6.826—Principles of Computer Systems

19. Sequential Transactions with Caching

There are many situations in which we want to make a ‘big’ action atomic, either with respect to
concurrent execution of other actions (everyone else sees that the big action has either not started
or run to completion) or with respect to failures (after a crash the big action either has not started
or has run to completion).

Some examples:
Debit/credit: x =x +A;y =y —A
Reserve airline seat
Rename file
Allocate file and update free space information
Schedule meeting: room and six participants
Prepare report on one million accounts

Why is atomicity important? There are two main reasons:

1. Stability: A large persistent state is hard to fix it up if it gets corrupted. Manual fixup is
impractical, and ad-hoc automatic fixup is too hard to code correctly. Atomicity is a valuable
automatic fixup mechanism.

2. Consistency: We want the state to change one big action at a time, so that between changes it
is always ‘consistent’, that is, it always satisfies the system’s invariant and always reflects
exactly the effects of all the big actions that have been applied so far. This has several
advantages:

¢ When the server storing the state crashes, it’s easy for the client to recover.
¢ When the client crashes, the state remains consistent.

¢ Concurrent clients always see a state that satisfies the invariant of the system. It’s much
easier to code the client correctly if you can count on this invariant.

The simplest way to use the atomicity of transactions is to start each transaction with no volatile
state. Then there is no need for an invariant that relates the volatile state to the stable state
between atomic actions. Since these invariants are the trickiest part of easy concurrency, getting
rid of them is a major simplification.

Overview

In this handout we treat failures without concurrency; handout 20 treats concurrency without
failures. A grand unification is possible and is left as an exercise, since the two constructions are
more or less orthogonal.

Handout 19. Sequential Transactions with Caching

6.826—Principles of Computer Systems

We can classify failures into four levels. We show how to recover from the first three.
Transaction abort: not really a failure, in the sense that no work is lost except by request.

Crash: the volatile state is lost, but the only effect is to abort all uncommitted
transactions.

Media failure: the stable state is lost, but it is recovered from the permanent log, so that
the effect is the same as a crash.

Catastrophe or disaster: the stable state and the permanent log are both lost, leaving the
system in an undefined state.

We begin by repeating the Sequent i al Tr spec and the LogRecovery code from handout 7 on
file systems, with some refinements. Then we give much more efficient code that allows for
caching data; this is usually necessary for decent performance. Unfortunately, it complicates
matters considerably. We give a rather abstract version of the caching code, and then sketch the
concrete specialization that is in common use. Finally we discuss some pragmatic issues.

The spec

An A is an encoded action, that is, a transition from one state to another that also returns a result
value. Note that an A is a function, that is, a deterministic transition.

MODULE Nai veSequenti al Tr [
Vv, % Value of an action
SWTH{ s0: ()->S} % State, SO initially
] EXPORT Do, Commit, Crash =

TYPE A = S>(V, 9 % Action

VAR ss := S.s0()
Vs 1= S.s0()

% stable state
% volatile state

APRCC Do(a) -> V = << VARV | (v, vs) := a(vs); RET v >>
APROC Conmit() = << sSS := Vs >>

PROC Crash () = << vs := ss >> % ‘aborts’ the transaction

END Nai veSequenti al Tr

Here is a simple example, with variables X and Y as the stable state, and x and y the volatile state.

Handout 19. Sequential Transactions with Caching

2000

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

Here is the previous example extended with the ph variable.

Action X Y x y .
5 5 5 5 Action X Y x y ph
Do(x =x —1); S S) S Begin(): 5 5 5 5 idle
Do(y =y+1) S S . e Dot = - 1) 5 5 5 5 run
Commit 5 5 4 5 run
4 6 4 6 Do(y =y+1)

Crash before commit

Commit

S5 53 4 6 4 6 ide
If we want to take account of the possibility that the server (specified by this module) may fail Crash before commit
separately from the client, then the client needs a way to detect this. Otherwise a server failure 5 5 5 5 idle
and restart after the decrement of x in the example could result in X = 5, Y= 6, because the client
will continue with the decrement of y and the commit. Alternatively, if the client fails at that Uncached code
point, restarts, and repeats its actions, the result would be X = 3, Y= 6. To avoid these problems,
we introduce a new Begi n action to mark the start of a transaction as Commi t marks the end. We Next we give the simple uncached code based on logging; it is basically the same as the
use another state variable ph (for phase) that keeps track of whether there is an uncommitted LogRecover y module of handout 7 on file systems, with the addition of ph. Note that ss is not
transaction in progress. A transaction in progress is aborted whenever there is a crash, or if the same as the ss of Sequent i al Tr ; the abstraction function gives the relation between them.

another Begi n action is invoked before it commits. We also introduce an Abort action so the

client can choose to abandon a transaction explicitly. This code may seem impractical, since it makes no provision for caching the volatile state vs.

We will study how to do this caching in general later in the handout. Here we point out that a

This interface is slightly redundant, since Abort = Begi n; Conmi t, but it’s the standard way to scheme very similar to this one is used in Lightweight Recoverable Virtual Memory!, with copy-

do things. Note that Crash = Abort also; this is not redundant, since the client can’t call Cr ash. on-write used to keep track of the differences between vs and ss.

MODULE Sequenti al Tr [MODULE LogRecovery [% implements Sequent i al Tr
Vv, % Value of an action Vv, % Value of an action
SWTH{ s0: ()->S} % State; SO initially SO WTH { sO0: ()->S0 } % State
] EXPORT , Do, Commit, , Crash =] EXPORT Begin, Do, Commit, Abort, Crash =

TYPE A = S->(V, 9 % Action TYPEA = S->(V, 9 % Action

U = S->8 % atomic Update

VAR ss 1= S.s0() % Stable State L = SEQU % Log
Vs = S.s0() % Volatile State S = SO WTH { "+":=DoLog } % State with useful ops
[ph . ENUMidle, run] :=idle % PHase (volatile) Ph = ENUMidle, run] % PHase

[EXCEPTI ON cr ashed| VAR ss = S.s0() % stable state

- - - - Vs = S.s0() % volatile state

,APRG: Begin() = << Abort(); ph := run >> % aborts any current trans.l sl = L{} % stable log

APROC Do(a) -> V [RAISES {crashed}] = << V'h = LLI} vaﬁla“le“’lg |
[F ph = run =5 VAR v | (v, vs) := a(vs); RET v [*] RAISE crashed FI] >> fec = 'falie oy ase (volatile)

= o recovering

APROC Commi t () RAI SES {crashed} =
<< [Fph = run =5] ss := vs; ph := idle [¥] RAISE crashed FT] >> EXCEPTI ON crashed

|PROC Abort () = << vs :=ss; ph :=idle >> %sameasCrash|

PROC Crash () = << vs :=ss; |ph :=idle| >> % ‘aborts’ the transaction

END Sequenti al Tr I' M. Satyanarayanan et al., Lightweight recoverable virtual memory. 4CM Transactions on Computer Systems 12, 1

(Feb. 1994), pp 33-57.

Handout 19. Sequential Transactions with Caching 3 Handout 19. Sequential Transactions with Caching 4

6.826—Principles of Computer Systems

% ABSTRACTI ON to Sequenti al Tr
Sequential Tr.ss = ss + sl
Sequenti al Tr.vs (~rec =>vs [*] rec => ss + sl)

Sequenti al Tr. ph ph
% | NVARI ANT
~rec ==>vs = ss + sl + vl
(EXISTS | | | <=wvl /\ ss + sl =ss + 1)

% Applying sl to ss is equivalent to applying a prefix | of vl . That is, the
% state after a crash will be the volatile state minus some updates at the end.

APROC Begin() = << vs :=ss; sl :={}; vl :={}; ph :=run >>
APROC Do(a) -> V RAISES {crashed} = <<
IF ph =run => VARv, | | (v, vs +1) = a(vs) =>
vs :=vs +|; vl :=vl +1|; RET v
[*] RAISE crashed
Fl >>

PROC Commi t () RAI SES {crashed} =

IF ph = run => << sl :=vl; ph:=idle >>; Redo() >> [*] RAISE crashed FI
PROC Abort() = << vs :=ss; sl :={}; vl :={}; ph:=idle >
PROC Crash() =
<< vs :=ss; vl :={}; ph:=idle; rec := true >>; % what the crash does
vl := sl; Redo(); vs :=ss; rec := fal se % the recovery action
PROC Redo() = % replay vl , then clear sl
% sl = vl before this is called
DO vl # {} => << ss :=ss + {vl.head} >> << vl :=vl.tail > OD
<< sl 1= {} >
FUNC DoLog(s, I) -> S = %s + | = DoLog(s,
IF | ={} => RET s % apply Usinl tos
[*] RET DoLog((!.head)(s), I.tail))
FI

END LogRecovery

Here is what this code does for the previous example, assuming for simplicity that A = U. You
may wish to apply the abstraction function to the state at each point and check that each action
simulates an action of the spec.

