6.826—Principles of Computer Systems

27. Distributed Transactions

In this handout we study the problem of doing atransaction (that is, an atomic action) that
involves actions a severd different transaction systems, which we cal the ‘ servers . The most
obvious application is* distributed transactions’: separate databases running on different
computers. For example, we might want to transfer money from an account at Citibank to an
account & Wells Fargo. Each bank runsits own transaction system, but we still want the entire
transfer to be atomic. More generdly, however, it is good to be able to build up a system
recursively out of smdler parts, rather than designing the whole thing as a single unit. The
different parts can have different code, and the big system can be built even though it wasn't
thought of when the smaller ones were designed.

Specs

We have to solve two problems. composing the separate servers so that they can do ajoint action
atomicaly, and deding with partid failures. Compostion doesn't require any changesin the

gpec of the servers, two servers that implement the Sequent i al Tr gpec in handout 19 can jointly
commit atransaction if some third agent keeps track of the transaction and tells them both to
commit. Partid failures do require changes in the server spec. In addition, they require, or a least
strongly suggest, changesin the client spec. We consider the latter firdt.

The client spec

In the code we have in mind, the client may be invoking Do actions at severa servers. If one of
them fails, the transaction will eventualy abort rather than committing. In the meantime,

however, the client may be able to complete Do actions at other servers, snce we don’t want each
server to have to verify that no other server has failed before performing aDo. In fact, the client
may itsdf be running on severd machines, and may be invoking severa Do’ s concurrently. So

the spec should say that the transaction can’'t commit after afailure, and can abort any time after
afailure, but need not abort until the client tries to commit. Furthermore, after afailure some Do
actions may report cr ashed, and others, including some later ones, may succeed.

We express this by adding another valuef ai | ed to the phase. A crash setsthe phasetof ai | ed,
which enablesan internd Cr ashAbor t action that aborts the transaction. In the meantime a Do
can ether succeed or raisecr ashed.

MODULE Di st SeqTr |
V, % Value of an action
SWTH{ s0: ()->S}

% State
] EXPORT Begin, Do, Commit, Abort, Crash =
TYPE A = S>>V, S % Action
VAR ss = S.s0() % Stable State
Vs = S.s0() % Voldtile State
ph . ENUMidle, run, failed] :=idle % PHase (volatile)

Handout 27. Distributed Transactions

2000

6.826—Principles of Computer Systems 2000

APROC Begin() = << Abort(); ph := run >> % aborts any current trans.

APROC Do(a) -> V RAISES {crashed} = <<

IF ph #idle = VARV | (v, vs) := a(vs); RET v
[] ph # run => RAI SE crashed
FI >>

APROC Conmit() RAISES {crashed} =

<< IF ph = run => ss :=vs; ph :=idle [*] Abort(); RAISE crashed FI >>
PROC Abort () = << vs :=ss, ph :=idle >
PROC Crash () = << ph := failed >>

THREAD CrashAbort() = DO << ph = failed => Abort() >> OD

END Di st SeqTr

Inared system Begi n Sarts a new transaction and returns its transaction identifier t , whichisan
argument to every other routine. Transactions can commit or abort independently (subject to the
condraints of concurrency control). We omit this complication. Dedling with it requires
representing each transaction’ s state change independently in the spec. If the concurrency specis
‘any can commit’, Do(t) SeeSvs = ss + actions(t),andCommit(t) doesss := ss +
actions(t).

Partial failures

When severd servers are involved in atransaction, they must agree about whether the
transaction commits. Thus each transaction commit requires consensus among the servers.

The code that implements transactions usually keeps the state of atransaction in volatile storage,
and only guarantees to make it able a commit time. Thisisimportant for efficiency, snce
stable storage writes are expensive. To do this with severa servers requires a server action to
make a transaction’ s state stable without committing it; this action istraditiondly caled

Prepar e. We can invoke Pr epar e on each server, and if they al succeed, we can commit the
transaction. Without Pr epar e we might commit the transaction, only to learn thet some server
has failed and logt the transaction Sate.

Theold LogRecovery or LogAndCache codein handout 19 doesaPr epar e implicitly, by forcing
the log to stable storage before writing the commit record. It doesn't need a separate Pr epar e
action because it has direct and exclusive access to the state, so that the sequentia flow of

Conmi t ensuresthat the Sate is stable before the transaction commits. For the same reason, it
doesn’t need separate actions to clean up the stable state; the sequentid flow of Conmi t and

Cr ash takes care of everything.

Once asarver is prepared, it must maintain the transaction ate until it finds out whether the
transaction committed or aborted. We study a design in which a separate * coordinator’ module is
responsible for kegping track of al the servers and telling them to commit or abort. Redl systems
sometimes alow the serversto query the coordinator, but we omit this minor variation.

We give the spec for a server. Since we want to be able to compose servers repeatedly, we give it
asamodification of the Di st SeqTr client gpec. The change is the addition of the stable * prepared
date’ ps, and aseparate Pr epar e action between the last Do and Conmi t . A transaction is

Handout 27. Distributed Transactions

6.826—Principles of Computer Systems

prepared if ps # ni | . Notethat Cr ash has no effect on a prepared transaction. Abor t workson
any transaction, prepared or not.

MODULE Tr Server |

V, % Value of an action
SWTH { sO0: ()->S} % State
] EXPORT Begin, Do, Commit, Abort, Prepare, Crash =

TYPE A = S>>V, 9 % Action

VAR ss = S.s0() % Stable State
ps (S + Null) :=nil % Prepared State (stable)
Vs 1= S.s0() % Volatile State
ph : ENUMidle, run, failed] :=idle % PHase (volatile)

% | NVARIANT ps # nil ==> ph =idle

APRCC Begin() = << Abort(); ph := run >> % aborts any current trans.

APROC Do(a) -> V RAISES {crashed} = <<
IF ph #idle = VARV | (v, vs) := a(vs); RET v
[] ph # run => RAI SE crashed
FI >>

APROC Prepare() RAISES {crashed} =
<< IF ph = run => ps :=vs; ph :=idle [*] RAISE crashed >>

APROC Commit() RAISES {crashed} = <<
IF ps # nil => ss :=ps; ps :=nil [*] Abort(); RAISE crashed FI >>

PROC Abort ()
PROC Crash ()

<< vs :=5ss, ph:=1idle; ps :=nil >>
<< |F ps = nil => ph :=failed [*] SKIP >>

THREAD CrashAbort() = DO << ph = failed => Abort() >> OD

END Tr Server

This spec requiresits client to cal Pr epar e exactly once before Conmi t , and confusingly raises
crashed inDo after Pr epar e. A red sysem might handle these variations somewhat differently,
but the differences are inessentid.

We don't give code for this spec, Snce they are very Smilar to LogRecovery Or LogAndCache.
Liketheold commi t , Pr epar e forces the log to stable storage; then it writesapr epar ed record.
Conmi t to aprepared transaction writes a commit record and then applies the log or discards the
undo’s. Recovery rebuilds the volatile list of prepared transactions from the pr epar ed records so
that alater Commi t or Abort knowswhat to do. Recovery must also restore the concurrency
control state for prepared transactions; usudly this means re-acquiring their locks.

Committing a transaction

We have not yet explained how to code Di st SeqTr using severa copiesof Tr Ser ver . The basic
ideaissmple. A coordinator keeps track of al the serversthat areinvolved in the transaction
(they are often called ‘workers, ‘participants, or ‘daves’ in this story). Normally the

coordinator is aso one of the servers, but aswith Paxos, it's easier to explain what's going on by

Handout 27. Distributed Transactions

6.826—Principles of Computer Systems 2000

keeping the two functions entirely separate. When the client tells the coordinator to commit, the
coordinator tells al the serversto prepare. This succeedsif dl the Pr epar e’s return normdly.
Then the coordinator records stably that the transaction committed, and tells dl the serversto
commit.

The abgtraction function from the states of the coordinator and the servers to the state of
Di st SeqTr issmple. We need namesfor the servers:

TYPER = Int % seRver name

The coordinator' s sateis

VAR ph : ENUMidle, conmitted] :=idle
servers : SET R := {}
The server states are
VAR s : R->[ss: S ps: (S + Null), vs: S, ph]

The spec’svs isthe***union of al the server vs vaues. The spec’sss isthe union of the
sarvers ss unlessph = conmi tt ed, inwhich case any server with anon-ni | ps subdtitutes that:

Di stSeqTr.ss = + : {r :IN servers |
(ph = committed /\ s(r).ps # nil => s(r).ps [*] s(r).ss)}

We need to maintain the invariant that any server whose phaseisnot idie or which hasps # ni |
isinservers, S0 that it will hear from the coordinator what it should do.

If some sarver hasfalled, itsPr epar e will rasecr ashed. In this case the coordinator tells dl the
serversto abort, and raises cr ashed to the client. A server that is not prepared and doesn't hear
from the coordinator can abort on its own. A server that is prepared cannot abort on its own, but
must hear from the coordinator whether the transaction has committed or aborted.

This entire dgorithm is caled “two- phase commit”; do not confuse it with two- phase locking.
Thefirgt phaseis the prepares, the second the commits. The coordinator can use any agorithm it
likes to record the commit or abort decison. However, once some server is prepared, losing this
information will leave that server permanently in limbo, uncertain whether to commit or abort.

For this reason, a high-availability transaction sysem should use a high-availahility way of
recording the commit. This means storing it in severd places and using a consensus agorithm to
get these places to agree.

For example, you could use the Paxas dgorithm. 1t's convenient (though not necessary) to use
the servers as the agents and the coordinator as leader. In this case the query/report phase of
Paxos can be combined with the prepares, so no extra messages are required for that. Thereis
gill one round of command/report messages, which is more expendve than the minimum, non
fault-tolerant consensus agorithm, in which the coordinator just records its decison. But using
Paxos, a server isforced to block only if thereis anetwork partition and it is on the minority Sde
of the partition.

In the theory literature this form of consensusis caled the *aomic commitment’ problem. We
can date the vdidity condition for atcomic commitment asfollows: A crash of any unprepared
server does Al | ow(abor t) , and when the coordinator has heard that every server is prepared it

Handout 27. Distributed Transactions

6.826—Principles of Computer Systems 2000

does Al I ow(conmi t) . You might think that consensusistrivia since a most onevaueis
dlowed. Unfortunatdly, thisis not true because in genera you don’'t know which vaueit is.

Most red transaction systems do not use fault-tolerant consensus to commit, but instead just let
the coordinator record the result. In fact, when people say * two-phase commit’ they usudly mean
thisform of consensus. The reason for this doppinessisthat usudly the servers are not

replicated, and one of the serversis the coordinator. If the coordinator fails or you can't
communicate with it, dl the data it handlesis inaccessible until it is restored from tape. So the

fact that the outcome of afew transactions is aso inaccess ble doesn't seem important. Once
servers are replicated, however, it becomes important to replicate the commit result as well.
Otherwise that will be the weakest point in the system.

Bookkeeping

The explanation above gives short shrift to the details of the coordinator’ swork. In particular,
how does the coordinator keep track of the servers efficiently. This problem has three aspects.

Keeping track of servers

Thefirgt is smply finding out who the servers are, snce the client may be spread out over many
meachines, and it ign't efficient to funnd every request to a server through the coordinator. The
standard way to handle thisisto arrange al the client processes in atree, and require that each
client process report to its parent the serversthat it or its children have talked to. Then the root of
the tree will know about al the servers, and it can either act as coordinator or give the
coordinator thisinformation.

Noticing failed servers

The second is noticing when aserver hasfailed. Inthe Sequent i al Tr or Di st SeqTr specsthisis
sample each transaction has aBegi n that setsph : = run, and afalure setsph to some other
vaue. In the code, however, sSince there may be lots of client processes, a client doesn't know the
firg timeit taksto a server, so it doesn't know when to call Begi n on that server. One way to
handle thisis for each client processto send Begi n to the coordinator, which then calsBegi n
exactly once on each server. This costs extra messages, however, An dternative isto diminate
Begi n and instead have both Do and Pr epar e report to the client whether the transaction is new
a that server, that is, whether ph = i dI e beforethe action. If aserver fails, it will forget this
information (unlessit's prepared, in which case the information is stable), so that alater client
action will get another ‘new’ report. The client processes can then rall up dl thisinformation. If
any server reports ‘new’ more than once, it must have crashed.

To make this precise, each client processes counts the number of ‘new’ reportsit has gotten from
each server (here C names the client processes):

VAR news : C->R->1Int :={* -> 0}

We add to the server state a history variable| ost which istrueif the server hasfalled and lost
some of the dlient’s sate. Thisiswhat the client needs to detect, S0 we maintain the invariant

Handout 27. Distributed Transactions 5

6.826—Principles of Computer Systems

(ALL r | s(r).lost ==> (s(r).ph =idle /\ s(r).ps =nil)
\E(+ 0 {c | news(c)(r)}) > 1)

After dl the servers have prepared, they dl haves(r) . ps # nil, 0if anythingislog isshows
up inthenews count.

A variation on this scheme has each server maintain an ‘incarnation id’ or * crash count’” which is
different each time it recovers, and report thisid to each Do and Pr epar e. Then any server with
more than oneid that is prepared must have failed during the transaction.

Cleaning up

The third aspect of bookkeeping is making sure that al the serversfind out whether the
transaction committed or aborted. Actualy, only the prepared servers need to find out, Snce a
server that isn't prepared can just abort the transaction if it isleft in the lurch.

The smpleway to handle thisis for the coordinator to record itsser ver s varigble stably before
doing any prepares. Then even if it fals, it knows what serversto notify after recovery.
However, this means an extralog write for ser ver s before any prepares, in addition to the
essentia log write for the commit record.

Y ou might try to avoid this write by just telling each server the identity of the coordinator, and
having a server query for the transaction outcome. This doesn’t work, because the coordinator
needs to be able to forget the outcome eventudly, in order to avoid the need to maintain state
about each transaction forever. It can only forget after every server has learned the outcome and
recorded it stably. If the coordinator doesn’t know the set of servers, it can’'t know when al of
them have |learned the outcome.

If there’ s no stable record of the transaction, we can assume that it aborted. This convention is
highly desrable, since otherwise we would have to do yet another log write at the beginning of
the transaction. Given this, we can log the set of servers aong with the commit record, since the
transaction abortsif the coordinator fails before writing the commit record. But we still need to
hear back from dl the serversthat they have recorded the transaction commit before we can
clean up the commit record. If it aborts, we don’t have to hear back, because of the convention
that atransaction with no record must have aborted. This conventionis called ‘ presumed abort’.

Since transactions usudly commit, it’s unfortunate that we have optimized for the abort case. To
fix this, we can make a more complicated convention based on the values of transaction
identifiers T. We impose atotal ordering on them, and record astable varigblet | ow. Then we
maintain the invariant that any transaction with identifier < t | ow is either committed, or not
prepared at any server, or stably recorded as aborted at the coordinator. Thus old transactions are
‘presumed commit’. This means that we don’t need to get acknowledgments from the serversfor
acommitted transaction t . Instead, we can clean up their log entriesassoonast < t1 ow.

The price for this scheme is that we do need acknowledgements from the servers for aborted
transactions. That is OK, since aborts are assumed to be rare. However, if the coordinator crashes
before writing a commit record for t , it doesn’t know who the servers are, so it doesn’t know
when they have dl heard about the abort. This means that the coordinator must remember

forever the transactions that are aborted by its crashes. However, there are not many of these, so

Handout 27. Distributed Transactions

6.826—Principles of Computer Systems 2000

the cost is smdll. For amore complete explanation of this efficient presumed commit, seethe
paper by Lampson and Lomet.!

Coordinating synchronization

Smply requiring seridizability a each Ste in adigtributed transaction system is not enough,

gnce the different Stes could choose different seriaization orders. To ensure that a single globa
seridization order exists, we need stronger congraints on the individual sites. We can capture
these condraints in a spec. Aswith the ordinary concurrency described in handout 20, there are
many different specs we could give, each of which corresponds to a different class of mutualy
compatible concurrency control methods (but where two concurrency control methods from two
different classes may be incompatible). Here we illustrate one possible spec, which is appropriate
for sysemsthat use drict two-phase locking and other compatible concurrency control methods.

Strict two- phase locking is one of many methods that seridizes transactions in the order in which
they commit. Our god is to capture this congtraint—that committed transactions are seridizable
in the order in which they commit—in aspec for individuad Stesin adistributed transaction
system. This cannot be done directly, because commit decisons are made in a decentraized
manner, so no single site knows the commit order. However, each Site has some information
about the globa commit order. In particular, if agte hearsthat transaction A has committed
before it processes an operation for transaction B, then B mug follow A in the globa commit
order (assuming thet B eventudly commits). Given asités local knowledge, there is a st of
globa commit orders consstent with its loca knowledge (one of which must be the actua
commit order). Thus, if a Ste ensures seridizability in dl possble commit orders consistent with
itslocal knowledge, it is necessarily ensuring seridizability in the globa commit order.

We can capture thisidea more precisdy in the following spec. (Rether than giving al the details,
we sketch how to modify the spec of concurrent transactions given in handout 20.)

Keep track of apartial order pr ecedes on transactions, which should record that A pr ecedes
B whenever the Conmi t procedure for A happens before Do for B. This can be done either by
keeping a higtory varigble with &l external operations recorded (and defining pr ecedes asa
function on the higtory varigble), or by explicitly updating pr ecedes oneach Do(B), by
adding dl pairs (A, B) where A is known to be committed.

Changethe condraint Seri al i zabl e intheinvariant in the goec to require seridizability in
al totd orders conastent with pr ecedes, rather that just some total order consistent with xc.
Note that an order consstent with pr ecedes isaso externdly consstent.

It is easy to show that the order in which transactions commit is one total order consstent with
precedes; thus, if every Ste ensures seridizability in every totd order consgstent with itslocal
precedes order, it followsthat the globa commit order can be used asa globd seridization
order.

1 B. Lampson and D Lomet, A new presumed commit optimization for two phase commit. Proc. 19th VLDB
Conference, Dublin, 1993, pp 630-640.

Handout 27. Distributed Transactions 7

6.826—Principles of Computer Systems

21. Distributed Systems

The rest of the courseis about distributed computing systems. In the next four lectures we will
characterize distributed systems and study how to specify and code communication among the
components of adistributed system. Later lectures consder higher-leve system issues
distributed transactions, replication, security, management, and caching.

The lectures on communication are organized bottom+-up. Here is the plan:
1. Overview.
2. Links. Broadcast networks.
3. Switching networks.
4. Rdiable messages.
5. Remote procedure call and network objects.

Overview

An underlying theme in computer systems as awhole, and especidly in distributed systems, is
the tradeoff between performance and complexity. Congder the problem of carrying railroad
traffic across amountain range.r The minima system involves asingle track through the
mountains. This solves the problem, and no smdler syslem can do so. Furthermore, trains can
travel from East to West at the full bandwidth of the track. But there is one major drawback: if it
takes 10 hoursfor atrain to traverse the single track, then it takes 10 hours to switch from EW
traffic to W-E traffic, and during this 10 hours the track isidle. The scheme for switching can be
quite smple: the last E-W train tdlsthe W-E train that it can go. Thereisacodly falure mode:
the East end forgets that it sent a‘last’” E-W train and sends another one; the result is either a
collison or alot of backing up.

The smplest way to solve both problemsis to put in a second track. Now traffic can flow at full
bandwidth in both directions, and the two-track sysem is even Smpler than the Sngle-track
system, since we can dedicate one track to each direction and don’t have to keep track of which
way traffic is now running. However, the second track is quite expensive. If it hasto be
retrofitted, it may be as expendve as the first one. A much chegper solution isto add sdings:
short sections of double track, at which trains can pass each other. But now the signading system
must be much more complex to ensure that traffic between sidings flows in only one direction at
atime, and that no gding fills up with trains.

1 Thisexampleis due to Mike Schroeder.

Handout 21. Distributed Systems

2000

6.826—Principles of Computer Systems

What makes a system distributed?

One man’s constant is another man’s variable.
Alan Palis

A distributed systemis a systemwhere | can’'t get my work done because a computer has

failed that I’ ve never even heard of.
Ledie Lamport

There is no universaly accepted definition of adistributed system. It’ s like pornography: you
recognize one when you see it. And like everything in computing, it'sin the eye of the beholder.
In the current primitive Sate of the art, Lamport’s definition has alot of truth.

Nonethdess, there are some telltale Signs that help us to recognize a distributed system:

It has concurrency, usudly because there are multiple genera- purpose computing eements.
Didributed systems are closdly related to multiprocessors.

Communication costs are an important part of the total cost of solving a problem on the
system, and hence you try to minimize them. Thisis not the same as saying that the cogt of
communication is an important part of the system cogt. In fact, it is more nearly the opposite:
asystem in which communication is good enough that the programmer doesn’'t have to worry
about it (perhaps because the system builder spent alot of money on communication) isless
like a digtributed system. Digtributed systems are closely related to telephone systems,
indeed, the telegphone system is by far the largest example of a distributed system, though its
functiondity is much smpler than that of most systems in which computers play amore
prominent role.

It tolerates partial failures. If some parts break, the rest of the system keeps doing useful
work. We usudly don't think of a system as distributed if every falure causes the entire
system to go down.

It is scaleable: you can add more components to increase capacity without making any
quditative changesin the sysem or its dients

It is heterogeneous. This means that you can add components that implement the system’s
internd interfaces in different ways. different telephone switches, different computers

sending and receiving E-mail, different NFS clients and servers, or whatever. 1t dso means
that components may be autonomous, thet is, owned by different organizations and managed
according to different policies. It doesn’t mean that you can add arbitrary components with
arbitrary interfaces, because then what you have is chaos, not a system. Hence the useful
reminder: “There s no such thing as a heterogeneous system.”

Handout 21. Distributed Systems

6.826—Principles of Computer Systems 2000

O0g Internet _ DO []O 50M/25PB
CDoor L] Oo
50M 100ms_—" 100K
0o o e 500/ 25 GB
Ho):I\\\DLADN o050
g S~
500K 1ms ™~ 500 (uniprocessors)
Multiprocessor ... I
- ~

500 s INGL
50 MB RAM 1/50 MB

—r

=
- ~
—_

P
1 2ns -~ 64

s

64-bit register

Sowdown How fast? How many? Total

Fig. 1. Scales of interconnection. Relative speed and size arein italics.

Layers

Any idea in computing is made better by being made recursive.
Brian Randdl

There are threerules for writing a novel.
Unfortunately, no one knows what they are.
Somerset Maugham

Y ou can look at a computer system at many different scales. At each scale you see the same

basic components. computing, sorage, and communications. The bigger system is made up of
smaller ones. Figure 1 illustrates thisidea over about 10 orders of magnitude (we have seen it
before, in the handout on performance.

But Figure 1 is mideading, because it doesn't suggest thet different levels of the syssem may
have quite different interfaces. When this happens, we cdl the level alayer. Hereis an example
of different interfaces that transport bits or messages from a sender to areceiver. Each layer is
motivated by different functiondity or performance than the one below it. This stack is ten layers
deep. Note that in most cases the motivation for separate layersis either compatibility or the fact
that alayer has other clients or other code.

Handout 21. Distributed Systems 3

6.826—Principles of Computer Systems

What Why
a) aTcpPrdiabletransport link function: reliable stream
b) onan Internet packet link function: routing
c) onthePPP header compression protocol performance: space
d) ontheHDpLC datalink protocol function: packet framing
€) onald.4Kbit/sec modem line function: byte stream
f) onanandog voice-grade telephone line function: 3 KHz low-latency sgnd
g ona64 Kbit/ssc digitd line multiplexed function: bit stream

h) onaT1line multiplexed
i) onaT3linemultiplexed
j) onan OC-48fiber.

performance: aggregation
performance: aggregation
performance: aggregation

On top of TCP we can add four more layers, some of which have interfaces that are sgnificantly
different from smple transport.

What Why
w) mall folders function: organization
X) onamall spooler function: storage
y) onSMTP mall transport function: routing
2 onFTPfiletransport function: reliable char arrays

Now we have 14 layers with two kinds of routing, two kinds of reliable transport, three kinds of
stream, and three kinds of aggregation. Each serves some purpose that isn't served by other,
amilar layers. Of course many other structures could underlie the filing of mail messagesin
folders.
Hereis an entirdy different example, code for amachine s load indruction:

What Why
a load from cache function: data access
b) missto second level cache performance: space
C) misstoRAM performance: space
d) pagefaulttodisk performance: space
Layer (d) could be replaced by a page fault to other machines on aLAN that are sharing the
memory (function: sharing)?, or layer (c) by access to a distributed cache over a multiprocessor’s

network (function: sharing). Layer (b) could be replaced by accessto apci 1/0 bus (function:
device access), which at layer (c) isbridged to an 1sA bus (function: compatibility).

