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8.  Generalizing Abstraction Functions 

In this handout, we give a number of examples of specs and implementations for which simple 
abstraction functions (of the kind we studied in handout 6 on abstraction functions) don’t exist, 
so that the abstraction function method doesn’t work to show that the implementation satisfies 
the spec. We explain how to generalize the abstraction function method so that it always works. 

We begin with an example in which the spec maintains state that doesn’t actually affect its 
behavior. An optimized implementation can simulate the spec without having enough state to 
generate all the state of the spec. By adding history variables to the implementation, we can 
extend its state enough to define an abstraction function, without changing its behavior. An 
equivalent way to get the same result is to define an abstraction relation from the 
implementation to the spec. 

Next we look at implementations that simulate a spec without taking exactly one step for each 
step of the spec. As long as the external behavior is the same in each step of the simulation, an 
abstraction function (or relation) is still enough to show correctness, even when an arbitrary 
number of transitions in the specification correspond to a single transition in the implementation.  

Finally, we look at an example in which the spec makes a non-deterministic choice earlier than 
the choice is exposed in the external behavior. An implementation may make this choice later, so 
that there is no abstraction relation that generates the premature choice in the spec’s state. By 
adding prophecy variables to the implementation, we can extend its state enough to define an 
abstraction function, without changing its behavior. An equivalent way to get the same result is 
to define a backward simulation from the implementation to the spec. 

If we avoided extra state, too few or too many transitions, and premature choices in the spec, the 
simple abstraction function method would always work. You might therefore think that all these 
problems are not worth solving, because it sounds as though they are caused by bad choices in 
the way the spec is written. But this is wrong. A spec should be written to be as clear as possible 
to the clients, not to make it easy to prove the correctness of an implementation. The reason for 
these priorities is that we expect to have many more clients for the spec than implementers. The 
examples below should make it clear that there are good reasons to write specs that create these 
problems for abstraction functions. Fortunately, with all three of these extensions we can always 
find an abstraction function to show the correctness of any implementation that actually is 
correct. 

A statistical database 

Consider the following specification of a “statistical database” module, which maintains a 
collection of values and allows the size, mean, and variance of the collection to be extracted. 

Recall that the mean m of a sequence db of size n > 0 is just the average
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commutativity, associativity, and distributivity for the arithmetic here.) 

MODULE StatDB [ V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,  
                           "/": (V,Int)->V} ] EXPORT Add, Size, Mean, Variance = 

VAR db : SEQ V := {} % a multiset 

APROC Add(v) = << db + := {v}; RET >> 

APROC Size() -> Int = << RET db.size >> 

APROC Mean() -> V RAISES {empty} = << 
IF db = {} => RAISE empty [*] VAR sum := (+ : db) | RET sum/Size() FI >> 

APROC Variance() -> V RAISES {empty} = << 
IF db = {} => RAISE empty 
[*] VAR avg := Mean(), sum := (+ : {v :IN db | | (v - avg)**2}) | 

RET sum/Size() 
FI >> 

END StatDB 

This spec is a very natural one that directly follows the definitions of mean and variance. 

The following implementation of the StatDB module does not retain the entire collection of 
values. Instead, it keeps track of the size, sum, and sum of squares of the values in the collection. 
Simple algebra shows that this is enough to compute the mean and variance in the manner done 
below. 

MODULE StatDBImpl  % implements StatDB 
 [ V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,  
           "/": (V,Int)->V} ] EXPORT Add, Size, Mean, Variance = 

VAR count := 0 
sum := V.Zero() 
sumSquare := V.Zero() 

APROC Add(v) = << 
count + := 1; sum + := v; sumSquare + := v**2; RET >> 

APROC Size() -> Int = << RET count >> 

APROC Mean() -> V RAISES {empty} =  
<< IF count = 0 => RAISE empty [*] RET sum/count FI >> 

APROC Variance() -> V RAISES {empty} = << 
IF count = 0 => RAISE empty  
[*] VAR avg := Mean() | RET sumSquare/count – avg**2  
FI >> 

END StatDBImpl 

StatDBImpl implements StatDB, in the sense of trace set inclusion. However we cannot prove 
this using an abstraction function, because each nontrivial state of the implementation 
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corresponds to many states of the specification. This happens because the specification contains 
more information than is needed to generate the desired external behavior. In this example, the 
states of the specification could be partitioned into equivalence classes based on the possible 
future behavior: two states are equivalent if they give rise to the same future behavior. Then any 
two equivalent states yield the same future behavior of the module. Each of these equivalence 
classes corresponds to a state of the implementation. 

To get an abstraction function we must add history variables, as explained in the next section.  

History variables 

The problem in the StatDB example is that the specification states contain more information than 
the implementation states. A history variable is a variable that is added to the state of the 
implementation T in order to keep track of the extra information in the specification S that was 
left out of the implementation. Even though the implementation has been optimized not to retain 
certain information, we can put it back in to prove the implementation correct, as long as we do it 
in a way that does not change the behavior of the implementation. What we do is to construct a 
new implementation TH that has the same behavior as T, but a bigger state. If we can show that 
TH implements S, it follows that T implements S, since traces of T = traces of TH ⊆  traces of S. 

In this example, we can simply add an extra state component db to the implementation 
StatDBImpl, and use it to keep track of the entire collection of elements, that is, of the entire 
state of StatDB. This gives the following module: 

MODULE StatDBImplH ... =  % implements StatDB 

VAR count := 0 % as before 
sum := V.Zero() % as before 
sumSquare := V.Zero() % as before 
db : SEQ V := {} % history: state of StatDB 

APROC Add(v) = << 
count + := 1; sum + := v; sumSquare + := v**2; 
db + := {v}; RET >> 

% The remaining procedures are as before 

END StatDBImplH 

All we have done here is to record some additional information in the state. We have not 
changed the way existing state components are initialized or updated, or the way results of 
procedures are computed. So it should be clear that this module exhibits the same external 
behaviors as the implementation StatDBImpl given earlier. Thus, if we can prove that 
StatDBImplH implements StatDB, then it follows immediately that StatDBImpl implements 
StatDB. 

However, we can prove that StatDBImplH implements StatDB using an abstraction function. 
The abstraction function, AF, simply discards all components of the state except db. The 
following invariant of StatDBImplH describes how db is related to the other state:  

 

6.826—Principles of Computer Systems   2000 

Handout 8.  Generalizing Abstraction Functions 4 

   count     = db.size  
/\ sum       = (+ : db) 
/\ sumSquare = (+ : {v :IN db | | Square(v)})  

That is, count, sum and sumSquare contain the number of elements in db, the sum of the 
elements in db, and the sum of the squares of the elements in db, respectively. 

With this invariant, it is easy to prove that AF is an abstraction function from StatDBImplH to 
StatDB. In this proof, it is easy to show that the abstraction function is preserved by every step, 
because the only variable in StatDB, db, is changed in exactly the same way in both modules. 
The interesting thing to show is that the Size, Mean, and Variance operations produce the same 
results in both modules. But this is easy to see because of the invariant. 

In general, we can augment the state of an implementation with additional components, called 
history variables (because they keep track of additional information about the history of 
execution), subject to the following constraints: 

1. Every initial state has at least one value for the history variables. 

2. No existing step is disabled by the addition of predicates involving history variables. 

3. A value assigned to an existing state component must not depend on the value of a history 
variable. One important case of this is that a return value must not depend on a history 
variable. 

These constraints guarantee that the history variables simply record additional state information 
and do not otherwise affect the behaviors exhibited by the module. If the module augmented with 
history variables can be shown correct, it follows that the original module without the history 
variables is also correct, because they have the same traces. 

This definition is formulated in terms of the underlying state machine model. However, most 
people think of history variables as syntactic constructs in their own particular programming 
languages; in this case, the restrictions on their use must be defined in terms of the language 
syntax. 

In the StatDB example, we have simply added a history variable that records the entire state of 
the specification. This is not necessary; sometimes there might be only a small piece of the state 
that is missing from the implementation. However, the brute-force strategy of using the entire 
specification state as a history variable will work whenever any addition of history variables will 
work. 

Abstraction relations 

If you don’t like history variables, you can define an abstraction relation between the 
implementation and the spec; it’s the same thing in different clothing. 

An abstraction relation is a simple generalization of an abstraction function, allowing several 
states in S to correspond to the same state in T. An abstraction relation is a subset of 
states(T) × states(S) that satisfies the following two conditions: 
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1. If t is any initial state of T, then there is an initial state s of S such that (t, s) ∈  R. 

2. If t and s are reachable states of T and S respectively, with (t, s) ∈  R, and (t, π, t') is a step of 
T, then there is a step of S from s to some s', having the same trace, and with (t', s') ∈  R. 

The picture illustrates the idea; it is an elaboration of the picture for an abstraction function in 
handout 6. It shows t related to s1 and s2, and an action π taking each of them into a state 
related to t'. 

It turns out that the same theorem holds as for abstraction functions: 

Theorem 1: If there is an abstraction relation from T to S, then T implements S, that is, every 
trace of T is a trace of S. 

The reason is that for T to simulate S it isn’t necessary to have a function from T states to S 
states; it’s sufficient to have a relation. A way to think of this is that the two modules, T and S, 
are running in parallel. The execution is driven by module T, which executes in any arbitrary 
way. S follows along, producing the same externally visible behavior. The two conditions above 
guarantee that there is always some way for S to do this. Namely, if T begins in any initial state t, 
we just allow S to begin in some related initial state s, as given by (1). Then as T performs each 
of its transitions, we mimic the transition with a corresponding transition of S having the same 
externally visible behavior; (2) says we can do so. In this way, we can mimic the entire execution 
of T with an execution of S. 