Handout 19. Sequential Transactions with Caching

6.826—Principles of Computer Systems 2000
Action X Y x vy sl vl ph
5 5 5 5 { 7! idle
Begin();
Do(x =x - 1),
Do(y =y+1)

{x:=4; y=6} run
Commit

{x=4;y:=6} {x=4;y:=6} idle
Redo: apply x:=4

4 5 4 6 {x:=4; y=6} {y:=6} idle
Redo: apply y:=6
4 6 4 6 {x=4;y=6} {} idle
Redo: erase si
4 6 4 6 {} {} ide
Crash before commit
55 5 5 {} {} ide
Log idempotence
For this redo crash recovery to work, we need idempotence of logs: s + | + 1 = s + |, since
a crash can happen during recovery. From this we get (remember that " <=" on sequences is

“prefix”)

1 <=12==>s +11+12=s+12,
and more generally

(ALL 12, 12] IsHccups(ll, 12) ==>s + 11 +12 =5 +12)
where

FUNC | sHi ccups(k: Log, |) -> Bool =
% k is a sequence of attempts to complete |
RET k = {}
\/ (EXISTS k', I'] k= k' + 1" V1 #{} I\ <=
/\ IsHiccups(k', 1))
because we can keep absorbing the last hiccup | ' into the final complete | . See handout 7 for
more detail.

We can get log idempotence if the U's commute and are idempotent, or if they are all writes like
the assignments to x and y in the example, or writes of disk blocks. Often, however, we want to
make more general updates atomic, for instance, inserting an item into a page of a B-tree. We
can make general U's log idempotent by attaching a UID to each one and recording it in S:

TYPE S
U

[ss, tags: SET Ul D
[uu: SS->SS, tag: U Dl WTH { neani ng: =Meani ng }

FUNC Meani ng(u, s)->S =

IF u.tag IN s.tags => RET s
[*] RET S{ ss := (u.uu)(s.ss), tags := s.tags + {u.tag} }
FI

Handout 19. Sequential Transactions with Caching 6

6.826—Principles of Computer Systems

Ifall the u'sin | have different tags, we get log idempotence. The way to think about this is that
the modified updates have the meaning: if the tag isn’t already in the state, do the original
update, otherwise don’t do it.

Practical code for this makes each U operate on a single variable (that is, map one value to
another without looking at any other part of S; in the usual application, a variable is one disk
block). It assigns a version number VN to each U and keeps the VN of the most recently applied U
with each block. Then you can tell whether a U has already been applied just by comparing its VN
with the VN of the block. For example, if the version number of the update is 11:

Original Idempotent
The disk block x: Int Xx: Int
vn: Int
The update X 1= x + 1 I F vn = 10 => x := x + 1;

vn = 11
[*] SKIP FI

Note: vn = 10 implies that exactly updates 1, 2, ., 10 have been applied.

Writing the log atomically

This code is still not practical, because it requires writing the entire log atomically in Conmi t ,

and the log might be bigger than the one disk block that the disk hardware writes atomically.

There are various ways to get around this, but the standard one is to add a stable sph variable that
can bei dl e or commi t . We view LogRecovery as a spec for our new code, in which the sI of
the spec is empty unless sph = conmi t . The module below includes only the parts that are
different from LogRecovery. It changes sI only one update at a time.

MODULE | ncrement al Log % implements LogRecovery

VAR ...
sph : ENUMidle, commit] =idle % stable phase
vph : ENUMidle, run, commit] := idle % volatile phase
% ABSTRACTI ON to LogRecovery
LogRecovery.sl = (sph = commt => sl [*] {})
LogRecovery. ph = (sph # cormit => vph [*] idle)
the identity elsewhere
APROC Begin() = << vs :=ss; sl :={}; vl :={}; ©= run >>

APRCC Do(a) -> V RAISES {crashed} = <<

| F vph = run| ...

% the rest as before

Handout 19. Sequential Transactions with Caching

2000

6.826—Principles of Computer Systems 2000

PROCC Commit() =
I'F vph| = run =>

% copy VIl tosl abitatatime
VAR :=vl | DOI # {} => << sl :=sl {l.head}; | :=1.tail >> OD;
4< sph := commit; vph := commit >>;
Redo()
[*] RAISE crashed
Fl
PROC Crash() =
<< vs :=ss; vl 1= {}; (= idle > % what the crash does
vl 1= (vph =idle =>{} [*]] sl); % the recovery
Redo(); vs := ss % action
PROC Redo() = % replay v , then clear sl

DO vl # {} => << ss : = vl.tail >> 0D

sl # {} => << sl :
< sph :=idle; vph :

ss + {vl.head} >>; << vl
sl.tail > OD;

idle >>
END | ncrenent al Log
And here is the example again.
Action X Y «x y sl vl sph vph

Begin; Do; Do

5 5 4 6 {} {x=4;y:=6} idle run

Commit

5 5 4 6 {x:=4; y=6} {x:=4;y:=6} comit comit
Redo: x:=4; y==6

4 6 4 6 {x=4;y:=6} {} conmit conmmit
Redo: cleanup

4 6 4 6 () { idle idle

We have described sph as a separate stable variable, but in practice each transaction is labeled
with a unique transaction identifier, and sph = commi t for a given transaction is represented by
the presence of a commit record in the log that includes the transaction’s identifier. Conversely,
sph = idl e is represented by the absence of a commit record or by the presence of a later
“transaction end” record in the log. The advantages of this representation are that writing sph can
be batched with all the other log writes, and that no storage management is needed for the sph
variables of different transactions.

Note that you still have to be careful about the order of disk writes: all the log data must really be
on the disk before sph is set to conmi t . This complication, called “write-ahead log” or ‘WAL’ in
the database literature, is below the level of abstraction of this discussion.

Handout 19. Sequential Transactions with Caching 8

6.826—Principles of Computer Systems

Caching

We would like to have code for Sequent i al Tr that can run fast. To this end it should:

1. Allow the volatile state vs to be cached so that the frequently used parts of it are fast to
access, but not require a complete copy of the parts that are the same in the stable state.

2. Decouple Conmi t from actually applying the updates that have been written to the stable log,
because this slows down Conmi t , and it also does a lot of random disk writes that do not
make good use of the disk. By waiting to write out changes until the main memory space is
needed, we have a chance of accumulating many changes to a single disk block and paying
only one disk write to record them all.

3. Decouple crash recovery from actually applying updates. This is important once we have
decoupled Conmi t from applying updates, since a lot of updates can now pile up and
recovery can take a long time. Also, we get it more or less for free.

4. Allow uncommitted updates to be written to the stable log, and even applied to the stable
state. This saves a lot of bookkeeping to keep track of which parts of the cache go with
uncommitted transactions, and it allows a transaction to make more updates that will fit in the
cache.

Our new caching code has a stable state; as in LogRecover y, the committed state is the stable

state plus the updates in the stable log. Unlike LogRecover y, the stable state may not include all

the committed updates. Commi t need only write the updates to the stable log, since this gets them
into the abstract stable state Sequent i al TR. ss; a Backgr ound thread updates the concrete stable
state LogAndCache. ss. We keep the volatile state up to date so that Do can return its result
quickly. The price paid in performance for this scheme is that we have to reconstruct the volatile
state from the stable state and the log after a crash, rather than reading it directly from the
committed stable state, which no longer exists. So there’s an incentive to limit the amount by

which the background process runs behind.

Normally the volatile state consists of entries in the cache. Although the abstract code below
does not make this explicit, the cache usually contains the most recent values of variables, that is,
the values they have when all the updates have been done. Thus the stable state is updated simply
by writing out variables from the cache. If the write operations write complete disk blocks, as is
most often the case, it’s convenient for the cached variables to be disk blocks also. If the
variables are smaller, you have to read a disk block before writing it; this is called an ‘installation
read’. The advantage of smaller variables, of course, is that they take up less space in the cache.

The cache together with the stable state represents the volatile state. The cache is usually called
a ‘buffer pool’ in the database literature, where these techniques originated.

