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27.  Distributed Transactions 

In this handout we study the problem of doing a transaction (that is, an atomic action) that 
involves actions at several different transaction systems, which we call the ‘servers’. The most 
obvious application is “distributed transactions”: separate databases running on different 
computers. For example, we might want to transfer money from an account at Citibank to an 
account at Wells Fargo. Each bank runs its own transaction system, but we still want the entire 
transfer to be atomic. More generally, however, it is good to be able to build up a system 
recursively out of smaller parts, rather than designing the whole thing as a single unit. The 
different parts can have different code, and the big system can be built even though it wasn’t 
thought of when the smaller ones were designed. 

Specs 

We have to solve two problems: composing the separate servers so that they can do a joint action 
atomically, and dealing with partial failures. Composition doesn’t require any changes in the 
spec of the servers; two servers that implement the SequentialTr spec in handout 19 can jointly 
commit a transaction if some third agent keeps track of the transaction and tells them both to 
commit. Partial failures do require changes in the server spec. In addition, they require, or at least 
strongly suggest, changes in the client spec. We consider the latter first. 

The client spec 

In the code we have in mind, the client may be invoking Do actions at several servers. If one of 
them fails, the transaction will eventually abort rather than committing. In the meantime, 
however, the client may be able to complete Do actions at other servers, since we don’t want each 
server to have to verify that no other server has failed before performing a Do. In fact, the client 
may itself be running on several machines, and may be invoking several Do’s concurrently. So 
the spec should say that the transaction can’t commit after a failure, and can abort any time after 
a failure, but need not abort until the client tries to commit. Furthermore, after a failure some Do 
actions may report crashed, and others, including some later ones, may succeed. 

We express this by adding another value failed to the phase. A crash sets the phase to failed, 
which enables an internal CrashAbort action that aborts the transaction. In the meantime a Do 
can either succeed or raise crashed. 

MODULE DistSeqTr [ 
V,   % Value of an action 
S WITH { s0: ()->S } % State 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action  

VAR ss := S.s0() % Stable State 
vs := S.s0() % Volatile State 
ph : ENUM[idle, run, failed] := idle % PHase (volatile) 
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APROC Begin() = << Abort(); ph := run >> % aborts any current trans. 

APROC Do(a) -> V RAISES {crashed} = <<  
IF ph # idle => VAR v | (v, vs) := a(vs); RET v  
[] ph # run => RAISE crashed  
FI >>  

APROC Commit() RAISES {crashed} =  
<< IF ph = run => ss := vs; ph := idle [*] Abort(); RAISE crashed FI >> 

PROC Abort () = << vs := ss, ph := idle >>  
PROC Crash () = << ph := failed >>  

THREAD CrashAbort() = DO << ph = failed => Abort() >> OD 

END DistSeqTr 

In a real system Begin starts a new transaction and returns its transaction identifier t, which is an 
argument to every other routine. Transactions can commit or abort independently (subject to the 
constraints of concurrency control). We omit this complication. Dealing with it requires 
representing each transaction’s state change independently in the spec. If the concurrency spec is 
‘any can commit’, Do(t) sees vs = ss + actions(t), and Commit(t) does ss := ss + 
actions(t). 

Partial failures 

When several servers are involved in a transaction, they must agree about whether the 
transaction commits. Thus each transaction commit requires consensus among the servers. 

The code that implements transactions usually keeps the state of a transaction in volatile storage, 
and only guarantees to make it stable at commit time. This is important for efficiency, since 
stable storage writes are expensive. To do this with several servers requires a server action to 
make a transaction’s state stable without committing it; this action is traditionally called 
Prepare. We can invoke Prepare on each server, and if they all succeed, we can commit the 
transaction. Without Prepare we might commit the transaction, only to learn that some server 
has failed and lost the transaction state.  

The old LogRecovery or LogAndCache code in handout 19 does a Prepare implicitly, by forcing 
the log to stable storage before writing the commit record. It doesn’t need a separate Prepare 
action because it has direct and exclusive access to the state, so that the sequential flow of 
Commit ensures that the state is stable before the transaction commits. For the same reason, it 
doesn’t need separate actions to clean up the stable state; the sequential flow of Commit and 
Crash takes care of everything. 

Once a server is prepared, it must maintain the transaction state until it finds out whether the 
transaction committed or aborted. We study a design in which a separate ‘coordinator’ module is 
responsible for keeping track of all the servers and telling them to commit or abort. Real systems 
sometimes allow the servers to query the coordinator, but we omit this minor variation. 

We give the spec for a server. Since we want to be able to compose servers repeatedly, we give it 
as a modification of the DistSeqTr client spec. The change is the addition of the stable ‘prepared 
state’ ps, and a separate Prepare action between the last Do and Commit. A transaction is 
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prepared if ps # nil. Note that Crash has no effect on a prepared transaction. Abort works on 
any transaction, prepared or not. 