An abstraction relation for StatDB 

Recall that in the StatDB example we couldn’t use an abstraction function to prove that the 
implementation satisfies the spec, because each nontrivial state of the implementation 
corresponds to many states of the specification. We can capture this connection with an 
abstraction relation. The relation that works is described in Spec1 as: 

TYPE T = [count: Int, sum: V, sumSquare: V] % state of StatDBImpl 
 S = [db: SEQ V]  % state of StatDB 

                                                 
1 This is one of several ways to represent a relation, but it is the standard one in Spec. Earlier we described the 
abstraction relation as a set of pairs (t, s). In terms of AR, this set is {t, s | AR(t, s) | (t, s)} or simply 
AR.set, using one of Spec’s built-in methods on predicates. Yet another way to write it is as a function T -> 
SET S. In terms of AR, this function is (\ t | {s | AR(t, s)} or simply AR.setF, using another built-in 
method. These different representations can be confusing, but different aspects of the relation are most easily 
described using different representations. 
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FUNC AR(t, s) -> Bool = 
RET    db.size = count 
    /\ (+ : db)) = sum  
    /\ (+ : {v :IN db | | Square(v)}) = sumSquare  

The proof that AR is an abstraction relation is straightforward. We must show that the two 
properties in the definition of an abstraction relation are satisfied. In this proof, the abstraction 
relation is used to show that every response to a size, mean or variance query that can be given 
by StatDBImpl can also be given by StatDB. The new state of StatDB is uniquely determined by 
the code of StatDB. Then the abstraction relation in the prior states together with the code 
performed by both modules shows that the abstraction relation still holds for the new states. 

An abstraction relation for MajorityRegister 

Consider the abstraction function given for MajorityRegister in handout 5. We can easily 
write it as an abstraction relation from MajorityRegister to Register, not depending on the 
invariant to make it a function.  

FUNC AR(m, d) -> Bool = VAR seqno := {p' :IN m.rng | | p'.seqno}.max | 
RET (P{d, seqno} IN m.rng) 

For (1), suppose that t is any initial state of MajorityRegister. Then there is some default value 
d such that all copies have value d and seqno 0 in t. Let s be the state of Register with value d; 
then s is an initial state of Register and (t, s) ∈  AR, as needed. 

For (2), suppose that t and s are reachable states of MajorityRegister and Register, 
respectively, with (t, s) ∈  AR, and (t, π, t') a step of MajorityRegister. Because t is a reachable 
state, it must satisfy the invariants given for MajorityRegister. We consider cases, based on π. 
Again, the interesting cases are the procedure bodies. 

Abstraction relations vs. history variables 

Notice that the invariant for the history variable db above bears an uncanny resemblance to the 
abstraction relation AR. This is not an accident—the same ideas are used in both proofs, only 
they appear in slightly different places. The following table makes the correspondence explicit. 
 

Abstraction relation to history variable History variable to abstraction relation 

Given an abstraction relation AR, define TH by 
adding the abstract state s as a state variable to 
T. AR defines an invariant on the state of TH: 
AR(t, s). 

Given TH, T extended with a history variable h, 
there’s an invariant I(t, h) relating h to the 
state of T, and an abstraction function 
AF(t, h) -> S such that TH simulates S. 

Define AF((t, s)) = s Define AR(t, s) =  
  (EXISTS h | I(t, h) /\ AF(t, h) = s)

That is, t is related to s if there’s a value for h 
in state t that AF maps to s. 
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For each step (t, π, t') of T, and s such that 
AR(t, s) holds, the abstraction relation gives 
us s' such that (t, π, t') simulates (s, π, 
s'). Add ((t, s), p, (t', s')) as a 
transition of TH. This maintains the invariant. 

For each step (t, π, t') of T, and h such that 
the invariant I(t, h) holds, TH has a step 
((t, h), π, (t', h')) that simulates (s, 
π, s') where s = AF(t, h) and s' = 
AF(t', h'). So AR(t', s') as required. 

This correspondence makes it clear that any implementation that can be proved correct using 
history variables can also be proved correct using an abstraction relation, and vice-versa. Some 
people prefer using history variables because it allows them to use an abstraction function, which 
may be simpler (especially in terms of notation) to work with than an abstraction relation. Others 
prefer using an abstraction relation because it allows them to avoid introducing extra state 
components and explaining how and when those components are updated. Which you use is just 
a matter of taste. 

Taking several steps in the spec 

A simple generalization of the definition of an abstraction relation (or function) allows for the 
possibility that a particular step of T may correspond to more or less than one step of S. This is 
fine, as long as the externally-visible actions are the same in both cases. Thus this distinction is 
only interesting when there are internal actions. 

Formally, a (generalized) abstraction relation R satisfies the following two conditions: 

1.  If t is any initial state of T, then there is an initial state s of S such that (t, s) ∈  R. 

2.  If t and s are reachable states of T and S respectively, with (t, s) ∈  R, and (t, π, t') is a step of 
T, then there is an execution fragment of S from s to some s', having the same trace, and with 
(t', s') ∈  R. 

Only the second condition has changed, and the only difference is that an execution fragment (of 
any number of steps, including zero) is allowed instead of just one step, as long as it has the 
same trace, that is, as long as it looks the same from the outside. We generalize the definition of 
an abstraction function in the same way. The same theorem still holds: 

Theorem 2: If there is a generalized abstraction function or relation from T to S, then T 
implements S, that is, every trace of T is a trace of S. 

From now on in the course, when we say “abstraction function” or “abstraction relation”, we will 
mean the generalized versions. 

Some examples of the use of these generalized definitions appear in handout 7 on file systems, 
where there are internal transitions of implementations that have no counterpart in the 
corresponding specifications. We will see examples later in the course in which single steps of 
implementations correspond to several steps of the specifications. 

Here, we give a simple example involving a large write to a memory, which is done in one step 
in the spec but in individual steps in the implementation. The spec is: 

6.826—Principles of Computer Systems   2000 

Handout 8.  Generalizing Abstraction Functions 8 

MODULE RWMem [A, D] EXPORT BigRead, BigWrite = 

TYPE M = A -> D 
VAR memory : M  

FUNC BigRead() -> M = RET memory 

APROC BigWrite(m: M) = << memory := m; RET >> 

END RWMem 

The implementation is:  

MODULE RWMemImpl [A, D] EXPORT BigRead, BigWrite = 

TYPE M = A -> D 
VAR memory : M  

done : SET A := {} 

FUNC BigRead() -> M = RET memory 

PROC BigWrite(m) = 
<< done := {} >>; 
DO << VAR a | ~(a IN done) => memory(a) := m(a); done \/ := {a} >> OD; 
RET 

END RWMemImpl 

We can prove that RWMemImpl implements RWMem using an abstraction function. The state of 
RWMemImpl includes program counter values to indicate intermediate positions in the code, as 
well as the values of the ordinary state components. The abstraction function cannot yield partial 
changes to memory; therefore, we define the function as if an entire abstract BigWrite occurred 
at the point where the first change occurs to the memory occurs in RWMemImpl. (Alternative 
definitions are possible; for instance, we could have chosen the last change.) The abstraction 
function is defined by: 

RWMem.memory = RWMemImpl.memory unless there is an active BigWrite and done is 
nonempty. In this case RWMem.memory = m, where BigWrite(m) is the active BigWrite. 
RWMem’s pc for an active BigRead is the same as that for RWMemImpl. RWMem's pc for an active 
BigWrite is before the body if the pc in RWMemImpl is at the beginning of the body; 
otherwise it is after the body. 

In the proof that this is an abstraction function, all the atomic steps in a BigWrite of RWMemImpl 
except for the step that writes to memory correspond to no steps of RWMem. This is typical: an 
implementation usually has many more transitions than a spec, because the implementation is 
limited to the atomic actions of the machine it runs on, but the spec has the biggest atomic 
actions possible because that is the simplest to understand. 

In this example, it is also possible to interchange the implementation and the specification, and 
show that RWMem implements RWMemImpl. This can be done using an abstraction function. In the 
proof that this is an abstraction function, the body of a BigWrite in RWMem corresponds to the 
entire sequence of steps comprising the body of the BigWrite in RWMemImpl. 
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Exercise: Add crashes to this example. The specification should contain a component 
OldStates that keeps track of the results of partial changes that could result from a crash during 
the current BigWrite. A Crash during a BigWrite in the specification can set the memory 
nondeterministically to any of the states in OldStates. A Crash in the implementation simply 
discards any active procedure. Prove the correctness of your implementation using an abstraction 
function. Compare this to the specs for file system crashes in handout 7. 

Premature choice 

In all the examples we have done so far, whenever we have wanted to prove that one module 
implements another (in the sense of trace inclusion), we have been able to do this using either an 
abstraction function or else its slightly generalized version, an abstraction relation.  Will this 
always work? That is, do there exist modules T and S such that the traces of T are all included 
among the traces of S, yet there is no abstraction function or relation from T to S? It turns out that 
there do—abstraction functions and relations aren't quite enough.  

To illustrate the problem, we give a very simple example. It is trivial, since its only point is to 
illustrate the limitations of the previous proof methods. 

Example: Let NonDet be a state machine that makes a nondeterministic choice of 2 or 3. Then it 
outputs 1, and subsequently it outputs whatever it chose.  

MODULE NonDet EXPORT Out = 

VAR i := 0 

APROC Out() -> Int = << 
IF i = 0 => BEGIN i := 2 [] i := 3 END; RET 1  
[*] RET i FI >> 

END NonDet 

Let LateNonDet be a state machine that outputs 1 and then nondeterministically chooses whether 
to output 2 or 3 thereafter. 

MODULE LateNonDet EXPORT Out = 

VAR i := 0 

APROC Out() -> Int = << 
IF i = 0 => i := 1 [*] i = 1 => BEGIN i := 2 [] i := 3 END [*] SKIP FI; 
RET i >> 

END LateNonDet 

Clearly NonDet and LateNonDet have the same traces: Out() = 1; Out() = 2; ... and 
Out() = 1; Out() = 3; .... Can we show the implementation relationships in both directions 
using abstraction relations?  

Well, we can show that NonDet implements LateNonDet with an abstraction function that is just 
the identity. However, no abstraction relation can be used to show that LateNonDet implements 
NonDet. The problem is that the nondeterministic choice in NonDet occurs before the output of 1, 
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whereas the choice in LateNonDet occurs later, after the output of 1. It is impossible to use an 
abstraction relation to simulate an early choice with a later choice. If you think of constructing an 
abstract execution to correspond to a concrete execution, this would mean that the abstract 
execution would have to make a choice before it knows what the implementation is going to 
choose.  