We want to ‘install” parts of the cache to the stable state independently of what is committed (for
a processor cache, install is usually called ‘flush’, and for a file system cache it is usually called
‘sync’). Otherwise we might run out of cache space if there are transactions that don’t commit
for a long time. Even if all transactions are short, a popular part of the cache might always be
touched by a transaction that hasn’t yet committed, so we couldn’t install it and therefore
couldn’t truncate the log. Thus the stable state may run ahead of the committed state as well as

Handout 19. Sequential Transactions with Caching

2000

6.826—Principles of Computer Systems

behind. This means that the stable log must include “undo” operations that can be used to reverse
the uncommitted updates in case the transaction aborts instead of committing. In order to keep
undoing simple when the abort is caused by a crash, we arrange things so that before applying an
undo, we use the stable log to completely do the action that is being undone. Hence an undo is
always applied to an “action consistent” state, and we don’t have to worry about the interaction
between an undo and the smaller atomic updates that together comprise the action. To implement
this rule we need to add an action’s updates and its undo to the log atomically.

To be sure that we can abort a transaction after installing some parts of the cache to the stable
state, we have to follow the “write ahead log” or WAL rule, which says that before a cache entry
can be installed, all the actions that affected that entry (and therefore all their undo’s) must be in
the stable log.

Although we don't want to be forced to keep the stable state up with the log, we do want to
discard old log entries after they have been applied to the stable state, whether or not the
transaction has committed, so the log space can be reused. Of course, log entries for undo’s can't
be discarded until Commi t .

Finally, we want to be able to keep discarded log entries forever in a “permanent log” so that we
can recover the stable state in case it is corrupted by a media failure. The permanent log is
usually kept on magnetic tape.

Here is a summary of our requirements:
Cache that can be installed independently of locking or commits.
Crash recovery (or ‘redo’) log that can be truncated.
Separate undo log to simplify truncating the crash recovery log.
Complete permanent log for media recovery.

The LogAndCache code below is a full description of a practical transaction system, except that it
doesn’t deal with concurrency (see handout 20) or with distributing the transaction among
multiple Sequent i al Tr modules (see handout 27). The strategy is to:

* Factor the state into independent components, for example, disk blocks.

» Factor the actions into log updates called U’s and cache updates called Ws. Each cache update
not only is atomic but works on only one state component. Cache updates for different
components commute. Log updates do not need either of these properties.

* Define an undo action for each action (not update). The action followed by its undo leaves
the state unchanged.

» Keep separate log and undo log, both stable and volatile.
Log : sequence of updates

UndoLog : sequence of undo actions (not updates)

Handout 19. Sequential Transactions with Caching

2000

6.826—Principles of Computer Systems

The essential step is installing a cache update into the stable state. This is an internal action, so it
must not change the abstract stable or volatile state. As we shall see, there are many ways to
satisfy this requirement.

Usually W(a cached update) is just s(ba) : = d (that is, set the contents of a block of the stable
state to a new value), as described in Buf f er Pool below. This is classical caching, and it may be
helpful to bear it in mind as concrete code for these ideas, which is worked out in detail in

Buf f er Pool . Note that this kind of caching has another important property: we can get the
current value of s(ba) from the cache. This property isn’t essential for correctness, but it
certainly makes it easier for Do to be fast.

MODULE LogAndCache [
Vv, % Value of an action
SO W TH {s0: =()->S0} % abstract State; SO initially
] = EXPORT Begin, Do, Commit, Abort, Crash =

TYPE A = S>>V, S % Action
S = SO WTH {"+": =DoLog, % State with ops
"++": = DoCache,
-" 1= UndoLog}
Tag = ENUM commi t]
U = S->8 % Update
Un = (A + ENUM cancel]) % Undo
w = S->8 % update in cache
L = SEQ (SEQ U + Tag) % Log
UL = SEQ Un % Undo Log
C = SET WWTH {"++": =Conbi neCache} % Cache
Ph = ENUMidle, run] % Phase
VAR ss 1= S.s0() % Stable State
sl = L} % Stable Log
sul = UL{} % Stable Undo Log
c o C:=1{} % Cache (dirty part)
vl = L{} % Volatile Log
vul = UL{} % Volatile Undo Log
vph =idle % Volatile PHase
pl = L} % Permanent Log
undoi ng := fal se

Note that there are two logs, called L and UL (for undo log). A L records groups of updates; the
difference between an update U and an action A is that an action can be an arbitrary state change,
while an update must interact properly with a cache update W To achieve this, a single action
must in general be broken down into several updates. All the updates from one action form one
group in the log. The reason for grouping the updates of an action is that, as we have seen, we
have to add all the updates of an action, together with its undo, to the stable log atomically.

There are various ways to represent a group, for example as a sequence of updates delimited by a

special mar k token, but we omit these details.

Handout 19. Sequential Transactions with Caching

% implements Sequent i al Tr

6.826—Principles of Computer Systems

A cache update wmust be applied atomically to the stable state. For example, if the stable state is
just raw disk pages, the only atomic operation is to write a single disk page, so an update must be
small enough that it changes only one page.

UL records undo actions Un that reverse the effect of actions. These are actions, not updates; a Un
is converted into a suitable sequence of U’s when it is applied. When we apply an undo, we treat
it like any other action, except that it doesn’t need an undo itself; this is because we only apply
undo’s to abort a transaction, and we never change our minds about aborting a transaction. We
do need to ensure either that each undo is applied only once, or that undo actions have log
idempotence. Since we don’t require log idempotence for ordinary actions (only for updates), it’s
unpleasant to require it for undo’s. Instead, we arrange to remove each undo action from the
undo log atomically with applying it. We code this idea with a special Un called cancel that
means: don’t apply the next earlier Un in the log that hasn’t already been canceled, and we write
acancel tovul /sul atomically as we write the updates of the undo action to vl / sI . For

example, after un1, un2, and un3 have been processed, ul might be

un0 unl un2 cancel un3 cancel cancel

un0 unl un2 cancel cancel

un0 unl cancel

un0

Of course many other encodings are possible, but this one is simple and fits in well with the rest

of the code.

Examples of A's:
f(x) 1=y % simple overwriting
f(x) :=1f(x) +y % not idempotent
fo=1f{x->} % delete

split B-tree node

This code has commit records in the log rather than a separate sph variable as in
I ncr enent al Log. This makes it easier to have multiple transactions in the stable log. For brevity
we omit the machinations with sph.

We have the following requirements on U, Un, and W

* We can add atomically to sI both all the U’s of an action and the action’s undo (For ceOne
does this).

* Applying a Wto ss is atomic (I nst al | does this).

e Applying a Wto ss doesn’t change the abstract ss or vs. This is a key property that replaces
the log idempotence of LogRecovery.

* A Wlooks only at a small part of s when it is applied, normally only one component
(DoCache does this).

* Mapping U to Wis cheap and requires looking only at a small part (normally only one
component) of ss, at least most of the time (Appl y does this).

e All Ws in the cache commute. This ensures that we can install cache entries in any order
(Conbi neCache assures this).

Handout 19. Sequential Transactions with Caching

2000

6.826—Principles of Computer Systems 2000

% ABSTRACTI ON to Sequenti al Tr
Sequential Tr.ss = ss + sl — sul
Sequenti al Tr.vs (~undoing => ss + sl + vl
Sequenti al Tr. ph (~undoi ng => vph idle)

[*] ss + (sl+vl)—(sul +vul)

% | NVARI ANTS

[1] (ALL I'1, 12] sl =11+ {commt} + 12 % Stable undos cancel
/\ ~ commit INI2 % uncommitted tail of S|
==>ss + 11 =ss + sl - sul)
[2] ss + sl =ss + sl + vl - vul % Volatile undos cancel v
[3] ~ undoing ==> ss + sl + vl = ss ++ ¢ % Cache is correct; this isvs

[4] (ALL w1 :INc, w2 :INc |
wl * w2 = w2 * wl).