2 K. Li and P. Hudak: Memory coherence in shared virtual memory systems. ACM Transactions on Computer
Systems 7, 321-359 (1989)

Handout 21. Distributed Systems

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

Another smple example isthe layering of the various facamile sandards for transmitting

images over the sandard telephone voice channd and Sgnding. Recently, the same image System Address Sample address Data value
encoding, though not of course the same andog encoding of the bits, has been layered on the Manmemory 32-hit fla 04E72A39 2" bytes, n=4
internet or e-mail transmission protocols. Flesygsem* pathname /udir/bw /Mail/inbox/214 0-4 Gbytes
World Wide prOtOCOI + http://research. mcrosoft.con typed,
Address ng Web host name + | anpson/ def aul t . ht ni vaiabledze
. _— path name
Ancther way to classfy communication sysemsisin terms of the kind of interface they provide:
messages or storage, Layersin a communication system
the form of addresses The standard picture for acommunication system isthe oS! reference model, which shows peer-
the kind of data transported, to-peer communication at each of seven layers (given here in the opposite order to the examples
other properties of the transport. above):
physica (volts and photons),
data link
4| [systolic Networked Wide area '
Message arrays multi-processors networks network,
p
passing transport,
Interconnected Sesson,)
multi-processors presentation, and
Com- application.
muni- Shared memory Thismodd is often, and somewhat pgoratively, caled the ‘ seven-layer cake' . The peer-to-peer
cation multi-computers aspect of the 0S| mod'ell isnot as useful as you might thi n}<, because ppeer-to-peer corrmuni%tion
means that you are writing a concurrent program, something to be avoided if a dl possible. At
Shared memory Clustered any layer peer-to- peer communication is usudly replaced with dient-server communication (also
multi-processors multi-computers known as request-response or remote procedure cal) as soon as possible.
Shared Vector Distributed The examples we have seen should make it clear that red systems cannot be analyzed so nestly.
v in this order:
‘ - g Datalink layer: framing and muitiplexing.
Tightly Integration Loosely &y nd Py
coupled coupled Network layer: addressing and routing (or switching) of packets.
Here are a number of examplesto bear in mind as we study communication. The firs tableis for Transport layer: reliable messages.

messaging, the second for storage.
Sesson layer: naming and encoding of network objects.

System Address Sample address Data value o Edel i‘é:_?;l We are not concerned with volts and photons, and the presentation and application layers are
. o e very poorly defined. Presentation is supposed to ded with how things look on the screen, but it's
}”‘ag(;'gé gouroef:‘;“te 4 ”Or;h’f e‘f;) 32 ';’(Xf yes yes undear, for example, which of the following it includes: the X display protocol, the Macintosh
IEEE LAN 4 byte herarchica FF s GE Al pack no no PICT format and the PostScript language for representing graphica objects, or the Microsoft RTF
P byte hierarchi 16.12.3.134 packet no ho format for editable documents. In any event, dl of these topics are beyond the scope of this
TCP IP + port 16.12.3.134 / 3451 bytestream yes yes COUrSe
RPC TCP+ procedure 16.12.3.134 / 3451 / arg.record yes yes '
Open Figure 2 illugtrates the structure of communication and code for afragment of the Internet.

E-mal host name+user bl anpson@ri crosoft.com String no yes

4 M. Satyanarayanan: Distributed file systems. In S. Mullender (ed.) Distributed Systems, Addison-Wesley, 1993, pp
3 W. Dally: A universal parallel computer architecture. New Generation Computing 11(1993), pp 227-249 353-334

Handout 21. Distributed Systems 5 Handout 21. Distributed Systems 6

6.826—Principles of Computer Systems

Peer-peer

f communicatior
HITE v]

e

Send/recaive ——Implements
bytes
—ES N —
Send/receive
packets

i‘ [P (network) >|4_;|

Fig. 2: Protocol stacksfor peer-to-peer communication

Principless

There are afew important ideas that show up again and again at the different levels of distributed
systems: recursion, addresses, end-to-end rdiability, broadcast vs. point-to-point, red time, and
fault-tolerance.

Recursion

The 14-layer example of coding E-mall gives many examples of encapsulaing a message and
trangmitting it over alower-level channdl. It also showsthat it can be reasonable to code a
channd using the same kind of channd severa levelslower.

Another name for encapaulation is‘ multiplexing' .
Addresses

Multi-party communication requires addresses, which can beflat or hierarchical. A flat address
has no dructure: the only meaningful operation (other than communication) isequdlity. A
hierarchical address, sometimes called a path name, is a sequence of flat addresses or smple
names, and if one addressis a prefix of another, then in some sense the party with the shorter
address contains, or is the parent of, the party with the longer one. Usudly there is an operation
to enumerate the children of an address. Flat addresses are usudly fixed size and hierarchica
ones variable, but there are exceptions. An address may be hierarchica in the code but flat at the
interface, for instance an Internet address or a URL in the World Wide Web. The examples of
addressing that we saw earlier should clarify these points; for more examples see the handout on
naming.

People often make a distinction between names and addresses. Whet it usudly boilsdown to is
that an addressis aname that isinterpreted at alower level of abstraction.

5 My thanksto Alex Shvartsman for some of the figuresin this section.

Handout 21. Distributed Systems

2000

6.826—Principles of Computer Systems

End-to-end reliability

A smple way to obtain reliable communication isto rely on the end points for every aspect of
reliability, and to depend on the lower level communication system only to ddliver bits with
some reasonable probability. The end points check the transmission for correctness, and retry if
the check fals

For example, an end-to-end file transfer system reads the file, sendsit, and writesit on the disk
in the usua way. Then the sender computes a strong checksum of the file contents and sends
that. The receiver reads the file copy from his disk, computes a checksum using the same
function, and compares it with the sender’ s checksum. If they don’t agree, the check fails and the
transmission must be retried.

In such an end-to-end system, the total cost to send amessageis 1 + rp, wherer = cost of retry
(if the cost to send asimple message is 1) and p = probability of retry. Thisisjust likefast path
(see handout 10 on performance). Note, however, thet the retry itself may involve further retries,
if p << 1 we can ignore this complication. For good performance (near to 1) rp must be small.
Snceusudly r > 1, we need asmal probaility of fallure p << L/r < 1. Thismeansthat the link,
though it need not have any guaranteed properties, must transmit messages without error most of
the time. To get this property, it may be necessary to do forward error correction on the link, or
to do retry a alower level where the cost of retry isless.

Note that p appliesto the entire transmission that isretried. The TCP protocol, for example,
retransmits awhole packet if it doesn't get a poditive ack. If the packet travels over an ATM
network, it isdivided into smal ‘cells, and ATM may discard individud cellswhenitis
overloaded. If it takes 100 cells to carry apacket, Ppacket = 100 pegyi- Thisis abig difference.

Of courser can be measured in different ways. Often the work thet is done for aretry is about
the same as the work that is done just to send, so if we count r as just the work it is about 1.
However, the retry is often invoked by atimeout that may be long compared to the time to send.
If latency isimportant, r should measure the time rather than the work done, and may thus be
much greater than 1.

Broadcast vs. point-to-point transmission

It'susualy much cheaper to broadcast the same information to n places than to send it
individualy to each of the n places. Thisis especiadly true when the physical communication
medium is a broadcast medium. An extreme exampleis direct digita satdlite broadcast, which

can send amegabyte to everyone in the US for about $.05; compare this with about $.02 to send
amegabyte to one place on aloca 1SDN telephone link. But even when the physicd medium is
point to point and switches are needed to connect n places, asisthe case with telephony or ATM,
it's gill much chegper to broadcast because the switches can be configured in atree rooted at the
source of the broadcast and the message needs to traverse each link only once, instead of once
for each node that the link separates from the root. Figure 3 shows the number of timesa

6 J. Sdltzer, D. Reed, and D. Clark: End-to-end arguments in system design. ACM Transactions on Computer
Systems 2, 277-283 (1984).

Handout 21. Distributed Systems

6.826—Principles of Computer Systems

5

K— root

Fig. 3: The cost of doing broadcast with point-to-point communication

message from the root would traverse each link if it were sent individudly to each node; ina
broadcast it traverses each link just once.

Higtorically, most LANSs have done broadcast automaticaly, in the sense that every message
reaches every node on the LAN, even if the underlying eectrons or photons don’t have this
property; we will study broadcast networksin more detail later on. Switched LANs are
increasingly popular, however, because they can dramatically increase the total bandwidth
without changing the bandwidth of asingle link, and they don’t do broadcast automaticdly.
Instead, the switches must organize themselves into a spanning tree that can deliver amessage
originating anywhere to every node.

Broadcast isa specid case of ‘multicast’, where messages go to a subset of the nodes. As nodes
enter and leave amulticast group, the shape of the tree that spans dl the nodes may change. Note
that once the tree is constructed, any node can be the root and send to dl the others. There are
clever dgorithms for congtructing and maintaining this tree thet are fairly widdy implemented in
the Internet.”

Real time

Although often ignored, red time plays an important role in digtributed systems. It isused in
three ways.

To decide when to retry atransmission if there is no response. This often hgppens when there
issome kind of fallure, for ingtance alost Internet | P packet, as part of an end-to-end
protocol. If the retransmission timeout iswrong, performance will suffer but the system will
usudly il work. When timeouts are used to control congestion, however, making them too
short can cause the bandwidth to drop to O.

7'S, Deering et al., An architecture for wide-area multicast routine, ACM SigComm Computer Communication
Review, 24, 4 (Oct. 1994), pp 126-135.

Handout 21. Distributed Systems

2000

6.826—Principles of Computer Systems 2000

Sender M essage send . Receive
time-
out | M essage resend >
< Message ack

To ensure the stability of aload control system based on feedback. This requires knowing the
round trip time for a control signd to propagate. For instance, if a network provides a‘ stop’
sgna when it can't absorb more data, it should have enough buffering to absorb the
additiona data that may be sent while the ‘stop’ signal makesits way back to the sender. If
the ‘stop’ comes from the receiver then the receiver should have enough buffering to cover a
sender-receiver-sender round trip. If the assumed round-trip time is too short, datawill be
log; if it'stoo long, bandwidth will suffer.

Sender essages Receive

Buffer

reserve .
Time

Round
trip v

To code “bounded waiting” locks, which can be released by another party after atimeout.
Such locks are cdled ‘leases ; they work by requiring the holder of the lock to ether fail or
release it before anyone ese times out.8. If the lease timeout is too short the system won't
work. This meansthat dl the processes must have clocks that run at roughly the samerrate.
Furthermore, to make use of alease to protect some operation such asaread or write, a
process needs an upper bound on how the operation can last, so that it can check that it will
hold the lease until the end of that time. Leases are used in many red systems, for example,
to control ownership of a dud-ported disk between two processors, and to provide coherent
file caching in distributed file systems. See handout 18 on consensus for more about leases.

Lock x | Touch x !

Fault tolerance

Fault tolerance is dways based on redundancy. The smplest strategy for fault-tolerance isto get
the redundancy by replicating fairly large components or actions. Here are three waysto do it:

8 C. Gray and D. Cheriton, Leases: An efficient fault-tolerant mechanism for distributed file cache consistency,
Proc. 12th Symposium on Operating Systems Principles, Dec. 1989, pp 202-210.

Handout 21. Distributed Systems 10

6.826—Principles of Computer Systems

1. Duplicate components, detect errors, and ignore bad components (replicate in space).
2. Detect errors and retry (replicate in time, hoping the error is transient).

3. Checkpoint, detect errors, crash, reconfigure without the bad components, and
restart from the checkpoint (a more genera way to replicate in time)

There is a space-time tradeoff illugtrated in the following picture.

Triple modular redundancy
RAID disks
Space Checkpointing

Try-fail-retry

N-version programming

Time

Highly available systems use the firgt trategy. Others use the second and third, which are
chegper aslong as errors are not too frequent, since they subgtitute duplication in time for
duplication in space (or equipment). The second strategy works very well for communications,
since there is no permanent state to restore, retry isjust resend, and many errors are transient.
Thethird strategy is difficult to program correctly without transactions, which are therefore an
essentid ingredient for complex fault tolerant systems.

Another way to look at the third approach is asfailover to an dternate component and retry; this
requires afailover mechanism, which for communications takes the smple form of changesin

the routing database. An often-overlooked point is that unless the aternate component is only
used as a spare, it carries more load after the failure than it did before, and hence the
performance of the system will decrease.

In generd, fault tolerance requires timeouts, Since otherwise you wait indefinitely for aresponse
from afaulty component. Timeouts in turn require knowledge of how long things should take, as
we saw in the previous discussion of red time. When this knowledge is precise, we call the
system ‘ synchronous ; timeouts can be short and failure detection rapid, conditions that are
usualy met a low levelsin asystem. It's common to design a snoopy cache, for ingance, on the
assumption that every processor will respond in the same cycle so that the responses can be

Handout 21. Distributed Systems

2000

11

6.826—Principles of Computer Systems 2000

combined with an ‘or’ gate.® Higher up thereisaneed for compatibility with severa codes, and
each lower level with caching adds uncertainty to the timing. It becomes more difficult to set
timeouts gppropriately; often thisis the biggest problem in building a fault-tolerant system.
Perhaps we should specify the red-time performance of systlems more carefully, and give up the
use of caches such asvirtud memory that can cause large variaionsin response time.

All these methods have been used at every level from processor chips to distributed systems. In
generd, however, below the level of the LAN most systems are synchronous and not very fault-
tolerant: any permanent failure causes a crash and restart. Above that level most systems make
few assumptions about timing and are designed to keep working in spite of severd failures. From
this difference in requirements follow many differencesin desgn.

In asystem that cannot be completely rest, it isimportant to have self-stabilization: the sysem
can get from an arbitrary state (which it might land in because of afallure) to agood ate.10

In any fault-tolerant system the dgorithms must be ‘wait-free' or ‘non-blocking’, which means
that the failure of one process (or of certain sets of processes, if the system is supposed to
tolerate multiple failures) cannot keep the system from making progress.1! Unfortunately, smple
locking is not wait-free. Locking with leases is wait-free, however. We will study some other
wait-free dgorithms that don’t depend on red time. We said alittle about this subject in handout
14 on practica concurrency.12

Per for mance of communication

Communiceation has the same basi¢c performance measures as anything e se: latency and
bandwidth.

Latency: how long a minimum communication takes. We can measure the latency in bytes by
multiplying the latency time by the bandwidith; this gives the cgpacity pendty for esch
separate operation. There are sandard methods for minimizing the effects of latency:

Caching reduces latency when the cache hits.
Prefetching hides latency by the distance between the prefetch and the use.
Concurrency tolerates latency by giving something ese to do while waiting.

Bandwidth: how communication time grows with data Sze. Usudly thisis quoted for atwo-
party link. The “bisection bandwidth™ is the minimum bandwidth across a st of links that
partition the system if they are removed; it is alower bound on the possble total rate of
uniform communication. There are sandard methods for minimizing the cost of bandwidth:

9 Hennessey and Patterson, section 8.3, pp 654-676.

10 G. Varghese and M. Jayaram, The fault span of crash failures, JACM, to appear. Available here.

11 These terms are not actually synonyms. In await-free system every process makes progress. In a non-blocking
system some process is always making progress, but it’s possible for a process to be starved indefinitely.

12 M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13, 1 (Jan.
1991), pp 124-149.

Handout 21. Distributed Systems

6.826—Principles of Computer Systems

Caching saves bandwidth when the cache hits.
More generdly, locdity saves bandwidth when cost increases with distance.

‘Combining networks save bandwidth to a hot spot by combining severa operations into
one, severd loads or increments for example.

Code shipping saves bandwidth by sending the code to the data.3
In addition, there are some other issues that are especialy important for communication:

Connectivity. how many parties you can tak to. Sometimesthisis afunction of latency, asin
the telephone system, which alows you to talk to millions of parties but only one a atime.

Predictability: how much latency and bandwidth vary with time. Varidion in latency is
cdled ‘jitter'; variaion in bandwidth is caled ‘burstiness . The biggest difference between
the computing and telecommunications culturesis that computer communication isbadcaly
unpredictable, while telecommunications service is traditiondly highly predictable.

Availability: the probability that an attempt to communicate will succeed.

Uniformity of performance a an interface is often as important as absolute performance, because
dedling with non-uniformity complicates programming. Thus performance that depends on
locdlity is troublesome, though often rewarding. Performance that depends on congestion is even
worse, Snce congestion is usudly much more difficult to predict than locdity. By contrast, the
Monarch multiprocessor14 provides uniform, albeit dow, access to a shared memory from 64K
processors, with atotal bandwidth of 256 Gbytes'sec and avery smple programming mode!.
Since dl the processors make memory references synchronoudy, it can use a combining network
to diminate many hot spots.

Specs for communication

Regardless of the type of message being transported, dl the communication systems we will

sudy implement one of afew specs. All of them are based on the idea of sending and receiving
messages through a channdl. The channd has state thet is derived from the messages that have
been sent. Idedly the State is the sequence of messages that have been sent and not yet delivered,
but for weaker specs the state is different. In addition, a message may be acknowledged. Thisis
interesting if the spec alows messages to be logt, because the sender needs to know whether to
retransmit. It may aso be interesting if the spec does not guarantee prompt ddivery and the
sender needs to know that the message has been ddlivered.

None of the specs alows for messages to be corrupted in trangit. Thisis becauseit's easy to
convert a corrupted message into a lost message, by attaching a sufficiently good checksum to
each message, and discarding any message with an incorrect checksum. It's important to redize
that the definition of a‘sufficiently good’ checksum depends on amodd of what kind of errors
can occur. To take an extreme example, if the errors are caused by amdicious adversary, then

13 Thanks to Dawson Engler for this observation.
14 R. Rettberg et al.: The Monarch parallel processor hardware design. |EEE Computer 23, 18-30 (1990)

Handout 21. Distributed Systems

2000

13

6.826—Principles of Computer Systems

the checksum must involve some kind of secret, cdled a‘key’; such achecksumiscdled a
‘message authentication code . At the opposite extreme, if only Sngle-bit errors are expected,
(whichislikdly to be the case on afiber optic link where the errors are caused by therma noise)
then a 32-bit CRC may be good; it is chegp to compute and it can detect three or fewer single-bit
errorsin amessage of less than about 10 KB. In the middle is an unkeyed one-way function like
MD5.15

These specs are for messages between a single sender and a single receiver. We dlow for lots of
sender-receiver parsinitialy, and then suppress this detall in the interests of amplicity.

MODULE Channel [

M % Message
Al = % Address
TYPE Q = SEQ M % Queue: channel state
SR = [s: A r: A % Sender - Receiver
K = ENUM ok, lost] % acK
END Channel

Perfect channels

A perfect channd isjust a FIFO queue. Thisoneis unbounded. Note that Get blocks if the queue
isempty.
VAR q = (SR -> Q{* ->{}}

APROC Put (sr, m = << qg(sr) :=q(sr) + {n >>
APROC Get(sr) -> M= << VAR m| m= qg(sr).head => q(sr)

% all initially empty

Henceforth we suppressthe sr argument and deal with only one channd, to reduce clutter in the
specs.

Reliable channdls

A reidble channd islike a perfect channd, but it can be down, in which case the channd is
alowed to lose messages. Now it’ s interesting to have an acknowledgment. This spec givesthe
smplest kind of acknowledgment, for the last message transmitted. Note that Get Ack blocksif
st at us isni | ; normdly thisistrueiff q isnon-empty. Also note that if the channel is down,

st at us can becomel ost even when no messageis|ost.

VAR q = {}
st at us (K + Null) := ok
down := fal se
APROC Put (m) =<<qgq:=q + {n}, status :=nil >>
APROC Get() -> M = << VAR m| m= q. head =>
g:=gq.tail; IFq={} => status := ok [*] SKIP FI; RET m >>

15 B. schneier, Applied Cryptography, Wiley, 1994, p 329.

Handout 21. Distributed Systems

= qg(sr).tail; RET m>>

14

6.826—Principles of Computer Systems

APROC Get Ack() -> K

<< VAR k | k = status => status := ok; RET k >>

APROC Crash() = down : = true
APROC Recover () = down : = fal se
THREAD Lose() = DO % internal action

<< down =>
IF VAR ql, 92, m| g =ql + {m} + g2 =>

q:=9l1 + q2; IF g2 = {} => status :=lost [*] SKIP FI
[*] status := |ost
Fl >>
[*] SKIP OD

Unreliable channels

An unreliable channd is dlowed to lose, duplicate, or reorder messages a any time. Thisisan
Interesting spec because it makes the minimum assumptions about the channel. Hence anything
built on this spec can work on the widest variety of channds. The reason that duplication is
important is that the way to recover from lost packets isto retransmit them, and this can lead to
duplication unless alot of careistaken, aswe shdl seein handout 26. A variation (not given
here) bounds the number of times a message can be duplicated.

VAR q = Q)

APROC Put (m << g:=qg\/ {n >>
APROC Get() -> M=<< VAR M| mINg =>q :=q9 - {n}; RET m>>

% as amultiset!

THREAD Lose()
THREAD Dup()

DOVAR M| << mINg =>

q g- {m >>[*] SKIP CD
DOVAR m| << mINg =>q :

q\/ {m >> [*] SKIP OD

An unreliable FIFO channd isamodd of apoint-to-point wire or of abroadcast LAN without
bridging or switching. It preserves order and does not duplicate, but can lose messages at any
time. Thischannd haspPut and Get exactly like the ones from a perfect channd, and aLose
much like the unrdiable channd’s Lose.

VAR q = Q)

APROC Put(m << gqg:=q+ {nm >
APROC Cet() -> M= << VAR m| m= g.head => q := qg.tail; RET m>>

% dl initialy empty

THREAD Lose() =
DO << VAR g1, g2, m| g =91 + {m + 92 =>q :=ql + g2 >> [*] SKIP OD

These specs can aso be written in an ‘early-decison’ style that decides everything about
duplication and lossin the Put . As usua, the early decision spec is shorter. It takes a prophecy
variable (handout 8) to show that the code with Lose and bup implements the early decison spec
for the unreliable FIFO channel, and for the unordered channd it isn't true, because the early
decision spec cannot deliver an unbounded number of copies of m Prophecy variables can work
for infinite traces, but there are complicated technica details that are beyond the scope of this
course.

Handout 21. Distributed Systems

2000

15

6.826—Principles of Computer Systems

Here is the early decision spec for the unreigble channdl:

VAR q =}

APROC Put (m << VAR i: Nat => q:=q \/ {j :INi.seq | | nt >>
APROC Get() -> M= << VAR M| mINqg =>q :=q9 - {n}; RET m>>

% as amultiset!

and here is the one for the unrdiable FIFO channd

VAR q = Q)

APROC Put (m =<<q:=qg+{nm [] SKIP >>
APROC Get() -> M= << VAR M| m= qg.head => q := q.tail; RET m>>

% al initialy empty

Handout 21. Distributed Systems

16

6.826—Principles of Computer Systems 2000 6.826—Principles of Computer Systems 2000

22. Paper on Autonet Autonet:

The attached paper by Mike Schroeder and many others on the Autonet local area network is A ngh'speed, Self-COIlﬁglll'lllg Local Area Network

included as an example both of a high-performance switched network and of a fault-tolerant Using Point-to-Point Links
distributed system. The interplay between the hardware and software aspects of the systems is

especially worth studying. Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M. Needham,

Thomas L. Rodeheffer, Edwin H. Satterthwaite, Charles P. Thacker

April 21, 1990

A slightly different version of this paper appeared in the IEEE Journal on Selected Areas of
Communications 9, 8, October 1991.

This version was converted from Acrobat PDF and may have errors.

A companion paper is Thomas L. Rodeheffer and Michael D. Schroeder, Automatic
Reconfiguration in Autonet, Proceedings of the 13th ACM Symposium on Operating System
Principles, 1991, pp 183-187.

Abstract

Autonet is a self-configuring local area network composed of switches interconnected by 100
Mbit/second, full-duplex, point-to-point links. The switches contain 12 ports that are internally
connected by a full crossbar. Switches use cut-through to achieve a packet forwarding latency as
low as 2 microseconds per switch. Any switch port can be cabled to any other switch port or to a
host network controller.

A processor in each switch monitors the network’s physical configuration. A distributed
algorithm running on the switch processors computes the routes packets are to follow and fills in
the packet forwarding table in each switch. This algorithm automatically recalculates the
forwarding tables to incorporate repaired or new links and switches, and to bypass links and
switches that have failed or been removed. Host network controllers have alternate ports to the
network and fail over if the active port stops working.