You might think that this example is unrealistic, and that this kind of thing never happens in real 
life. The following three examples show that this is wrong; we will study implementations for all 
of these examples later in the course. We go into a lot of detail here because most people find 
these situations very unfamiliar and hard to understand. 

Premature choice: Reliable messages 

Here is a realistic example (somewhat simplified) that illustrates the same problem: two specs for 
reliable channels, which we will study in detail later, in handout 26 on reliable messages. A 
reliable channel accepts messages and delivers them in FIFO order, except that if there is a crash, 
it may lose some messages. The straightforward spec drops some queued messages during the 
crash. 

MODULE ReliableMsg [M] EXPORT Put, Get, Crash = 

VAR q  : SEQ M := {} 

APROC Put(m)     = << q + := {m} >> 
APROC Get() -> M = << VAR m := q.head | q := q.tail; RET m >> 

APROC Crash()    = << VAR q' | q' <<= q => q := q' >> 
% Drop any of the queued messages (<<= is non-contiguous subsequence) 

END ReliableMsg 

Most practical implementations (for instance, the Internet’s TCP protocol) have cases in which it 
isn’t known whether a message will be lost until long after the crash. This is because they ensure 
FIFO delivery, and get rid of retransmitted duplicates, by numbering messages sequentially and 
discarding any received message with an earlier sequence number than the largest one already 
received. If the underlying message transport is not FIFO (like the Internet) and there are two 
undelivered messages outstanding (which can happen after a crash), the earlier one will be lost if 
and only if the later one overtakes it. You don’t know until the overtaking happens whether the 
first message will be lost. By this time the crash and subsequent recovery may be long since 
over.  

The following spec models this situation by ‘marking’ the messages that are queued at the time 
of a crash, and optionally dropping any marked messages in Get. 

MODULE LateReliableMsg [M] EXPORT Put, Get, Crash = 

VAR  q  : SEQ [m, mark: Bool] := {} 

APROC Put(m)     = << q + := {m} >> 
APROC Get() -> M =  

<< DO VAR x := q.head | q := q.tail; IF x.mark => SKIP [] RET x.m FI OD >> 
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APROC Crash()    = << q := {x :IN q | | x{mark := true}} >> 
% Mark all the queued messages. This is a sequence, not a set constructor, so it doesn’t reorder the messages. 

END LateReliableMsg 

Like the simple NonDet example, these two specs are equivalent, but we cannot prove that 
LateReliableMsg implements ReliableMsg with an abstraction relation, because ReliableMsg 
makes the decision about what messages to drop sooner, in Crash. LateReliableMsg makes this 
decision later, in Get, and so do the standard implementations. 

Premature choice: Consensus 

For another examples, consider the consensus problem of getting a set of process to agree on a 
single value chosen from some set of allowed values; we will study this problem in detail later, 
in handout 18 on consensus. The spec doesn’t mention the processes at all: 

MODULE Consensus [V] EXPORT Allow, Outcome = 

VAR outcome : (V + Null) := nil % Data value to agree on 

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >> 
FUNC  Outcome() -> (V + Null) = RET outcome [] RET nil 

END Consensus 

This spec chooses the value to agree on as soon as the value is allowed. Outcome may return nil 
even after the choice is made because in a distributed implementation it’s possible that not all the 
participants have heard what the outcome is. An implementation almost certainly saves up the 
allowed values and does a lot of communication among the processes to come to an agreement. 
The following spec has that form. It is more complicated than the first one (more state and more 
operations), and closer to an implementation. 

MODULE LateConsensus [V] EXPORT Allow, Outcome = 

VAR outcome : (V + Null) := nil % Data value to agree on 
allowed : SET V := {} 

APROC Allow(v) = << allowed \/ := {v} >> 

FUNC  Outcome() -> (V + Null) = RET outcome [] RET nil 

APROC Agree() = << VAR v | v IN allowed /\ outcome = nil => outcome := v >> 

END LateConsensus 

It should be clear that these two modules have the same traces: a sequence of Allow(x) and 
Outcome() = y actions in which every y is either nil or the same value, and that value is an 
argument of some preceding Allow. But there is no abstraction relation from LateConsensus to 
Consensus, because there is no way for LateConsensus to come up with the outcome before it 
does its internal Agree action. 

Note that if Outcome didn’t have the option to return nil even after outcome # nil, these 
modules would not be equivalent, because LateConsensus would allow the behavior 
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Allow(1); Outcome()=nil, Allow(2), Outcome()=1 

and Consensus would not. 

Premature choice: Multi-word clock 

Here is a third example of premature choice in a spec: reading a clock. The spec is simple: 

MODULE Clock EXPORT Read = 

VAR t : Int % the current time 

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t 

PROC Read() -> Int = << RET t >> 

END Clock 

This is in a concurrent world, in which several threads can invoke Read concurrently, and Tick is 
a demon thread that is entirely internal. In that world there are three transitions associated with 
each invocation of Read: entry, body, and exit. The entry and exit transitions are external because 
Read is exported. 

We may want an implementation that allows the clock to have more precision than can be carried 
in a single memory location that can be read and written atomically. We could easily achieve this 
by locking the clock representation, but then a slow process holding the lock (for instance, one 
that gets pre-empted) could block other processes for a long time. A clever ‘wait-free’ 
implementation of Read (which appears in handout 17 on formal concurrency) reads the various 
parts of the clock representation one at a time and puts them together deftly to come up with a 
result which is guaranteed to be one of the values that t took on during this process. The 
following spec abstracts this strategy; it breaks Read down into two atomic actions and returns 
some value, non-deterministically chosen, between the values of t at these two actions. 

MODULE LateClock EXPORT Read = 

VAR t : Int % the current time 

THREAD Tick() = DO << t := t + 1 >> OD % demon thread advances t 

PROC Read() -> Int = VAR t1: Int |  
<< t1 := t >>; << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >> 

END LateClock 

Again both specs have the same traces: a sequence of invocations and responses from Read, such 
that for any two Reads that don’t overlap, the earlier one returns a smaller value tr. In Clock the 
choice of tr depends on when the body of Read runs relative to the various Ticks. In LateClock 
the VAR t2 makes the choice of tr, and it may choose a value of t some time ago. Any 
abstraction relation from LateClock to Clock has to preserve t, because a thread that does a 
complete Read exposes the value of t, and this can happen between any two other transitions. 
But LateClock doesn’t decide its return value until its last atomic command, and when it does, it 
may choose an earlier value than the current t; no abstraction relation can explain this. 
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Prophecy variables 

One way to cope with these examples and others like them is to use ad hoc reasoning to show 
that LateX implements X; we did this informally in each example above. This strategy is much 
easier if we make the transition from premature choice to late choice at the highest level 
possible, as we did in these examples. It’s usually too hard to show directly that a complicated 
module that makes a late choice implements a spec that makes a premature choice. 

But it isn’t necessary to resort to ad hoc reasoning. Our trusty method of abstraction functions 
can also do the job. However, we have to use a different sort of auxiliary variable, one that can 
look into the future just as a history variable looks into the past. Just as we did with history 
variables, we will show that a module TP augmented with a prophecy variable has the same 
traces as the original module T. Actually, we can show that it has the same finite traces, which is 
enough to take care of safety properties. It also has the same infinite traces provided certain 
technical conditions are satisfied, but we won’t worry about this because we are not interested in 
liveness. To show that the traces are the same, however, we have to work backward from the end 
of the trace instead of forward from the beginning. 

A prophecy variable guesses in advance some non-deterministic choice that T is going to make 
later. The guess gives enough information to construct an abstraction function to the spec that is 
making a premature choice. When execution reaches the choice that T makes non-
deterministically, TP makes it deterministically according to the value of the prophecy variable. 
TP has to choose enough different values for the prophecy variable to keep from ruling out any 
executions of T. 

The conditions for an added variable to be a prophecy variable are closely related to the ones for 
a history variable, as the following table shows. 
 

History variable Prophecy variable 

1. Every initial state has at least one value for 
the history variable. 

1. Every state has at least one value for the 
prophecy variable. 

2. No existing step is disabled by new guards 
involving a history variable. 

2. No existing step is disabled in the 
backward direction by new guards 
involving a prophecy variable. More 
precisely, for each step (t, π, t') and state 
(t', p') there must be a p such that there is a 
step ((t, p), π, (t', p')). 

3. A value assigned to an existing state 
component must not depend on the value of 
a history variable. One important case of 
this is that a return value must not depend 
on a history variable. 

3. Same condition 

 4. If t is an initial state of T and (t, p) is a state 
of TP, it must be an initial state.  
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If these conditions are satisfied, the state machine TP with the prophecy variable will have the 
same traces as the state machine T without it. You can see this intuitively by considering any 
finite execution of T and constructing a corresponding execution of TP, starting from the end. 
Condition (1) ensures that we can find a last state for TP. Condition (2) says that for each 
backward step of T there is a corresponding backward step of TP, and condition (3) says that in 
this step p doesn’t affect what happens to t. Finally, condition (4) ensures that we end up in an 
initial state of TP. 

Let’s review our examples and see how to add prophecy variables, marking the additions with 
boxes. For LateNonDetP we add pI that guesses the choice between 2 and 3. The abstraction 
function is just NonDet.i = LateNonDetP.pI. 

VAR i  := 0 
pI := 0 

APROC Out() -> Int = << 
IF i = 0 => i := 1; BEGIN pI := 2 [] pI := 3 END 
[*] i = 1 => BEGIN pI = 2 => i := 2 [] pI = 3 => i := 3 END [*] SKIP FI; 
RET i >> 

For LateReliableMsgP we add a pDead flag to each marked message that forces Get to discard 
it. Crash chooses which dead flags to set. The abstraction function just discards the marks and 
the dead messages. 

