
e AS t, where t is the declared type of var. The meaning of e AS t in state s is ME(e)(s) if
that is in t (the set of values of type t), and the exception typeX otherwise; this exception can't
be handled because it is not named by an identifier and is therefore a fatal error.

We do not give a practical implementation of the type check itself, that is, the check that a value
actually is a member of the set of values of a given type. Such an implementation would require
too many details about how values are represented. Note that what many people mean by “type
checking” is a proof that every expression in a program always has a result of the correct type.
This kind of completely static type checking is not possible for Spec; the presence of unions and
SUCHTHAT makes it undecidable. Sections 4 and 5 of the reference manual define what it means
for one type to fit another and for a type to be suitable. These definitions are a sketch of how to
implement as much static type checking as Spec easily admits.

Atomic commands

An atomic command relates a state to an outcome; in other words, it is defined by an ATr (atomic
transition) relation. Thus the meaning of commands is given by a function MC with type C->ATr,
where ATr = (S, O) -> Bool. We can define the ATr relation for each command by a
predicate: a command relates state s to outcome o iff the predicate on s and o is true. We give
the predicates in the table on the next page and explain them in the text that follows the table; the
predicates apply provided there are no exceptions.

Here are the details of how to handle exceptions and how to actually define the MC function. You
might want to look at the predicates first, since the meat of the semantics is there.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 16

Command Predicate

SKIP o = s

HAVOC true

RET e o = s{"$x" -> retX, $a -> ME(e)(s)}

RET o = s{"$x" -> retX}

RAISE id o = s{"$x" -> "id"}

e1(e2) (EXISTS r: Routine |

 r = ME(e1)(s) /\ r(s{"$a" -> ME(e2)(s)}, o))

var := e [1] o = s{var -> ME(e)(s)}

var := e1(e2) [1] MC(C« e1(e2); var := $a »)(s, o)

e => c0 ME(e)(s) = trueV /\ MC(c0)(s, o)

c1 [] c2 MC(c1)(s, o) \/ MC(c2)(s, o)

c1 [*] c2 MC(c1)(s, o) \/ (MC(c2)(s, o)

 /\ ~(EXISTS o' | MC(c1)(s, o')))

c1 ; c2 MC(c1)(s, o) /\ o .isX

 \/ (EXISTS o' | MC(c1)(s, o') /\ ~ o'.isX

 /\ MC(c2)(o',o))

c1 EXCEPT xs => c2 MC(c1)(s, o) /\ ~ o ("$x") IN xs

 \/ (EXISTS o' | MC(c1)(s, o') /\ o'("$x") IN xs

 /\ MC(c2)(o'{"$x" -> noX}, o))

VAR id: T | c0 (EXISTS v, o' | v IN T

 /\ MC(c0)(s {id -> v}, o')

 /\ o = o'{id -> })

VAR id: T := e | c0 MC(C«VAR id: T | id = e => c0»)(s, o)

<< c0 >> MC(c0)(s, o)

IF c0 FI MC(c0)(s, o)

BEGIN c0 END MC(c0)(s, o)

DO c0 OD is the fixed point of the equation c = c0; c [*] SKIP

[1] The first case for assignment applies only if the right side is not an invocation of an
APROC. Because an invocation of an APROC can have side effects, it needs different treatment.

Table 1: The predicates that define MC(command)(s, o) when there are
no exceptions raised by expressions at the top level in command, and $havoc is false.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 17

The table of predicates has been simplified by omitting the boilerplate needed to take account of
$havoc and of the possibility that an expression is undefined or yields an exception. If a
command containing expressions e1 and e2 has predicate P in the table, the full predicate for the
command is

 s("$havoc") % anything if $havoc
\/ ME(e1)!s /\ ME(e2)!s % no outcome if undefined
 /\ (ME(e1)(s) IS V /\ ME(e2)(s) IS V /\ P
 \/ ME(e1)(s) IS X /\ o = s{ "$x" -> ME(e1)(s) }
 \/ ME(e2)(s) IS X /\ o = s{ "$x" -> ME(e2)(s) })

If the command contains only one expression e1, drop the terms containing e2. If it contains no
expressions, the full predicate is just the predicate in the table.

Once we have the full predicates, it is simple to give the definition of the function MC. It has the
form

FUNC MC(c) -> ATr =
IF
...
[] VAR var, e | c = «var := e» =>

RET (\ o, s | full predicate for this case)
...
[] VAR c1, c2 | c = «c1 ; c2» =>

RET (\ o, s | full predicate for this case)
...
FI

First we do the simple commands, which don’t have subcommands. All of these that don’t
involve an invocation of an APROC are deterministic; in other words, the relation is a function.
Furthermore, they are all total unless they involve an invocation that is partial.

A RET produces the exception retX and leaves the returned value in $a.

A RAISE yields an exceptional outcome which records the exception id in $x.

An invocation relates s to o iff the routine which is the value of e1 (produced by
ME(e1)(s)) does so after s is modified to bind "$a" to the actual argument; thus $a is
used to communicate the value of the actual to the routine.

An assignment leaves the state unchanged except for the variable denoted by the left
side, which gets the value denoted by the right side. Recall that assignment to a
component of a function, sequence, or record variable is shorthand for assignment of a
suitable constructor to the entire variable, as described in the reference manual. If the
right side is an invocation of a procedure, the value assigned is the value of $a in the
outcome of the invocation; thus $a also communicates the result of the invocation back to
the invoker.

Now for the compound commands; their meaning is defined in terms of the meaning of their
subcommands.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 18

A guarded command e => c has the same meaning as c except that e must be true.

A choice relates s to o if either part does.

An else c1 [*] c2 relates s to o if c1 does or if c1 has no outcome and c2 does.