With Autonet, distinct paths through the set of network links can carry packets in parallel. Thus,
in a suitable physical configuration, many pairs of hosts can communicate simultaneously at full
link bandwidth. The aggregate bandwidth of an Autonet can be increased by adding more links
and switches. Each switch can handle up to 2 million packets/second. Coaxial links can span 100
meters and fiber links can span two kilometers.

A 30-switch network with more than 100 hosts is the service network for Digital’s Systems
Research Center.

Handout 22. Paper on Autonet 1 Handout 22. Paper on Autonet 2

6.826—Principles of Computer Systems 2000

1. Introduction

The Ethernet [10], with 10 Mbit/s host-to-host bandwidth and 10 Mbit/s aggregate bandwidth,
has done well as the standard local area network (LAN) for high-performance workstations, but
it is becoming a bottleneck in demanding applications. One modern workstation can use an
Ethernet’s entire data transfer capacity, and workstations are getting faster and more numerous.
There is an increasing need for a faster, higher-capacity LAN.

This need is being addressed commercially by the FDDI [4, 5] token ring LAN. With ten times
greater host-to-host and aggregate bandwidth, FDDI will provide considerable relief for the
Ethernet bottleneck. Autonet is an alternative approach to a higher-speed, higher-capacity,
general-purpose LAN that could replace Ethernet. The fundamental advantage of Autonet over
FDDI is greater aggregate bandwidth from the same link bandwidth. With FDDI the aggregate
network bandwidth is limited to the link bandwidth; with Autonet the aggregate bandwidth can
be many times the link bandwidth. Other advantages of Autonet over FDDI include lower
latency, a more flexible approach to high availability, and a higher operational limit on the
number of host that can be attached to a single LAN. Also, Autonet appears to be simpler than
FDDI. There is no intrinsic reason why an Autonet should cost more than an FDDI ring.

Any replacement for Ethernet must retain Ethernet’s high availability and largely automatic
operation, and be capable of efficiently supporting the protocols that work on Ethernet. Low
latency is important in a new network because distributed computing makes request/response
protocols such as RPC [9] as important as bulk-data transfer protocols. Because security will
become increasingly important in the next decade, a new LAN must not hinder encrypted
communication. Autonet addresses all these requirements.

The primary goal of the Autonet project was to build an useful local area network, rather than to
do research into component technologies for computer networks. Except in a few aspects,
Autonet is designed using ideas that have been tried in other systems in different combinations.
But bringing together just the right pieces can be a challenge in itself, and can produce a result
that advances the state of the art.

Building Autonet required combining expertise in networking, hardware design, computer
security, system software, distributed systems, proof of algorithms, performance modeling, and
simulation. While a primary purpose for Autonet was to support for distributed computing,
Autonet’s implementation uses distributed computing to perform its status monitoring and
reconfiguration.

The development goal for Autonet was producing a network that would be put into service use.
The prospect of service use forced us to develop practical solutions to both the big and the little
problems encountered in the design process, and generated a strong preference for simplicity in
the design. In early 1990 an Autonet replaced an Ethernet as the service LAN for our building,
connecting over 100 computers. Service use is allowing the effectiveness of the design to be
evaluated and the design to be improved based on operational experience.

Section 2 of this paper contains a brief description of Autonet, to provide context for the rest of
the paper. Section 3 describes the major design decisions that define the network. Section 4
highlights the areas where Autonet appears to break new ground. Section 5 provides a more

Handout 22. Paper on Autonet 3

6.826—Principles of Computer Systems 2000

detailed description of the components of the network. Section 6 describes the operation of these
components. Finally, section 7 discusses our early experience with Autonet and indicates
directions for future work.

2. Overview

An Autonet, such as the one illustrated in Figure 1, consists of a number of switches and host
controllers connected by 100 Mbit/s full-duplex links. As shown by the gray arrows, a packet
generated by a source host travels through one or more switches to reach a destination host.
Switches contain logic to forward packets from an input port to one or more output ports, as
directed by the destination address in each packet’s header. A non-blocking crossbar in each
switch connects the input and output ports. Depending on the topology, the network can handle
many packets at once. Packets even can flow simultaneously in opposite directions on a link.

Eif\\\\\\\““

11
T
1]

T

Iternate
11 @
T /

\E; iﬁf;\‘\w;;\\;lﬂ

controller

host

Figure 1: A portion of an Autonet installation

Switches can be interconnected in an arbitrary topology, and this topology will change with time
as new switches and links are added to the network, or as switches and links fail. A processor in
each switch monitors the state of the network. Whenever the topology changes, all switch
processors execute a distributed reconfiguration algorithm. This algorithm determines the new
topology and loads the forwarding tables of each switch to route packets using all operational
switches and links. In normal operation the switch processor does not participate in the
forwarding of packets.

Handout 22. Paper on Autonet 4

6.826—Principles of Computer Systems

Switches forward packets using a cut-through technique that minimizes switching latency. There
is a small amount of buffering associated with each switch input port and a flow control
mechanism that ensures these buffers do not overflow. Except during reconfiguration, Autonet
never discards packets.

Hosts are connected to the Autonet via dual-ported controllers. For best network availability, a
host is connected to two switches; the controller design allows only one of these connections to
be used at a time. An Autonet ought to accommodate at least 1000 dual-connected hosts.
Possible improvements to the reconfiguration algorithm would allow even larger Autonets.

3. Design decisions
This section summarizes the major decisions of the Autonet design.

3.1 Point-to-point links at 100 Mbit/s

Ethernet uses a broadcast physical medium. Each packet sent on an Ethernet segment is seen by
all hosts attached to the segment. As described by Tobagi [20], the minimum size of an Ethernet
packet is determined by the need to detect collisions between packets. Reliable collision
detection requires that each packet last a minimum time. At high bit rates this time translates into
unacceptably large minimum packet sizes. Most 100 Mbit/s and faster networks, including
Autonet, use point-to-point links to get away from these limitations. Using point-to-point links
also can produce a design that is relatively independent of the specific link technology. As long
as a link technology has the needed length, bandwidth, and latency characteristics, then it can be
incorporated into the network with appropriate interface electronics.

We settled on 100 Mbit/s for the link bandwidth in Autonet because that speed is much faster
than Ethernet, but still well within the limits of standard signaling technology. We chose the
AMD TAXI chip set [3] to drive the links, leaving the subtleties of phase-locked loops and data
encoding on the link to others. The overall Autonet design should scale to ten times faster links.

We engineered Autonet to tolerate transmission delays sufficient for fiber optic links up to 2 km
in length. The first link we have implemented uses 75 ohm coaxial cable, with full-duplex
signaling on a single cable. Electrical considerations limit these coax links to a maximum length
of 100 m. If both link types were implemented they could be mixed in a single installation:
coaxial links might be used within a building because of their lower cost; fiber optic links might
be used between buildings because of their longer length limit.

3.2 Unconstrained topology with pre-calculated packet routes

An Autonet is physically built from multi-port switches interconnected by point-to-point links in
an arbitrary topology (although the network will work better when thought is given to the
topology). Any switch port can be cabled to any other switch port, or to a port on a host
controller. A packet is routed from switch to switch to its destination according to pre-calculated
forwarding tables that are tailored to the current physical configuration.

A tree-shaped flooding network, like Hubnet [13], has an aggregate network bandwidth that is
limited to the link bandwidth and has limited ability to configure around broken components. A

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems

ring topology like that used in FDDI has similar limitations. In addition, a ring has latency
proportional to the number of hosts. A reasonably configured Autonet has latency proportional to
the log of the number of switches. Autonet handles many packets simultaneously along different
routes, has unconstrained topology, and allows a great deal of flexibility in establishing routes

that avoid broken components.

3.3 Automatic operation

One of the virtues of Ethernet and FDDI is that in normal operation no management is required
to route packets. Even when multiple networks are interconnected with bridges [14], a
distributed algorithm executed by the bridges determines a forwarding pattern to interconnect all
segments without introducing loops. The bridge algorithm also automatically reconfigures the
forwarding pattern to include new equipment and to avoid broken segments and bridges.

Autonet also operates automatically. This function is provided by software executing on the
control processor in each switch that monitors the physical installation. Whenever a switch or
link fails, is repaired, is added, or is removed, this software triggers a distributed reconfiguration
algorithm. The algorithm adjusts the packet routes to make use of all operational links and
switches and to avoid all broken ones. Of course, human network management is still required to
repair broken equipment and adjust the physical installation to reflect substantially changed
loads.

3.4 Crossbar switches

An Autonet switch has 12 full-duplex ports that are internally interconnected by a crossbar. We
chose a crossbar because its structure is simple and its performance is easy to understand,
although a more sophisticated switch fabric could be used if it allowed a single input port to
connect simultaneously to any set of output ports to support broadcast.

The small number of ports is a direct result of wanting to get the system into service quickly. All
the Autonet hardware is built out of off-the-shelf components, and 12 ports was all that could be
fit into a reasonably sized switch without using custom integrated circuits. The Autonet switch
design would scale easily to 32 or 64 ports per switch by using higher levels of circuit
integration. Such larger switches would be more cost-effective for all but the smallest
installations, because fewer ports would be used for switch-to-switch links. A virtue of our small
switch is that it generates a higher switch count, which in turn provides a more interesting test for
the distributed reconfiguration algorithm.

3.5 Limited buffering with flow control

Autonet uses a FIFO buffer at each receiving switch port. A start/stop flow control scheme
signals the transmitter to stop sending more bytes down the link when the receiving FIFO is

more than half full. Packets are not discarded by the receiving switch in normal operation. With
our flow control scheme a 1024-byte FIFO is sufficient to absorb the round-trip latency of a 2
km fiber optic link, although we actually use a 4096-byte FIFO to obtain deadlock-free routing
for broadcast packets. The FIFO is only big enough to contain a few average-sized packets or
less than one maximum-sized packet. Flow control is independent of packet boundaries so a
single packet can be in several switches at once. A consequence of this scheme is that congestion

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems

can back up through the network, potentially delaying even packets that will not be routed over
the congested link. Limited buffering also implies that a switch must be able to start forwarding a
packet without having the entire packet in the local buffer. In fact, in Autonet such cut-through
forwarding can begin after only 25 bytes have arrived.

An alternative buffering scheme would be to provide many packets of buffering at each receiving
switch port, say using 1 Mbyte of memory, and to provide no flow control at this level. The port
would have a higher capacity to absorb incoming traffic during periods of congestion, delaying
the need to respond to the congestion and allowing time for congestion avoidance mechanisms to
work. Also, longer links could be used because the absence of flow control eliminates the
maximum link latency constraint. Eventually, though, a port would have to defend itself by
discarding arriving packets.

We chose limited buffering with flow control because it uses less memory per switch port,
making the switches simpler and smaller. In the absence of proven mechanisms for avoiding
congestion, an additional advantage of our scheme may be that communication protocols will be
more stable because the flow control scheme responds to link overload by backing up packets
rather than by throwing them away.

3.6 Deadlock-free, multipath routing

Because Autonet uses flow controlled FIFOs for buffering and does not discard packets in
normal operation, deadlock is possible if packets are routed along arbitrary paths. Deadlocks can
be dealt with by detecting and breaking them, or by avoiding them. For Autonet we chose the
latter approach. Detecting deadlocks reliably and quickly is hard, and discarding an individual
packet to break a deadlock complicates the switch hardware. Our scheme uses deadlock-free
routes while still allowing packet transmission on all working links. (See section 4.2.) The

scheme has the property that it allows multiple paths between a particular source and destination,
and takes advantage of links installed as parallel trunks.

3.7 Short addresses

The Autonet reconfiguration algorithm assigns a short address to each switch and host in the
network. (A few short addresses are reserved for special purposes like broadcast.) Short
addresses contain only enough bits (11 bits in the prototype) to name all switch ports in a
maximal-sized Autonet. A forwarding table in each switch, indexed by a packet’s destination
short address (and incoming port number), allows the switch to quickly pick a suitable link for
the next step in a route to the packet’s destination. The forwarding table is constructed as part of
the distributed configuration algorithm that runs whenever the physical installation changes,
breaks, or is repaired. The short address of a switch or host can change when reconfiguration
occurs, although it usually does not.

Autonet’s addressing scheme lies between source routing, as used in Nectar [6] for example, and
addressing by unique identifier (UID), as used in Ethernet. Of the three schemes, UID addressing
is the most complex in a network that requires explicit routing, because the network must know a
route to each UID-identified destination and do one or more UID-keyed lookups to forward a
packet. Source routing removes from the network the responsibility for determining routes,
placing it instead with the hosts in smart controllers or in system software. The network must

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems

contain mechanisms to report the physical configuration to the hosts and to alter packets as they
are forwarded. Source routing eliminates the possibility of dynamic choice of alternative routes.
In comparison, Autonet’s use of short addresses results in relatively simple switch hardware
without giving up dynamic multipath routing.

When considering alternative addressing schemes for LANs we must keep in mind that Ethernet
has established UID addressing as the standard interface for datagrams. What the network
hardware does not provide, the host software must. So the design question becomes one of
splitting the work of providing UID addressing between network switches, host controllers, and
host software. For Autonet, all host controllers and switches have 48-bit UIDs; host software
implements UID addressing based on Autonet short addresses. (See section 3.11.)

3.8 Hardware-supported broadcast

Because Ethernet naturally supports broadcast, high-level protocols have come to depend upon
low-latency broadcast within a LAN. Autonet switch hardware can transmit a packet on multiple
output ports simultaneously. This capability is used to implement LAN-wide broadcast with low
latency by flooding broadcast packets on a spanning tree of links. Since a broadcast packet must
go everywhere in a network, the aggregate broadcast bandwidth is limited to the link bandwidth.
As we found out, supporting broadcast complicates the problem of providing deadlock-free
routing. (See section 6.6.6.) Having low-latency broadcast, however, simplifies the problem of
mapping destination UIDs to short addresses.

3.9 Alternate host ports

In an Autonet, a host is directly connected to an active switch. In an Ethernet-based extended
LAN, a host is directly connected to a passive cable. An active switch has a greater tendency to
fail than a passive cable. The specific availability goal for Autonet is that no failure of a single
network component will disconnect any host. Thus, Autonet allows each host to be connected to
two different switches. The mechanism we chose for dual connection is to provide two ports on
an Autonet host controller. The host chooses and uses one of the ports, switching to the alternate
port after accumulating some evidence that the chosen port is not working.

Having alternate ports simplifies other areas of the design. For example, without alternate ports
serious consideration would need to be given to providing “hot swap” for port cards in switches:
otherwise, turning off a switch to change or add a port card would disable the network for all
directly connected hosts. With alternate ports on host controllers, hot swap is not necessary:
turning off a switch simply causes the connected hosts to adopt their alternate ports to the
network. Port failover usually can be done without disrupting communication protocols. The
obvious disadvantage of having alternate ports is the increased cost of more host-to-switch links
and extra switches. For 100 Mbit/s links, however, the cost per link is quite low compared to the
cost of the host that typically would be connected to such a network.

3.10 Integrated encryption

Security in most distributed systems must be based on encrypted communication. We wanted
encrypted packets to be handled with the same latency and throughput as unencrypted ones --
secure communication is more likely to be used if there is no performance penalty. Therefore we

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems

have put a pipelined encryption chip in the host controller. This chip can encrypt and decrypt
packets as they are sent or received with no increase in latency over unencrypted packets.

3.11 Generic LAN abstraction

Because of short addresses, Autonet presents a different interface to host software than does
Ethernet. When faced with the job of integrating Autonet into our operating system, we quickly
decided that this difference should be hidden at a low level in the host software. The interface
“LocalNet” makes available to higher-level software multiple generic LANS that carry Ethernet
datagrams addressed by UID. Machinery inside LocalNet notices whether an Ethernet or an
Autonet is being used. For packets transmitted over Autonet, LocalNet supplies the Autonet
packet header complete with destination and source short addresses. LocalNet learns the
correspondence between UIDs and short addresses by inspecting arriving packets.

4. Innovations

In a few areas the Autonet design appears to break new ground. We highlight these areas here.
Later sections describe these features in more detail.

4.1 Distributed spanning tree algorithm with termination detection

Deadlock-free routing and the flooding pattern for broadcast packets in Autonet are both based
on identifying a spanning tree of operational links. The spanning tree is computed using a
distributed algorithm similar to Perlman’s [16]. That algorithm has the property that all nodes
will eventually agree on a unique spanning tree, but no node can ever be sure that the
computation has finished. For Autonet, indefinite termination is unacceptable, because an
Autonet cannot carry host traffic while reconfiguration is in progress. To do so would invite
deadlock caused by inconsistent forwarding tables in the various switches.

To eliminate this problem we extended Perlman’s distributed spanning tree algorithm to notify
the switch chosen as the root as soon as the tree has been determined. This prompt notice of
termination allows the Autonet to open for business quickly after a reconfiguration and
guarantees that all switch forwarding tables describe consistent deadlock-free routes.

4.2 Up*/down* routing

Deadlock-free routing in Autonet is based on a loop-free assignment of direction to the
operational links. The basis of the assignment is the spanning tree described in the previous
section, with “up” for each link being the end that is “closer” to the spanning tree root. The result
of this assignment is that the directed links do not form loops. We define a legal route to be one
that never uses a link in the “up” direction after it has used one in the “down” direction. This
up*/down* routing guarantees the absence of deadlocks while still allowing all links to be used
and all hosts to be reached.

4.3 Dynamic learning of short addresses

The LocalNet layer of host software, mentioned above, is given UID-addressed packets to
transmit over the network. If a packet is to be delivered over an Autonet then LocalNet must

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems 2000

provide the complete Autonet packet header, including the short addresses of the source and
destination.

LocalNet uses a UID-addressed cache for recording the short addresses corresponding to various
destination UIDs. The information in this UID cache comes from inspecting the source short-
address and source UID in each packet that is received. When the specific short address of a
destination is not known, a packet is transmitted using the broadcast short address; the
destination UID in the packet allows the intended target host to accept the packet and all other
hosts to reject it. The next response from the destination allows LocalNet to learn the correct
short address. If responses are not forthcoming, LocalNet also can request the short address of
another host by using Autonet broadcast to contact the LocalNet implementation at that host.
This scheme allows a host to track the short addresses of various destinations without generating
many extra packets and without bothering higher layers of software. The learning algorithm
requires only 15 extra instructions per packet received.

4.4 Automatic reconfiguration

The Autonet reconfiguration mechanism is based on each switch monitoring the state of its ports.
Hardware status indicators report illegal transmission codes, syntax errors, lack of progress, and
other conditions for each port. As an end-to-end check, the switch control program verifies a
good port by exchanging packets with the neighboring switch. The appearance or disappearance
of a responding neighbor on some port will cause a switch to trigger a reconfiguration.

Building a stable, responsive mechanism for detecting faults and repairs has proved to be subtly
difficult. The hard problems are determining error fingerprints for each commonly occurring
fault, and designing hysteresis into the reconfiguration mechanism so that faults are responded to
quickly but intermittent switches or links are ignored for progressively longer periods.
Experience with an operational Autonet has allowed us to develop its fault and repair detection
mechanisms to achieve both responsiveness and stability.

4.5 First-come, first-considered port scheduler

Packets arriving at an Autonet switch must in turn be forwarded to one or more output ports.
(Packets destined for the control processor on the local switch are forwarded to a special internal
port.) For packets to a single destination host, the switch determines a set of output ports by
lookup in the forwarding table. Any port in the set can be used to send the packet. For broadcast
packets the switch determines by lookup in the forwarding table the set of output ports that must
forward the packet simultaneously. Scheduling the output ports to fulfill both sorts of requests
must be done carefully to prevent starvation of particular input ports, which in turn could lead to
performance anomalies including deadlocks.

An Autonet switch includes a strict first-come, first-considered scheduler that polls the
availability of output ports and assigns them to the forwarding requests generated by the input
ports. This scheduler, implemented in a single Xilinx programmable gate array [21], eliminates
the problem of starvation and is a key element in achieving Autonet’s best-case switch transit
latency of 2 ps (achieved when the router queue is empty and a suitable output port is available).

Handout 22. Paper on Autonet 10

6.826—Principles of Computer Systems

5. Components

We begin a more detailed description of the Autonet design with an overview of the hardware
and software components.

5.1 Switch hardware

Figure 2 presents a block diagram of the Autonet switch. The switching element is a 13 by 13
crossbar constructed from paired 8-to-1 multiplexer chips. Twelve of the crossbar inputs and
outputs are connected to link units that can terminate external links. The 13th input and output

are connected via a special link unit to the switch’s control processor, so it can send and receive
packets on the network. The crossbar provides a 9-bit data path from any input to any free output
as well as a 1-bit path in the other direction. The former is used to forward packet data and the
packet end marker; the latter to communicate a flow control signal. The crossbar also can

connect a single input port to an arbitrary set of output ports.

The control processor is a Motorola 68000 [15] running on a 12.5 MHz clock. The processor
uses 1 Mbyte of video RAM as both its main memory and its buffers for sending and receiving
packets: the processor uses the random access ports to the memory while the crossbar uses the
serial access ports. A 64-Kbyte ROM is available for booting the control processor at power-up.
The processor has access to a timer that interrupts every 328 us for calculating timeouts. Because
of limited space on the board, however, no CRC or encryption hardware is provided. CRCs for
packets to/from the control processor are checked/generated by software. Currently none of the
packets sent or received by the control processor are encrypted. The control processor also has
access to a ROM containing the switch’s 48-bit UID, and to red and green LEDs on the switch
front panel.

A link unit implements one switch port. It terminates both channels of a full-duplex coaxial link,
receiving from one channel and transmitting to the other. The receive path uses the AMD TAXI
receiver to convert from the 100 Mbit/s serial data stream on the link to a 9-bit parallel format.
The 9th bit distinguishes the 256 data byte values from 16 command values used for packet
framing and flow control. The arriving data bytes (and packet end marks) are buffered in a 4096
by 9 bit FIFO. Logic at the output of the FIFO captures the address bytes from the beginning of
an arriving packet and presents them to the switch’s router. Once the router has set up the
crossbar to forward the packet, the link unit removes the packet bytes from the FIFO and
presents them to the crossbar input. The flow control signal from the crossbar enables and
disables the forwarding of packet bytes through the crossbar. As soon as a packet end command
is removed from the FIFO and forwarded, the output port or ports become available for
subsequent packets.

The transmit path in the link unit accepts parallel data from the crossbar and presents it to the
AMD TAXI transmitter, which converts it to 100 Mbit/s serial form and sends it down the link.
The receive and transmit portions of a single link unit are tied together so that the flow control
state derived from the receiving FIFO can be transmitted back over the transmit channel on the
same link. (See section 6.2.) A link unit does not include CRC hardware; an Autonet switch does
not check or generate CRCs on forwarded packets.

Handout 22. Paper on Autonet

2000

11

6.826—Principles of Computer Systems

To
control

processor 13+4
Router

A
A 4

M g output link mask

¥
input link index

packet address

A
) 9 —_
Link
9 Unit 0 ﬁL’
+’ Rx 1 Crossbar
from 47L
control)
processor A | . 1
9 9
4 Link > |
[p| Uniti g \; !
Rx /
Link i </ Il - <«
se
le
Al ot mux
N flow data
| A T control
9
1 Link |/
Unit 12 1 .
Rx
Link 12 < — 1
A MUX 13+4
select [~ - - -
A
9 T ol P 9
A
13+4 Link Unit 0 Link Unit j Link Unit 12 o
Tx 4:' Tx | Tx < »
input link select / ’
flow control select
to control link j link 12

processor

Figure 2: Structure of an Autonet switch

A link unit maintains a set of status bits that can be polled by the control processor. These status
bits are a primary source of information for the algorithms that monitor the condition of the ports
on a switch to decide when a network reconfiguration should occur. The control processor also
has some control over the operation of an individual link unit. Via a control register each link
unit can be instructed to illuminate LEDs on its front panel, to send special-purpose flow control
directives, and to ignore received flow control.

The router contains 64 Kbytes of memory for the forwarding table and a routing engine that
schedules the use of switch output ports. The forwarding tables are loaded by the control

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems 2000

processor as part of a network reconfiguration. The routing engine is implemented in a single
Xilinx 3090 programmable gate array.

Most of the switch runs on a single 80 ns clock. Link units can forward one byte of packet data
into the crossbar on each clock cycle. The router can make a forwarding decision and set up a
crossbar connection every 6 clock cycles, so the packet forwarding rate is about 2 million
packets per second. The latency from receiving the first bit of a packet on an input link to
forwarding the first bit on an output link is 26 to 32 clock cycles if the output link and router are
not busy.

The Autonet switch is packaged on 5 card types in a 45 x 18 x 30 cm Eurocard enclosure. A
completely populated switch contains 12 link units, 5 2-bit crossbar slices, 1 control processor,
and 1 router, all implemented on 10 x 16 cm cards. The backplane, into which all other card
types plug at right angles, is a 43 x 13 cm board. A switch draws about 160 w of power.