VAR  q  : SEQ [m, mark: Bool, pDead: Bool] := {} 

% ABSTRACTION FUNCTION ReliableMsg.q = {x :IN LateReliableMsg.q | ~ x.dead | x.m} 

% INVARIANT (ALL i :IN q.dom | q(i).dead ==> q(i).mark) 

APROC Get() -> M =  
<< DO VAR x := q.head |  

q := q.tail; IF x.mark => SKIP [] ~ x.pDead => RET x.m FI OD >> 

APROC Crash()    = << VAR pDeads: SEQ Bool | pDeads.size = q.size => 
q := {x :IN q, pD :IN pDeads | | x{mark := true, pDead := pD}  

Alternatively, we can prophesy the entire state of ReliableMsg as we did with db in StatDB, 
which is a little less natural in this case: 

VAR  pQ  : SEQ M := {} 

% INVARIANT {x :IN q | ~ x.mark | x.m} <<= pQ /\ pQ <<= {x :IN q | | x.m}  

APROC Get() -> M =  
<< DO VAR x := q.head |  

q := q.tail;  
IF x.mark /\ (pQ = {} \/ x.m # pQ.head) => SKIP  
[] pQ := pQ.tail; RET x.m  
FI OD >> 

APROC Crash() =  
<< VAR q' | q' <<= q => pQ := q'; q := {x :IN q | | x{mark := true}} >> 
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For LateConsensusP we follow the example of NonDet and just prophesy the outcome in Allow. 
The abstraction function is Consensus.outcome = LateConsensusP.pOutcome 

VAR outcome : (V + Null) := nil % Data value to agree on 
pOutcome : (V + Null) := nil 
allowed : SET V := {} 

APROC Allow(v) =  
<< allowed \/ := {v}; IF pOutcome = nil => pOutcome := v [] SKIP FI >> 

APROC Agree() =  
<< VAR v | v IN allowed /\ outcome = nil /\ v = pOutcome => outcome := v >> 

For LateClockP we choose the result at the beginning of Read. The second command of Read 
has to choose this value, which means it has to wait until Tick has advanced t far enough. The 
transition of LateClockP that corresponds to the body of Clock.Read is the Tick that gives t the 
pre-chosen value. This seems odd, but since all these transitions are internal, they all have empty 
external traces, so it is perfectly OK. 

VAR t : Int % the current time 
pT : Int 

PROC Read() -> Int = VAR t1: Int |  
<< t1 := t; VAR t': Int | pT := t' >>;  
<< VAR t2 | t1 <= t2 /\ t2 <= t /\ t2 = pT => RET t2 >> 

Most people find it much harder to think about prophecy variables than to think about history 
variables, because thinking about backward execution does not come naturally. It’s easy to see 
that it’s harmless to carry on extra information in the history variables that isn’t allowed to affect 
the main computation. A prophecy variable, however, is allowed to affect the main computation, 
by forcing a choice that was non-deterministic to be taken in a particular way. Condition (2) 
ensures that in spite of this, no traces of T are ruled out in TP. It requires us to use a prophecy 
variable in such a way that for any possible choice that T could make later, there’s some choice 
that TP can make for the prophecy variable’s value that allows TP to later do what T does. 

Here is another way of looking at this. Condition (2) requires enough different values for the 
prophecy variables pi to be carried forward from the points where they are set to the points where 
they are used to ensure that as they are used, any set of choices that T could have made is 
possible for some execution of TP. So for each command that uses a pi to make a choice, we can 
calculate the set of different values of the pi that are needed to allow all the possible choices. 
Then we can propagate this set back through earlier commands until we get to the one that 
chooses pi, and check that it makes enough different choices. 

Because prophecy variables are confusing, it’s important to use them only at the highest possible 
level. If you write a spec SE that makes an early choice, and implement it with a module T, don’t 
try to show that T satisfies SE; that will be too confusing. Instead, write another spec SL that 
makes the choice later, and use prophecy variables to show that SL implements SE. Then show 
that T implements SL; this shouldn’t require prophecy. We have given three examples of this 
strategy. 
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Backward simulation 

Just as we could use abstraction relations instead of adding history variables, we can use a 
different kind of relation, satisfying different start and step conditions, instead of prophecy 
variables. This new sort of relation also guarantees trace inclusion. Like an ordinary abstraction 
relation, it allows construction of an execution of the specification, working from an execution of 
the implementation. Not surprisingly, however, the construction works backwards in the 
execution of the implementation instead of forwards. (Recall the inductive proof for abstraction 
relations.) Therefore, it is called a backward simulation.  

The following table gives the conditions for a backward simulation using relation R to show that 
T implements S, aligning each condition with the corresponding one for an ordinary abstraction 
relation. To highlight the relationship between the two kinds of abstraction mappings, an 
ordinary abstraction relation is also called a forward simulation.  
 

Forward simulation Backward simulation 

1. If t is any initial state of T, then there is an 
initial state s of S such that (t, s) ∈  R. 

1. If t is any reachable state of T, then there a 
state s of S such that (t, s) ∈  R. 

2. If t and s are reachable states of T and S 
respectively, with (t, s) ∈  R, and (t, π, t') is 
a step of T, then there is an execution 
fragment of S from s to some s', having the 
same trace, and with (t', s') ∈  R. 

2. If t' and s' are states of T and S respectively, 
with (t', s') ∈  R, (t, π, t') is a step of T, and t 
is reachable, then there is an execution 
fragment of S from some s to s', having the 
same trace, and with (t, s) ∈  R.  

 3. If t is an initial state of T and (t, s) ∈  R then 
s is an initial state of S. 

(1) applies to any reachable state t rather than any initial state, since running backwards we can 
start in any reachable state, while running forwards we start in an initial state. (2) requires that 
every backward (instead of forward) step of T be a simulation of a step of S. (3) is a new 
condition ensuring that a backward run of T ending in an initial state simulates a backward run of 
S ending in an initial state; since a forward simulation never ends, it has no analogous condition. 

Theorem 3: If there exists a backward simulation from T to S then every finite trace of T is also 
a trace of S.  

Proof: Start at the end of a finite execution and work backward, exactly as we did for forward 
simulations. 

Notice that Theorem 3 only yields finite trace inclusion. That’s different from the forward case, 
where we get infinite trace inclusion as well. Can we use backward simulations to help us prove 
general trace inclusion? It turns out that this doesn’t always work, for technical reasons, but it 
works in two situations that cover all the cases you are likely to encounter: 

• The infinite traces are exactly the limits of finite traces. Formally, we have the condition that 
for every sequence of successively extended finite traces of S, the limit is also a trace of S.  
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• The correspondence relation relates only finitely many states of S to each state of T.  

In the NonDet example above, a backward simulation can be used to show that LateNonDet 
implements NonDet. In fact, the inverse of the relation used to show that NonDet implements 
LateNonDet will work. You should check that the three conditions are satisfied. 

Backward simulations vs. prophecy variables 

The same equivalence that holds between abstraction relations and history variables also holds 
between backward simulations and prophecy variables. The invariant on the prophecy variable 
becomes the abstraction relation for the backward simulation. 

Completeness 

Earlier we asked whether forward simulations always work to show trace inclusion. Now we can 
ask whether it is always possible to use either a forward or a backward simulation to show trace 
inclusion. The satisfying answer is that a combination of a forward and a backward simulation, 
one after the other, will always work, at least to show finite trace inclusion. (Technicalities again 
arise in the infinite case.) For proofs of this result and discussion of the technicalities, see the 
papers by Abadi and Lamport and by Lynch and Vondrager cited below. 

History and further reading 

The idea of abstraction functions has been around since the early 1970’s. Tony Hoare introduced 
it in a classic paper (C.A.R. Hoare, Proof of correctness of data representations. Acta Informatica 
1 (1972), pp 271-281). It was not until the early 1980’s that Lamport (L. Lamport, Specifying 
concurrent program modules. ACM Transactions on Programming Languages and Systems 5, 2 
(Apr. 1983), pp 190-222) and Lam and Shankar (S. Lam and A. Shankar, Protocol verification 
via projections. IEEE Transactions on Software Engineering SE-10, 4 (July 1984), pp 325-342) 
pointed out that abstraction functions can also be used for concurrent systems.  

People call abstraction functions and relations by various names. ‘Refinement mapping’ is 
popular, especially among European writers. Some people say ‘abstraction mapping’. 

History variables are an old idea. They were first formalized (as far as I know), in Abadi and 
Lamport, The existence of refinement mappings. Theoretical Computer Science 2, 82 (1991), pp 
253-284. The same paper introduced prophecy variables and proved the first completeness result. 
For more on backward and forward simulations see N. Lynch and F. Vondrager, Forward and 
backward simulations—Part I: Untimed systems. Information and Computation 121, 2 (Sep. 
1995), pp 214-233. 
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9.  Atomic Semantics of Spec  

This handout defines the semantics of the atomic part of the Spec language fairly carefully. It 
tries to be precise about all difficult points, but is sloppy about some things that seem obvious in 
order to keep the description short and readable. For the syntax and an informal account of the 
semantics, see the Spec reference manual, handout 4.  

There are three reasons for giving a careful semantics of Spec: 

1. To give a clear and unambiguous meaning for Spec programs. 

2. To make it clear that there is no magic in Spec; its meaning can be given fairly easily and 
without any exotic methods. 

3. To show the versatility of Spec by using it to define itself, which is quite different from the 
way we use it in the rest of the course. 

This handout is divided into two parts. In the first half we describe semi-formally the essential 
ideas and most of the important details. Then in the second half we present the atomic semantics 
precisely, with a small amount of accompanying explanation.  

Semi-formal atomic semantics of Spec1 

Our purpose is to make it clear that there is no arm waving in the Spec notation that we have 
given you. A translation of this into fancy words is that we are going to study a formal semantics 
of the Spec language. 

Now that is a formidable sounding term, and if you take a course on the semantics of pro-
gramming languages (6.821—Gifford, 6.830J—Meyer) you will learn all kinds of fancy stuff 
about bottom and stack domains and fixed points and things like that. You are not going to see 
any of that here. We are going to do a very simple minded, garden-variety semantics. We are just 
going to explain, very carefully and clearly, how it is that every Spec construct can be 
understood, as a transition of a state machine. So if you understand state machines you should be 
able to understand all this without any trouble. 