A sequential composition c1 ; c2 relates s to o if there is a suitable intermediate state,
or if o is an exceptional outcome of c1.

c1 EXCEPT xs=>c2 is the same as c1 for a normal outcome or an exceptional outcome
not in the exception set xs. For an exceptional outcome o' in xs, c2 must relate o' as a
normal state to o. This is the dual of the meaning of c1 ; c2 if xs includes all
exceptions.

VAR id: t | c relates s to o if there is a value v of type t such that c relates (s with id
bound to v) to an o' which is the same as o except that id is undefined in o. It is this
existential quantifier that makes the specification useless as an interpreter for Spec.

<< ... >>, IF ... FI or BEGIN ... END brackets don’t affect MC.

The meaning of DO c OD can’t be given so easily. It is the fixed point of the sequence of longer
and longer repetitions of c.2 It is possible for DO c OD to loop indefinitely; in this case it relates s
to s with "$x"->loopX. This is not the same as relating s to no outcome, as false => SKIP
does.

The multiple occurrences of declInit and var in VAR declInit* and (varList):=exp are left
as boring exercises, along with routines that have several formals.

Routines

Now for the meaning of a routine. We define a meaning function MR for a routineDecl that
relates the meaning of the routine to the meaning of the routine’s body; since the body is a
command, we can get its meaning from MC. The idea is that the meaning of the routine should be
a relation of states to outcomes just like the meaning of a command. In this relation, the pseudo-
name $a holds the argument in the initial state and the result in the outcome. For technical
reasons, however, we define MR to yield not an ATr, but an S->ATr; a local state (static below)
must be supplied to get the transition relation for the routine. For a LAMBDA this local state is the
current state of its containing command. For a routine declared at top level in a module this state
is empty.

The MR function works in the obvious way:

1. Check that the argument value in $a has the type of the formal.

2. Remove local names from the state, since a routine shares only global state with its invoker.

3. Bind the value to the formal.

2 For the details of this construction see G. Nelson, A generalization of Dijkstra’s calculus, ACM Trans.
Programming Languages and Systems 11, 4, Oct. 1989, pp 517-562.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 19

4. Find out using MC how the routine body relates the resulting state to an outcome.

5. Make the invoker's outcome from the invoker’s local state and the routine's final global state.

6. Deal with the various exceptions in that outcome.

A retX outcome results in a normal outcome for the invocation if the result has the result
type of the routine, and a typeX outcome otherwise.

A normal outcome is converted to typeX, a type error, since the routine didn’t supply a
result of the correct type.

An exception raised in the body is passed on.

FUNC MR(r) -> (S->ATr) = VAR id1, id2, t1, t2, xs, c0 |
 r = R« APROC id1(id2: t1)->t2 RAISES xs = << c0 >> »
\/ r = R« FUNC id1(id2: t1)->t2 RAISES xs = c0 » =>
RET (\ static: S | (\ s, o |
 s("$a") IN t1 % if argument typechecks
 /\ (EXISTS g: S, s', o' |
 g = s.restrict(globals) % g is the current globals
 /\ s' = (static + g){id2 -> s("$a")} % s' is initial state for c0
 /\ MC(c0)(s', o') % apply c0
 /\ o = (s + o'.restrict(globals)) % restore old locals from s
 {"$x" -> % adjust $x in the outcome
 (o'("$x") = retX =>
 (o'("$a") IN t2 => noX % retX means normal outcome
 [*] typeX) % if result typechecks;
 [*] o'("$x") = noX => typeX % normal outcome means typeX;
 [*] o'("$x) % pass on exceptions
)
 }
\/ ~ s("$a") IN t1 /\ o = s{"$x" -> typeX} % argument doesn't typecheck
)) % end of the two lambdas

We leave the meaning of a routine with no result as an exercise.

Invocation and LAMBDA expressions

We have already given in MC the meaning of invocations in commands, so we can use MC to deal
with invocations in expressions. Here is the fragment of the definition of ME that deals with an E
that is an invocation e1(e2) of a function. It is written in terms of the meaning MC(C«e1(e2)»)
of the invocation as a command, which is defined above. The meaning of the command is an
atomic transition aTr, a predicate on an initial state and an outcome of the routine. In the
outcome the value of the pseudo-name $a is the value returned by the function. The definition
given here discards any side-effects of the function; in fact, in a legal Spec program there can be
no side-effects, since functions are not allowed to assign to non-local variables or call
procedures.

6.826—Principles of Computer Systems 2000

Handout 9. Atomic Semantics of Spec 20

FUNC ME(e) -> (S -> (V + X)) =
IF
...
[] VAR e1, e2 | e = E« e1(e2) » =>
% if E is an invocation its meaning is this function from states to values

VAR aTr := MC(C« e1(e2) ») |
 RET (LAMBDA (s) -> V =

% the command must have a unique outcome, that is, aTr must be a
% function at s. See Relation in section 9 of the reference manual
VAR o := aTr.func(s) | RET (~o.isX => o("$a") [*] o("$x")))

...
FI

The result of the expression is the value of $a in the outcome if it is normal, the value of $x if it
is exceptional. If the invocation has no outcome or more than one outcome, ME(e)(s) is
undefined.

The fragment of ME for LAMBDA uses MR to get the meaning of a FUNC with the same signature and
body. As we explained earlier, this meaning is a function from a state to a transition function,
and it is the value of ME((LAMBDA ...)). The value of (LAMBDA ...), like the value of any
expression, is the result of evaluating ME((LAMBDA ...)) on the current state. This yields a
transition function as we expect, and that function captures the local state of the LAMBDA
expression; this is standard static scoping. .

 IF
...
[] VAR signature, c0 | e = E« (LAMBDA signature = c0) » =>

RET MR(R« FUNC id1 signature = c0 »)
...
FI