%All Ws in ¢ commute

[5] S.sO() + pl + sl - sul = ss % Permanent log is complete

[6] (ALL w:INc | ss ++ {w} + sl

= ss + sl

% Any cache entry can be installed

% External interface
PROC Begin() = << IF vph = run => Abort() [*] SKIP FI; vph := run >>
PROC Do(a) -> V RAISES {crashed} = <<

IF vph =run => VAR vV | v := Apply(a, AToUn(a, ss ++ c)); RET v
[*] RAISE crashed
Fl >>
PROC Commit () RAI SES {crashed} =
IF vph = run => ForceAll(); << sl :=sl + {comit}; sul :={}; vph :=idle >
[*] RAISE crashed
FI
PROC Abort () = undoing := true; Undo(); vph :=idle
PROC Checkpoint() = VAR c' :=¢, w| % movesl + vl topl
DOc' # {} =>w:=Install(); ¢ :=c¢" - {w} OD; % untileverythinginc' isinstalled
Truncat e()
PROC Crash() =
<< vl :={}; vul :={}; ¢ :={}; undoing := true >>;
Redo(); Undo(); vph :=idle
% Internal procedures invoked from Do and Commi t
APROC Apply(a, un) -> V = << % called by Do and Undo
VAR v, |, vs := ss ++ ¢ |
(v, 1) := AToL(a, vs); % find U’s that do a
vl = vl +1; vul := vul + {un};
VAR Cc' | ss ++ ¢ ++ ¢' = ss ++ c + | % Find W's for action a
=>c :=¢C ++ C';
RET v >>
Handout 19. Sequential Transactions with Caching 13

6.826—Principles of Computer Systems 2000

PROC ForceAll () = DO vl # {} => ForceOne() OD, RET % more all of vl to sl

APRCC ForceOne() = << VAR |1, 2 |
sl := sl + {vl.head}; sul := sul
vl :=wvl.tail; vul :=wvul.tail >>

% move one a from vl to sl
+ {vul . head};

% Internal procedures invoked from Cr ash or Abor t

PROC Redo() = VAR | :=+ : sl | % Restore ¢ from s| after crash
DO << | # {} => VAR vVs :=ss ++ ¢Cc, W | % Findw for eachu inl
vs ++ {w} = vs + L{{l.head}} =>c :=c¢c ++ {w}; | :=1.tail >>
oD
PROC Undo() = % Applysul + vul tovs
VAR ul := sul + vul, i :=0|
DO ul # {} => VAR un := ul.last |
ul :=ul.ren;
IF un=cancel =>1i :=i+1 [*] i>0 =>1i :=1i-1[*] Apply(un, cancel) FI
OD; undoing := fal se

% Every entry insul + vul hasacancel , and everything is undone invs.
% Background actions to install updates from c to SS and to truncate S|

THREAD Background() =

DO
Install ()
[1 ForceOne() % Enough of these implement WAL
[1 Drop()
[1 Truncate()
[1 SKI P
oD

APRCC Install() -> W= << VARw :INc |
Ss # ss ++ {w}
I\ [ss ++ {w} + sl = ss + sl|=>
ss := ss ++ {w}; RET w >>

% Apply some Wto SS; requires WAL
% wisn’t already inSS
% wis insl , the WAL condition

APRCC Drop() = << VAR W :INc | ss ++ {w} =ss =>c :=c¢ - {w} >>

APROC Truncate() = << VAR 11, |2 |
sl =11 +12/\ ss +12 =ss + sl

% Move some of s| to pl

= pl :=pl +11; sl :=12 >>

% Media recovery

The idea is to reconstruct the stable state ss from the permanent log p! by redoing all the
updates, starting with a fixed initial ss. Details are left as an exercise.

% Miscellaneous functions

FUNC AToL(a, s) -> (V, L) = VAR v, | |
l.size = 1/\ (v, s +1) = a(s) => RET (v, |)

% all U’s in one group

FUNC AToUn(a, s) -> Un = VAR un, v, s' |
(v, s') =a(s) /\ (nil, s) = un(s') => RET un

Handout 19. Sequential Transactions with Caching 14

6.826—Principles of Computer Systems 2000

The remaining functions are only used in guards and invariants.

FUNC DoLog(s, I) -> S = %s + | = DoLog(s, 1)
IF | ={} => RET s % apply Us inl tos
[*] VAR us :=1I.head |
RET DoLog((us IS Tag \/ us = {} =>s

[*] (us.head)(s), {us.tail} + 1.tail))
FI

%s ++ ¢ = DoCache(s, c¢)

FUNC DoCache(s, c¢) -> S =
=ws), c:=c - {w} OD RET s

DOVAR W :INc | s :

FUNC UndoLog(s, ul) -> S = %s - | = UndoLog(s, I)
IF ul ={} => RET s
[1] ul . last # cancel => RET UndoLog((u.last)(s), ul.rem)
[1 VAR ul'1, un, ul2 | un # cancel /\ ul =ull + {un, cancel} + ul2 =>
RET UndoLog(s, ull + ul2)
FI

A cache is a set of commuting update functions. When we combine two caches c1 and c2, we
want the total effect of c1 and c2, and all the updates still have to commute and be atomic
updates. The DoCache below just states this requirement, without saying how to achieve it.
Usually it’s done by requiring updates that don’t commute to compose into a single update that is
still atomic. In the usual case updates are writes of single variables, which do have this property,
sinceul * u2 = u2 if both are writes of the same variable.

FUNC Conbi neCache(cl, c2) -> C = % cl++c2 = Conbi neCache(cl, c2)
VAR c | (* : c.seq) = (* cl.seq) * (* : c2.seq)
/\ (ALL wl :INc, W2 :INc | wl # w2 ==>wl * w2 = w2 * wl) => RET ¢

END LogAndCache
We can summarize the ideas in LogAndCache:

e Writing stable state before committing a transaction requires undo. We need to write before
committing because cache space for changed state is limited, while the size ofa transaction
may not be limited, and also to avoid livelock that keeps us from installing some cache
entries.

¢ Every uncommitted log entry has a logged undo. The entry and the undo are made stable by a
single atomic action (using some low-level coding trick that we leave as an exercise for the
reader). We must log an action and its undo before installing a cache entry affected by it; this
is write ahead logging.

¢ Recovery is complete redo followed by undo of uncommitted transactions. Because of the
complete redo, undo’s are always from a clean state, and hence can be actions.

¢ Anundo is executed like a regular action, that is, logged. The undo of the undo is a special
cancel action.

* Writing a Wto stable state doesn’t change the abstract stable state. This means that redo
recovery works. It’s a strong constraint on the relation between logged U’s and cached Ws.

Handout 19. Sequential Transactions with Caching 15

6.826—Principles of Computer Systems 2000

Multi-level recovery

Although in our examples an update is usually a write of one disk block, the LogAndCache code
works on top of any kind of atomic update, for example a B-tree or even another transactional
system. The latter case codes each Was a transaction in terms of updates at a still lower level. Of
course this idea can be applied recursively to yield a # level system. This is called ‘multi-level
recovery’.2 It’s possible to make a multi-level system more efficient by merging the logs from
several levels into a single sequential structure.

Why would you want to complicate things in this way instead of just using a single-level
transaction, which would have the same atomicity? There are at least two reasons:

e The lower level may already exist in a form that you can’t change, without the necessary
externally accessible locking or commit operations. A simple example is a file system, which
typically provides atomic file renaming, on which you can build something more general. Or
you might have several existing database systems, on top of which you want to build
transactions that change more than one database. We show in handout 27 how to do this
using two-phase commit. But if the existing systems don’t implement two-phase commit, you
can still build a multi-level system on them.

* Often you can get more concurrency by allowing lower level transactions to commit and
release their locks. For example, a B-tree typically holds locks on whole disk blocks to
maintain the integrity of the index data structures, but at the higher level only individual
entries need to be locked.

Buffer pools

The standard code for the ideas in LogAndCache makes a U and a Wread and write a single block
of data. The Wjust gives the current value of the block, and the U maps one such block into
another. Both Ws (that is, cache blocks) and U’s carry sequence numbers so that we can get the
log idempotence property without restricting the kind of mapping that a U does, using the method
described earlier; these are called ‘log sequence numbers’ or LSN’s in the database literature.

The LSN’s are also used to code the WAL guard in | nst al | and the guard in Tr uncat e. It’s OK
to install a Wif the LSN of the last entry in s| is at least as big as the n of the W It’s OK to drop a
U from the front of s| if every uninstalled Win the cache has a bigger LSN.

The simplest case is a block equal to a single disk block, for which we have an atomic write.
Often a block is chosen to be several disk blocks, to reduce the size of indexes and improve the
efficiency of disk transfers. In this case care must be taken that the write is still atomic; many
commercial systems get this wrong.

The following module is incomplete.