One reason for doing this is to make sure that we really do know what we are talking about. In 
general, descriptions of programming languages are not in that state of grace. If you read the 
Pascal manual or the C manual carefully you will come away with a number of questions about 
exactly what happens if I do this and this, questions which the manual will not answer 
adequately. Two reasonably intelligent people who have studied it carefully can come to 
different conclusions, argue for a long time, and not be able to decide what is the right answer by 
reading the manual. 

                                                 
1 These semi-formal notes take the form of a dialogue between the lecturer and the class. They were originally 
written by Mitchell Charity for the 1992 edition of this course, and have been edited for this handout. 
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There is one class of mechanisms for saying what the computer should do that often does answer 
your questions precisely, and that is the instruction sets of computers (or, in more modern 
language, the architecture). These specs are usually written as state machines with fairly simple 
transitions, which are not beyond the power of the guy who is writing the manual to describe 
properly. A programming language, on the other hand, is not like that. It has much more power, 
generality, and wonderfulness, and also much more room for confusion. 

Another reason for doing this is to show you that our methods can be applied to a different kind 
of system than the ones we usually study, that is, to a programming language, a notation for 
writing programs or a notation for writing specifications. We are going to learn how to write a 
spec for that particular class of computer systems. This is a very different application of Spec 
from the last one we looked at, which was file systems. For describing a programming language, 
Spec is not the ideal descriptive notation. If you were in the business of giving the semantics of 
programming languages, you wouldn’t use Spec. There are many other notations, some of them 
better than Spec (although most are far worse). But Spec is good enough; it will do the job. And 
there is a lot to be said for just having one notation you can use over and over again, as opposed 
to picking up a new one each time. There are many pitfalls in devising a new notation. 

Those are the two themes of this lecture. We are going to get down to the foundations of Spec, 
and we are going to see another, very different application of Spec. Certainly a programming 
language is very different from a file system. 

For this lecture, we will only talk about the sequential or atomic semantics of Spec, not about 
concurrent semantics. Consider the program: 

                              x, y = 0 
thread 1: thread 2: 
<<  x := 3 >> << z := x + y >> 
<<  y := 4 >> 

In the concurrent world, it is possible to get any of the values 0, 3, or 7 for z. In the sequential 
world, which we are in today, the only possible values are 0 and 7. It is a simpler world. We will 
be talking later (in handout 17 on formal concurrency) about the semantics of concurrency, 
which is unavoidably more complicated. 

In a sequential Spec program, there are three basic constructs (corresponding to sections 5, 6, and 
7 of the reference manual): 

Expressions 

Commands 

Routines 

In order to describe what each of these things means, we first of all need some notion of what 
kind of thing the meaning of an expression or command might be. Then we have to explain in 
detail exactly what the meaning of each possible kind of expression is. The basic technique we 
use is the standard one for a situation where you have things that are made up out of smaller 
things: structural induction. 
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The idea of structural induction is this. If you have something which is made up of an A and a B, 
and you know the meaning of each, and have a way to put them together, you know how to get 
the meaning of the bigger thing. 

Some ways to put things together in Spec: 
 
A , B 
A ; B 
a + b 
A [] B 

State 

What are the meanings going to be? Our basic notion is that what we are doing when writing a 
Spec program is describing a state machine. The central properties of a state machine are that it 
has states and it has transitions. 

A state is a function from names to values: State: Name -> Value. For example: 

VAR x: Int  
y: Int 

If there are no other variables, the state simply consists of the mapping of the names "x" and "y" 
to their corresponding values. Initially, we don’t know what their values are. Somehow the 
meaning we give to this whole construct has to express that. 

Next, if we write x := 1, after that the value of x is 1. So the meaning of this had better look 
something like a transition that changes the state, so that no matter what the x was before, it is 1 
afterwards. That’s what we want this assignment to mean. 

Spec is much simpler than C. In particular, it does not have “references” or “pointers”. When 
you are doing problems, if you feel the urge to call malloc, the correct thing to do is to make a 
function whose range is whatever sort of thing you want to allocate, and then choose a new 
element of the domain that isn’t being used already. You can use the integers or any convenient 
sort of name for the domain, that is, to name the values. If you define a CLASS, Spec will do this 
for you automatically. 

So this is the state, just these name to value mappings. 

Names 

Spec has a module structure, so that names have two parts, the module name and the simple 
name. When referring to a variable in another module, both parts must be used. 

MODULE M                   MODULE N 

VAR x                      M.x := 3 
x := 3 
... 
M.x := 3 
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To simplify the semantics, we are going to use M.x as the name everywhere. In order to apply the 
semantics, you first must go through the program and replace every x declared in the current 
module M with M.x. You convert all references to global variables to these two part names, so 
that each name refers to exactly one thing. This makes things simpler to describe and understand, 
but uglier to read. This transformation doesn’t change the meaning of the program; it could have 
been written with two part names in the first place. 

All the global variables have these two part names. However, local variables are not prefixed by 
the module name: 

PROC 
VAR i | ... i 

This is how we tell the global state apart from the local state. Global state names have dots, local 
state names do not. 

Question: Can modules be nested? 

No. Spec is meant to be suitable for the kinds of specs and implementations that we do in this 
course, which are no more than moderately complex. Features not really needed to write our 
specs are left out to keep it simpler. 

Expressions 

What should the meaning of an expression be? Note that expressions do not affect the state. 

Question: What about assignments? 

Assignments are not expressions. If you have been programming in C, you have the weird idea 
that assignments are expressions. But not in the rest of the world. Spec in particular takes a hard 
line that not only are assignments not expressions, but functions are not allowed to affect the 
state. 

What are the semantics of an expression? Well, the type for the meaning of an expression is 
S -> V. An expression is a function from state to value. It can be a partial function, since Spec 
does not require that all expressions be defined. But it has to be a function—we do require that 
expressions are deterministic. We want determinism so something like f(x) = f(x) always 
comes out true. Reasoning is just too hard if this isn’t true. If a function is nondeterministic then 
obviously this needn’t come out true. (The classic example of a nondeterministic function is a 
random number generator.) 

So, expressions are deterministic and do not affect state. 
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There are three types of expressions: 

Type Example Meaning 

constant 1 (\ s | 1) 

variable x (\ s | s("x")) 

function invocation f(x) next sub-section 

(The type of these lambda’s is not quite right, as we will see later). 

Note that we have to keep the Spec in which we are writing the semantics separate from the Spec 
of the semantics we are describing. Therefore, we had to write s("x") instead of just x, because 
it is the x of the target system we are talking about, not the x of the describing system. 

The third type of expression is function invocation. We will only talk about functions with a 
single argument. If you want a function with two arguments, you can make one by combining the 
two arguments into a tuple or record, or by currying: defining a function of the first argument 
that returns a function of the second argument. 

What about x + y? This is just shorthand for T."+"(x, y), where T is the type of x. Everything 
that is not a constant or a variable is an invocation. This should be a familiar concept for those of 
you who know Scheme. 

Semantics of function invocation 

What are the semantics of function invocation? Given a function T -> U, the correct type of its 
meaning is (T, S) -> U, since the function can read the state but not modify it. Next, how are 
we going to attach a meaning to an invocation f(x)? Remember the rule of structural induction. 
In order to explain the meaning of a complicated thing, you are supposed to build it out of the 
meaning of simpler things. We know the meaning of x and of f. We need to come up with a map 
from states to values that is the meaning of f(x). That is, we get our hands on the meaning of f 
and the meaning of x, and then put them together appropriately. What is the meaning of f? 
s("f"). So, 

 f(x) means ... s("f") ... s("x") 

How are we going to put it together, remembering the type we want for f(x)? 

 f(x) means (\ s | s("f") (s("x"), s)) ) 

Now this could be complete nonsense, for instance if s("f") evaluates to an integer. If s("f") 
isn’t a function then this doesn’t typecheck. But there is no doubt about what this means if it is 
legal. It means invoke the function. 

That takes care of expressions, because there are no other expressions besides these. Structural 
induction says you work your way through all the different ways to put little things together to 
make big things, and when you have done them all, you are finished. 

Question: What about undefined functions? 
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Then the (T, S) -> U mapping is partial. 

Question: Is f(x) = f(x) if f(x) is undefined? 

No, it’s undefined. But those are deep waters and I propose to stay out of them. 

Commands 

What is the type of the meaning of a command? Well, we have states and values to play with, 
and we have used up S -> V on expressions. What sort of thing is a command? It’s a transition 
from one state to another. 

Expressions:   S -> V 

Commands:    S -> S ? 

This is good for a subset of commands. But what about this one? 

x := 1 [] x := 2 

Is its meaning a function from states to states? No, from states to sets of states. It can’t just be a 
function. It has to be a relation. Of course, there are lots of ways to code relations as functions. 
The way we use is: 

Commands: (S, S) -> Bool 

There is a small complication because Spec has exceptions, which are useful for writing many 
kinds of specifications, not to mention programs. So we have to deal with the possibility that the 
result of a command is not a garden-variety state, but involves an exception. 

To handle this we make a slight extension and invent a thing called an outcome, which is very 
much like a state except that it has some way of coding that an exception has happened. Again, 
there are many ways to code that. The way we use is that an outcome has the same type as a 
state: it’s a function from names to values. However, there are a couple of funny names that you 
can’t actually write in the program. One of them is $x, and we adopt the convention that if 
o("$x") = "" (empty string), then o is a garden-variety state. If o("$x") = "exception-
name", then there is that exception in outcome o. Some Spec commands, in particular ";" and 
EXCEPT, do something different if one of their pieces produces an exception.  

Now we just work our way through the command constructs (with an occasional digression). 

Commands — assignment 

x := 1  

or in general 

variable := expression 

What we have to come up with for the meaning is an expression of the form 

(\ s, o | ...) 
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How do we say that o is related to s? The function returns true. We are encoding a relation 
between states and outcomes as a function from a state and outcome to a Bool. The function is 
supposed to give back true exactly when the relation holds. 