5.2 Controller hardware

The first host controller for Autonet, shown in Figure 3, attaches to the Digital Equipment
Corporation Q-bus [11] that is used in our Firefly [19] multiprocessor computers. In general, we
believe that a network controller should be both simple and fast, and play no role in the correct
operation of the network fabric. Operating at the full 100 Mbit/s network bandwidth with low
latency requires a completely pipelined structure and packet cut-through for transmit and receive.
Simplicity requires no higher-level protocol processing in the controller. In the case of this first
controller, however, the 14 Mbit/s bandwidth of the Firefly Q-bus allows use of a shared data bus
within the controller and elimination of cut-through with little impact on controller latency or
throughput.

The network ports are each implemented in a small cabinet kit designed to be mounted in the
Firefly chassis. The cabinet kit includes the TAXI transmitter and receiver, and the circuit for
driving the link. A signal on the ribbon cable to the controller card selects which cabinet kit is in
use. Selection of which port to use is done by the host software.

The controller itself fills a 10.5 x 8.5 inch quad Q-bus card. The receive path is pipelined up to
the point where arriving packets are stored in a 128-Kbyte receive buffer. The transmit path is
pipelined outward from a 128-Kbyte transmit buffer. CRC checking and generation are done
with a Xilinx 3020 [21]. Encryption is handled by an AMD 8068 encryption chip [2]. The
connections between the transmit buffer, receive buffer, CRC chip, encryption chip, and Q-bus
are via a 16-bit internal bus. The controller board includes a ROM containing a 48-bit UID that
can be used as the host’s UID address.

The controller’s operation is under the direction of a microprogram executing on an AMD 29116
microprocessor [1]. The microcode initially comes from a 12-Kbyte boot ROM, but microcode
can subsequently be downloaded from the host over the Q-bus. Microcode downloading has
allowed us to experiment easily with the controller-to-host interface. This controller is able to

use the full Q-bus bandwidth to send and receive packets. Encrypted packets can be sent and
received with no performance penalty.

Handout 22. Paper on Autonet 13

6.826—Principles of Computer Systems 2000

29116 DES CRC Q bus
Packet Packet
buffer buffer
A
v
Big FIFO FIFO
A
Link
control v
Rev Xmt
Controller card / \
A 4 / \ A 4
Cabinet kit Link Link Cabinet kit
driver driver

I Serial links I

Figure 3: Structure of the Q-bus Autonet controller

5.3 Link hardware

The first links implemented for Autonet use 75 ohm coaxial cable. A hybrid circuit allows both
channels of a full-duplex link to be carried on a single cable. This implementation has the
consequence that signals transmitted on an Autonet port can be reflected and correctly received
at the same port. Reflection occurs when no cable is attached, when an unterminated cable is
attached, and when the attached cable terminates at an unpowered remote port. Thus, a host or
switch must be prepared to receive its own packets.

The circuit driving the links includes a high-pass filter that prevents frequencies below about 10
MHz from being transmitted. This filter is needed because the data encoding scheme used by the
TAXIs allows signals with low frequency components to be generated by sending certain legal
sequences of bytes and commands. Without the filter, low frequency transitions can prevent the
receiver from recovering the data correctly.

Handout 22. Paper on Autonet 14

6.826—Principles of Computer Systems

The service network in our building uses Belden 82108 low-loss cable and standard cable
television “F” connectors. We accept cabinet kits and link unit cards for service if a packet-
echoing protocol can send and receive 40,000 packets of 1,500 bytes each over a 100-meter link
between the test host and test switch without a CRC error.

5.4 Switch control program

Autopilot, the software that executes on the control processor of each switch, is responsible for
implementing Autonet’s automatic operation. Its major functions are propagating and rebooting
new versions of itself, responding to monitoring and debugging packets, monitoring the physical
network, answering short-address request packets from attached hosts, triggering
reconfigurations when the physical network changes, and executing the distributed
reconfiguration algorithm.

The Autopilot source code consists of about 20,000 lines written in C and 3500 lines written in
assembler. This generates a 62,000-byte object program. A stable version of Autopilot is
included in the switch boot ROMs and is automatically loaded when power is turned on or the
switch is reset. Whenever a new version is ready for use, it is down loaded from the
programming environment (a Firefly workstation) over the Autonet itself into the nearest switch.
The version of Autopilot running there accepts the new version, boots it, and then propagates it
to neighboring switches.

The structure of Autopilot is typical of small, real-time, control programs. Interrupt routines
enqueue and dequeue buffers for packets sent and received by the control processor. Everything
else runs at process level as tasks under the control of a non-preemptive scheduler. Tasks are
structured as procedure calls that run to completion within a few milliseconds. The task
scheduler manages a timer queue for tasks that need to be run after a timeout has expired.
Current timeout resolution is 1.2 milliseconds. The major algorithms in Autopilot are described
in later sections.

5.5 The SRC service LAN

The service Autonet for SRC contains 30 switches. The current topology uses four of the twelve
ports on each switch for links to other switches and eight ports for links to hosts. With each host
connected to two switches, this configuration has the capacity to attach 120 hosts. The Autonet is
connected to the Ethernet in the building via a bridge. Thus the Autonet and Ethernet behave as a
single extended LAN.

The hosts on Autonet are Firefly workstations and servers. A Firefly contains 4 CVax processors
providing about 3 MIPS each and can have up to 128 Mbytes of memory. Typical workstations
have 32 or 64 Mbytes of memory. All processors see the same memory via consistent caches. At
least until the Autonet proves itself to be stable and reliable, and the more disruptive experiments
stop, most Fireflies are connected to both the Autonet and the Ethernet. The choice of which
network to use can be changed while the system is running. Switching from one network to the
other can be done in the middle of an RPC call or an IP connection without disrupting higher-
level software.

Handout 22. Paper on Autonet

2000

15

6.826—Principles of Computer Systems 2000

GetInfo(net, info)
SetState(net, state)
Send(net, buffer, size)
Receive(buffer, status)
StartForwarding(net1, net2)

LocalNet UID cache
Ethernet Autonet
driver driver

to controller to controller

Figure 4: Structure of low-level LAN software for the Firefly

5.6 Host software

The Firefly host software for Autonet includes a driver for the controller, the Local Net generic
LAN with UID cache, and the Autonet-to-Ethernet bridging software. This software is written in
Modula 2+ [18] and executes in VAX kernel mode. The Firefly scheduler provides multiple
threads [7, 8] per address space (including the kernel), and the Autonet host software is written
as concurrent programs that execute simultaneously on multiple processors.

Figure 4 illustrates the structure of the low-level LAN software for the Firefly. The Local Net
interface presents a set of generic, UID-addressed LANS that carry Ethernet datagrams. The
Get | nf o procedure allows clients to discover which generic nets correspond to physical
networks. The Set St at e procedure allows clients to enable and disable these networks. An
Ethernet datagram can be sent via a specific network with the Send procedure. The Recei ve
procedure blocks the calling thread until a packet arrives from some network. The result of
Recei ve indicates on which network the packet arrived. Usually many threads are blocked in
Recei ve. Finally, the St ar t For war di ng procedure causes the host to begin acting as a bridge
between two networks.

For transmission on Autonet, the Local Net UID cache provides the short address of a packet’s
destination. This cache is kept up-to-date by observing the source UID and source short-address
of all packets that arrive on the Autonet, and by occasionally requesting a short address from
another Local Net implementation using Autonet broadcast. (See section 6.8.1.) When a host is
acting as an Autonet-to-Ethernet bridge, Local Net observes the packets arriving on Ethernet as
well, using the UID cache to record which hosts are reachable via the Ethernet. Thus, by looking
up the destination UID of each packet that arrives on either network, Local Net can determine
whether the packet needs to be forwarded on the other network. (See section 6.8.2.)

6. Functions and algorithms

We now consider in more detail the major functions and algorithms of Autonet.

Handout 22. Paper on Autonet 16

6.826—Principles of Computer Systems

6.1 Link syntax

The TAXI transmitter and receiver are able to communicate 16 command values that are distinct
from the 256 data byte values. We use these commands to communicate flow control directives
and packet framing. When a TAXI transmitter has no other data or command values to send, it
automatically sends a sync command to maintain synchronization between the transmitter and
receiver. Thus, one can think of the serial channel between a TAXI transmitter and receiver as
carrying a continuous sequence of slots that can either be filled with data bytes or commands, or
be empty.

In Autonet, flow control prevents a sender from overflowing the FIFO in the receiving switch.
Autonet communicates flow control information by time multiplexing the slots on a channel.
Every 256th slot is a flow control slot. The remaining slots are data slots. Normally st art or

st op directives occupy each flow control slot, independent of what is being communicated in the
data slots. To make it easy for a switch to tell whether a link comes from another switch or from
a host, host controllers send a host directive instead of st ar t . Because flow control directives
are assigned unique command values, they can be recognized even when they appear
unexpectedly in a data slot. Thus, the flow control system is self-synchronizing. Flow control is
discussed in more detail in the next section.

Two special-purpose flow control directives, i dhy and pani ¢, may also be sent. | dhy, which
stands for “I don’t hear you”, is sent on a switch-to-switch link when one switch determines that
the link is defective, to make sure the other switch declares the link to be defective as well.

Pani c is intended to be sent to force the other switch to reset its link unit, clearing the receive
FIFO and reinitializing the link control hardware so reconfiguration packets can get through. We
have not yet implemented the panic facilities.

The data slots carry packets. A packet is framed with the commands begi n and end. Data slots
within packets are filled with sync commands when flow control stops packet data from being
transmitted. Transmitters are required to keep up with the demand for data bytes, so neither
controllers nor switches may send sync commands within packets when flow is allowed. Thus, a
link is never wasted by idling unnecessarily within a packet, and a link unit can assume that in
normal operation packet bytes are available to retrieve from the FIFO. Between packets all data
slots are filled with sync commands.

6.2 Flow control

Figure 5 illustrates the Autonet flow control mechanism. The figure contains pieces of two
switches and a link between them. The names “channel 1”” and “channel 2” refer to the two
unidirectional channels on the link. In the receiving link unit of channel 1, a status signal from

the FIFO chip indicates whether the FIFO is more or less than half full. This information
determines the flow control directives being sent on channel 2, the reverse channel of the same
link. When a flow control slot occurs, a st art command is sent if the receiving FIFO is less than
half full; st op is sent if it is more than half full. Back at the receiving link unit of channel 2, the
flow control directives generate a flow control signal for the crossbar. If the output port is
forwarding a packet, then the flow control signal uses the 1-bit reverse path through the crossbar
to open and close the throttle on the FIFO that is the source of the packet.

Handout 22. Paper on Autonet

2000

17

6.826—Principles of Computer Systems

e 2 T
. I:'.:l

T RN L — TEX] ':-'.'
= o = & i i s i i
B T LRk =S i
TN = ; - .1-+ TAE] | o i
e = T [T
Pt ;
L

el o & Tl e

Figura & Swiich-io-switch Flow Congrol Mechansm

An important special case is a port that is receiving no flow control commands. Because the host
controller transmits only sync commands on its alternate link, receiving no flow control usually
means that the other end of the link is connected to an alternate host port. Receiving no flow
control commands should cause a link control unit to act as though host (or start if that
directive has been received more recently than host) is being received, thus allowing packets to
be forwarded on such a link, effectively discarding them. Due to an oversight in the design,
however, link units that are receiving no flow control keep acting on the last flow control
directive received. The last directive could have been st op; it is unpredictable following switch
power up. Switch software detects and clears the backups that can result from such indefinite
cessation of flow.

This flow control scheme can cause congestion to back up across several links. Consider a
sequence of switches ABCD along the path of some packet. If the receiving FIFO in C issues
st op, say because the CD link is not available at the moment, then the FIFO in B will stop
emptying. Packet bytes arriving from A will start accumulating in B’s FIFO and eventually B
will have to issue st op to A. Thus congestion can back up through the network until the source
controller is issued a st op. If the congestion persists long enough, then the network software on

Handout 22. Paper on Autonet

2000

6.826—Principles of Computer Systems 2000

the host would stop sending packets; threads making calls to transmit packets would delay
returning until more packets could be sent.

Autonet host controllers may not send st op commands. Thus, a slow or overloaded host cannot
cause congestion to back up into the network. A slow host should have enough buffering in its
controller to cover the bursts of packets that will be generated by the communication protocols
being used. A controller will discard received packets when its buffers fill up.

We can now understand the relationship between FIFO length, the frequency of flow control

slots, and link latency. Assume that the FIFO holds ©V bytes and that it issues st op whenever the
FIFO contains more than (1 - f) N bytes, where 0 <f'< 1. A flow control command is sent every S
slots. Assume that the link latency is ¥ slot transmission times. In the worst case the receiving

FIFO is not being emptied and the transmitter sends bytes continuously unless stopped. At the

time the receiver causes a st op command to be sent, its FIFO may contain as many as (1 - f) N +
(S - 1) bytes. Another 2 W bytes will arrive at the FIFO before the st op is effective, assuming

the transmitter acts on the received st op with no delay. To prevent the FIFO from overflowing
then, it must be that:

N2 (-HN+(S-1)+2W

From the speed of light, the velocity factor of fiber optic cable (which is a bit slower than coaxial
cable), and a slot transmission time of 80 ns we can compute that /= 64.1 L, where L is the
cable length in kilometers. Thus:

N=(S-1+1282L)/f
For § =256 slots, f=0.5, and L = 2 km, we see that N must be 1024 bytes.

With these choices of S, £, and L, Autonet actually uses 4096-byte FIFOs. The larger FIFO is
used to solve a deadlock problem that is associated with broadcast packets, as explained in
section 6.6.6. The solution to the problem is to have a transmitter of a broadcast packet ignore

st op commands until the end of the broadcast packet is reached, and make the receiver FIFO big
enough to hold any complete broadcast packet whose transmission began under a st ar t
command. Thus, for broadcast packets flow control acts only between packets. For this case, we
can calculate the maximum allowable broadcast packet length as the FIFO size minus the worst
case count of bytes already in the FIFO when the first byte of the broadcast packet arrives. Thus:

B<N-(1-)N-(S-1)-1282L
So, taking B into account, the size needed for the FIFO becomes:
N2 (B+S-1+1282L)/f

The minimum acceptable value for B is about 1550 bytes. This size allows Autonet to broadcast
the maximum-sized Ethernet packet with an Autonet header prepended. The corresponding N is
about 4096 bytes. This increase in FIFO size is one of the costs of supporting low-latency
broadcast in Autonet.

Handout 22. Paper on Autonet 19

6.826—Principles of Computer Systems 2000

6.3 Address interpretation

As indicated earlier, Autonet packets contain short addresses. In our implementation a short
address is 11 bits, although increasing it to 16 bits would be a straightforward design change.
The short address is contained in the first two bytes of a packet.

As shown in Figure 6, address interpretation starts as soon as the two address bytes have arrived
at the head of the FIFO in a link unit. The short address is concatenated with the receiving port
number and the result used to index the switch’s forwarding table. Each 2-byte forwarding table
entry contains a 13-bit port vector and a 1-bit broadcast flag. The bits of the port vector
correspond to the switch’s ports, with port 0 being the port to the control processor. When the
broadcast flag is 0, the port vector indicates the set of alternative ports that could forward the
packet. The switch will choose the first port that is free from this set. If several of the ports are
free then the switch chooses the one with the lowest number. When the broadcast flag is 1, the
port vector indicates the set of ports that must forward the packet simultaneously. Forwarding
will not begin until all these ports are available. A broadcast entry with all 0’s for the port vector
tells the switch to discard the packet.

FIFO

Arriving packet
Forwarding table

Address bytes

Link vector —_—

02134/ [

B = and/or

Incoming link #

Figure 6: Interpretation of switch forwarding table

Because address interpretation in a switch requires just a lookup in an indexed table, it can be
done quickly by simple hardware. Specification of alternative ports allows a simple form of
dynamic multipath routing to a destination. For example, multiple links that interconnect a pair

of switches can function as a trunk group. Including the receiving port number in the forwarding
table index has several benefits; it provides a way to differentiate the two phases of flooding a
broadcast packet (see section 6.6.6); it allows one-hop switch-to-switch packets to be addressed

Handout 22. Paper on Autonet 20

6.826—Principles of Computer Systems 2000

with the outbound port number; it provides a way to prevent packets with corrupted short
addresses from taking routes that would generate deadlocks.

The mechanism for interpreting short addresses allows considerable latitude in the way short
addresses are used. We have adopted the following assignments:

Short address Packet destination

0000 From a host; the control processor of the switch attached to the active host
port

0001 - 000F From a switch; the switch or host attached to the addressed switch port

0010 - FFEF Particular host or switch (packet discarded if address not in use)

FFFO - FFFB Packet discarded (reserved address values)

FFFC From a host; loopback from switch attached to the active host port
FFFD Every switch and every host

FFFE Every switch

FFFF Every host

Here each short address is expressed as 4 hexadecimal digits, but prototype switches interpret
only the low order 11 bits of these values.

As part of the distributed reconfiguration algorithm performed by the switches, each useable port
of each working switch in a physical installation is assigned one of the short addresses in the
range “0010” through ‘“FFEF”. The assignment is made by partitioning a short address into a
switch number and a port number, and assigning the switch numbers as part of reconfiguration.
The forwarding tables are filled in to direct a packet (from any source) containing one of these
destination short addresses to the switch control processor or host attached to the identified port.
If the address is not in use, then the forwarding tables will at some point cause the packet to be
discarded. The forwarding tables also discard packets that arrive at a switch port that is not on
any legal route to the addressed destination; such misrouted packets may occur if bits in the
destination short address are corrupted during transmission.

A host on the Autonet discovers its own short address by sending a packet to address “0000”".
This address directs the packet to the control processor of the local switch. The processor is told
the port on which the packet arrived and knows its own switch number. Thus it can reply with a
packet containing the host’s short address.

The forwarding tables in every switch will reflect a packet addressed to “FFFC” back down the
reverse channel of the link on which it was received. Thus, packets sent by a host to this address
will be looped back to that host. This feature is used by a host to test its links to the network.

A packet addressed to “FFFF” from a host or switch will be delivered to all host ports in the
network. (Section 6.6.6 describes the flooding pattern used.) The addresses “FFFD” and “FFFE’
work in a similar way.

Finally, the addresses “0001” through “000F” are reserved for one-hop packets between
switches. Each switch forwarding table directs a packet so addressed to be transmitted on the
numbered local port if the packet is from port O (the control processor port); it directs
transmission to port 0 if the packet is from any other port.

Handout 22. Paper on Autonet 21

6.826—Principles of Computer Systems 2000

6.4 Scheduling switch ports

Once the appropriate entry has been read from a switch’s forwarding table, the next step in
delivering a packet is scheduling a suitable transmission port. Scheduling needs to be done in a
way that avoids long-term starvation of a particular request. The availability of the Xilinx
programmable gate array allowed this problem to be solved by the simple strategy of
implementing a strict first-come, first-considered scheduler.

Figure 7 illustrates the scheduling engine that contains a queue of forwarding requests. The

queue slots are the columns in the figure. Only 13 slots are required because with head-of-line
blocking, each port can request scheduling for at most one packet at a time; only the packet at the
head of the FIFO is considered. Each queue slot can remember the result of a forwarding table
lookup along with the number of the receive port that is requesting service.

When a request arrives at the scheduling engine, the request shifts to the right-most queue slot
that is free. Periodically a vector representing the free transmit ports enters the scheduling engine
from the right. This vector is matched with occupied queue slots proceeding from right to left, in
the arrival order of the requests. Each forwarding request in turn has the opportunity to capture
useful free ports.

If a request is for alternative ports (broadcast = 0), then it will capture any free transmit port that
matches with the requested port vector. If multiple matches occur, then the free port with the
lowest number port is chosen. For alternative ports, a single match allows the satisfied request to
be removed from the queue and newer requests to be moved to the right. The satisfied request is
output from the scheduling engine and is used to set up the crossbar, allowing packet
transmission to begin.

control control control
valid valid valid
output output output
port mask port mask port mask 13 available output
. . (13 bits) ports, from link
incoming s,
request, < " - units
fromlink ~ — > = —>
units L
» Connection info, to
crossbar
b'cast b'cast b'cast
input port input port input port

| 4— 13 queueslots —» |

Figure 7: Scheduling engine for switch output ports

Handout 22. Paper on Autonet 22

6.826—Principles of Computer Systems

If a request is for simultaneous ports (broadcast = 1), then it will accumulate all free transmit ports
that match the requested port vector. In the case that some requested ports still remain unmatched
the vector of free ports proceeds on to newer requests, minus the ports previously captured. If the
matches complete the needed transmit port set, then the satisfied broadcast request is removed
from the queue, as above. The crossbar is set up to forward from the receive port to all requested
transmit ports, and packet transmission is started.

The scheduling engine can accept and schedule one request every 480 ns and thus is able to
process up to 2 million requests per second.

Notice that the scheduling engine allows requests to be serviced out-of-order when useful free
ports are not suitable for older requests. Queue jumping allows some requests to be scheduled
faster than they would be with a first-come, first-served discipline. Also notice that a broadcast
request will effectively get higher and higher priority until it is at the head of the queue. Once
there, the request has first choice on free transmit ports; each time a needed port becomes free,
the broadcast request reserves it. Thus, the broadcast request is guaranteed to be scheduled
eventually, independent of the requests being presented by the other receive ports.

6.5 Port state monitoring

Our goal of automatic operation requires that the network itself keep track of the set of links and
switches that are plugged together and working, and determine how to route packets using the
available equipment. Further, the network should notice when the set of links and switches
changes, and adjust the routing accordingly. Changes might mean that equipment has been added
or removed by the maintenance staff. Most often changes will mean that some link or switch has
failed.

Autopilot, the switch control program, monitors the physical condition of the network. The
Autopilot instance on each switch keeps watch on the state of each external port. By periodically
inspecting status indicators in the hardware, and by exchanging packets with neighboring
switches, Autopilot classifies the health and use of each port. When it detects certain changes in
the state of a port, it triggers the distributed reconfiguration algorithm to compute new
forwarding tables for all switches.

The mechanism for monitoring port states has several layers. The lowest layer is hardware in

each link unit that reports hardware status to the control processor of the switch. The next layer is
a status sampler implemented in software that evaluates the hardware status of all ports. The

third layer is a connectivity monitor, also implemented in software, that uses packet exchange to
determine the health and identity of neighboring switches. Stabilizing hysteresis is provided by

two skeptic algorithms. We now explain these mechanisms in more detail.

6.5.1 Port states

The port state monitoring mechanism dynamically classifies each port on an Autonet switch into
one of following six states:

Handout 22. Paper on Autonet

2000

23

6.826—Principles of Computer Systems

Port state Definition

s.dead The port does not work well enough to use.

s.checking The port is being monitored to determine if it is attached to a host or to a
switch.

s.host The port is attached to a host.

s.switch.who
s.switch.loop

The port is being probed to determine the identity of the attached switch.

The port is attached to another port on the same switch, or is reflecting
signals.

s.switch.good The port is attached to a responsive neighbor switch.

Figure 8 illustrates these port states and shows the actions associated with the state transitions.
As will be explained in more detail in the next two sections, the state transitions shown as black
arrows are the responsibility of the status sampler; those shown as gray arrows are the
responsibility of the connectivity monitor. The actions triggered by a transition are indicated by
the attached action descriptions.

initiate a
reconfiguration

s.switch.loop

enable sw-

disable to-sw
sw-to-sw packets
packets

enable packets

disable packets to/from host

to/from host

Figure 8: Switch port states and transitions

Handout 22. Paper on Autonet

2000

24

6.826—Principles of Computer Systems

6.5.2 Hardware port status indicators

Each link unit reports status bits that help Autopilot note changes in the state of the port. These
status bits can be read by the control processor of the switch. Some status bits indicate the
current condition of a port:

Status bit Current port condition represented

IsHost last flow control received on link indicates a host is attached
XmitOK last flow control received on link allows transmission
InPacket transmitter is in the middle of a packet

Other status bits indicate that one or more occurrences of a condition have occurred since the bit
was last read by the control processor:

Status bit Accumulated port condition represented

BadCode TAXI receiver reported violation

BadSyntax out-of-place flow control directive, unused command value received,
improper packet framing

Overflow FIFO overflow occurred

Underflow FIFO underflow occurred inside a packet

IdhySeen i dhy flow control directive received

PanicSeen pani ¢ flow control directive received

ProgressSeen FIFO forwarded some bytes or has seen no packets

StartSeen start or host flow control directive received

There is considerable design latitude in choosing exactly which conditions to report in hardware
status bits. As we will see below, all switch-to-switch links are verified periodically by packet
exchange. The hardware status bits provide a more prompt hint that something might have
changed. If most changes of interest reflect themselves in the hardware status bits, however, then
port status changes will be noticed more quickly; Autopilot can use the hardware status change
to trigger an immediate verification by packet exchange.