MODULE TrServer [ 
V,   % Value of an action 
S WITH { s0: ()->S } % State 
] EXPORT Begin, Do, Commit, Abort, Prepare, Crash = 

TYPE A = S->(V, S) % Action  

VAR ss := S.s0() % Stable State 
ps : (S + Null) := nil % Prepared State (stable) 
vs := S.s0() % Volatile State 
ph : ENUM[idle, run, failed] := idle % PHase (volatile) 

% INVARIANT ps # nil  ==>  ph = idle 

APROC Begin() = << Abort(); ph := run >> % aborts any current trans. 

APROC Do(a) -> V RAISES {crashed} = <<  
IF ph # idle => VAR v | (v, vs) := a(vs); RET v  
[] ph # run => RAISE crashed 
FI >>  

APROC Prepare() RAISES {crashed} =  
<< IF ph = run => ps := vs; ph := idle [*] RAISE crashed >> 

APROC Commit() RAISES {crashed} = << 
IF ps # nil => ss := ps; ps := nil [*] Abort(); RAISE crashed FI >> 

PROC Abort () = << vs := ss, ph := idle; ps := nil >>  
PROC Crash () = << IF ps = nil => ph := failed [*] SKIP >>  

THREAD CrashAbort() = DO << ph = failed => Abort() >> OD 

END TrServer 

This spec requires its client to call Prepare exactly once before Commit, and confusingly raises 
crashed in Do after Prepare. A real system might handle these variations somewhat differently, 
but the differences are inessential. 

We don’t give code for this spec, since they are very similar to LogRecovery or LogAndCache. 
Like the old Commit, Prepare forces the log to stable storage; then it writes a prepared record. 
Commit to a prepared transaction writes a commit record and then applies the log or discards the 
undo’s. Recovery rebuilds the volatile list of prepared transactions from the prepared records so 
that a later Commit or Abort knows what to do. Recovery must also restore the concurrency 
control state for prepared transactions; usually this means re-acquiring their locks. 

Committing a transaction 

We have not yet explained how to code DistSeqTr using several copies of TrServer. The basic 
idea is simple. A coordinator keeps track of all the servers that are involved in the transaction 
(they are often called ‘workers’, ‘participants’, or ‘slaves’ in this story). Normally the 
coordinator is also one of the servers, but as with Paxos, it’s easier to explain what’s going on by 
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keeping the two functions entirely separate. When the client tells the coordinator to commit, the 
coordinator tells all the servers to prepare. This succeeds if all the Prepare’s return normally. 
Then the coordinator records stably that the transaction committed, and tells all the servers to 
commit.  

The abstraction function from the states of the coordinator and the servers to the state of 
DistSeqTr is simple. We need names for the servers: 

TYPE R = Int % seRver name 

The coordinator’s state is 

VAR ph : ENUM[idle, committed] := idle 
servers : SET R := {} 

The server states are 

VAR s : R -> [ss: S, ps: (S + Null), vs: S, ph] 

The spec’s vs is the ***union of all the server vs values. The spec’s ss is the union of the 
servers’ ss unless ph = committed, in which case any server with a non-nil ps substitutes that: 

DistSeqTr.ss = + : {r :IN servers |  
                    (ph = committed /\ s(r).ps # nil => s(r).ps [*] s(r).ss)} 

We need to maintain the invariant that any server whose phase is not idle or which has ps # nil 
is in servers, so that it will hear from the coordinator what it should do. 

If some server has failed, its Prepare will raise crashed. In this case the coordinator tells all the 
servers to abort, and raises crashed to the client. A server that is not prepared and doesn’t hear 
from the coordinator can abort on its own. A server that is prepared cannot abort on its own, but 
must hear from the coordinator whether the transaction has committed or aborted. 

This entire algorithm is called “two-phase commit”; do not confuse it with two-phase locking. 
The first phase is the prepares, the second the commits. The coordinator can use any algorithm it 
likes to record the commit or abort decision. However, once some server is prepared, losing this 
information will leave that server permanently in limbo, uncertain whether to commit or abort. 
For this reason, a high-availability transaction system should use a high-availability way of 
recording the commit. This means storing it in several places and using a consensus algorithm to 
get these places to agree.  

For example, you could use the Paxos algorithm. It’s convenient (though not necessary) to use 
the servers as the agents and the coordinator as leader. In this case the query/report phase of 
Paxos can be combined with the prepares, so no extra messages are required for that. There is 
still one round of command/report messages, which is more expensive than the minimum, non-
fault-tolerant consensus algorithm, in which the coordinator just records its decision. But using 
Paxos, a server is forced to block only if there is a network partition and it is on the minority side 
of the partition. 