2 D. Lomet. MLR: A recovery method for multi-level systems. Proc. SIGMOD Conf., May, 1992, pp 185-194.

Handout 19. Sequential Transactions with Caching 16

6.826—Principles of Computer Systems 2000

MODULE Buf f er Pool [% implements LogAndCache

V, % Value of an action
SO WTH {s0: =()->S0} % abstract State
Dat a
] EXPORT ... =
TYPE A = S->(V, S % Action
SN = Int % Sequence Number
BA = Int % Block Address
LB = [sn, data] % Logical Block
S = BA-> 1B % State
U = [sn, ba, f: LB->LB] % Update
Un = A
w = [ba, Ib] % update in cache
L = SEQU
uL = SEQ Un
C = SET W

FUNC vs(ba) -> LB = VAR wINc | wba = ba => RET wlb [*] RET ss(ba)
% This is the standard abstraction function for a cache

The essential property is that updates to different blocks commute: w. ba # u.ba ==> w
commutes with u, because u only looks at u. ba. Stated precisely:

(ALL s | (ALL ba | ba # u.ba ==> u(s)(ba) = s(ba)
/\ (ALL s' | s(u.ba) = s'(u.ba) ==> u(s)(u.ba) = u(s')(u.ba)))

So the guard in I nst al | testing whether w is already installed is just
(EXISTSu | ulINvl /\ u.ba = wa)
because in Do we get was W ba: =u. ba, |b:=u(vs)(u.ba)}.

END Buf f er Pool

Transactions meet the real world

Various problems arise in using the transaction abstraction we have been discussing to code
actual transactions such as ATM withdrawals or airline reservations. We mention the most
important ones briefly.

The most serious problems arise when a transaction includes changes to state that is not
completely under the computer’s control. An ATM machine, for example, dispenses cash; once
this has been done, there’s no straightforward way for a program to take back the cash, or even to
be certain that the cash was actually dispensed. So neither undo nor log idempotence may be
possible. Changing the state of a disk block has neither of these problems.

So the first question is: Did it get done? The jargon for this is “testability”. Carefully engineered
systems do as much as possible to provide the computer with feedback about what happened in
the real world, whether it’s dispensing money, printing a check, or unlocking a door. This means
having sensors that are independent of actuators and have a high probability of being able to

Handout 19. Sequential Transactions with Caching 17

6.826—Principles of Computer Systems 2000

detect whether or not an intended physical state transition occurred. It also means designing the
computer-device interface so that after a crash the computer can test whether the device received
and performed a particular action; hence the name “testability”.

The second question is: Is undo possible? The jargon for this is “compensation”. Carefully
engineered systems include methods for undoing at least the important effects of changes in the
state of the world. This might involve executing some kind of compensating transaction, for
instance, to reduce the size of the next order if too much is sent in the current one, or to issue a
stop payment order for a check that was printed erroneously. Or it might require manual
intervention, for instance, calling up the bank customer and asking what really happened in
yesterday’s ATM transaction. Usually compensation is not perfect.

Because compensation is complicated and imperfect, the first line of defense against the
problems of undo is to minimize the probability that a transaction involving real-world state
changes will have to abort. To do this, break it into two transactions. The first runs entirely inside
the computer, and it makes all the internal state changes as well as posting instructions for the
external state changes that are required. The second is as simple as possible; it just executes the
posted external changes. Often the second transaction is thought of as a message system that is
responsible for reliably delivering an action message to a physical device, and also for using the
testability features to ensure that the action is taken exactly once.

The other major difficulty in transactions that interact with the world arises only with concurrent
transactions. It has to do with input: if the transaction requires a round trip from the computer to
a user and back it might take a long time, because users are slow and easily distracted. For
example, a reservation transaction might accept a travel request, display flight availability, and
ask the user to choose a flight. If the transaction is supposed to be atomic, seats on the displayed
flights must remain available until the user makes her choice, and hence can’t be sold to other
customers. To avoid these problems, systems usually insist that a single transaction begin with
user input, end with user output, and involve no other interactions with the user. So the
reservation example would be broken into two transactions, one inquiring about flight
availability and the other attempting to reserve a seat. Handout 20 on concurrent transactions
discusses this issue in more detail.

Handout 19. Sequential Transactions with Caching 18

6.826—Principles of Computer Systems

20. Concurrent Transactions

We often (usually?) want more from a transaction mechanism than atomicity in the presence of
failures: we also want atomicity in the presence of concurrency. As we saw in handout 14 on
practical concurrency, the reasons for wanting to run transactions concurrently are slow
input/output devices (usually disks) and the presence of multiple processors on which different
transactions can run at the same time. The latter is especially important because it is a way of
taking advantage of multiple processors that doesn’t require any special programming. In a
distributed system it is also important because separate nodes need autonomy.

Informally, if there are two transactions in progress concurrently (that is, the Begi n of one
happens after the Begi n and before the Cormi t of the other), we want all the observable effects
to be as though all the actions of one transaction happen either before or after all the actions of
the other. This is called serializing the two transactions; it is the same as making each transaction
into an atomic action. This is good for the usual reason: it allows the clients to reason about each
transaction separately as a sequential program. The clients only have to worry about concurrency
in between transactions, and they can use the usual method for doing this: find invariants that
each transaction establishes when it commits and can therefore assume when it begins.

Here is the standard example. We are maintaining bank balances, with deposi t , wi t hdr aw, and
bal ance transactions. The first two involve reading the current balance, adding or subtracting
something, making a test, and perhaps writing the new balance back. If the read and write are
atomic actions, then the sequence r ead1, read2, wri t el, wri t e2 will result in losing the effect
of transaction 1. The third reads lots of balances and expects their total to be a constant. If its
reads are interleaved with the writes of the other transactions, it may get the wrong total.

The other property we want is that if one transaction precedes another (that is, its Conmi t
happens before the Begi n of the other) then it is serialized first. This is sometimes called
external consistency; it’s not just a picky detail that only a theoretician would worry about,
because it’s needed to ensure that when you put two transaction systems together you still get a
serializable system.

A piece of jargon you will sometimes see is that transactions have the ACID properties: Atomic,
Consistent, Isolated, and Durable. Here are the definitions given in Gray and Reuter:

Atomicity. A transaction’s changes to the state are atomic: either all happen or none happen.
These changes include database changes, messages, and actions on transducers.

Consistency. A transaction is a correct transformation of the state. The actions taken as a
group do not violate any of the integrity constraints associated with the state. This requires
that the transaction be a correct program.

Isolation. Even though transactions execute concurrently, it appears to each transaction T
that others executed either before T or after T, but not both.

Handout 20. Concurrent Transactions

2000

6.826—Principles of Computer Systems 2000

Durability. Once a transaction completes successfully (commits), its changes to the state
survive failures.

The first three appear to be different ways of saying that all transactions are serializable.

Many systems implement something weaker than serializability for committed transactions in
order to allow more concurrency. The standard terminology for weaker degrees of isolation is
degree 0 through degree 3, which is serializability. Gray and Reuter discuss the specs, code,
advantages, and drawbacks of weaker isolation in detail (section 7.6, pages 397-419).

We give a spec for concurrent transactions. Coding this spec is called ‘concurrency control’, and
we briefly discuss a number of coding techniques.

Spec

The spec is written in terms of the Aistories of the transactions: a history is a sequence of (action,
result) pairs, called events below. The order of the events for a single transaction is fixed: it is the
order in which the transaction did the actions. A spec must say that for all the committed
transactions there is a total ordering with three properties:

Serializable: Doing the actions in the total order would yield the same result from each
action, and the same final state, as the results and final state actually obtained.

Externally consistent: The total order is consistent with the partial order established by
the Begi n’s and Conmi t ’s.

Non-blocking: it’s always possible to abort a transaction. This is necessary because when
there’s a crash all the active transactions must abort.

This is all that most transaction specs say. It allows anything to happen for uncommitted
transactions. Operationally, this means that an uncommitted transaction will have to abort if it

has seen a result that isn’t consistent with any ordering of it and the committed transactions. It
also means that the programmer has to expect completely arbitrary results to come back from the
actions. In theory this is OK, since a transaction that gets bad results will not commit, and hence
nothing that it does can affect the rest of the world. But in practice this is not very satisfactory,
since programs that get crazy results may loop, crash, or otherwise behave badly in ways that are
beyond the scope of the transaction system to control. So our spec imposes some constraints on
how actions can behave even before they commit.

The spec works by keeping track of:
* The ordering requirements imposed by external consistency, in a relation xc.
* The histories of the transactions, in amap y.