6.5.3 Status sampler

The next layer of port state monitoring is the status sampler. This code, which runs continuously,
periodically reads the link unit status bits. A counter corresponding to each status bit from each
port is incremented for each sampling interval in which the bit was found to be set. The status
sampler also counts CRC errors on packets received by the local control processor (such as the
connectivity test or reply packets described in the next section), even though CRC errors are
actually detected by software. Based on the status counts accumulated over certain periods, each
port is dynamically classified into one of the four states s.dead, s.checking, s.host, and
s.switch.who.

When a switch boots, all ports are initially classified as s.dead. This state represents ports that
are to be evaluated, but not used. While classified as s.dead, a switch port is forced to send i dhy
in place of normal flow control to guarantee that the remote port will be classified by the
neighboring switch as no better than s.checking. Receiving i dhy is not counted as an error when

Handout 22. Paper on Autonet

2000

25

6.826—Principles of Computer Systems 2000

a port is classified as s.dead. When a port has exhibited no bad status for the appropriate period,
it moves from s.dead to s.checking. The length of the error-free period required is determined by
the status skeptic described in section 6.5.5. A port is directed to send normal flow control when
it enters s.checking. A port that has no bad status counts except for receiving i dhy stays
classified as s.checking.

Once a port is in s.checking, the status sampler waits for i dhy flow control to cease, and then
tries to determine whether the port is cabled to a switch or to a host. The IsHost bit is used to
distinguish the cases. Reflecting ports, and ports cabled to another port on the same switch, will
be classified as s.switch.who, because such ports receive the st art flow control directives sent
from the local switch, causing IsHost to be FALSE. Alternate host ports will send continuous sync
commands, but no flow control directives. This pattern generates BadSyntax and makes the IsHost
bit useless, so a port showing constant BadSyntax status, but no other errors, is classified as s./0st.

When a port’s state is changed to s.40st, the local forwarding table is updated to permit
communication over the port. The port’s entries in the forwarding table are set to forward all
suitably addressed packets to the port and to allow packets received from the port to be
forwarded to any destination in the network. Because both active and alternate host ports are
classified as s./ost, switching to the alternate by a host will cause no forwarding table changes,
assuming that the alternate port does not then start producing bad status counts.

When a port is changed from s.checking to s.switch.who, the forwarding table is set to allow the
control processor to exchange one-hop packets with the possible neighboring switch. This
forwarding table change allows the connectivity monitor to probe the neighboring switch in

order to distinguish between the states s.switch.who, s.switch.loop, and s.switch.good.

A port moves back to s.dead from other states if certain limits are exceeded on the bad status
counts accumulated over a time period. As indicated in Figure 8, transitions back to s.dead will
cause the local forwarding table to be changed to stop packet communication through the port.

A side effect of status sampler operation is the removal of long-term blockages to packet flow.
By reading the StartSeen bit, the status sampler counts intervals during which only st op flow
control directives are received at each port. When such intervals occur too frequently, the port is
classified as s.dead. The associated changes to the forwarding table cause all packets addressed
to the port to be discarded, preventing the port from causing congestion to back up into the
network. The ProgressSeen status bit allows the status sampler to count intervals during which a
packet has been available in a FIFO to be forwarded, but made no progress. From this count the
status sampler can classify a port as s.dead and remove it from service when it is stuck due to
local hardware failure.

6.5.4 Connectivity monitor

A transition from s.checking to s.switch.who means that the status sampler approves the port for
switch-to-switch communication. A port thus approved is always being scrutinized by the top
layer of port state monitoring, the connectivity monitor. The state s.switch.who means that
Autopilot does not know the identity of the connected switch.

The connectivity monitor tries to determine the UID and remote port number for the connected
switch. The connectivity monitor periodically transmits a connectivity test packet on the port and

Handout 22. Paper on Autonet 26

6.826—Principles of Computer Systems 2000

watches for a proper reply. As long as no proper reply is received, the port remains classified as
s.switch.who. Thus, a non-responsive remote switch will cause the port to remain in this state
indefinitely. To be accepted, a reply must match the sequence information in the test packet and
echo the UID and port number of the test packet originator. The connectivity monitor looks at
the source UID of an accepted reply packet to distinguish a looped or reflecting link from a link
to a different switch. In the former case, the connectivity monitor relegates the port to
s.switch.loop; such ports are of no use in the active configuration. In the latter case, the
connectivity monitor sets the state to s.switch.good and initiates a reconfiguration of the entire
network. The reconfiguration causes all switches to compute new forwarding tables that take into
account the existence of the new switch-to-switch link (and possibly a new switch).

The connectivity monitor continuously probes all ports in the three s.switch states. At any time it
may cause the transitions to and from s.switch.who shown by gray arrows in Figure 8. In the case
of a transition from s.switch.good to s.switch.who, a network-wide reconfiguration is initiated to
remove the link from the active configuration. Note from Figure 8 also that a network-wide
reconfiguration is initiated when the status sampler, described in the previous section, removes

its approval of a port in s.switch.good by reclassifying it as s.dead.

6.5.5 The skeptics

Two algorithms in Autopilot prevent links that exhibit intermittent errors from causing
reconfigurations too frequently. They are the status skeptic and the connectivity skeptic.

The status skeptic controls the length of the error-free holding period required before a port can
change from s.dead to s.checking. The length of the holding period for a particular port depends
on the recent history of transitions to s.dead: transitions to s.dead lengthen the holding period;
intervals in s./0st or any of the s.switch states shorten the next holding period.

The connectivity skeptic operates in a similar manner to increase the period over which good
connectivity responses must be received before a port is changed from s.switch.who to
s.switch.good. This skeptic therefore limits the rate at which an unstable neighboring switch can
trigger reconfigurations. The sequences of delays introduced by the skeptic algorithms are still
being adjusted.

6.6 Reconfiguration and routing

We are now ready to describe how Autopilot calculates the packet routes for a particular physical
configuration and how it fills in the forwarding tables in a consistent manner. The goals for

routing are to make sure all hosts and switches can be reached, to make sure no deadlocks can
occur, to use all correctly operating links, and to obtain good throughput for the entire network.
The distributed reconfiguration algorithm achieves these goals by developing a set of loop-free
routes based on link directions that are determined from a spanning tree of the network.

Reconfiguration involves all operational network switches in a five step process:

1. Each switch reloads its forwarding table to forward only one-hop, switch-to-switch
packets and exchanges tree-position packets with its neighbors to determine its position
in a spanning tree of the topology.

Handout 22. Paper on Autonet

27

6.826—Principles of Computer Systems 2000

2. A description of the available physical topology and the spanning tree accumulates while
propagating up the tree to the root switch.
. The root assigns short addresses to all hosts and switches.
4. The complete topology, spanning tree, and assignments of short addresses are sent down
the spanning tree to all switches.
5. Each switch computes and loads its own forwarding table, based on the information
received in step 4, and starts accepting host-to-host traffic.

|95}

Because host packets will be discarded during the reconfiguration process, it is important that the
entire process occur quickly, certainly in less that a second. Note that the reconfiguration process
will configure physically separated partitions as disconnected operational networks.

As described in the previous section, reconfiguration starts at one or more switches that have
noticed relevant port state changes. In step 1 these initiating switches clear their forwarding
tables and send the first tree-position packets to their neighbors. Other switches join the
reconfiguration process when they receive tree-position packets and they, in turn, send such
packets to their neighbors. In this way the reconfiguration algorithm starts running on all
connected switches.

The reloading of the forwarding tables in step 1 has two purposes. First, it eliminates possible
interference from host traffic, allowing the reconfiguration to occur more quickly. Second, it
guarantees that no old forwarding tables will still exist when the new tables are put into service
at step 6: coexistence could lead to deadlock and packets being routed in loops.

6.6.1 Spanning tree formation

The distributed algorithm used to build the spanning tree is based on one described by Perlman
[16]. Each node maintains its current tree position as four local variables: the root UID, the tree
level at this switch (O is the root), the parent UID, and the port number to the parent. Initially,
each switch assumes it is the root. A switch reports this initial tree position and each new
position to each neighboring switch by sending tree-position packets, retransmitting them
periodically until an acknowledgment is received.

Upon reception of a tree-position packet from a neighbor over some port, a switch decides if it
would achieve a better tree position by adopting that port as its parent link. The port is a better
parent link if it leads to a root with a smaller UID than the current position, if it leads to a root
with the same UID as the current position but via a shorter tree path, if it leads to the same root
via the same length path but through a parent with a smaller UID, or if it leads to the current
parent but via a lower port number.

If each switch sends tree-position packets to all neighbors each time it adopts a new position,
then eventually all switches will learn their final position in the same spanning tree.
Unfortunately, no switch will ever be certain that the tree formation process has completed, so
the switches will not be able to decide when to move on to step 2 of the reconfiguration
algorithm. To eliminate this problem we extend Perlman’s algorithm. We say that a switch S is
stable if all neighbors have acknowledged S’s current position and all neighbors that claim S as
their parent say they are stable. While transitions from unstable to stable and back can occur
many times at most switches, a transition from unstable to stable will occur exactly once at the

Handout 22. Paper on Autonet 28

6.826—Principles of Computer Systems

switch which is the root of the spanning tree. Thus, when some switch becomes stable while
believing itself to be the root of the spanning tree, then the spanning tree algorithm has
terminated and all switches are stable.

Conceptually, implementing stability just requires augmenting the acknowledgment to a tree-
position packet with a “this is now my parent link” bit. A neighbor acknowledges with this bit set
TRUE when it determines that its tree position would improve by becoming a child of the sender
of the tree-position packet. Thus a switch will know which neighbors have decided to become
children, and can wait for each of them to send a subsequent “I am stable” message. When all
children are stable then a switch in turn sends an “I am stable’” message to its parent.

Step 2 of the reconfiguration process has the topology and spanning tree description accumulate
while propagating up the spanning tree to the root switch. This accumulation is implemented by
expanding the “I am stable” messages into topology reports that include the topology and
spanning tree of the stable subtree. As stability moves up the forming spanning tree towards the
root, the topology and spanning tree description grows. When the switch thinking itself to be the
root receives reports from all its children, then it is certain that spanning tree construction has
terminated, and it will know the complete topology and spanning tree for the network. A non-
root switch will know that spanning tree formation has terminated when it receives the complete
topology report that is handed down the new tree from the root in step 4. Each switch can then
calculate and load its local forwarding table from complete knowledge of the current physical
topology of the network. The upward and downward topology reports are all sent reliably with
acknowledgments and periodic retransmissions.

6.6.2 Epochs

To prevent multiple, unsynchronized changes of port state from confusing the reconfiguration
process, Autopilot tags all reconfiguration messages with an epoch number. Each switch contains
the local epoch number as a 64-bit integer variable, which is initialized to zero when the switch

is powered on. When a switch initiates a reconfiguration, it increments its local epoch number

and includes the new value in all packets associated with the reconfiguration. Other switches will
join the reconfiguration process for any epoch that is greater than the current local epoch, and
reset the local epoch number variable to match.

Once a particular epoch starts at each switch, then any change in the set of useable switch-to-
switch links visible from that switch (that is, port state changes in or out of s.switch.good) will
cause Autopilot to add one to its local epoch and initiate another reconfiguration. Such changes
can be caused by the status sampler and the connectivity monitor, which continue to operate
during a reconfiguration. Thus, the reconfiguration algorithm always operates on a fixed set of
switch-to-switch links during a particular epoch.

If a switch sees a higher epoch number in a reconfiguration packet while still involved in an
earlier reconfiguration, it forgets the tree position and other state of the earlier epoch and joins
the new one. If changes in port state stop occurring for long enough, then the highest numbered
epoch eventually will be adopted by all switches, and the reconfiguration process for that epoch
will complete. Completion is guaranteed eventually because the status and connectivity skeptics
reject ports for increasingly long periods.

Handout 22. Paper on Autonet

2000

29

6.826—Principles of Computer Systems 2000

6.6.3 Assigning short addresses

Short addresses are derived from switch numbers that are assigned during the reconfiguration
process. Each switch remembers the number it had during the previous epoch, and proposes it to
the root in the topology report that moves up the tree. A switch that has just been powered-on
proposes number 1. The root will assign the proposed number to each switch unless there is a
conflicting request. In resolving conflicts the root satisfies the switch with the smallest UID and
then assigns unrequested low numbers to the losers.

A short address is formed by concatenating a switch number and a port number. (The port

number occupies the least significant bits.) For a host, then, the short address is determined by

the switch port where it attaches to the network. A host’s alternate link thus has a distinct short
address. For a switch’s control processor, the port number 0 is used. Because switches propose to
reuse their switch numbers from the previous epochs, short addresses tend to remain the same
from one epoch to the next.

6.6.4 Computing packet routes

To complete step 5 of the reconfiguration process, each switch must fill in its local forwarding
table based on the topology and spanning tree information that is received from the root. Autonet
computes the packet routes based on a direction imposed by the spanning tree on each link. In
particular, the “up” end of each link is defined as:

1. The end whose switch is closer to the root in the spanning tree.
2. The end whose switch has the lower UID, if both ends are at switches with the same tree
level.

The “up” end of a host-to-switch link is the switch end. Links looped back to the same switch are
omitted from a configuration. The result of this assignment is that the directed links do not form
loops.

To eliminate deadlocks while still allowing all links to be used, we introduce the up*/down*
rule: a legal route must traverse zero or more links in the “up” direction followed by zero or
more links in the down direction. Put in the negative, a packet may never traverse a link in the
“up” direction after having traversed one in the “down” direction.

Because of the ordering imposed by the spanning tree, packets following the up*/down* rule can
never deadlock, for no deadlock-producing loops are possible. Because the spanning tree
includes all switches, and a legal route is up the tree to the root and then down the tree to any
desired switch, each switch and host can send a packet to every switch or host via a legal route.
Because the up*/down* rule excludes only looped-back links, all useful links of the physical
configuration can carry packets.

While it is possible to fill in the forwarding tables to allow all legal routes, it is not necessary.
The current version of Autopilot allows only the legal routes with the minimum hop count.
Allowing longer than minimum length routes, however, may be quite reasonable, because the
latency added at each switch is so small. When multiple routes lead from a source to a
destination, then the forwarding table entries for the destination short address in switches at
branch points of the routes show alternative forwarding ports. The choice of which branch to

Handout 22. Paper on Autonet 30

6.826—Principles of Computer Systems 2000

take for a particular packet depends on which links are free when the packet arrives at that
switch. Use of multiple routes allows out-of-order packet arrivals.

Note that the up*/down* rule can be enforced locally at each switch. Recall that Autonet
forwarding tables are indexed by the incoming port number concatenated with the short address
of the packet destination. If this short address were corrupted during transmission, then it might
cause the next switch to forward the packet in violation of the up*/down* rule. To prevent this
possibility, the forwarding table entries at a switch that correspond to forwarding from a “down”
link to an “up” link are set to discard packets.

6.6.5 Performance of reconfiguration

With the first implementation of Autopilot, reconfiguration took about 5 seconds in our 30-
switch service network. The 30 switches are arranged as an approximate 4 x 8 torus, with a
maximum switch-to-switch distance of 6 links. The reconfiguration time is measured from the
moment when the first tree-position packet of the new epoch is sent until the last switch has
loaded its new forwarding table. This initial implementation was coded to be easy to understand
and debug. As confidence in its correctness has grown, we have begun to improve the
performance. The current version reconfigures in about 0.5 seconds. We believe we can achieve
a reconfiguration time of under 0.2 seconds for this network.! We do not yet understand fully
how reconfiguration times vary with network size and topology, but it should be a function of the
maximum switch-to-switch distance.

6.6.6 Broadcast routing and broadcast deadlock

A packet with a broadcast short address is forwarded up the spanning tree to the root switch and
then flooded down the spanning tree to all destinations. This is a case where the incoming port
number is a necessary component of the forwarding table index. Here, the incoming port
differentiates the up phase from the down phase of broadcast routing. With the Autonet flow
control scheme described earlier, however, broadcast packets can generate deadlocks.

Figure 9 illustrates the problem. Here we see part of a network including five switches V, W, X,
Y, Z, and three hosts A, B, and C. The solid links are in the spanning tree and the arrow heads
indicate the “up” end of each link. Host B is sending a packet to host C via the legal route
BWYZC. This packet is stopped at switch Z by the unavailability of the link ZC. It is a long
packet, however, and parts of it still reside in switches Y and W. As a result, the link WY is not
available. At the same time, a broadcast packet from host A is being flooded down the spanning
tree. It has reached switch V and is being forwarded simultaneously on links VW and VX, the
two spanning tree links from V. The broadcast packet flows unimpeded through X and Z, and is
starting to arrive at host C, where its arrival is blocking the delivery of the packet from B to C.
At switch W the broadcast packet needs to be forwarded simultaneously on links WB and WY.
Because WY is occupied, however, the broadcast packet is stopped at W, where it starts to fill
the FIFO of the input port. As long as the FIFO continues to accept bytes of the packet, it can
continue to flow out of switch V down both spanning tree links. But when the FIFO gets half

I Later work has yielded a 170 ms reconfiguration time.

Handout 22. Paper on Autonet 31

6.826—Principles of Computer Systems 2000

full, flow control from W will tell V to stop sending. As a result, sending also will stop down the

VXZC path. At this point we have a deadlock.
_/\k

-
\f

Figure 9: Broadcast deadlock

: @\

The solution to this broadcast deadlock problem was discussed in section 6.2. The transmitter of

a broadcast packet ignores st op flow control commands until the end of the broadcast packet is
reached, and the receiver FIFO is made big enough to hold any complete broadcast packet whose
transmission began under a st art command. In our example, switch V will ignore the st op

from W and complete sending the broadcast packet. Thus, the broadcast packet will finish
arriving at C and link ZC will become free to break the deadlock.

6.7 Debugging and monitoring

The main tool underlying Autonet’s debugging and monitoring facilities is a source-routed

protocol (SRP) that allows a host attached to Autonet to send packets to and receive packets from
any switch. The source route is a sequence of outbound switch port numbers that constitute a
switch-by-switch path from packet source to packet destination. The source route is embedded in
the data part of the SRP packet. At each stage along this path the packet is received, interpreted,
and forwarded by the switch control processor. Each forwarding step is done using the

destination short address that delivers the packet to the control processor of the switch next in the
source route. Delivery of SRP packets depends only on the constant part of a switch’s forwarding
table that permits one-hop communication with neighbor switches. Thus, SRP packets are likely

Handout 22. Paper on Autonet 32

6.826—Principles of Computer Systems

to get through even when routing for other packets is inoperative. In particular, the SRP packets
continue to work during reconfiguration.

Based on SRP, we are developing a set of tools for debugging and monitoring Autonet. For
example, Autopilot keeps in memory a circular log of events associated with reconfiguration.
The log entries are timestamped with local clock values. An SRP protocol allows an Autonet
host to retrieve this log. By normalizing the timestamps and merging the logs for all switches, a
complete history of a reconfiguration can be displayed. The merged log is a powerful tool for
discovering functional and performance anomalies. Another protocol layered on SRP allows
most switch state variables to be retrieved, including the forwarding table. A protocol to recover
the physical network topology and the current spanning tree has also been built.

Tracking down a difficult bug usually requires adding statements to Autopilot to enter extra
entries in the log, downloading this new version of Autopilot, waiting for all switches to boot the
new version, triggering the problem, retrieving all the logs, and inspecting them. This debugging
method is just a more cumbersome version of adding print statements to a program!

6.8 A generic LAN

The Local Net generic LAN interface in the host software hides most differences between
Autonet and Ethernet from client software. To simplify implementing Local Net , we have

defined client Autonet packets to consist of a 32-byte Autonet header followed by an
encapsulated Ethernet packet. Two differences, however, are not hidden from the clients. First,
Autonet packets may contain more data than Ethernet packets. Second, Autonet packets may be
encrypted. When either of these differences are exploited, Local Net clients must be aware that
an Autonet is being used.

The format of an Autonet packet is:
Bytes Field use

2 Destination short address
2 Source short address

2 Autonet type (type = 1 is shown)

26 Encryption information

6 Destination UID

6 Source UID

2 Ethernet type

0- 64K Data (1500-byte limit for broadcast & Ethernet bridging)
8 CRC

The destination short address field is the only part of the packet examined by the switches as the
packet traverses the network. It contains the short address of the host (or switch control
processor) to which this packet is directed, or some special-purpose address such as the
broadcast address. The source short address is used by the receiving host (or switch) to learn the
short address of the packet sender. The type field identifies the format of the packet. The format
described here is the one used for encapsulated Ethernet packets. Reconfiguration, SRP, and
special switch diagnostic protocols use different Autonet type values.

Handout 22. Paper on Autonet

2000

33

6.826—Principles of Computer Systems 2000

A large fraction of the header consists of encryption information. The encryption header, whose
details we omit here, is used by the receiving controller to decide whether to decrypt this packet,
which part of the packet to decrypt, which key to use, and where in memory to place the packet
after decryption. The encryption facilities are based on Herbison’s master key encryption scheme
[12]. A complete description awaits experience in using these facilities to provide secure
communication.

The destination UID, source UID, and Ethernet type fields form the header of an Ethernet packet
that has been encapsulated within an Autonet packet. The data field may be up to 64K bytes in
length for normal Autonet packets; broadcast packets and packets to be bridged to an Ethernet
are constrained to the 1500-byte Ethernet limit. The CRC field is generated and checked by the
controller.

Occasionally hosts will misaddress packets by placing the wrong short address in the header.
This might happen when, for example, a short address changes after a network reconfiguration.
The receiving host is responsible for checking the destination UID in the packet and discarding
misaddressed packets. The receiving host also does filtering on multi-cast UIDs. These function
are done by the Autonet driver software for the Firefly, but they could be done by the controller
if it were deemed necessary to avoid overloading a host.

6.8.1 Learning short addresses

In order to hide the differences in addressing between the Autonet and the Ethernet, Local Net
maintains a cache of mappings from 48-bit Ethernet UIDs to short addresses. The Autonet driver
updates the UID cache by observing the correspondence between the source short address and
source UID fields of arriving packets, and, if necessary, by sending Address Resolution Protocol
(ARP) requests [17]. An ARP reply sent on Autonet will contain the correct source short address
in the Autonet header. When transmitting a packet to an Autonet, Local Net obtains the
destination short address using a cache lookup keyed with the destination UID.

When an Autonet host first boots, it knows only two short addresses: address “FFFF”, which
reaches all hosts on the Autonet, and address “0000”, which reaches the local switch. The host
contacts the local switch to obtain its own short address, which it then inserts in the source short-
address field of all packets that it transmits. Thereafter, the host uses the following algorithm for
transmitting and receiving packets:

Receiving: The source short address is entered in the cache entry for the source UID, and a
timestamp is updated in the cache entry. If the packet was sent to the broadcast short address,
but was addressed to the UID of the receiving host (rather than to the broadcast UID), then
the sending host no longer knows the receiver’s short address and an ARP response is
immediately sent to the sending host in order to update its cache entry.

Transmitting: The cache entry for the destination UID is found, and the short address in the
entry is copied into the packet before it is transmitted. If necessary, a new cache entry is
created giving the short address for this UID as “FFFF”, the broadcast short address. If the
cache entry was updated within the two seconds prior to its use, or if it is updated in the two
seconds following its use, no further action is taken. Otherwise, an ARP request is sent to the

Handout 22. Paper on Autonet 34

6.826—Principles of Computer Systems 2000

short address given in the cache entry. If no response is received within two seconds, the
short address in the cache entry is set to the broadcast short address, which action is
equivalent to removing the entry from the cache. If a packet to be transmitted is larger than

the maximal broadcast packet, and the short address of the destination is unknown, the packet
is discarded and an ARP request is sent in its place.

This algorithm does not attempt to maintain cache entries that are not being used by the host, so
no ARP packets are sent unless a host has recently failed to respond to some other packet.
Moreover, ARP packets are usually directed to the last known address of the destination, rather
than being broadcast. Packets are sent to the broadcast short address only when the real short
address of the destination is unknown. This is typically the case for the first packet sent between
a pair of hosts, and for the packets sent to a host that has recently crashed, or changed its short
address. Fortunately, higher-level protocols seldom transmit large numbers of packets to hosts
that do not respond, so the total number of packets sent to the broadcast short address is quite
small. It might be necessary to review this algorithm if higher-level protocols that do not behave
in this way were to become commonplace.