So when does the relation hold for x := exp? Well, perhaps when o(x) = exp? (ME is the 
meaning function for expressions.) 

o("x") = ME(e)(s) 

. Well, the valid transition 

x=0                x=1 
          ->  
y=0                y=0 

would certainly be allowed. But what others would be allowed? What about: 

x=0                x=1 
          ->  
y=0                y=94 

It would also be allowed, so this can’t be quite right. Half right, but missing something 
important. You have to say that you don’t mess around with the rest of the state. The way you do 
that is to say that the outcome is equal to the state except at the variable. 

o = s{"x" -> ME(e)(s)} 

This is just a Spec function constructor, of the form f{arg -> value}. 

Aside—an alternate encoding for commands 

As we said before, there are many ways to code the command relation. Another possibility is: 

Commands:    S -> SET S 

This encoding seems to make the meanings of commands clumsier to write, though it is entirely 
equivalent to the one we have chosen. 

There is a third approach, which has a lot of advantages: write predicates on the state values. If x 
and y are the state variables in the pre-state, and x' and y' the state variables in the post-state, 
then  

 (x' = 1 /\ y' = y) 

is another way of writing 

o = s{"x" -> 1} 

In fact, this approach is another way of writing programs. I could write everything just as pred-
icates. Of course, I could also write everything as this o = s{...} sort of cruft, but that would 
look pretty awful. It is more conceivable that we would want to write things as predicates, 
because it doesn’t look so bad. 
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Sometimes it’s actually nice to do this. Say you want to write the predicate that says you can 
have any value at all for x. The spec 

VAR z | x := z 

is just 

(y' = y) 

(in the simple world where the only state variables are x and y). This is much simpler that the 
previous, rather inscrutable, piece of program. So sometimes this predicate way of doing things 
can be a lot nicer, but in general it seems to be not as satisfactory, mainly because the y'=y stuff 
clutters things up an awful lot. 

That was just an aside, but sometimes it’s convenient to describe the things that can go on in a 
specification using predicates rather than functions from state pairs to Bool. 

Commands — routine invocation p(x) 

What are the semantics of routine invocation? Well, it has to do something with s. What about 
the argument? There are many ways to deal with the argument. The way we do it is to use 
another pseudo-variable $a to pass the argument and get back the result. 

The meaning of p(e) is going to be 

LAMBDA (s, o) = RET         (s Take the state, 
                              {"$a" -> ME(e)(s)}  append the argument, 
                    ME(p)(s) get the routine 
                                                , o) and invoke it 
or, writing the whole thing on one line in the normal way, 

LAMBDA (s, o) = RET ME(p)(s)(s{"$a" -> ME(e)(s)}, o) 

What does this say? This invocation relates a state to an outcome if, when you take that state, and 
modify its $a component to be equal to the value of the argument, the meaning of the routine 
relates that state to the outcome. Another way of writing this, which isn’t so nested and might be 
clearer, would be to introduce an intermediate state s': 

VAR s' = s{"$a" -> ME(e)(s)} | ME(p)(s)(s', o) 

These two are exactly the same thing. The invocation relates s to o iff the routine relates s' to o, 
where s' is just s with the argument passing component modified. $a is just a way of 
communicating the argument value to the routine. 

Question: Why use ME(p)(s) rather than MR? 

MR is the meaning function for routines, that is, it turns the syntax of a routine declaration into a 
function on states and arguments that is the meaning of that syntax. We would use MR if we were 
looking at a FUNC. But p is just a variable (of course it had better be bound to a routine value, or 
this won’t typecheck). 
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Aside—an alternate encoding for invocation 

Here is a different way of communicating the argument value to the function; you can skip this 
section if you like. We could take the view that the routine definition 

 PROC P(i: Int) = ... 

is defining a whole flock of different commands, one for every possible argument value. Then 
we need to pick out the right one based on the argument value we have. If we coded it this way 
(and it is merely a coding thing) we would get: 

ME(p)(s)(ME(e)(s)) (s,o) 

This says, first get ME(p), the meaning of p. This is not a transition but a function from argument 
values to transitions, because the idea is that for every possible argument value, we are going to 
get a different meaning for the routine, namely what that routine does when given that particular 
argument value. So we pass it the argument value ME(e)(s), and invoke the resulting transition. 

These two alternatives are based on different choices about how to code the meaning of routines. 
If you code the meaning of a routine simply as a transition, then Spec picks up the argument 
value out of the magic $a variable. But there is nothing mystical going on here. Setting $a 
corresponds exactly to what we would do if we were designing a calling sequence. We would 
say “I am going to pass the argument in register 1”. Here, register 1 is $a. 

The second approach is a little bit more mystical. We are taking more advantage of the won-
derful abstract power and generality that we have. If someone writes a factorial function, we will 
treat it as an infinite supply of different functions; one computes the factorial of 1, another the 
factorial of 2, another the factorial of 3, and so forth. In ME(p)(s)(ME(e)(s))(s, o), 
ME(p)(s) is the infinite supply, ME(e)(s) is the argument that picks out a particular function, 
to which we finally pass (s, o).  

However, there are lots of other ways to do this. One of the things which makes the semantics 
game hard is that there are many choices you can make. They don’t really make that much 
difference, but they can create a lot of confusion, both because a bad choice can leave you in a 
briar patch of notation, and because you can get confused about what choice was made. 

So, while this 

RET ME(p) (S) (S("$a" -> ME(e) (s)),o) 

and this 

VAR s' := s{"$a" -> ME(e)(s)} | RET ME(p)(s) (s',o) 

are two ways of writing exactly the same thing, this 

ME(p)(s)(ME(e)(s)) (s,o) 

is different, and only makes sense with a different choice about what the meaning of a function 
is. The latter is more elegant, but we use the former because it is less confusing. 
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Stepping back from these technical details, what the meaning function is doing is taking an 
expression and producing its meaning. The expression is a piece of syntax, and there are a lot of 
possible ways of coding the syntax. Which exact way we chose isn’t that important. 

Commands — SKIP 

LAMBDA (s, o) = RET s = o 

In other words, the outcome after SKIP is the same as the pre-state. Later on, in the formal half of 
the handout, we give a table for the commands which takes advantage of the fact that there is a 
lot of boilerplate—the LAMBDA (s, o) = RET stuff is always the same, and so is the treatment 
of exceptions. So the table just shows, for each syntactic form, what goes after the RET. 

Commands — HAVOC 

LAMBDA (s, o) = true 

In other words, after HAVOC you can have any outcome. Actually this isn’t quite good enough, 
since we want to be able to have any sequence of outcomes. We deal with this by introducing 
another magic state component $havoc with a Bool value. Once $havoc is true, any transition 
can happen, including one that leaves it true and therefore allows havoc to continue. We express 
this by adding to the command boilerplate the disjunct s("$havoc"), so that if $havoc is true in 
s, any command relates s to any o. 

Now for the compound commands. 

Commands — c1 [] c2 

MC(c1)          MC(c2) 

  (s, o)          (s, o) 

             \/  

or on one line, 

MC(c1)(s, o) \/ MC(c2)(s, o) 

Non-deterministic choice is the ‘or’ of the relations. 

Commands — c1 [*] c2 

It is clear we should begin with 

MC(c1)(s, o) \/ … 

But what next? One possibility is 

                ~ MC(c1)(s, o) ==> ... 

This is in the right direction, but not correct. Else means that if there is no possible outcome of 
c1, then you get to try c2. So there are two possible ways for an else to relate a state to an 
outcome. One is for c1 to relate the state to the outcome, the other is that there is no possible way 
to make progress with cl in the state, and c2 to relates the state to the outcome. 
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The correct encoding is 

MC(cl)(s,o) \/ (ALL o' | ~ MC(cl) (s, o')) /\ MC(c2)(s,o) ) 

Commands — c1 ; c2 

Although the meaning of semicolon may seem intuitively obvious, it is more complex than one 
might first suspect—more complicated than or, for instance. We interpreted the command 
c1 [] c2 as MC(cl) \/ MC(c2). Because semicolon is a sequential composition, it requires that 
our semantics move through an intermediate state. 

If these were functions (if we could describe the commands as functions) then we could simply 
describe a sequential composition as (F2 (Fl s)). However, because Spec is not a functional 
language, we need to compose relations, in other words, to establish an intermediate state as a 
precursor to the final output state. As a first attempt, we might try: 

(LAMBDA (s, o) -> Bool = RET 
(EXISTS o' | MC(cl)(s, o') /\ MC(c2)(o', o))) 

In words, this says that you can get from s to o via c1 ; c2 if there exists an intermediate state 
o' such that c1 takes you from s to o' and c2 takes you from o' to o. This is indeed the 
composition of the relations. But is this always the meaning of ";"? In particular, what if c1 
produces an exception? When c1 produces an exception, we should not execute c2. Our first try 
does not capture that possibility. To correct for this, we need to verify that o' is a normal state. If 
it is an exceptional state, then it is the result of the composition and we ignore c2. 

(EXISTS o' | MC(cl)(s, o') /\ (   ~IsX(o') /\ MC(c2) 
                               \/  IsX(o') /\ o' = o)) 

Commands — c1 EXCEPT xs => c2 

Now, what if we have a handler for the exception? If we assume (for simplicity) that all 
exceptions are handled, we would simply implement the complement of the semicolon case. If 
we get an exception, then do c2. If there is no exception, do not do c2. We also need to include 
an additional check to insure that the exception considered is an element of the exception set—
that is to say, that it is a handled exception. 