It imposes an invariant on xc and y that is defined by the function I nvari ant . This function says
that the committed transactions have to be serializable in a way consistent with xc, and that
something must be true for the active transactions. As written, | nvar i ant offers a choice of
several “somethings”; the intuitive meaning of each one is described in a comment after its

Handout 20. Concurrent Transactions 2

6.826—Principles of Computer Systems

definition. The Do and Conmi t routines block if they can’t find a way to satisfy the invariant. The
invariant maintained by the system is I nvari ant (conmi tted, active, xc,).

It’s unfortunate that this spec deals explicitly with the histories of the transactions. Normally our
specs don’t do this, but instead give a state machine that only generates allowable histories. If
there’s a way to do this for the most general serializability spec I don’t know what it is.

The function | nvar i ant defining the main invariant appears after the other routines of the spec.

MODULE Concurrent Transacti ons [

Vv,

S
T
]

TYPE Resul t
A
E
H

TS
XC
TO
Y

VAR sO

y
Xc

active
committed
install ed
aborted

EXPORT Begi n,

Do, Conmmit, Abort,

[v, s]

S -> Result
[a, V]

SEQ E

SET T

(T, T)->Bool
SEQ T
T->H

S

Y{}
XC{* -> fal se}

TS{}
TS{}
TS{}
TS{}

% Value
% State of database
% Transaction ID

% Action
% Event
% History

% Transaction Set

% eXternal Consistency
% Total Order on T's

% state of transactions

% current base state
% current transaction St at e
% current required XC

% active transactions

% committed transactions
% installed transactions
% aborted transactions

The sets i nstal | ed and abor t ed are only for the benefit of careless clients; they ensure that T's
will not be reused and that Conmi t and Abor t can be repeated without raising an exception.

Handout 20. Concurrent Transactions

2000

6.826—Principles of Computer Systems

Operations on histories and orderings

To define Seri al i zabl e we need some machinery. A history h records a sequence of events,
that is, actions and the values they return. Appl y applies a history to a state to compute a new
state; note that it fails if the actions in the history don’t give back the results in the history. val i d
checks whether applying the histories of the transactions in a given total order can succeed, that
is, yield the values that the histories record. Consi st ent checks that a total order is consistent
with a partial order, using the cl osur e method (see section 9 of the Spec reference manual) to
get the transitive closure of the external consistency relation and the <<= method for non-

contiguous sub-sequence. Then Seri al i zabl e(ts, xc, y)istrue if there is some total order

t o on the transactions in the set t s that is consistent with xc and that makes the histories in y

valid.

FUNC Apply(h, s) -> S =
% return the end of the sequence of states starting at S and generated by
% h's actions, provided the actions yield h's values. Otherwise undefined.

RET {e :IN h, s’
FUNC Val i d(y0, to) ->

BOOL = RET Apply!(+ :

% the histories iny O in the order defined by t 0 are valid starting at SO

FUNC Consi stent (to, xcO)

RET xcO. cl osure.set <= (\

FUNC Seri al i zabl e(ts,
RET (EXISTS to |

Interface procedures

A transaction is identified by a transaction identifier t , which is assigned by Begi n and passed
as an argument to all the other interface procedures. Do finds a result for the action a that satisfies

xc0, yO0)
to. set

-> BOOL =

:= s BY (e.a(s’).v = e.v => e.a(s’).s)}.last

(to * y0), sO0)

tl, t2 | TO[tl, t2} <<= to).set

-> BOOL =
= ts /\ Consistent(to,

% is there a good TOoft s

2000

xc0) /\ Valid(yO, to))

the invariant; if this isn’t possible the Do can’t occur, that is, the transaction issuing it must abort
or block. For instance, if concurrency control is coded with locks, the issuing transaction will
wait for a lock. Similarly, Commi t checks that the transaction is serializable with all the already
committed transactions. Abor t never blocks, although it may have to abort several transactions

in order to preserve the invariant; this is called “cascading aborts” and is usually considered to be

bad, for obvious reasons.

Note that Do and Conmi t block rather than failing if they can’t maintain the invariant. They may
be able to proceed later, after other transactions have committed. But some code can get stuck

(for example, the optimistic schemes described later), and for these there must be a demon thread

that aborts a stuck transaction.

Handout 20. Concurrent Transactions

6.826—Principles of Computer Systems 2000
APROC Begin() -> T =
% Choose at and make it later inXC than every committed trans; can't block
<< VARt | ~t INactive \/ conmtted \/ installed \/ aborted =>
y(t) :={}; active := active \/ {t}; xc(t, t) := true;
DO VAR t' :IN commtted | ~ xc.closure(t', t) => xc(t', t) := true OD
RET t >>
APROCC Do(t, a) -> V RAISES {badT} =
% Add (a, v) to history; may block unless NC
<< IF ~t IN active => RAISE badT
[*] VAR v, y' = y{t ->y(t) + {Ea, v}}}} |
Invariant(comitted, active, xc, y') =>y :=y'; RET v >>
APROC Conmmi t (t) RAISES {badT} = << % may block unless AC (to keep invariant)
IF t INcommtted \/ installed => SKIP % repeating Conmi t is OK
[T ~t INactive \/ conmitted \/ installed => RAISE badT >>
[T t INactive /\ Invariant(commtted \/ {t}, active - {t}, xc, y) =>
comritted := committed \/ {t}; active := active - {t} >>

APROC Abort(t) RAISES {badT} = <<
IF t IN aborted => SKIP
[T t INactive =>
% Abortt , and as few others as possible to maintain the invariant.
% s is the possible sets of T’s to abort; choose one of the smallest ones.

% repeating Abor t is OK

VAR s = {ts | {t} <=ts /\ ts <= active
/\ Invariant(commtted, active - ts, xc, y)},
n = {ts | ts INs | ts.size}.mn,
aborts := {ts | ts INs /\ ts.size = n}.choose |
aborted := aborted \/ aborts; active:= active - aborts;
y 1= y{t->}
[*] RAISE badT
Fl >>

Installation daemon

This is not really part of the spec, but it is included to show how the data structures can be
cleaned up.

THREAD Install () = DO
<< VAR t |
t IN committed
% only if there’s no other transaction that should be earlier

/\ (ALL t' :INcommtted \/ active | xc(t , t')) =>
s0 1= Apply(y(t), s0);
committed := committed - {t}; installed :=
% remove t fromy and XC; this isn’t necessary, but it’s tidy
y 1= y{t ->};
DO VAR t' | xc(t , t') => xc := xc{(t , t') ->} OD
>>
[*] SKIP
oD

Handout 20. Concurrent Transactions

% doesn't block (need this for crashes)

% install a committed transaction in SO

installed \/ {t}

6.826—Principles of Computer Systems

Function defining the main invariant

2000

FUNC | nvariant(com TS, act: TS, xc0O, y0) -> BOOL = VAR current := com + act |
Seri al i zabl e(com xc0, y0)
/\ % constraints on active transactions: choose ONE
AC (ALL t :IN act | Serializable(com+ {t}, xc0, y0)))
CcC Seri al i zabl e(com + act, xc0, y0)
EO (ALL t :IN act | (EXISTS ts |
com <=ts /\ ts<=current /\ Serializable(ts + {t}, xcO, y0)))
oD (ALL t :IN act | (EXISTS ts |
At Begin(t)<=ts /\ ts<=current /\ Serializable(ts + {t}, xc0, y0)))
OC1 (ALL t :INact, h :IN Prefixes(yo(t)) | (EXISTS to, hl, h2 |
to.set = AtBegin(t) /\ Consistent(to, xc0) /\ Valid(y0, to)
/\ Islnterleaving(hl, {t' | t'" INcurrent - AtBegin(t) - {t} | yO(t')})
/\ h2 <<= h1 % subsequence
/\ h.last.a(Apply(+ : (to * y0) + h2 + h.renml, s0) = h.last.v))
oc2 (ALL t :IN act, h :IN Prefixes(y0(t)) | (EXISTS to, hl, h2, h3 |
to.set = AtBegin(t) /\ Consistent(to, xc0) /\ Valid(yO, to)
/\ Islnterleaving(hl, {t' | t' INcurrent - AtBegin(t) - {t} | yo(t')})
/\ h2 <<= h1 % subsequence
/\ Islnterleaving(h3, {h2, h.rem})
I\ h.last.a(Apply(+ : (to * y0) + h3, sO) = h.last.v))
NC true
FUNC Prefixes(h) -> SET H= RET {h' | h' <= h /\ h # {}}
FUNC AtBegin(t) -> TS = RET {t' | xc.closure(t', t)}
% The transactions that are committed whent begins.
FUNC Islnterleaving(h, s: SET H -> BOOL =
% h is an interleaving of the histories inS. This is true if there’s a
% multiseti | that partitions h. dom and each element of i | extracts
% one of the histories in's from h
RET (EXISTS il: SEQ SEQ Int |
(+: il) == h.domseq /\ {z :INil | | z* h} == s.seq)

Handout 20. Concurrent Transactions

6.826—Principles of Computer Systems

A set of transactions is serializable if there is a serialization for all of them. All versions of the
invariant require the committed transactions to be serializable; hence a transaction can only
commit if it is serializable with all the already committed transactions. There are different ideas
about the uncommitted ones. Some ideas use At Begi n(t) : the transactions that committed
before t started.