This algorithm generates few additional packets, but can take several seconds to update a cache
after a short address has changed. In order to minimize the delays seen by higher-level protocols,
hosts broadcast an ARP response packet when their short address changes, so other hosts can
update their caches immediately. Short addresses change quite infrequently, so this does not lead
to a large number of broadcasts. If the number of broadcasts of this type were to become
excessive, an alternative approach is to send packets to hosts whose short address cache entries
have recently been updated. This has the effect of updating the caches of hosts that were recently
using the changed short address.

The current techniques for managing short addresses are good enough that hosts can change
short addresses without causing protocol timeouts, yet generate little additional load on the
network or the hosts. The code for accessing the short address cache adds 15 VAX instructions
to both the transmit path and the receive path.

6.8.2 Bridging

A bridge is a device that sits between two networks and forwards packets from one to the other.
It differs from a gateway in that a bridge is usually transparent to protocols above the data link
layer. It differs from a repeater in that not all packets need appear on both sides of a bridge.
Existing Ethernet bridges [14] forward packets from one Ethernet to another only if it appears
likely that a host on the other network might wish to receive a packet. They do this by observing
the traffic on both networks and learning which side each host is on. When the destination is on
the other network, or when the location of the destination is unknown, they forward the packet.

We have implemented software that enables a Firefly to function as an Ethernet bridge, an
Autonet bridge, and an Autonet-to-Ethernet bridge. Although we normally use only the last
variation, it is easier to understand its operation by first considering a bridge between two
Autonets. An Autonet bridge is slightly more complicated than an Ethernet bridge because a
short address is not useful outside a single Autonet. When an Autonet bridge forwards a packet,
it must modify the short addresses in the header. The destination short address is found using the

Handout 22. Paper on Autonet 35

6.826—Principles of Computer Systems 2000

techniques described in the previous section; the source short address is simply the short address
of the bridge on the destination network. Unlike an Ethernet bridge, which receives all packets

on the attached Ethernets, an Autonet bridge receives only broadcast packets and packets sent to
its short address. Thus an Autonet bridge receives only a fraction of the packets on the attached
networks and forwards most of the packets it receives.

As well as forwarding packets, an Autonet bridge also responds to ARP packets for hosts known
to be on its other network. If the bridge is unsure of the location of a host, it does not respond to
ARP requests immediately, but sends its own ARP requests on the other network; it responds to
the original ARP request only if the destination responds. To hosts on the bridged Autonets, an
Autonet bridge behaves like a large number of hosts sharing the same short address.

An Autonet-to-Ethernet bridge, the variation we normally use, has a few extra complications. It
refuses to forward encrypted packets or packets longer than the maximum Ethernet size, though
such forwarding could be arranged with a special encapsulation protocol. The bridge marks the
header of all packets from the Ethernet to indicate to Autonet hosts that they should not attempt
to use either encrypted communication or long packets when talking to the source host. This
bridge adds or removes Autonet headers as packets are forwarded between the two networks.
ARP packets from the Autonet are dealt with as previously described, except that they are never
forwarded to the Ethernet. Instead, the location of Ethernet hosts is deduced from the client
packets they send, in the same way as it is by Ethernet bridges.

In our Autonet-to-Ethernet bridge built on a Firefly, two of the four processors are devoted to
forwarding packets: one executes the Ethernet driver thread and another executes the Autonet
driver thread. In one second, the bridge can discard about 5000 small packets (66 bytes each), or
forward over 1000 small packets, or forward 200-300 maximum-size Ethernet packets. The
bridge is limited by its CPU when dealing with small packets, and by the speed of its I/O bus
when dealing with large packets. The latency of the bridge is about a millisecond for a small
packet. The bridge uses the LocalNet UID cache to remember which hosts are on which network
as well as to map UIDs to short addresses for Autonet hosts. Using a single cache requires that a
given UID be on one network or the other, never both.

6.8.3 Managing alternate links

Each host is connected to the Autonet via two links, but only one is in use at any given time. The
Autonet driver is responsible for deciding which link to use, and for switching to the alternate
link if the active link fails.

In normal operation, the driver sends a packet to the local switch every few seconds, both to
confirm the host’s short address, and to verify that the link works. If the controller reports a link
error, or if the switch fails to respond promptly, the driver tries to contact the local switch more
vigorously. If the local switch has still not responded within three seconds, the driver switches
links. After switching links, the driver forgets its short address, and tries to contact the local
switch attached to the new link. If the switch responds, the host advertises its new short address
and continues. If there is no response, the driver switches back to the first link after ten seconds.
If neither link is operational, a host will switch between them once every ten seconds until it can
contact a local switch.

Handout 22. Paper on Autonet 36

6.826—Principles of Computer Systems 2000

The driver interface lets a client program switch the active link on demand and gather error rate
statistics. Thus the alternate link can be tested, and if necessary replaced, before it is needed.

The current timeouts for link failover are quite long, and we expect to reduce them significantly
in order to meet client failover requirements. At present, the mechanism is sufficient to allow a
switch to fail without disrupting higher-level protocols. An enhancement to the protocol used
between the switch and host would allow the driver to choose between two working links
connected to different Autonet partitions by selecting the larger of the two partitions. Experience
so far indicates that partition is extremely unlikely in a well connected Autonet, and so this
improvement is likely to be of only marginal benefit.

7. Conclusions and future work

We are beginning to accumulate operational experience with Autonet. Our initial experience
confirms that the goal of largely automatic operation of a network using arbitrary topology and
active switches is realistic. Autonet is now the service network for most of the workstations at
SRC. A new distributed file system is coming online with its servers only on Autonet. Once
reconfiguration time was reduced below 1 second we ceased receiving complaints from users
about the new network. Before that, with reconfigurations taking more than four seconds, users
complained of dropped connections and RPC call failures. These symptoms were especially
noticeable when the release of a new version of Autopilot caused 30 or more reconfigurations in
quick succession. We now limit the disruption caused by the release of new Autopilot versions
by making compatible versions propagate more slowly. Now users find Autonet
indistinguishable from Ethernet. So far Autonet’s higher bandwidth is largely masked by the
Fireflies.

Even though Autonet has been in service for only a limited time, we have already learned some
useful lessons. We would make several improvements to the switch hardware on the next
iteration. The most significant change would be to allow the control processor to update the
forwarding table without first resetting the switch. Resetting destroys all packets in the switch.
Coupling resetting with reloading causes the initial forwarding table reload of a reconfiguration
to destroy some tree-position packets, thus making reconfiguration take longer. Also,
incremental reloads of the forwarding table to isolate problematic host links during normal
operation are fairly disruptive with the present design.

One amusing surprise was caused by the fact that an unterminated link reflects signals. Such an
unterminated link will occur, for example, when a host on the network is turned off. A packet
addressed to the particular host would be reflected and retransmitted repeatedly, although for
such unicast packets this would not be disruptive. Broadcast packets, however, are another
matter. A reflected broadcast packet looks like a new broadcast packet, and is forwarded up the
spanning tree to the root switch and then flooded down the spanning tree to all hosts where, of
course, it is reflected again by the reflecting link. A “broadcast storm” results, with all hosts on
the network receiving thousands of broadcast packets per second. Fortunately, the transition from
terminated to unterminated almost always causes enough BadCode status to be counted at the link
unit to cause the status sampler to classify the link broken and remove it from the forwarding
table. We believe that a better solution to this problem is to make packets traveling in the “up”
direction over a link look different than those traveling in the “down” direction. For example,

Handout 22. Paper on Autonet 37

6.826—Principles of Computer Systems

different st art flow control commands could be used. The link unit could then automatically
discard packets headed in the wrong direction.

Another hardware change would be to make host controllers transmit the host flow control
directive on the alternate port. This change would make it simpler for Autopilot to detect switch
posts that are connected to alternate host ports.

Some lessons are quite mundane. The female F-connectors on host cabinet kits and switch link
units have flats on their threaded barrel to allow a wrench to be used when mounting them. These
flats make screwing on a cable very difficult, because it’s hard to get the threads started
correctly. The connectors without flats on the threads would be much better.

Autopilot has provided a series of interesting lessons. As a distributed program it has
demonstrated a series of instructive bugs which we plan to document in another report. We have
been reminded how hard such bugs are to find when packet traffic between switches cannot be
observed directly and limited debugger facilities are available. Merging the logs of all switches is
a very powerful technique for function and performance debugging, but synchronizing the
timestamps from the individual logs must be done with high precision for the merged log to be
useful.

Getting the status sampler, connectivity monitor, hardware skeptic, and connectivity skeptic
algorithms structured and tuned for smooth operation also has been hard. Achieving both
responsiveness and stability has required several iterations of the design. Further iterations
probably will occur.

We expect that continued service use of the network will provide more lessons and expose areas
where improvements in performance and reliability can be made.

Future work planned with Autonet includes building higher-speed controllers; developing
network monitoring and management tools; improving the performance of reconfiguration;
understanding how reconfiguration time varies with network size and topology; using the
encryption facilities to support secure, authenticated communication; and applying the Autonet
architecture to much faster links. We are interested in exploring modified algorithms that can
perform local reconfigurations quickly when global reconfigurations are not required; finding
ways to partition large installations into separately reconfigurable regions; and understanding the
performance characteristics of different topologies and different routing algorithms.

We also would like to learn how to write an Autonet installation guide. For a network like
Autonet to be widely employed, simple recipes must be developed for designing the topology of
the physical configuration. The number of switches and the pattern of the switch-to-switch and
host-to-switch links determine network capacity, reliability, and cost. Site personnel will need
detailed guidance on determining a reasonable pattern to follow when installing the network and
when growing it to meet increased load.

Acknowledgements

Autonet grew out of conversations between Andrew Birrell, Butler Lampson, Chuck Thacker,
and Michael Schroeder in the summer of 1987. Roger Needham explored many overall

Handout 22. Paper on Autonet

2000

38

6.826—Principles of Computer Systems

2000

6.826—Principles of Computer Systems

2000

architectural options. Manolis Katevenis worked out a preliminary switch design. Michael 14. Institute of Electrical and Electronic Engineers. Draft IEEE Standard 802.1. New, internetworking and systems
Burrows was primarily responsible for the host and bridge software, with help from Michael management, Part D (MAC Bridge Standard), 1988. Available from Global Engineering Documents, Irvine,
Schroeder. Hal Murray, with help from Chuck Thacker, designed and implemented the Q-bus CA.
Coerl.ler and also was responsible for Wiring Fhe buil@g. Tom Rodeheffer was FesponSible for 15. Motorola, Inc. M68000 8-/16-/32-bit Microprocessors User’s Manual. Prentice-Hall, 1989.
the switch control program Z.md mapy switch diagnostics. Tom ROdehef.fer and Michael . 16. Perlman, R. An algorithm for distributed computation of a spanning tree in an extended LAN. In Proceedings of
Schroeder have worked on improving the performance of reconfiguration. Ed Satterthwaite . o . . L .
N X X) . the Ninth Data Communications Symposium, (Whistler Mountain, British Columbia, September 10-13, 1985),
designed and implemented the switch, with help from John Dillon and Chuck Thacker. Chuck ACM. New York. 1985, 44-53
Thacker worked out the scheme for full-duplex signaling on a single cable and designed the first- ’ T ’
come, first-considered router. Tom Rodeheffer and Leslie Lamport invented the spanning tree 17. Plummer, D.C, An Ethernet address resolution protocol -or- converting network protocol addresses to 48.bit
algoﬁ;;hm Michael Burrows and Andrew Birrell developed the short-address learning scheme Ethernet address for transmission on Ethernet hardware. Network Information Center RFC826, SRI
Bill Ramirez did the mechanical assembly of the switches. Herb Yeary checked out all switches International, Menlo Park, CA, 1982.
and controllers, and diagnosed and repaired those that did not work. Michael Schroeder was 18. Rovner, P.R. Extending Modula-2 to Build Large, Integrated Systems. IEEE Software 3, 6 (November 1986),
technical project leader. 46-57.
19. Thacker, C.P., Stewart, L.C., and Satterthwaite, E.H. Jr. Firefly: a multiprocessor workstation. IEEE
ransactions on Computers 37, ugust , -920.
References T i C 37,8 (A 1988), 909-920.
1. Advanced Micro Devices. 16-bit CMOS microprocessors (preliminary). AM29C116/116-1/116A. Publication 20. Tobagi, F.A., Borgonovo, F., and Fratta, L. Expressnet: a high-performance integrated-services local area
07697, Sunnyvale, CA, March 1988. network. IEEE Journal on Selected Areas in Communications SAC-1, 5 (November1983), 898-913.
2. Advanced Micro Devices. Data ciphering processor. AmZ8086/Am9518. Publication 00618B, July 1984. 21. Xilinx: the programmable gate array data book. Xilinx, Inc., San Jose, CA, 1989.

3. Advanced Micro Devices. TAXIchip integrated circuits (preliminary). AM7968/AM7969. Publication 07370,
Sunnyvale, CA, May 1987.

4. American National Standard for Information Systems. Fiber distributed data interface (FDDI). Token ring
media access control (MAC). ANSI Standard X3.139. American National Standards Institute, Inc., 1987.

5. American National Standard for Information Systems. Fiber distributed data interface (FDDI). Token ring
physical layer protocol (PHY). ANSI Standard X3.148. American National Standards Institute, Inc., 1988.

6. Arnould, E.A., Bitz, F.J., Cooper, E.C., Kung, H.T., Sansom, R.D., and Steenkiste, P. A. The design of Nectar:
a network backplane for heterogeneous multicomputers. In Proceedings of the Third International Conference
on Architectural Support for Programming Languages and Operating Systems, (Boston, MA, April 3-6, 1989)
ACM, New York, 1989, 205-216.

7. Birrell, A.D. An introduction to programming with threads. Research Report 35, DEC Systems Research
Center, Palo Alto, CA, 1989.

8. Birrell, A.D., Guttag, J.V., Horning, J.J., and Levin, R. Synchronization primitives for a multiprocessor: a
formal specification. In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles,
(Austin, Texas, November 8-11, 1987), published as Operating Systems Review 21, 5, 94-102.

9. Birrell, A.D. and Nelson, B.J. Implementing remote procedure calls. ACM Transactions on Computer Systems

2, 1 (February 1984), 39-59.
. The Ethernet local network: three reports. Tech. Rep. CSL-80-2, Xerox Palo Alto Research Center, Palo Alto,
CA, 1980.

. Digital Equipment Corp. Microsystems handbook, Appendix A: Q-bus. EB-26085-41/85. West Concord, MA,
1985.

. Herbison, B.J. Low cost outboard cryptographic support for SILS and SP4. Submitted to Thirteenth National
Computer Security Conference, Oakland, CA, 1990.

. Ikeman, H., Lee, E.S, and Boulton, P.I.P. High-speed network uses fiber optics. Electronics Week 57, 28
(October 1984), 95-100.

Handout 22. Paper on Autonet 39 Handout 22. Paper on Autonet 40

6.826—Principles of Computer Systems 6.826—Principles of Computer Systems 2000
Medium Link Bandwidth Latency Width Message
23. Networks— Linksand Switches Alphachip on-chpbus 4 GB/is 2 ns 64 8 bytes
PC board RAMbus 05 GB/s 150 nms 8 packet, < 100 B
PCl 1/O bus 133 MB/s 250 ns 32 packet
This handout presents the basic idess for transmitting digital dataover links, and for connecting Wires HIPPI3 100 MB/s 100 s 32 packet
links with switches so that data can pass from lots of sources to lots of destinations. Y ou may Fibrechannel* 100 MB/s 250 ns 1 packet
wish to read chapter 7 of Hennessy and Patterson for a somewhat different trestment, more |EEE 1304° 50 MB/s 250 ns 1 packet
focused on interconnecting the components of a muiltiprocessor computer.t SsA® 20 MB/s 500 s 1 packet
scsl 20 MB/s 500 s 16 packet
Links usB 15 MB/s 5 s 1 ?
LAN FDDI 125 MB/s 20+ s 1 packet, 20-4500 B
A link is an unrdiable FIFO channdl. Aswe mentioned earlier, it is an abstraction of a point-to- Gigabit 125 MB/s 1+ s 1 packet, 64-1500 B
point wire or of asimple broadcast LAN. It is unreliable because noise or other physical Ethernet
probl ems can Corrupt messages. Fast Ethernet” 12.5 MB/s 10 + Us 1 pmket, 64-1500 B
Ethernet 125 MB/s 100+ s 1 packet, 64-1500 B
There are many kinds of physical links, with cost and performance that vary based on length, Wirdess WavelL AN 25 MB/s 100+ s 1 packet, < 1500 B
number of drops, and bandwidth. Here are some current examples. Bandwidth isin Fiber (Sonet) OC-48 300 MB/s 5 pskm 1 1 byte or 1 cdl
bytes/second?, and the “+” signs mean that software latency must be added. The nature of the Coax cable T3 6 MB/s 5 pgkm 1 1 byte
messages reflects the origins of the link. Computer people prefer variable-size packets, which are Copper par T1 02 MB/s 5 pskm 1 1 byte
good for bursty traffic. Communications people prefer bits or bytes, which are good for fixed- Copper par ISDN 16 KB/s 5 pskm 1 1 byte
bandwidth voice traffic and minimize the latency and buffering added by collecting voice Broadcast CAP16 3 MB/s 3 pskm 6MHz 1byteor 1cl
samplesinto a message.
A physicd link can be unidirectiond (‘Smplex’) or bidirectiona (‘duplex’). A duplex link may Elow control

operate in both directions at the same time (*full-duplex’), or in one direction at atime (* haf-
duplex’). A pair of amplex links running in opposite directions forms a full-duplex link. So does
ahdf-duplex link in which the time to reverse direction is negligible, but in this case the peak
full-duplex bandwidth is haf the haf-duplex bandwidth. If most of the traffic goesin one
direction, however, the usable bandwidth of a half-duplex link may be nearly the same asthat of
afull-duplex link.

Many links do not have afixed bandwidth that is known to the sender, because the link isbeing
shared (thet is, thereis multiplexing inside the link) or because the receiver can't dway's accept
data. In particular, fixed bandwidth is bad when traffic is bursty, because it will be either too
gmall or too large. If the sender doesn't know the link bandwidth or can't be trusted to stay
below it, some kind of flow control is necessary to match the flow of traffic to the link’ s or the
receiver’s capacity. A link can provide thisin two ways, by contention or by scheduling. In this

To increase the bandwidth of alink, run saverd copiesof it in pardld. This goes by different case these general strategies take the form of backoff or backpressure.

names, ‘ gpace divison multiplexing’ and ‘gtriping’ are two of them. Common examples are:

Parald busses, asin thefirgt five lines of the table. Backoff

In backoff the link drops excess traffic and Sgnds ‘trouble’ to the sender, either explicitly or by
failing to return an acknowledgment. The sender responds by waiting for awhile and then
retranamitting. The sender increases the wait by some factor (say 2) after every trouble sgnd
and decreases it with each trouble-free send. Thisis caled ‘ exponential backoff'; when the

Switched networks: the telephone system and switched LANS.
Multiple disks, each holding part of a data block, that can transfer in paralldl.
Cdlular tdlephony, using spatiad separation to reuse the same frequencies.

Inthe latter two there must be prysical smitches to connect the paralld links 3 D. Tolmieand J. Renwick, HIPPI: Simpleyields success. IEEE Network 7, 1 (Jan. 1993), pp 28-32.

4 M. Sachsand A. Varman, Fibre channel and related standards. | EEE Communications34, 8 (Aug. 1996), pp 40-
49.

5 G. Hoffman and D. Moore, |EEE 1394: A ubiquitous bus. Digest of Papers, IEEE COMPCON ’ 95, 1995, pp 334-
338.

6 http://www.ssaia.org

1 My thanksto Alex Shvartsman for some of the figuresin this handout. 7M. Molleand G. Watson, 100Base-T/IEEE 802.12/Packet switching. |EEE Communications34, 8 (Aug. 1996), pp
2 Beware: communications people usually quote bits/sec. 63-73.

Another use for multiple links is fault tolerance, discussed earlier.

Handout 23. Networks— Links and Switches 1 Handout 23. Networks— Links and Switches 2

6.826—Principles of Computer Systems

increasing factor is 2, it is * binary exponentid backoff’. It is used in the Ethernet® and in TCP?,
and isandyzed in some detall in alater section.

Exponentia backoff works because it adjusts the rate of sending so that most packets get
through. If every sender doesthis, then every sender’ s dday will jiggle around the value a which
the network is just managing to carry dl thetraffic. Thisis because await that is too short will
overload the network, some packets will be logt, and the sender will increase the wait. On the
other hand, await that istoo long will aways succeed, and the sender will decreaseit. Of course
these statements are probabilistic: sometimes a conservative sender will lose a packet because
someone el se overloaded the network.

The precise details of how the wait should be lengthened (backed off) and shortened depend on
the properties of the channd. If the ‘trouble’ sgna comes back very quickly and the cost of
troubleis small, senders can shorten their waits aggressively; this happensin the Ethernet, where
collisons are detected in a most 64 byte times and abort the transmission immediately, so that
senders can gtart with O wait for each new message. Under the opposite conditions, senders must
shorten their waits cautioudy; this happens in TCP, where the ‘trouble’ sgnd is only the lack of
an acknowledgment, which can only be detected by timeout and which cannot abort the
transmission immediately. The timeout should be roughly one round-trip time; the fact that in
TCPit' s often impossible to get a good estimate of the round-trip timeis a serious complication.

An obvious problem with backoff isthat it requires al the senders to cooperate. A sender who
doesn't play by the rules can get an unfair share of the link resource, and in many cases two such
senders can cause the tota throughput of the entire link to become very small.

Backpressure

In backpressure the link tells the sender explicitly how much it can send without suffering losses.
This can take the form of start and stop signdls, or of ‘ credits' that dlow a certain amount of
additiond traffic to be sent. The number of unused credits the sender hasis called its ‘window’ .
Let b be the bandwidth at which the sender can send when it has permisson and r be the time for
the link to respond to new traffic from the sender. A start—stop scheme can alow rb units of
traffic between agart and astop; alink that hasto buffer this traffic will overrun and lose traffic

if r istoo large. A credit scheme needsrb creditswhen the link isidle to kegp running a full
bandwidth; alink will underrun and waste bandwidth if r istoo large.10

Start—stop is used in the Autonet!! (handout 22), and on RS-232 serid lines under the name XON-

XOFF. The Ethernet, dthough it uses backoff to control acquiring the channdl, dso uses
backpressure, in the form of carrier sense, to keep a sender from interrupting another sender that
has dready acquired the channd; thisis caled ‘ deference . TCP uses credits to alow the receiver
to control the flow. It also uses backoff to ded with congestion within the link itsdf (that is, in

2000

8 R. Metcalfe and D. Boggs: Ethernet: Distributed packet switching for local computer networks. Communications

of the ACM 19, 395-404 (1976)

9 V. Jacobsen: Congestion avoidance and control. ACM SigComm Conference, 1988, pp 314-329. C. Lefelhocg et

al., Congestion control for best-effort service. IEEE Network 10, 1 (Jan 1996), pp 10-19.

10 H. Kung and R. Morris, Credit-based flow control for ATM networks. |EEE Network 9, 2 (Mar. 1995), pp 40-48.
11 M. Schroeder et al., Autonet: A high-speed self-configuring local area network using point-to-point links. |EEE

Journal on Selected Areasin Communication 9, 8 (Oct. 1991), pp 1318-1335.

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems

the underlying packet network). Having both mechanisms is confusing, and it’'s even more
confusing (though clever) that the waits required by backoff are coded by fiddling with credits.

The failure modes of the two backpressure schemes are different. A logt ‘stop’ may cause lost
data. A logt credit may reduce the bandwidth but doesn’t cause data to be lost. On the other hand,
‘start’ and ‘stop’ are idempotent, so that a good state is restored just be repegting them. Thisis
not true for credits of the form “send n more messages’. There are several waysto get around

this problem with credits:

Number the messages, and send creditsin the form “n messages after message k”. Such a
credit resets the sender’ s window completely. TCP uses this scheme, counting bytes rather
than messages. On an unreliable channd, however, it only works if each message carriesits
own number, and thisis extra overhead that is serious if the messages are small (for instance,
ATM cédlsare only 53 bytes).

Stop sending messages and send a‘resync’ request. When the receiver getsthisit returns an
absolute rather than an incrementa credit. Once the sender getsthisit resets its window and
darts sending again.

Know the round-trip time between sender and receiver, and keep track of m, the number of
messages sent during the last round-trip time. The receiver sends an absolute credit n, and the
sender setsitswindow to n —m, since there are m messages outstanding thet the receiver
didn’t know about when it issued n credits. Thisworks well for links coded by wires because
the round-trip timeis congtant. It works poorly if the link hasinterna buffering because the
round-trip time varies.