(EXISTS o' | MC(cl)(s, o') /\ 
           (   ((~IsX(o') \/ ~o'("$x") IN xs) /\ o' = o) 
            \/    IsX(o') /\  o'("$x") IN xs) /\ MC(c2)(o'{"$x" -> ""}, o) 
) 

So, with this semantics for handling exceptions, the meaning of: 

 (c1 EXCEPT xs => c2); c3) 

is 

if normal  do c1, no c2, do c3 

if exception, handled do c1, do c2, do c3 

if exception and not handled do c1, no c2, no c3 
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Commands — VAR id: T | c0 

The idea is “there exists a value for id such that c0 succeeds”. This intuition suggests something 
like 

(EXISTS v |  v IN T /\ MC(c0)(s{"id" -> v}, o)) 

However, if we look carefully, we see that id is left defined in the output state o. (Why is this 
bad?) To correct this omission we need to introduce an intermediate state o' from which we may 
arrive at the final output state o where id is undefined. 

 (EXISTS v, o' | v IN T /\ MC(c0)(s("id" -> v}, o') /\ o = o'(id -> }) 

Routines 

In Spec, routines include functions, atomic procedures, and procedures. For simplicity, we focus 
on atomic procedures. How do we think about APROCs? 

We know that the body of an APROC describes transitions from its input state to its output state. 
Given this transition, how do we handle the results? We introduce a pseudo name $a to which a 
procedure’s argument value is bound, and the caller also collects the value from $a after the 
procedure body’s transition. Refer to the definition of MR below for a more complete discussion.  

In reality, Spec is more complex because it attempts to make RET more convenient by allowing it 
to occur anywhere in a routine. To accommodate this, the meaning of RET e is to set $a to the 
value of e and then raise the special exception $RET, which is handled as part of the invocation. 

Formal atomic semantics of Spec 

In the rest of the handout, we describe the meaning of atomic Spec commands in complete detail, 
except that we do not give precise meanings for the various expression forms other than lambda 
expressions; for the most part these are drawn from mathematics, and their meanings should be 
clear. We also omit the detailed semantics of modules, which is complicated and uninteresting. 

Overview 

The semantics of Spec are defined in three stages: expressions, atomic commands, and non-
atomic commands (treated in handout 17 on formal concurrency). For the first two there is no 
concurrency: expressions and atomic commands are atomic. This makes it possible to give their 
meanings quite simply: 

Expressions as functions from states to results, that is, values or exceptions. 

Atomic commands as relations between states and outcomes: a command relates an initial 
state to every possible outcome of executing the command in the initial state. 

An outcome maps names (treated as strings) to values. It also maps three special strings that are 
not program names (we call them pseudo-names): 

$a, which is used to pass argument and result values in an invocation; 
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$x, which records an exceptional outcome; 
$havoc, which is true if any sequence of later outcomes is possible. 

A state is a normal outcome, that is, an outcome which is not exceptional; it has $x=noX. The 
looping outcome of a command is encoded as the exception $loop; since this is not an identifier, 
you can’t write it in a handler. 

The state is divided into a global state that maps variables of the form m.id (for which id is 
declared at the top level in module m) and a local state that maps variables of the form id (those 
whose scope is a VAR command or a routine). Routines share only the global state; the ones 
defined by LAMBDA also have an initial local state, while the ones declared in a routineDecl start 
with an empty local state. We leave as an exercise for the reader the explicit construction of the 
global state from the collection of modules that makes up the program. 

We give the meaning of a Spec program using Spec itself, by defining functions ME, MC, and MR 
that return the meaning of an expression, command, and routine. However, we use only the 
functional part of Spec. Spec is not ideally suited for this job, but it is serviceable and by using it 
we avoid introducing a new notation. Also, it is instructive to see how the task is writing this 
particular kind of specification can be handled in Spec. 

You might wonder how this specification is related to an implementation of Spec, that is, to a 
compiler or interpreter. It does look a lot like an interpreter. As with other specifications written 
in Spec, however, this one is not a practical implementation because it uses existential quantifiers 
and other forms of non-determinism too freely. Most of these quantifiers are just there for clarity 
and could be replaced by explicit computations of the needed values without much difficulty. 
Unfortunately, the quantifier in the definition of VAR does not have this property; it actually 
requires a search of all the values of the specified type. Since you have already seen that we 
don’t know how to give a practical implementation of Spec, it shouldn’t be surprising that this 
handout doesn’t contain one. 

Note that before applying these rules to a Spec program, you must apply the syntactic rewriting 
rules for constructs like VAR id := e and CLASS that are given in the reference manual. You 
must also replace all global names with their fully qualified forms, which include the defining 
module, or Global for names declared globally (see section 8 of the reference manual). 

Terminology 

We begin by giving the types and special values used to represent the Spec program whose 
meaning is being defined. We use two methods of functions, + (overlay) and restrict, that are 
defined in section 9 of the reference manual. 
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TYPE V  = (Routine + ...) % Value 
Routine = aTr % defined as the last type below 
 
Id = String  % Identifer 
  SUCHTHAT (\ id | (EXISTS c: Char, s1: String, s2: String | 
          id = {c} + s1 + s2 /\ c IN letter + digit  
     /\ s1.set <= letter\/digit\/{'_'} /\ s2.set <= {'''} )) 
Name = String  
  SUCHTHAT (\ name | name IN    ids \/ globals  
                             \/ {"$a", "$x", "$havoc"}) 
X = String  % eXception 
  SUCHTHAT (\ x | x IN ids \/ {noX, retX, loopX, typeX}) 
XS = SET X % eXception Set 
 
O = Name -> V WITH {isX:=OIsX} % Outcome 
S = O SUCHTHAT (\ o | ~ o.isX) % State 
ATr = (S, O) -> Bool % Atomic Transition 

CONST    
letter := "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".set 
digit := "0123456789".set 
ids := {id | true} 
globals := {id1, id2 | id1 + "." + id2} 
noX := "" 
retX := "$ret" 
loopX := "$loop" 
typeX := "$type error" 
trueV : V % the value true 

FUNC OIsX(o) -> Bool = RET o("$x") # noX % o.isX 

To write the meaning functions we need types for the representations of the main non-terminals 
of the language: id, name, exceptionSet, type, exp, cmd, routineDecl, module, and 
program. Rather than giving the detailed representation of these types or a complete set of 
operations for making and analyzing their values, we write C« c1 [] c2 » for a command 
composed from subcommands c1 and c2 with [], and so forth for the rest of the command 
forms. Similarly we write E« e1 + e2 » and R« FUNC Succ(x: INT)->INT = RET x+1 » for 
the indicated expression and function, and so forth for the rest of the expression and routine 
forms. This notation makes the specification much more readable. Id, Name, and XS are declared 
above. 

TYPE T = SET V % Type 
E = [...] % Expression 
C = [...] % Command 
R = [id, ...] % RoutineDecl 
Mod = [id, tops: SET TopLevel] % Module 
TopLevel = (R + ...) % module toplevel decl 
Prog = [ms: SET Mod, ts: SET TopLevel] % Program 

The meaning of an id or var is just the string, of an exceptionSet the set of strings that are the 
exceptions in the set, of a type the set of values of the type. For the other constructs there are 
meaning functions defined below: ME for expressions and MC and MR for atomic commands and 
routines. The meaning functions for module, toplevel, and program are left as exercises. 
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Expressions 

An expression maps a state to a value or exception. Evaluating an expression does not change the 
state. Thus the meaning of expressions is given by a partial function ME with type 
E->S->(V + X); that is, given an expression, ME returns a function from states S to results 
(values V or exceptions X). ME is defined informally for all of the expression forms in section 5 of 
the reference manual. The possible expression forms are literal, variable, and invocation. We 
give formal definitions only for invocations and LAMBDA literals; they are written in terms of the 
meaning of commands, so we postpone them to the next section 

Type checking 

For type checking to work we need to ensure that the value of an expression always has the type 
of the expression. We do this by structural induction, considering each kind of expression. The 
type checking of return values ensures that the result of an invocation will have its declared type. 
Literals are trivial, and the only other expression form is a variable. A variable declared with VAR 
is initialized to a value of its type. A formal parameter of a routine is initialized to an actual by 
an invocation, and the type checking of arguments (see MR below) ensures that this is a value of 
the variable’s type. The value of a variable can only be changed by assignment. 

An assignment var := e requires that the value of e have the type of var. If the type of e is not 
equal to the type of var because it involves a union or a SUCHTHAT, this check can’t be done 
statically. To take account of this and to ensure that the meaning of expressions is independent of 
the static type checking, we assume that in the context var := e the expression e is replaced by 
e AS t, where t is the declared type of var. The meaning of e AS t in state s is ME(e)(s) if 
that is in t (the set of values of type t), and the exception typeX otherwise; this exception can't 
be handled because it is not named by an identifier and is therefore a fatal error.  

We do not give a practical implementation of the type check itself, that is, the check that a value 
actually is a member of the set of values of a given type. Such an implementation would require 
too many details about how values are represented. Note that what many people mean by “type 
checking” is a proof that every expression in a program always has a result of the correct type. 
This kind of completely static type checking is not possible for Spec; the presence of unions and 
SUCHTHAT makes it undecidable. Sections 4 and 5 of the reference manual define what it means 
for one type to fit another and for a type to be suitable. These definitions are a sketch of how to 
implement as much static type checking as Spec easily admits. 

Atomic commands 

An atomic command relates a state to an outcome; in other words, it is defined by an ATr (atomic 
transition) relation. Thus the meaning of commands is given by a function MC with type C->ATr, 
where ATr = (S, O) -> Bool. We can define the ATr relation for each command by a 
predicate: a command relates state s to outcome o iff the predicate on s and o is true. We give 
the predicates in the table on the next page and explain them in the text that follows the table; the 
predicates apply provided there are no exceptions.  