AC All Committable: every uncommitted transaction can commit now and AC still holds
for the rest (implies that any subset of the uncommitted transactions can commit,
since abort is always possible). Strict two-phase locking, which doesn’t release any
locks until commit, ensures AC.

CcC Complete Commit: it’s possible for all the transactions to commit (i.e., there’s at least
one that can commit and CC still holds for the rest). AC ==> CC. Two-phase locking,
which doesn’t acquire any locks after releasing one, ensures CC.

EO Equal Opportunity: every uncommitted transaction has some friends such that it can
commit if they do. CC ==> EO.

oD Orphan Detection: every uncommitted transaction is serializable with its At Begi n
plus some other transactions (a variation not given here restricts it to the At Begi n
plus some other committed transactions). It may not be able to commit because it may
not be serializable with all the committed transactions; a transaction with this
property is called an ‘orphan’. Orphans can arise after a failure in a distributed system
when a procedure keeps running even though its caller has failed, restarted, and
released its locks. The orphan procedure may do things based on the old values of the
now unlocked data. EO ==> OD.

oC Optimistic Concurrency: uncommitted transactions can see some subset of what has
happened. There's no guarantee that any of them can commit; this means that the code
must check at commit. Here are two versions; OC1 is stronger.

oc1: Each sees At Begi n + some other stuff + its stuff; this roughly corresponds to
having a private workspace for each uncommitted transaction. OD ==> OCL.

oc2: Each sees At Begi n + some other stuff including its stuff; this roughly
corresponds to a shared workspace for uncommitted transactions. OC1 ==> OC2

NC No Constraints: uncommitted transactions can see arbitrary values. Again, there's no
guarantee that any of them can commit. 0C2 ==> NC.

Note that each of these implies all the lower ones.

Handout 20. Concurrent Transactions

6.826—Principles of Computer Systems

Code

In the remainder of the handout, we discuss various ways to code these specs. These are all ways
to code the guards in Do and Conmi t , stopping a transaction either from doing an action which
will keep it from committing, or from committing if it isn’t serializable with other committed
transactions.

Two-phase locking

The most common way to code this spec! is to ensure that a transaction can always commit (AC)
by

acquiring locks on data in such a way that the outstanding actions of active transactions
always commute, and then

doing each action of transaction t in a state consisting of the state of all the committed
transactions plus the actions of t .

This ensures that we can always serialize t as the next committed transaction, since we can
commute all its actions over those of any other active transaction. We proved a theorem to this
effect in handout 17, the “big atomic actions” theorem. With this scheme there is at least one
time where a transaction holds all its locks, and any such time can be taken as the time when the
transaction executes atomically. If all the locks are held until commit (strict two-phase locking),
the serialization order is the commit order (more precisely, the commit order is a legal
serialization order).

To achieve this we need to associate a set of locks with each action in such a way that if two
actions don’t commute, then they have conflicting locks. For example, if the actions are just

reads and writes, we can have a read lock and a write lock for each datum, with the rule that read
locks don’t conflict with each other, but a write lock conflicts with either. This works because

two reads commute, while a read and a write do not. Note that the locks are on the actions, not
on the updates into which the actions are decomposed to code logging and recovery.

Once acquired, t ’s locks must be held until t commits. Otherwise another transaction could see
data modified by t ; thenif t aborts rather than committing, the other transaction would also have
to abort. Thus we would not be maintaining the invariant that every transaction can always
commit, because the premature release of locks means that all the actions of active transactions
may not commute. Holding the locks until commit is called strict two-phase locking.

A variation is to release locks before commit, but not to acquire any locks after you have
released one. This is called two-phase locking, because there is a phase of acquiring locks,
followed by a phase of releasing locks. Two-phase locking implements the CC spec.

One drawback of locking is that there can be deadlocks, as we saw in handout 14. It’s possible to
detect deadlocks by looking for cycles in the graph of threads and locks with arcs for the
relations “thread a waiting for lock b” and “lock ¢ held by thread d”. This is usually not done for

!'In Jim Gray’s words, “People who do it for money use locks.” This is not strictly true, but it’s close.

Handout 20. Concurrent Transactions

6.826—Principles of Computer Systems 2000

mutexes, but it often is done by the lock manager of a database or transaction processing system,
at least for threads and locks on a single machine. It requires global information about the graph,
so it is expensive to code across a distributed system. The alternative is timeout: assume that if a
thread waits too long for a lock it is deadlocked. Timeout is the poor man’s deadlock detection;
most systems use it. A transaction system needs to have an automatic way to handle deadlock
because the clients are not supposed to worry about concurrency, and that means they are not
supposed to worry about avoiding deadlock.

To get a lot of concurrency, it is necessary to have fine-granularity locks that protect only small
amounts of data, say records or tuples. This introduces two problems:

There might be a great many of these locks.

Usually records are grouped into sets, and an operation like “return all the records with
hai r Col or = bl ue” needs a lock that conflicts with inserting or deleting any such record.

Both problems are usually solved by organizing locks into a tree or DAG and enforcing the rule
that a lock on a node conflicts with locks on every descendant of that node. When there are too
many locks, escalate to fewer locks with coarser granularity. This can get complicated; see Gray
and Reuter? for details.

We now make the locking scheme more precise, omitting the complications of escalation. Each
lock needs some sort of name; we use strings, which might have the form " Read(addr) ", where
addr is the name of a variable. Each transaction t has a set of locks | ocks(t), and each action a
needs a set of locks pr ot ect (a) . The conf i ct relation says when two locks conflict. It must
have the property stated in invariant | 1, that non-commuting actions have conflicting locks. Note
that conf | i ct need not be transitive.

Invariant | 2 says that a transaction has to hold a lock that protects each of its actions, and | 3 says
that two active transactions don’t hold conflicting locks. Putting these together, it’s clear that all
the committed transactions in commit order, followed by any interleaving of the active
transactions, produces the same histories.

TYPE Lk = String
Lks = SET Lk

CONST
protect : A -> Lks
conflict : (Lk, Lk) -> Bool

%11 (ALL al, a2 | al * a2 # a2 * al ==> conflict(protect(al), protect(a2)))
VAR | ocks : T -> Lks
%12: (ALL t :IN active, e :INy(t) | protect(e.a) <= locks(t))

%13: (ALL t1 :IN active, t2 :INactive | t1 # t2 ==>
(ALL Tkl :IN locks(tl), k2 :INlocks(t2) | ~ conflict(lkl, 1k2)))

2Gray and Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993, pp 406-421.

Handout 20. Concurrent Transactions 9

6.826—Principles of Computer Systems 2000

To maintain | 2 the code needs a partial inverse of the | ocks function that answers the question:
does anyone hold a lock that conflicts with | k.

Multi-version time stamps

It’s possible to give very direct code for the idea that the transactions take place serially, each
one at a different instant —we make each one happen at a single instant of logical time. Define a
logical time and keep with each datum a history of its value at every instant in time. This can be
represented as a sequence of pairs (time, value), with the meaning that the datum has the given
value from the given time until the time of the next pair. Now we can code AC by picking a time
for each transaction (usually the time of its Begi n, but any time between Begi n and Conmi t will
satisfy the external consistency requirement), and making every read obtain the value of the
datum at the transaction’s time and every write set the value at that time.