Another form of flow control thet is smilar to backpressureis caled ‘rate-based’. It assignsa
maximum transmission bandwidth or ‘rate’ to each sender, undertakes to ddiver traffic up to that
bandwidth with high probability, and is free to discard excess traffic. The rate is measured by
taking a moving average across some time window. 12

Framing

Theideaof framing (sSometimes called ‘ acquiring sync’) isto take astream of X’sand turn it into
adream of Y's. An X might be abit and ay abyte, or an X might be abyte and ay a packet. This
isapardang problem. It occurs repeatedly in communications, a every leve from andog sgnas
through bit streams, byte streams, and streams of cells up to encoded procedure calls. We looked
at this problem abstractly and in the absence of errors when we studied encoding and decoding in
handout 7. For communiceation the parsing has to work even though physica problems such as
noise can generate an arbitrary prefix of X' s before a sequence of X’ sthat correctly encode some
Y'S.

If an X is big enough to hold alabel, framing iseasy: You just labd each x withthey it is part of,
and the pogition it occupiesin that Y. For example, to frame (or encapsulate) an |P packet on the
Ethernet, just make the * protocol type' field of the packet be ‘IP, and if the packet istoo big to

12 £, Bonomi and K. Fendick, The rate-based flow control framework for the available bit rate ATM service. |EEE
Network 9, 2 (Mar. 1995), pp 25-39.

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems 2000

fit in an Ethernet packet, break it up into ‘fragments and add a part number to each part. The
receiver collects al the parts and puts them back together.13 The jargon for the entire processis
‘fragmentation/re-assembly’.

If X issmdl, say ahit or abyte, or even the measurement of asigna’s voltage leve, more
clevernessis needed. There are many possihilities, al based on theideaof a‘sync’ pattern that
alows the receiver to recognize the gart of a'Y no matter what the previous sequence of X’s has
been.

Certain vauesof X can be reserved to mark the beginning or the end of ay. In FDDI14, for
example, 4 bits of data are coded in 5 bits on the wire. Thisis done because the wire doesn’'t
work if there are too many 0's or too many 1'sin arow, soit’s not possible to smply send
the data bytes. However, the wire' s demands are weak enough that there are more than 16
alowable 5-hit combinations, and one of theseis used as the sync mark for the start of a
packet.1> If a‘sync’ appearsin the middle of a packet, that istaken as an error, and the next
legd symbol isthe start of anew packet. A smpler verson of thisidearequires at least one
trangtion on every hit (in Ethernet) or byte (in RS-232); the absence of atransition for abit
or bytetimeisasync.

Certain sequences of X can be reserved to mark the beginning of ay. If these sequences occur
in the data, they must be ‘escaped’ or coded in some other way. A familiar exampleisC's
literd gtrings, inwhich ' \ ' isused as an escape, and to represent a' \ ' you must write' \\ ' .
InHDLC an X isahit, the rule isthat more than n O bitsisasync for some smal vaue of n,

and the escgpe mechanism, cdled * bit-stuffing’, adds a 1 after each sequence of n data zeros
when sending and removes it when recaiving. In RS-232 an X isahigh or low voltage levd,
sampled at say 10 timesthe bit rate, a Y is (usudly) 8 data bits plusa‘ sart bit” which must be
high and a“stop bit" which must be low. Thus every Y begins with alow-high trangtion

which determines the phase for the rest of the Y (thisis called ‘clock recovery’), and a
sequence of 9 or more bit-times worth of low isasync.

The sequences used for sync can be detected probabilistically. In telephony T-1 sgnding
thereisa‘frame of 193 hits, one sync bit and 192 data bits. The data bits can be arbitrary,
but they are xored with a“scrambling’ sequence to make them pseudo-random. The encoding
specifies a definite pattern (say “010101") for the sync bits of successve frames (which are
not scrambled). The receiver decodes by guessing the start of aframe and checking a number
of framesfor the sync pattern. If it's not there, the recaiver makes a different guess. After at
most 193 tries it will have guessed right. Thistakes alot longer than the previous schemesto
acquire sync, but it uses a constant amount of extra bandwidth (unlike escape schemes), and
much less than fixed sync schemes. 1/193 for T-1 ingtead of 1/5 for FDDI, 1/2 for Ethernet,
or /10 for RS-232.

13 Actually fragmentation is usually done at the | P level itself, but the ideais the same.

14 F. Ross: An overview of FDDI: The fiber distributed data interface. IEEE Journal on Selected Areasin
Communication 7 (1989)

15 Another symbol is used to encode atoken, and several others are used for somewhat frivolous purposes.

Handout 23. Networks— Links and Switches 5

6.826—Principles of Computer Systems

Multiplexing

Multiplexing is away to share alink among multiple senders and receivers. It raises two issues:

Arbitration (for the sender)—when to send.

Addressing (for the recelver)—when to receive.

A ‘multiplexer’ implements arbitration; it combines traffic from severd input links onto one
output link. A *demultiplexer’ implements addressing; it separates traffic from one input link
onto severd output links. The multiplexed links are caled ‘ sub-channels' of the onelink, and
each one has an address. Figure 1 shows various examples, the ovals are buffers.

ar bitration

=

perfect (lossless) mux

%@—

output buffered mux

input buffered mux

—

unbuffered mux

addressing

e

demux

broadcast

Fig. 1. Multiplexersand demultiplexers. Traffic flows from left to right.

There are three main reasons for multiplexers:

Traffic may flow between one node and many on a single wire, for example when the one
node is abusy server or the head end of acable TV system.

One wide wire may be chegper than many narrow ones, because thereis only one thing to
ingal and maintain, or because thereis only one connection at the other end. Of course the
wide wire is more expengve than asingle narrow one, and the multiplexers must dso be paid

for.

Traffic aggregated from severd links may be more predictable than traffic from asingle one.
This happens when traffic is bursty (variesin bandwidth) but uncorrelated on the input links.
An extreme form of bursty traffic is either aosent or present at full bandwidth. Thisis

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems

gandard in telephony, where extensive measurements of line utilization have shown thet it's
very unlikely for more than 10% of the lines to be active a onetime.

There are many techniques for multiplexing. In the analog domain:

Freguency divison (FDM) uses a separate frequency band for each sub-channd, taking
advantage of the fact that et is a convenient basis set of orthogona functions. The addressis
the frequency band of the sub-channd. FDM is used to subdivide the e ectromagnetic
spectrum in free space, on cables, and on opticd fibers; on fibersit's usudly cdled ‘wave
divison multiplexing’

Code division (cbm) uses a different coordinate system in which abasis vector isatime-
dependent sequence of frequencies. This smears out the cross-tak between different sub-
channels. The addressisthe ‘code’, the sequence of frequencies. cDM isused for military
communications and in anew variety of cdlular tdlephony. Figure 2 illustrates the smplest
formof cbm, inwhich n senders share adigital channd. Bits on the channel have length 1,
each sender’ shits have length n (5 in thefigure), and a sender has an n-bit *code’ (10010 in
the figure) which it ‘xor’ s with its current data bit. The receiver xor’s the code in again and
looks for either dl zeros or dl ones. If it sees something intermediate, that isinterference
from a sender with a different code. If the codes are sufficiently orthogona (agreein few
enough bits), the contributions of other senders will cancel out. Clearly longer code words
work better.

N N T A O 1|
Data 101
Code20020 |17 1L UL T
Send 01101 |
o0 (LI LI LT
01101
Receive with \; | | \;
code 10010
5 \—0 5
Receive with r
COde o -4%‘ {‘ \l_ljr
2 3 2

Fig 2: Simple code division multiplexing
Inthe digitd domain time-divison multiplexing (TbMm) is the standard method. It comesin two
flavors

— Fixed TDM, inwhich n sub-channes are multiplexed by dividing the data sequence on the
main channd into fixed-sze dots (Sngle bits, bytes, or whatever) and assigning every nth dot to
the same sub-channd. Usudly dl the dots are the same Size, but it’s sufficient for the sequence

Handout 23. Networks— Links and Switches

2000

6.826—Principles of Computer Systems

of dot szesto befixed. The 1.5 Mbit/sec T1 line that we discussed earlier, for example, has 24
ub-channedls and ‘frames of 193 bits. One bit marks the start of the frame, after which the first
byte belongs to sub-channe 1, the second to sub-channe 2, and so forth. Sots are numbered
from the start of the frame, and a sub-channe’s dot number isits address. Note that this scheme
requires framing to find the sart of the frame (hence the name). But the addressing has no direct
code (thereis an “internd fragmentation” cogt if the fixed channes are not fully utilized).

— Variable TDM, in which the data sequence on the main channd is divided into ‘ packets . One
packet carries data for one sub-channe, and the address of the sub-channd gppears explicitly in
the packet. If the packets are fixed Sze, they are often cdled ‘ clls, asin the Asynchronous
Transfer Mode (ATM) networking standard. Fixed-sze packets are used in other contexts,
however, for instance to carry load and store messages on a programmed /O bus. Variable sized
packets (up to some maximum that ether isfixed or depends on the link) are usua in computer
networking, for example on the Ethernet, token ring, FDDI, or Internet, as well asfor DMA bursts
on 1/0 busses.

All these methods fix the divison of bandwidth among sub-channels except for variable TDwm,
which is thus better suited to handle the burdtiness of computer traffic. Thisisthe only
architecturd difference among them. But there are other architectura differences among
multiplexers, resulting from the different ways of coding the basic function of arbitrating anong
the input channels. The fixed schemes do thisin afixed way that is determined which the sub-
channds are assgned. Thisisilludrated at the top of figure 1, where the wide main channd has
enough bandwidth to carry dl the treffic the input channels can offer. Arbitration isill
necessary when a sub-chamnd is assigned to an input channd; this operation is usudly caled
‘circuit setup'.

With varigble TDM there are many waysto arbitrate, but they fal into two main classes, which
pardle the two methods of flow control described in the section on links above:

Callision (pardld to backoff): an input channd smply sendsitstraffic, but has some way to
tell whether the traffic was accepted. If nat, it ‘backs off’ by waiting for awhile, and then
retries. The input channd can get an explicit and immediate collison Sgnd, as on the
Ethernet, it can get addayed collison sgnd in the form of a‘ negative acknowledgment’, or
it can infer acollison from the lack of an acknowledgment, asin TCP.

Scheduling (paradld to backpressure): an input channel makes arequest for service and the
multiplexer evertudly grantsit; 1/0 busses and token rings work thisway. Granting can be
centralized, asin many 1/0 busses, or distributed, asin a daisy-chained bus or atoken ring
like FDDI.

Flow control means buffering, as we saw earlier, and there are severd ways to arrange buffering
around a multiplexer, shown on the left Sde of figure 1. Having the buffers near the arbitration
point is good because it reduces the round-trip time r and hence the size of the buffers. Output
buffering is good because it dlows arbitration to ignore contention for the output until the buffer
fills up, but the buffer may cost more because it has to accept traffic at the total bandwidth of all
theinputs. A switch coded by a shared memory paysthis cost automatically, and the shared
memory acts as a shared buffer for al the outputs.

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems

A multiplexer can be centrdized, like a T1 multiplexer or a crosspoint in a crossbar switch, or it
can be digtributed aong abus. It seems naturd to use scheduling with a centralized multiplexer
and collison with adistributed one, but the examples of the Monarch memory switchlé and the
token ring described below show that the other combinations are dso possible.

Multiplexers can be cascaded to increase the fan-in. This structure is usualy combined with a
converter. For example, 24 voice lines, each with a bandwidth of 64 Kb/s, are multiplexed to one
1.5 Mb/sT1 line, 30 of these are multiplexed to one 45 Mb/s T3 line, and 50 of these are
multiplexed to one 2.4 Gh/s OC-48 fiber which carries 40,000 voice sub-channds. In the Vax
8800, 16 Unibuses are multiplexed to one Bl bus, and 4 of these are multiplexed to oneinterna
processor-memory bus.

Demultiplexing uses the same physca mechanisms as multiplexing, Snce oneis not much use
without the other. Thereis no arbitration, however; insteed, there is addressing, since the input
channd must select the proper output channd to receive each sub-channe. Again both
centrdized and distributed code are possible, asthe right Side of figure 1 shows. In distributed
code the input channel is broadcast to al the output channels, and an address decoder picks of f
the sub-channel asits datafly past. Either way it’s easy to broadcast a sub-channd to any
number of output channds.

Broadcast networks

From the viewpoint of the preceding discussion of links, a broadcast network isalink that carries
packets, roughly one at atime, and has lots of receivers, dl of which see dl the packets. Each
packet carries a destination address, each receiver knows its own address, and arecelver'sjobis
to pick out its packets. It's also possible to view a broadcast network as a specia kind of

switched network, taking the viewpoint of the next lecture.

Viewed as alink, abroadcast network has to solve the problems of arbitration and addressing.
Addressing issmple, snce dl the receivers see dl the packets. All that is needed is ‘ address
filtering’ inthe recaiver. If areceiver has more than one address the code for this may get tricky,
but asmple, if costly, fallback position is for the receiver to accept dl the packets, and rely on
some higher-level mechanism to sort out which ones are redlly meant for it.

Thetricky part isarbitration. A computer’s I/O busis an example of a broadcast network, and it
isonein which each device requests service, and a centrd ‘arbiter’ grants bus access to one
device a atime. In nearly al broadcast networks thet are caled networks, it isan article of
religion that thereis no centra arbiter, because that would be asingle point of failure, and
another scheme would be required so that the distributed nodes could communicate with it17.
Instead, the task is distributed among al the senders. Aswith link arbitration in generd, there are
two waysto do it: scheduling and contention.

16 R. Rettberg et al.: The Monarch parallel processor hardware design. |EEE Computer 23, 18-30 (1990)

17 There are times when this religion is inappropriate. For instance, in a network based on cable TV thereisahighly

reliable place to put the central arbiter: at the head end (or, in afiber-to-the-neighborhood system, in the fiber-to-
coax converter. And by measuring the round-trip delays between the head end and each node, the head end can

broadcast “ node n can make its request now” messages with timing which ensures that arequest will never collide

with another reguest or with other traffic.

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems

Arbitration by scheduling: Token rings

Scheduling is deterministic, and the broadcast networks that use it are called ‘token rings . The
ideais that each node is connected to two neighbors, and the resulting lineis closed into acircle
or ring by connecting the two ends. Bitstravel around the ring in one direction. Except wheniitis
sending its own packets, a node retransmits every bit it receives. A single ‘token’ circulates
around the ring, and a node can send when the token arrives at the node. After sending one or
more packets, the node regenerates the token so that the next node can send. When its packets
have traveled dl the way around the ring and returned, the node *strips’ them from the ring. This
results in round-robin scheduling, athough there are various ways to add priorities and semi-

synchronous service.

Node Node

~_
Nods

Rings are difficult to engineer because of the closure properties they need to have:

Clock synchronization: each node tranamits everything that it receives except for sync marks
and its own packets. It's not possible to smply use the receive clock for transmitting, so the
node must generate its own clock. However, it must keep this clock very close to the clock of
the preceding node on the ring to keep from having to add sync marks or buffer alot of deta

Maintaining the single token: with multiple tokens the broadcagting scheme fails. With no
tokens, no one can send. So each node must monitor the ring. When it finds a bad Sete, it
cooperates with other nodes to clear the ring and elect a‘leader’ who regenerates the token.
The strategy for ection isthat each node has aunique ID. A node starts an election by
broadcasting its ID. When a node receives the ID of another node, it forwards it unless its
own ID islarger, in which case it sendsits own ID. When a node receivesitsown ID, it
becomes the leader; this works because every other node has seen the leader’ s ID and
determined thet it is larger than its own.

Preserving the ring connectivity in spite of fallures. In asmplering, the failure of asingle
node or link breaks the ring and stops the network from working at al. A ‘ dua- attachment’
ring is actudly two rings, which can run in pardld when there are no falures. If anodefalls,
splicing the two rings together as shown in figure 3 restores asingle ring. Tolerating asingle
failure can be useful for aring that runsin a controlled environment like a machine room, but
is not of much vaue for aLAN where there is no reason to believe that only one node or link
will fal. FoDI has dud attachment because it was origindly designed as amachine room
interconnect; today this feature adds complexity and confuses customers.

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems

A practica way to solve this problem isto connect dl the nodesto asingle ‘hub’ in aso-
cdled ‘ga’ configuration, as shown in figure 4. The hub detects when anode fails and cutsiit
out of thering. If the hub fals, of course, the entire ring goes down, but the hub isasmple,
specid-purpose device ingdled in awiring closat or machine room, so it's much lesslikely

to fall than anode. The drawback of ahub is that it contains much of the hardware needed for
the switches discussed in the next lecture, but doesn't provide any of the performance gains

that switches do.

Fig. 3: A dual-attachment ring tolerates failure of one node

In spite of these problems, two token rings are in wide use, though much less wide than Ethernet:
the 1BM token ring and FDDI. In the case of the IBM token ring this happened because of 1IBM’s
marketing prowess, their sdlesmen persuaded bankers that they didn’t want precious packets
carrying bank balances to collide on the Ethernet. In the case of FDDI it happened because most
people were busy deploying Ethernet and developing Ethernet bridges and switches; the FDDI
gandard gained alot of momentum before anyone noticed that it isn't very good.

X

O— p4

Fig. 4: A ring with ahub tolerates multiple failures

Arbitration by contention: Ethernet

Contention, using backoff, is probabiligtic, as we saw when we discussed backoff on links. It
wagtes some bandwidth in unsuccessful transmissons. In the case of abroadcast LAN,
bandwidth is wasted whenever two packets overlap at the receiver; thisis caled a“collison’.
How often does it happen?

Handout 23. Networks— Links and Switches

2000

11

6.826—Principles of Computer Systems

Ina‘dotted Aloha network anode can't tell that anyone dseis sending; thismode is
appropriate for the radio transmission from feeble terminds to a centrd hub that was used in the
origina Alohanetwork. If everyone sends the same Sze packet (desrable in this Stuation
because long packets are more likely to collide) and the senders are synchronized, we can think
of time as a sequence of ‘dots, each one packet long. In this Stuation exponentia backoff gives
an efficdency of 1/e = .37 (see below).

If anode that isn't sending can tell when someone dseis sending (‘carrier sense'), thena
potential sender can ‘defer’ to a current sender. This means that once a sender’s signd has
reached al the nodes without a collison, it has ‘acquired’ the medium and will be able to send
therest of its packet without further danger of collison. If a sending node can tell when someone
elseissending (‘ collison detection’) both can stop immediately and back off. Both carrier sense
and collision detection are possible on a shared bus and are used in the Ethernet. They are dso
possible in asystem with a head end that can hear dl the nodes, even if the nodes can't hear each
other: the head end sends a collison signa whenever it hears more than one sender.

Contention

slots
packet DDD packet |d|e packet packet
Contentlon time

interval

The criticd parameter for a‘'CSMA/CD’ (carrier sense multiple access/collison detection)
network like the Ethernet is the round-trip time for asigna to get from one node to another and
back. After a maximum round-trip time RT without a collison, a sender knows it has acquired
the medium. For the Ethernet thistime is about 50 s = 64 bytes at the 10 Mbits/sec transmission
time; this comes from amaximum diameter of 2 km = 10 ns (at 5 ngkm for signa propagation

in cable), 10 nsfor the time areceiver needsto read the ‘ preamble’ of the packet and either
synchronize with the clock or detect a collison, and 5 ns to pass through a maximum of two
repeaters, which is 25 s, times 2 for the round trip. A packet must be at least thislong or the
sender might finish sending it before detecting a collison, in which case it wouldn't know

whether the transmission was successful.

The 100 Mbits/'sec fast Ethernet has the same minimum packet Sze, and hence a maximum
diameter of 5 s, 10 times smdller. Gigabit Ethernet has a maximum diameter of .5 ns or 200 m.
However, it normaly operatesin ‘full-duplex’ mode, in which awire connects only two nodes
and is usad in only one direction, so that two wires are needed for each pair of nodes. With this
arrangement only one node ever sends on a given wire, so there is no multiplexing and hence no
need for arbitration.

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems

B
heard Bus
A idle

Node B T >
Distance -
on bus RT
L time
Node A >
A
heard
B

Here ishow to calculate the throughput of Ethernet. If there are k nodes trying to send, p isthe
probability of one station sending, and r is the round trip time, then the probability that one of the
nodes will succeed is A = kp(1-p)K-1. This has amaximum a p=1/k, and the limit of the
maximum for largek is 1/e = .37. So if the packets are dl of minimum length thisisthe
efficiency. The expected number of triesis /A = e = 2.7 & this maximum, including the
successful transmission. The waste, dso caled the * contention intervd’, is therefore 1.7r. For
packets of length | the effidency isl/(I + 1.7r)=1/(1 + 1.7r/l) ~ 1 - 1.7r/l when 1.7r/l issmdll.
The biggest packet alowed on the Ethernet is 1.5 Kbytes = 20 r, and this yields an efficiency of
91.5% for the maximum r. Maost networks have amuch smaller r than the maximum, and

correspondingly higher efficiency.

But how do we get dl the nodes to behave so that p=1/k? Thisis the magic of exponentid
backoff. A is quite sensitive to p, so if several nodes are estimating k too smdl they will fail and
increase their estimate. With carrier sense and collison detect, it's OK to start the estimate a O
each time aslong as you increase it rgpidly. An Ethernet node does this, doubling its estimate at
each backoff by doubling its maximum backoff time, and making it smdler by resetting its
backoff time to O after each successful transmission. Of course each node must chose its actud
backoff time randomly in the interva O .. maximum backoff. Aslong as dl the nodes obey the
rules, they share the medium fairly, with one exception: if there are very few nodes, say two, and
one haslots of packetsto send, it will tend to *capture’ the network because it dways starts with
0 backoff, whereas the other nodes have experienced collisons and therefore has a higher
backoff.

The TCcP verson of exponentid backoff does't have the benefit of carrier sense or collison
detection. On the other hand, routers have some buffering, so it's not necessary to avoid
collisons completely. Asaresult, TCP has ‘dow gart’; it tranamits dowly until it gets some
acknowledgments, and then speeds up. When it starts losing packets, it dows down. Thus each
sender’ sestimate of k oscillates around the true vaue (which of course is dways changing as
wel).

Handout 23. Networks— Links and Switches

2000

13

6.826—Principles of Computer Systems

All versions of backoff arbitration have the problem that a selfish node that does't obey the
rules can get more than its share.

Since the Ethernet works by sharing a passive medium, afalling node can only cause trouble by
‘babbling’, tranamitting more than the protocol dlows. The mogt likdly form of babbling is
trangmitting dl the time, and Ethernet interfaces have a very Smple way of detecting this and
shutting off the trangmitter.

Most Ethernet ingtdlations do not use a single wire with dl the nodes attached to it. Although
this configuration is possble, the hub arrangement shown in figure 5 is much more common
(contrary to the expectations of the Ethernet’ s designers). An Ethernet hub just repests an
incoming signd to al the nodes. Hub wiring has three big advantages:

It'seader to run Ethernet wiring in parald with telephone wiring, which runsto a hub.

The hub isagood place to put sensors that can measure traffic from each node and switches
that can shut off faulty or suspicious nodes.

Once wiring goesto ahub, it's easy to replace the smple repeating hub with amore
complicated one that does some amount of switching and thus increases the total bandwidth.
It's even possible to put in amulti- protocol hub that can detect what protocol each nodeis
using and adjust itsalf accordingly. This arrangement is standard for fast Ethernet, which runs
a 100 Mbitysec ingtead of 10, but is otherwise very smilar. A fast Ethernet hub
automatically handles elther speed on each of its ports.

Q X

D o«

O O

Fig. 5: An Ethernet with a hub can switch out failed nodes

~N

O

»e

A drawback isthat the hub isa single point of failure. Sinceit is very smple, thisisnot amgor
problem. It would be possible to connect each node to two hubs, and switch to abackup if the
main hub fails, but people have not found it necessary to do this. Instead, nodes that need very
high availability of the network have two network interfaces connected to two different hubs.

Switches

The modern trend in local area networks, however, is to abandon broadcast and replace hubs
with switches. A switch has much more silicon than a hub, but silicon follows Moore' s law and

Handout 23. Networks— Links and Switches

14

6.826—Principles of Computer Systems 2000

gets cheaper by 2x every 18 months. The cost of the wires, connectors, and packaging isthe
same, and there is much more aggregate bandwidth. Furthermore, a switch can have a number of
dow ports and afew fast ones, which is exactly what you want to connect alocal group of clients
to a higher bandwidth *backbone' network that has more global scope.

In the rest this handout we describe the different kinds of switches, and consder ways of
connecting switches with links to form alarger link or switch.