Here are the details of how to handle exceptions and how to actually define the MC function. You 
might want to look at the predicates first, since the meat of the semantics is there. 
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Command Predicate 

SKIP            o = s 

HAVOC true 

RET e o = s{"$x" -> retX, $a -> ME(e)(s)} 

RET o = s{"$x" -> retX} 

RAISE id o = s{"$x" -> "id"} 

e1(e2) ( EXISTS r: Routine | 

     r = ME(e1)(s) /\ r(s{"$a" -> ME(e2)(s)}, o) ) 

var := e       [1]    o = s{var -> ME(e)(s)}  

var := e1(e2)  [1] MC(C« e1(e2); var := $a »)(s, o) 

e  =>  c0 ME(e)(s) = trueV /\ MC(c0)(s, o) 

c1 []  c2 MC(c1)(s, o) \/     MC(c2)(s, o) 

c1 [*] c2 MC(c1)(s, o) \/ (   MC(c2)(s, o) 

                  /\ ~(EXISTS o' | MC(c1)(s, o')) )  

c1  ;  c2                     MC(c1)(s, o)  /\   o .isX 

 \/ ( EXISTS o' |    MC(c1)(s, o') /\ ~ o'.isX 

                  /\ MC(c2)(o',o ) ) 

c1 EXCEPT xs => c2                     MC(c1)(s, o)  /\ ~ o ("$x") IN xs 

 \/ ( EXISTS o' |    MC(c1)(s, o') /\   o'("$x") IN xs 

                /\ MC(c2)(o'{"$x" -> noX}, o) ) 

VAR id: T | c0 ( EXISTS v, o' |   v IN T 

                 /\ MC(c0)(s {id -> v}, o') 

                 /\ o =    o'{id ->  } ) 

VAR id: T := e | c0 MC(C«VAR id: T | id = e => c0»)(s, o) 

<< c0 >>  MC(c0)(s, o) 

IF c0 FI MC(c0)(s, o) 

BEGIN c0 END MC(c0)(s, o) 

DO c0 OD  is the fixed point of the equation c = c0; c [*] SKIP 

 
[1] The first case for assignment applies only if the right side is not an invocation of an 
APROC. Because an invocation of an APROC can have side effects, it needs different treatment. 

 

Table 1: The predicates that define MC(command)(s, o) when there are  
no exceptions raised by expressions at the top level in command, and $havoc is false. 
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The table of predicates has been simplified by omitting the boilerplate needed to take account of 
$havoc and of the possibility that an expression is undefined or yields an exception. If a 
command containing expressions e1 and e2 has predicate P in the table, the full predicate for the 
command is 

   s("$havoc") % anything if $havoc 
\/    ME(e1)!s /\ ME(e2)!s % no outcome if undefined 
   /\ (   ME(e1)(s) IS V /\ ME(e2)(s) IS V /\ P 
       \/ ME(e1)(s) IS X /\ o = s{ "$x" -> ME(e1)(s) } 
       \/ ME(e2)(s) IS X /\ o = s{ "$x" -> ME(e2)(s) } ) 

If the command contains only one expression e1, drop the terms containing e2. If it contains no 
expressions, the full predicate is just the predicate in the table. 

Once we have the full predicates, it is simple to give the definition of the function MC. It has the 
form 

FUNC MC(c) -> ATr =  
IF 
... 
[] VAR var, e | c = «var := e» => 

RET (\ o, s | full predicate for this case ) 
... 
[] VAR c1, c2 | c = «c1  ; c2» => 

RET (\ o, s | full predicate for this case ) 
... 
FI 

First we do the simple commands, which don’t have subcommands. All of these that don’t 
involve an invocation of an APROC are deterministic; in other words, the relation is a function. 
Furthermore, they are all total unless they involve an invocation that is partial.  

A RET produces the exception retX and leaves the returned value in $a.  

A RAISE yields an exceptional outcome which records the exception id in $x.  

An invocation relates s to o iff the routine which is the value of e1 (produced by 
ME(e1)(s)) does so after s is modified to bind "$a" to the actual argument; thus $a is 
used to communicate the value of the actual to the routine.  

An assignment leaves the state unchanged except for the variable denoted by the left 
side, which gets the value denoted by the right side. Recall that assignment to a 
component of a function, sequence, or record variable is shorthand for assignment of a 
suitable constructor to the entire variable, as described in the reference manual. If the 
right side is an invocation of a procedure, the value assigned is the value of $a in the 
outcome of the invocation; thus $a also communicates the result of the invocation back to 
the invoker. 

Now for the compound commands; their meaning is defined in terms of the meaning of their 
subcommands.  
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A guarded command e => c has the same meaning as c except that e must be true.  

A choice relates s to o if either part does.  

An else c1 [*] c2 relates s to o if c1 does or if c1 has no outcome and c2 does.  

A sequential composition c1 ; c2 relates s to o if there is a suitable intermediate state, 
or if o is an exceptional outcome of c1.  

c1 EXCEPT xs=>c2 is the same as c1 for a normal outcome or an exceptional outcome 
not in the exception set xs. For an exceptional outcome o' in xs, c2 must relate o' as a 
normal state to o. This is the dual of the meaning of c1 ; c2 if xs includes all 
exceptions. 

VAR id: t | c relates s to o if there is a value v of type t such that c relates (s with id 
bound to v) to an o' which is the same as o except that id is undefined in o. It is this 
existential quantifier that makes the specification useless as an interpreter for Spec. 

<< ... >>, IF ... FI or BEGIN ... END brackets don’t affect MC.  

The meaning of DO c OD can’t be given so easily. It is the fixed point of the sequence of longer 
and longer repetitions of c.2 It is possible for DO c OD to loop indefinitely; in this case it relates s 
to s with "$x"->loopX. This is not the same as relating s to no outcome, as false => SKIP 
does. 

The multiple occurrences of declInit and var in VAR declInit* and (varList):=exp are left 
as boring exercises, along with routines that have several formals. 

Routines 

Now for the meaning of a routine. We define a meaning function MR for a routineDecl that 
relates the meaning of the routine to the meaning of the routine’s body; since the body is a 
command, we can get its meaning from MC. The idea is that the meaning of the routine should be 
a relation of states to outcomes just like the meaning of a command. In this relation, the pseudo-
name $a holds the argument in the initial state and the result in the outcome. For technical 
reasons, however, we define MR to yield not an ATr, but an S->ATr; a local state (static below) 
must be supplied to get the transition relation for the routine. For a LAMBDA this local state is the 
current state of its containing command. For a routine declared at top level in a module this state 
is empty. 

The MR function works in the obvious way: 

1. Check that the argument value in $a has the type of the formal. 

2. Remove local names from the state, since a routine shares only global state with its invoker. 

3. Bind the value to the formal. 

                                                 
2 For the details of this construction see G. Nelson, A generalization of Dijkstra’s calculus, ACM Trans. 
Programming Languages and Systems 11, 4, Oct. 1989, pp 517-562. 
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4. Find out using MC how the routine body relates the resulting state to an outcome. 

5. Make the invoker's outcome from the invoker’s local state and the routine's final global state. 

6. Deal with the various exceptions in that outcome.  

A retX outcome results in a normal outcome for the invocation if the result has the result 
type of the routine, and a typeX outcome otherwise.  

A normal outcome is converted to typeX, a type error, since the routine didn’t supply a 
result of the correct type. 

An exception raised in the body is passed on. 

FUNC MR(r) -> (S->ATr) = VAR id1, id2, t1, t2, xs, c0 | 
   r = R« APROC id1(id2: t1)->t2 RAISES xs = << c0 >> » 
\/ r = R« FUNC  id1(id2: t1)->t2 RAISES xs =    c0    » => 
RET (\ static: S | (\ s, o | 
     s("$a") IN t1  % if argument typechecks 
  /\ ( EXISTS g: S, s', o' | 
         g = s.restrict(globals) % g is the current globals 
      /\ s' = (static + g){id2 -> s("$a")} % s' is initial state for c0 
      /\ MC(c0)(s', o' ) % apply c0  
      /\ o = (s + o'.restrict(globals)) % restore old locals from s 
           {"$x" ->  % adjust $x in the outcome 
             (    o'("$x") = retX =>  
                    (    o'("$a") IN t2 => noX % retX means normal outcome 
                     [*] typeX ) % if result typechecks; 
              [*] o'("$x") = noX => typeX % normal outcome means typeX; 
              [*] o'("$x) % pass on exceptions 
             )  
           } 
\/ ~ s("$a") IN t1 /\ o = s{"$x" -> typeX} % argument doesn't typecheck 
) )   % end of the two lambdas 

We leave the meaning of a routine with no result as an exercise. 

Invocation and LAMBDA expressions 

We have already given in MC the meaning of invocations in commands, so we can use MC to deal 
with invocations in expressions. Here is the fragment of the definition of ME that deals with an E 
that is an invocation e1(e2) of a function. It is written in terms of the meaning MC(C«e1(e2)») 
of the invocation as a command, which is defined above. The meaning of the command is an 
atomic transition aTr, a predicate on an initial state and an outcome of the routine. In the 
outcome the value of the pseudo-name $a is the value returned by the function. The definition 
given here discards any side-effects of the function; in fact, in a legal Spec program there can be 
no side-effects, since functions are not allowed to assign to non-local variables or call 
procedures. 
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FUNC ME(e) -> (S -> (V + X)) = 
IF 
... 
[] VAR e1, e2 | e = E« e1(e2) » => 
% if E is an invocation its meaning is this function from states to values 

VAR aTr := MC(C« e1(e2) ») |  
  RET ( LAMBDA (s) -> V =  

% the command must have a unique outcome, that is, aTr must be a  
% function at s. See Relation in section 9 of the reference manual 
VAR o := aTr.func(s) | RET (~o.isX => o("$a") [*] o("$x")) ) 

... 
FI 

The result of the expression is the value of $a in the outcome if it is normal, the value of $x if it 
is exceptional. If the invocation has no outcome or more than one outcome, ME(e)(s) is 
undefined. 

The fragment of ME for LAMBDA uses MR to get the meaning of a FUNC with the same signature and 
body. As we explained earlier, this meaning is a function from a state to a transition function, 
and it is the value of ME((LAMBDA ...)). The value of (LAMBDA ...), like the value of any 
expression, is the result of evaluating ME((LAMBDA ...)) on the current state. This yields a 
transition function as we expect, and that function captures the local state of the LAMBDA 
expression; this is standard static scoping. . 

 IF 
... 
[] VAR signature, c0 | e = E« (LAMBDA signature = c0) » =>  

RET MR(R« FUNC id1 signature = c0 ») 
... 
FI 

 