More precisely, a read at ¢ gets the value at the next earlier definition, call it, and leaves a note
that the value of that datum can’t change between ¢ and ¢' unless the transaction aborts. To
maintain AC the read must block if #'isn’t committed. If the read doesn’t block, then the
transaction is said to read ‘dirty data’, and it can’t commit unless the one at ¢’ does. This version
implements CC instead of AC. A write at # may not be possible, because some other transaction
has already read a different value at ¢. This is the equivalent of deadlock, because the transaction
cannot proceed. Or, in Jim Gray's words, reads are writes (because they add to the history) and
waits are aborts (because waiting for a write lock turns into aborting since the value at that time
is already fixed).> These translations are not improvements, and they explain why multi-version
time stamps have not become popular.

A drastically simplified form of multi-version time stamps handles the common case of a very
large transaction t that reads lots of shared data but only writes private data. This case arises in
running a batch transaction that needs a snapshot of an online database. The simplification is to
keep just one extra version of each datum; it works because t does no writes. You turn on this
feature when t starts, and the system starts to do copy-on-write for all the data. Once t is done
(actually, there could be several), the copies can be discarded.

Optimistic concurrency control

It’s easier to ask forgiveness than to beg permission.
Grace Hopper

Sometimes you can get better performance by allowing a transaction to proceed even though it
might not be able to commit. The standard version of this optimistic strategy allows a transaction
to read any data it likes, keeps track of all the data values it has read, and saves all its writes in
local variables. When the transaction commits, the system atomically

checks that every datum read still has the value that was read, and

if this check succeeds, installs all the writes.

3 Gray and Reuter, p 437.

Handout 20. Concurrent Transactions 10

6.826—Principles of Computer Systems 2000

This obviously serializes the transaction at commit time, since the transaction behaves as if it did
all its work at commit time. If any datum that was read has changed, the transaction aborts, and
usually retries. This implements OC1 or OC2. The check can be made efficient by keeping a
version number for each datum. Grouping the data and keeping a version number for each group
is cheaper but may result in more aborts.

The disadvantages of optimistic concurrency control are that uncommitted transactions can see
inconsistent states, and that livelock is possible because two conflicting transactions can
repeatedly restart and abort each other. With locks at least one transaction will always make
progress as long as you choose the youngest one to abort when a deadlock occurs.

OCC can avoid livelock by keeping a private write buffer for each transaction, so that a
transaction only sees the writes of committed transactions plus its own writes. This ensures that
at least one uncommitted transaction can commit whenever there’s an uncommitted transaction
that started after the last committed transaction t . A transaction that started before t might see
both old and new values of variables written by t , and therefore be unable to commit. Of course
a private write buffer for each transaction is more expensive than a shared write buffer for all of
them. This is especially true because the shared buffer can use copy-on-write to capture the old
state, so that reads are not slowed down at all.

The Hydra design for a single-chip multi-processor* uses an interesting version of OCC to allow
speculative parallel execution of a sequential program. The idea is to run several sequential
segments of a program in parallel as transactions (usually loop iterations or a procedure call and
its continuation). The desired commit order is fixed by the original sequential ordering, and the
earliest segment is guaranteed to commit. Each transaction has a private write buffer but can see
writes done by earlier transactions; if it sees any values that are later overwritten then it has to
abort and retry. Most of this logic is coded by the hardware of the on-chip caches and write
buffers.

Field calls and escrow locks

There is a specialization of optimistic concurrency control called “field calls with escrow
locking” that can perform much better under some very special circumstances that occur
frequently in practice. Suppose you have an operation that does

<< |F pred(v) =>v :=f(v) [*] RAISE error >>

where f is total. A typical example is a debit operation, in which v is a balance, pr ed(v) is

v > 100,and f (v) isv - 100. Then you can attach to v a ‘pending list’ of the f ’s done by
active transactions. To do this update, a transaction must acquire an ‘escrow lock’ on v; this lock
conflicts if applying any subset of the f ’s in the pending list makes the predicate false. In general
this would be too complicated to test, but it is not hard if f ’s are increment and decrement (v +
nandv - n)and pred’s are single inequalities: just keep the largest and smallest values that v
could attain if any subset of the active transactions commits. When a transaction commits, you

4 Hammond, Nayfeh, and Olukotun, A single-chip multiprocessor, IEEE Computer, Sept. 1997. Hammond, Willey,
and Olukotun, Data speculation support for a chip multiprocessor, Proc 8th ACM Conference on Architectural
Support for Programming Languages and Operating Systems, San Jose, California, Oct. 1998. See also http://www-
hydra.stanford.edu/publications.shtml.

Handout 20. Concurrent Transactions 11

6.826—Principles of Computer Systems 2000

apply all its pending updates. Since these field call updates don’t actually obtain the value of v,
but only test pr ed, they don’t need read locks. An escrow lock conflicts with any ordinary read
or write. For more details, see Gray and Reuter, pp 430-435.

This may seem like a lot of trouble, but if v is a variable that is touched by lots of transactions
(such as a bank branch balance) it can increase concurrency dramatically, since in general none
of the escrow locks will conflict.

Full escrow locking is a form of locking, not of optimism. A ‘field call’ (without escrow locking)
is the same except that instead of treating the predicate as a lock, it checks atomically at commit
time that all the predicates in the transaction are still true. This is optimistic. The original form of
optimism is a special case in which every pr ed has the form v = ol d val ue and every f (v) is
just new val ue.

Nested transactions

It’s possible to generalize the results given here to the case of nested transactions. The idea is
that within a single transaction we can recursively embed the entire transaction machinery. This
isn’t interesting for handling crashes, since a crash will cause the top-level transaction to abort. It
is interesting, however, for making it easy to program with concurrency inside a transaction by
relying on the atomicity (that is, serializability) of sub-transactions, and for making it easy to
handle errors by aborting unsuccessful sub-transactions.

With this scheme, each transaction can have sub-transactions within itself. The definition of
correctness is that all the sub-transactions satisfy the concurrency control invariant. In particular,
all committed sub-transactions are serializable. When sub-transactions have their own nested
transactions, we get a tree. When a sub-transaction commits, all its actions are added to the
history of its parent.

To code nested transactions using locking we need to know the conflict rules for the entire tree.
They are simple: if two different transactions hold locks | k1 and | k2 and one is not the ancestor
of the other, then | k1 and | k2 must not conflict. This ensures that all the actions of all the
outstanding transactions commute except for ancestors and descendants. When a sub-transaction
commits, its parent inherits all its locks.

Interaction with recovery

We do not discuss in detail how to put this code for concurrency control together with the code
for recovery that we studied earlier. The basic idea, however, is simple enough: the two are
almost completely orthogonal. All the concurrent transactions contribute their actions to the logs.
Committing a transaction removes its undo’s from the undo logs, thus ensuring that its actions
survive a crash; the single-transaction version of recovery in handout 18 removes everything
from the undo logs. Aborting a transaction applies its undo’s to the state; the single-transaction
version applies all the undo’s.

Concurrency control simply stops certain actions (Do or Cormi t) from happening, and perhaps
aborts some transactions that can’t commit. This is clearest in the case of locking, which just
prevents any undesired changes to the state. Multi-version time stamps use a more complicated

Handout 20. Concurrent Transactions 12

6.826—Principles of Computer Systems 2000

representation of the state; the ordinary state is an abstraction given a particular ordering of the
transactions. Optimistic concurrency control aborts some transactions when they try to commit.
The trickiest thing to show is that the undo’s that recovery does in Abor t do the right thing.

Performance summary

Each of the coding schemes has some costs when everything is going well, and performs badly
for some combinations of active transactions.

Locking pays the costs of acquiring the locks and of deadlock detection in the good case.
Deadlocks lead to aborts, which waste the work done in the aborted transactions, although it’s
possible to choose the aborted transactions so that progress is guaranteed. If the locks are too
coarse either in granularity or in mode, many transactions will be waiting for locks, which
increases latency and reduces concurrency.

Optimistic concurrency control pays the cost of noticing competing changes in the good case,
whether this is done by version numbers or by saving initial values of variables and checking

them at Conmi t . If transactions conflict at Conmi t , they get aborted, which wastes the work they
did, and it’s possible to have livelock, that is, no progress, in the shared-write-buffer version; it’s
OK in the private-write-buffer version, since someone has to commit before anyone else can fail
to do so.

Multi-version time stamps pay a high price for maintaining the multi-version state in the good
case; in general reads as well as writes change it. Transaction conflicts lead to aborts much as in
the optimistic scheme. This method is inferior to both of the others in general; it is practical,
however, for the special case of copy-on-write snapshots for read-only transactions, especially
large ones.

Handout 20. Concurrent Transactions 13

6.826—Principles of Computer Systems

Handout 20. Concurrent Transactions

2000