A switch is a generdization of amultiplexer or demultiplexer. Instead of connecting one link to
many, it connects many links to many. Figure 6(a) isthe usud drawing for a switch, with the
input links on the left and the output links on the right. We view the links as smplex, but usualy
they are paired to form full-duplex links so that every input link has a corresponding output link
which sends data in the reverse direction. Often the input and output links are connected to the
same nodes, so that the switch alows any node to send to any other.

A basic switch can be built out of multiplexers and demultiplexersin the two ways shown in
figure 6(b) and 6(c). The latter is sometimes caled a‘ space-divison’ switch Sncethere are
separate multiplexers and demultiplexers for each link. Such a switch can accept traffic from
every link provided each is connected to a different output link. With full-bandwidth
multiplexers this restriction can be lifted, usudly at aconsderable cod. If it is't, then the switch
must arbitrate among the input links, generdizing the arbitration done by its component
multiplexers, and if input traffic is not reordered the average switch bandwidth is limited to 58%
of the maximum by * head-of-line blocking’ .18

Some examples reved the range of current technology. The range in latencies for the LAN
switches and I P routers is because they receive an entire packet before starting to send it on. For
Emall routers, latency is not usudly consdered important.

Medium Link Bandwidth Latency Links
Alphachip regider file 48 GB/ls 2 s 6
Wires Cray T3D 85 GB/is 1 s 2K
HIPPI 16 GB/ls 1 s 16
LAN Switched gigabit 1 GB/s 5-100 s 8
Ethernet
FDDI Gigaswitch 275 MB/s 10400 s 22
Switched Ethernet 10 MB/s 100-1200 ps 8
IP router many 1-30 MB/s 50-5000 ps 8
Emal router SMTP 10-1000 KB/s 1-100 S may
Copper pair Centrd office 80 MB/s 125 us 50K

18 M. Karol et al., Input versus output queuing on a space-division packet switch. |EEE Transactions on
Communications 35, 12 (Dec. 1897), pp 1347-1356.

Handout 23. Networks— Links and Switches 15

6.826—Principles of Computer Systems 2000

(a) The usual representation of aswitch

mux demux

full bandwidt
limited bandwidt

(b) Mux-demux code

demux mux

(c) Demux—mux code, usually drawn as a crossbhar

Fig. 6. Switches.

Storage can serve as aswitch of the kind shown in figure 6(b). The storage device is the common
channel, and queues keep track of the addresses that input and output links should use. If the
switching is coded in software, the queues are kept in the same storage, but sometimes they are
maintained separatdly. Bridges and routers usudly code their switches thisway.

Handout 23. Networks— Links and Switches 16

6.826—Principles of Computer Systems

Pipelines

30— O2
T concatenate
Oo—;0—=20
30— 2

Fig. 7. Composing switches by concatenating.

What can we make out of a collection of links and switches. The smplest thing to do isto
concatenate two links using a connecting node, asin figure 7, making alonger link. This
dructure is sometimes cdled a‘pipeling . The only interesting thing about it isthe rules for
forwarding asngle treffic unit:

Can the unit sart to be forwarded before it is completely received (‘wormholes or * cut-

through')19, and

Can parts of two units be intermixed on the same link (‘interleaving’), or must an entire unit
be sent before the next one can art?

Store and
forward

Wormhole

Nfde Time = Links* (Latency + Time-on-link)

L1| OO,
L2 OITTTTT]
L3 OTITITm Time

»
>

Nf?de Time=Links* Latency + Time-on-link

L1 EEEEEEEE
L2 O
L3 I Time

»
»

Aswe shdl see, wormholes give better performance when the time to send aunit is not smal,

and often it is not because often a unit is an entire packet. Furthermore, wormholes mean that a

connector need not buffer an entire packet.

The latency of the compogte link isthetotal delay of its component links (the time for asingle

bit to traverse the link) plus aterm that reflects the time the unit spends entering links (or leaving
them, which takes the same time). With no wormholes a unit doesn't sart into link i until dl of it
hasleft link i-1, so thisterm isthe sum of the times the unit spends entering each link (the Sze of

19 L. Ni and P. McKinley: A survey of wormhole routing techniques in direct networks. |EEE Computer 26, 62-76

(1993).

Handout 23. Networks— Links and Switches

2000

17

6.826—Principles of Computer Systems

the unit divided by the bandwidth of the link). With wormholes and interleaving, it isthetime
entering the dowest link, assuming that the granularity of interleaving is fine enough. With
wormholes but without interleaving, each point where alink feeds a dower one adds the
difference in the time a unit spends entering them; where alink feeds afaster one thereisno
added time because the faster link gobbles up the unit as fast as the dower one can ddiver it.

Bl
B3
L2 L3 Ln
L1

Latency = L1 + L2 + L3 + Ln

This rule means that a sequence of linkswith increasing times is equivaent to the dowest, and a
sequence with decreasing times to the fastest, so we can summarize the path as dternating dow
andfagt links s f1 15 ... 5, f,, (Wheref,, could be null), and the entering time is the totd time to
enter dow links minus the totd time to enter fast links. We summarize these facts.

Wormhole Interleaving Time on links

No — St

Yes No Stg—Stfi=S(ts —tf;)
Yes Yes max {;

The mord isto use ether wormholes or smdl units, and to watch out for dternating fast and

dow linksif you don't have interleaving. However, a unit shouldn’t be too small on avariable
TDM link because it must dways carry the overhead of its address. ThusATM cdlls, with 48 bytes
of payload and 5 bytes of overhead, are about the smalest practical units (though the Cambridge
dotted ring used cells with 2 bytes of payload). Thisis not an issue for fixed TDM, and indeed
telephony uses 8 bit units.

Thereisno need to use wormholes for ATM cells, since the time to send 53 bytesissmdl inthe
intended gpplications. But Autonet, with packets that take milliseconds to transmit, uses
wormholes, as do multiprocessors like the J machine20 which have short messages but care about
every microsecond of latency and every byte of network buffering. The same congderations

apply to pipdines.
M eshes

If we replace the connectors with switch nodes, we can assemble amesh like the onein figure 8.
The mesh can code the bigger switch above it; note that this switch has the same nodes on the
input and output links. The heavy linesin both the mesh and the switch show the path from node

20 . Dally: A universal parallel computer architecture. New Generation Computing 11, 227-249 (1993).

Handout 23. Networks— Links and Switches

18

6.826—Principles of Computer Systems

3 to node 2. The pattern of links between internd switchesis called the ‘topology’ of the mesh.
Thefigureis overamplified in at least two ways. Any of the intermediate nodes might dso be an
end node, and the internet has 60 million nodes rather than 4.

The new mechanism we need to make this work is routing, which converts an address into a
‘path’, a sequence of decisions about what output link to use at each switch. Routing is done with
amap from addresses to output links at each switch. In addition the address may change dong
the path; thisis coded with a second map, from input addresses to output addresses.

Jo—— ——o1
Abstract 30—/ —23
Jo—— ——o 4
T route _fl
Concrete

Fig. 8. Composing switchesin amesh.

Wheat spec does a mesh network satisfy? We saw earlier that a broadcast network provides
unreligble FIFO ddivery. In generd, a mesh provides unreliable unordered delivery, because the
routes can change, dlowing one packet to overtake another, even if thelinks are FIFO. Thisis
finefor IP on the Internet, which doesn’t promise FIFO ddlivery. When switches are used to
extend abroadcast LAN transparently, however, great care has to be taken in changing routesto
preserve the FIFO property, even though it has very little value to most clients. This use of
switching is caled ‘bridging'.

Addresses

There are three kinds of addresses. In order of increasing cost to code the maps, and increasing
convenience to the end nodes, they are:

Sour ce addresses. the addressis just the sequence of output links to use; each switch strips
off the one it uses. In figure 8, the source addresses of node 2 from node 3 are (d, €) and (a,
b, c, €).The1BM token ring and severa multiprocessors (including the MIT Jmachine and the
Cosmic Cube??) use this. A variation distributes the source route across the path; the address
(cdlled a‘virtud drcuit’) islocd to alink, and each switch knows how to map the addresses
onitsincoming links. ATM uses this variation, and so does the * shuffle-exchange' network
shown below.

21 C. Seitz: The cosmic cube. Communications of the ACM 28, 22-33 (1985)

Handout 23. Networks— Links and Switches

2000

19

6.826—Principles of Computer Systems

000

000 Routing positions

| . 001 [
010 -
| | 011

—- Broadcast positions

e T

i —1110]
Hierarchical addresses. the addressis hierarchical. Each switch corresponds to one nodein
the address tree and knows what links to use to get to its sihlings, children, and parent. The
Internet?2 and cascaded /O busses use this.

ERES

111

]
\
]
]

Flat addresses: the addressisflat, and each switch knows what links to use for every address.
Broadcast networks like Ethernet and FDDI use this, the code IS easy Since every receiver sees
al the addresses and can just pick off those destined for it. Bridged LANs also useflat
routing, faling back on broadcast when the bridges lack information about where an end-
node address is. The mechanism for routing 800 telephone numbersis mainly flat.

Deadlock

Traffic traverang a composte link needs a sequence of resources (most often buffer space) to
reach the end, and usudly it acquires aresource while holding on to existing ones. This means
that deadlock is possble. The left Sde of figure 9 shows the smplest case: two nodes with a
sngle buffer poal in each, and links connecting them. If traffic must acquire a buffer a the
degtination before giving up its buffer at the source, it is possible for al the messages to deadlock
waiting for each other to release their buffers.23

The ample rule for avoiding deadlock iswell known (see handout 14): define a partial order on
the resources, and require that a resource cannot be acquired unlessit is greater in this order than
al the resources dready held. In our gpplication it is usud to treat the links as resources and
require paths to be increasing in the link order. Of course the ordering relation must be big
enough to ensure that a path exists from every sender to every receiver.

The right sde of figure 9 shows what can happen even at one cell of asmple rectangular grid if
this problem isignored. The four paths use links asfollows. 1—EN, 2—NW, 3—WS, 4—SE.
Thereisno ordering that will dlow dl four paths, and if each path acquiresitsfirg link thereis
deadlock.

22 . Stallings, IPV6: The new Internet protocol. |EEE Communications 34, 7 (Jul 1996), pp 96-109.

23 Actually, this simple configuration can only deadlock if each node fills up with traffic going to the other node.

Thisis very unlikely; usually some of the bufferswill hold traffic for other nodes to the left or right, and thiswill
drain out in time.

Handout 23. Networks— Links and Switches

20

6.826—Principles of Computer Systems

4 1

A

L ~—(r—t
— — 2=
-~
1 L—\‘ £h, 4
Y
3 2

Fig. 9. Deadlock. Theversion on the leftis simplest, but can’'t happen with more than 1 buffer/node

The standard order on agridis: |1 < | iff they are head to tail, and either they point in the same
direction, or |1 goes east or west and | goes north or south. So theruleis “Go east or west firdt,
then north or south.” On atreel; < |- iff they are head to tail, and either both go up toward the
root, or | goes down away from the root. The ruleisthus “First up, then down.” On abAG
impose a spanning tree and label dl the other links up or down arbitrarily; the Autonet doesthis.

Note that thiskind of rule for preventing deadlock may conflict with an attempt to optimize the
use of resources by sending traffic on the least busy links.

Although figure 9 suggesis that the resources being dlocated are the links, thisis a bit
mideading. It isthe buffersin the receiving nodes that are the physical resource in short supply.
Thismeansthat it's possible to multiplex saverd ‘virtud’ links on asingle physicd link, by
dedicating separate buffers to each virtud link. Now the virtud links are resources that can run
out, but the physical links are not. The Autonet does not do this, but it could, and other mesh
networks such as AN224 have done so, as have severd multiprocessor interconnects.

Topology

In the remainder of the handout, we study mechanisms for routing in more detail 2> It's
convenient to divide the problem into two parts. computing the topology of the network, and
making routing decisons based on some topology. We begin with topology, in the context of a
collection of links and nodes identified by index typesL and N. A topology T specifies the nodes
that each link connects. For this description it’s not useful to distinguish routers from hogts or
end-nodes, and indeed in most networks a node can play both roles.

These are smplex links, with a single sender and asingle receiver. We have seen that a
broadcast LAN can be viewed as alink with n senders and receivers. However, for our current
purposes it is better to modd it as a switch with 2n links to and from each attached node.
Concretely, we can think of alink to the switch as the physica path from a node onto the LAN,

24T, Anderson et al., High-speed switch scheduling for local area networks. ACM Transactions on Computer
Systems 11, 4 (Nov. 1993), pp 319-352.

25 Thisisacomplicated subject, and our treatment |leaves out alot. An excellent referenceis R. Perlman,
Interconnections: Bridges and Routers, Addison-Wesley, 1992. Chapter 4 on source routing bridgesis best left
unread.

Handout 23. Networks— Links and Switches

2000

21

6.826—Principles of Computer Systems

and alink from the switch as the physica path the other way together with the address filtering
mechanism.

Note that a path is not uniquely determined by a sequence of nodes (much less by endpoints),
because there may be multiple links between two nodes. Thisiswhy we define apath as SEQ L
rather than SEQ N. Note also that we are assuming a globa name space N for the nodes; thisis
usualy coded with some kind of UID such asaLAN address, or by manually assigned addresses
like IP addresses. If the nodes don't have unique names, life becomes alot more confusing.

We name links with locd namesthat are relative to the sending node, rather than with globa
names. This reflects the fact that alink is usualy addressed by an 1/0 device address. Thelink
from abroadcast LAN node to another node connected to that LAN is named by the second
node’'sLAN address.

MODULE Net wor K[

L % Link; local name

N] % Node; global name
TYPENs = SET N

T = N->L -> N SUCHTHAT (\ t | t.donme{n|true}) % Topology; defined at eachN

P =1[n, r: SEQL] WTH {"<=":=Prefix} % Path starting at n
Heret (n) (1) isthe node reached from noden onlink | . For the network of figure 8,

t(3)(a) =1

t(3)(d) =4

t(1)(a) = 3

t(1l)(b) = 5i

€tc.

Note that a T is defined on every node, though there may not be any links from anode. A pathis
not just a sequence of nodes because there can be multiple links from one node to ancther.

The End function computes the end node of apath. A P isactudly apath if End isdefined oniit,
that is, if each link actudly exigts. A path isacydic if the number of ditinct nodeson it isone
more than the number of links. We can compute dl the nodes on a path and dl the paths between
two nodes. All these notions only make sense in the context of atopology that says how the
nodes and links are hooked up.

FUNCEnd(t, p) -> N= RET (p.r ={} =>p.n [*] End(t, P{t(p.n)(p.r.head), p.r.tail})

FUNC I sPath(t, p) -> Bool = RET End!(t, p)
FUNC Prefix(pl, p2) -> Bool = RET pl.n = p2.n /\ pl.r <= p2.r
FUNC Nodes(t, p) -> Ns = RET {p' | p' <= p | End(t, p'))

FUNC | sAcyclic(t, p) -> Bool = RET IsPath(t, p) /\ Nodes(t, p).size = p.r.size + 1

FUNC Pat hs(t, nl, n2) -> SET p =
RET {p | p.n =nl/\ End(t, p) = n2 /\ IsAcyclic(t, p)}

Like anything else in computing, a network can be recursive. This means that a connected sub-
network can be viewed as a Sngle node. To make this precise we define the redtriction of a
topology to a set of nodes, keeping only the links between nodes in the set. Then we can collgpse

Handout 23. Networks— Links and Switches

6.826—Principles of Computer Systems 2000

atopology to asmaler onein which aconnected ns gppears as a Single representative node no,
by replacing dl the linksinto ns with linksto no and discarding dl the internd links. The
outgoing links have to be named by pairs[n, 11], Sncethe naming schemeisloca to anode;
hereweusel | for the ‘lower-levd’ links of the origind T. Often collgpsing istied to hierarchica
addressing, S0 that an entire subtree will be collgpsed into a single node for the purposes of
higher-leve routing.

ns = {nl, n2, n3}
n0 I'N ns

TYPEL = (L + [n, 11])

FUNC Restrict(t, ns) -> T =
RET (\ n| (\ I | (nINns /\ (t(n)(l) INns =>t(n)(l))))

FUNC | sConnected(t, ns) -> Bool =
RET (ALL nl1 :INns, n2 :INns | Paths(Restrict(t, ns), nl, n2) # {})

FUNC Col | apse(t, ns, n0) -> T =n0 INns /\ |sConnected(t, ns) =>
RET (\ n | (\ 1 |
(~nINns = (t(n)(l) INns =>n0 [*] t(n)(l))
[*] n=n0/\V 1 IS [n, II] /V 1T.nINRP /\ ~t(l.n)(l.1l) INns =>
t(l.n)(l.11)y)))

How does a network find out what its topology is? Aside from supplying it manudly, there are
two approaches. In both, each node learns which nodes are ‘ neighbors’, that is, are connected to
itslinks, by sending ‘hello’ messages down the links.

1. Runagloba computation in which one node is chosen to learn the whole topology by
becoming the root of a spanning tree. The root collects al the neighbor information ad
broadcasts wheét it has learned to dl the nodes. The Autonet uses this method.

2. Runadigributed computation in which each node periodicaly tdlsits neighbors everything
it knows about the topology. In time, any change in anode' s neighbors will soread
throughout the network. There are some subtleties about what a node should do when it gets
conflicting information. The Internet uses this method, which is cdled ‘link-state routing’,
and callsit OSPF.

InaLAN with many connected nodes, usudly most are purely end-nodes, that is, do not do any
switching of other peopl€' s packets. The end-nodes don't participate in the neighbor

Handout 23. Networks— Links and Switches 23

6.826—Principles of Computer Systems 2000

computation, since that would be an n2 process. Instead, only the routers on the LAN participate,
and there is a separate scheme for the end-nodes. There are two mechanisms needed:

1. Routers need to know what end-nodes are on the LAN. Each end-node can periodicaly
broadcast its IP address and LAN address, and the routers listen to these broadcasts and
cache the results. The cache times out in afew broadcast intervass, so that obsolete
information doesn't keep being used. Similarly, the routers broadcast the same information
50 that end-nodes can find out what routers are available. The Internet often doesn't do this,
however. Instead, information about the routers and end-nodes on aLAN is manualy
configured.

2. Anend-node n1 needsto know which router can reach anode n2 that it wantsto tak to; that
iS, n1 needsthevadueof sw(n1) (n2) defined below. To getit, n1 broadcastsn2 and expects
to get back aLAN address. If node n2 ison the same LAN, it returnsits LAN address.
Otherwise arouter that can reach n2 returnsthe router’s LAN address. In the Internet thisis
done by the address resolution protocol (ARP). Of coursen1 caches this result and times out
the cache periodicaly.

The Autonet paper describes a variation on this, in which end-nodes use an ARP protocol to map
Ethernet addressesinto Autonet short addresses. Thisisaniceillustration of recursonin
communication, because it turns the Autonet into a‘generic LAN’ that is essentialy an Ethernet,
on top of which IP protocols will do another level of ARP to map IP addresses to Ethernet
addresses.

Routing

For traffic to make it through the network, each switch must know which link to send it on. We
begin by sudying asmplified Stuation in which traffic is addressed by the N of its destination
node. Later we consider the relationship between these globally unique addresses and redl
addresses.

A swidlsfor each node how to map a destination node into a link2é on which to send traffic; you
can think of it asthe dud of atopology, which for each node maps alink to a destination node.
Then arouteis apath that is chosen by sw.

TYPE SW = N-> N-> L

PROC Route(t, sw, nl, n2) -> P = VAR p :IN Paths(t, nl, n2) |
(ALL p* | p' <=p/\ p'.r # {} ==>
p'.r.last = swEnd(t, p'{r :=p'.r.rem})(n2)) => RET p

Heresw(n1) (n2) givesthelink onwhichtoreach n2 fromni. Notethatif n1 = n2, theempty
path is a possible result. Thereis nothing in this definition that says the route must be efficient.
Of course, Rout e isnot part of the code, but Smply a spec.

26 or perhaps a set of links, though we omit this complication here.

Handout 23. Networks— Links and Switches 24

6.826—Principles of Computer Systems 2000
We could generdize SWtON -> N - > L, and then
PROC Route(t, sw, nl, n2) -> P = [RET {|[p :IN Paths(t, nl1, n2) |

(ALL p' | p' <=p/\ p'.r # {} ==>

p'.r.last [N swEnd(t, p'{r :=p'.r.rem})(n2))[]

We want congstency between swand t : the path sw chooses actudly getsto the destination and
isacyclic. Idedly, we want sw to choose a cheapest path. Thisis easy to arrangeif everyone
knows the topology and the Cost function. For concreteness, we give a popular cost function: the
length of the path.
FUNC | sConsi stent (t, sw) -> Bool =

RET (ALL nl1, n2 | Route(t, sw, nl, n2) IN Paths(t, nl, n2))
FUNC | sBest(t, sw) -> Bool = VAR best := {p :IN Paths(t,nl1,n2) | | Cost(p)}.mn |

RET (ALL nl, n2 | Cost(Route(t, sw, nl, n2)) = best)
FUNC Cost(p) -> Int = RET p.r.size % or your favorite
Don't lose sight of the fact that thisis not code, but rather the spec for computing swfrom't .
Getting t , computing sw, and using it to route are three separate operations.
There might be more than one suitable link, in which case L isreplaced by SET L, or by a
function that gives the cost of each possibleL. We work out the former:
TYPE SW = N-> N-> SET L
PROC Routes(t, sw, nl, n2) -> SET P = RET { p :IN Paths(t, nl, n2) |

(ALL p' | p' <=p/\ p'.r # {} ==>

p'.r.last IN swEnd(t, p'{r :=p' .r.rem})(n2)) }

FUNC | sConsi stent (t, sw) -> Bool =

RET (ALL nl, n2 | Routes(t, sw, nl, n2) <= Paths(t, nl, n2))
FUNC | sBest(t, sw) -> Bool = VAR best := {p :IN Paths(t,nl1,n2) | | Cost(p)}.mn |

RET (ALL nl1, n2 | (ALL p :IN Routes(t, sw, nl, n2) | Cost(p) = best))

Addressing

In abroadcast network addressing is Smple: Snce every node sees dl thetreffic, dl that's

needed isaway for each node to recognize its own addresses. In a mesh network the sw function
in every router has to map each addressto alink that leads there. The structure of the address can
meke it easy or hard for the router to do the switching, and for al the nodes to learn the topology.
Not surprisingly, there are tradeoffs.

It's useful to classify addressing schemes as loca (dependent on the source) or globd (the same
address works throughout the network), and as hierarchical or flat.

Handout 23. Networks— Links and Switches

25

6.826—Principles of Computer Systems 2000

Flat Hierarchical
Local — Source routing
Circuits = distributed source routing:
route once, keep state in routers.
Global LANS: router knows linksto everywhere IP, OSl: router knows links to parent,
By broadcast children, and shlings.
By learning
Fallback is broadcast, e.g. in bridges.

Source routing is the smplest for the switches, snce al work of planning the routes is unloaded
on the sender and the resulting route is explicitly encoded in the address. The drawbacks are that
the addressis bigger and, more serioudy, that changes to the topology of the network must be
reflected in changes to the addresses.

Congestion control

Aswe have seen, we can view an entire mesh network as asingle switch Like any structure that
involves multiplexing, it requires arbitration for its resources. This network-leve arbitretion is

not the same as the link-leve arbitration that is requires every time a unit is sent on alink.
Instead, its purpose is to alocate the resources of the network as awhole. To see the need for
network-leve arbitration, consider what happens when some internd switch or link becomes
overloaded.

Aswith any kind of arbitration, there are two possihilities: scheduling, or contention and

backoff. Scheduling can be done saticdly, by alocating a fixed bandwidth to a path or *circuit’
from a sender to areceiver. The telephone system works thisway, and it does not dlow traffic to
flow unless it can commit al the necessary resources. A variation that is proposed for ATM
networks is to alocate a maximum bandwidth for each path, but to overcommit the network
resources and rely on traffic gatitics to make it unlikely that the bluff will be called.

Alternatively, scheduling can be done dynamicaly by backpressure, asin the Autonet and AN2.
We studied this method in connection with links, and the issues are the same in networks. One
differenceisthat the round-trip time may be longer, so that more buffering is needed to support a
given bandwidth. In addition, the round-trip time is usudly much more variable, because traffic
has to queue a each switch. Another differenceisthat because a circuit that is held up by
backpressure may be tying up resources, deadlock is possible.

Contention and backoff are dso amilar in links and networks; indeed, one of the backoff links
that we studied was TCP, which is normally coded on top of a network. When alink or switch is
overloaded, it smply drops some traffic. The trouble Sgnd is usually coded by timeout waiting
for an ack. There have been a number of proposas for an explicit ‘congested’ sgnd, but it's
difficult to ensure that this Sgnd gets back to the sender religbly.

Handout 23. Networks— Links and Switches 26