In the theory literature this form of consensus is called the ‘atomic commitment’ problem. We 
can state the validity condition for atomic commitment as follows: A crash of any unprepared 
server does Allow(abort), and when the coordinator has heard that every server is prepared it 
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does Allow(commit). You might think that consensus is trivial since at most one value is 
allowed. Unfortunately, this is not true because in general you don’t know which value it is. 

Most real transaction systems do not use fault-tolerant consensus to commit, but instead just let 
the coordinator record the result. In fact, when people say ‘two-phase commit’ they usually mean 
this form of consensus. The reason for this sloppiness is that usually the servers are not 
replicated, and one of the servers is the coordinator. If the coordinator fails or you can’t 
communicate with it, all the data it handles is inaccessible until it is restored from tape. So the 
fact that the outcome of a few transactions is also inaccessible doesn’t seem important. Once 
servers are replicated, however, it becomes important to replicate the commit result as well. 
Otherwise that will be the weakest point in the system. 

Bookkeeping 

The explanation above gives short shrift to the details of the coordinator’s work. In particular, 
how does the coordinator keep track of the servers efficiently. This problem has three aspects. 

Keeping track of servers 

The first is simply finding out who the servers are, since the client may be spread out over many 
machines, and it isn’t efficient to funnel every request to a server through the coordinator. The 
standard way to handle this is to arrange all the client processes in a tree, and require that each 
client process report to its parent the servers that it or its children have talked to. Then the root of 
the tree will know about all the servers, and it can either act as coordinator or give the 
coordinator this information. 

Noticing failed servers 

The second is noticing when a server has failed. In the SequentialTr or DistSeqTr specs this is 
simple: each transaction has a Begin that sets ph := run, and a failure sets ph to some other 
value. In the code, however, since there may be lots of client processes, a client doesn’t know the 
first time it talks to a server, so it doesn’t know when to call Begin on that server. One way to 
handle this is for each client process to send Begin to the coordinator, which then calls Begin 
exactly once on each server. This costs extra messages, however, An alternative is to eliminate 
Begin and instead have both Do and Prepare report to the client whether the transaction is new 
at that server, that is, whether ph = idle before the action. If a server fails, it will forget this 
information (unless it’s prepared, in which case the information is stable), so that a later client 
action will get another ‘new’ report. The client processes can then roll up all this information. If 
any server reports ‘new’ more than once, it must have crashed. 

To make this precise, each client processes counts the number of ‘new’ reports it has gotten from 
each server (here C names the client processes): 

VAR news : C -> R -> Int := {* -> 0} 

We add to the server state a history variable lost which is true if the server has failed and lost 
some of the client’s state. This is what the client needs to detect, so we maintain the invariant  
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( ALL r | s(r).lost ==>   (s(r).ph = idle /\ s(r).ps = nil)  
                       \/ (+ : {c | news(c)(r)}) > 1 ) 

After all the servers have prepared, they all have s(r).ps # nil, so if anything is lost is shows 
up in the news count. 

A variation on this scheme has each server maintain an ‘incarnation id’ or ‘crash count’ which is 
different each time it recovers, and report this id to each Do and Prepare. Then any server with 
more than one id that is prepared must have failed during the transaction. 

Cleaning up 

The third aspect of bookkeeping is making sure that all the servers find out whether the 
transaction committed or aborted. Actually, only the prepared servers need to find out, since a 
server that isn’t prepared can just abort the transaction if it is left in the lurch. 

The simple way to handle this is for the coordinator to record its servers variable stably before 
doing any prepares. Then even if it fails, it knows what servers to notify after recovery. 
However, this means an extra log write for servers before any prepares, in addition to the 
essential log write for the commit record. 

You might try to avoid this write by just telling each server the identity of the coordinator, and 
having a server query for the transaction outcome. This doesn’t work, because the coordinator 
needs to be able to forget the outcome eventually, in order to avoid the need to maintain state 
about each transaction forever. It can only forget after every server has learned the outcome and 
recorded it stably. If the coordinator doesn’t know the set of servers, it can’t know when all of 
them have learned the outcome.  

If there’s no stable record of the transaction, we can assume that it aborted. This convention is 
highly desirable, since otherwise we would have to do yet another log write at the beginning of 
the transaction. Given this, we can log the set of servers along with the commit record, since the 
transaction aborts if the coordinator fails before writing the commit record. But we still need to 
hear back from all the servers that they have recorded the transaction commit before we can 
clean up the commit record. If it aborts, we don’t have to hear back, because of the convention 
that a transaction with no record must have aborted. This convention is called ‘presumed abort’. 

Since transactions usually commit, it’s unfortunate that we have optimized for the abort case. To 
fix this, we can make a more complicated convention based on the values of transaction 
identifiers T. We impose a total ordering on them, and record a stable variable tlow. Then we 
maintain the invariant that any transaction with identifier < tlow is either committed, or not 
prepared at any server, or stably recorded as aborted at the coordinator. Thus old transactions are 
‘presumed commit’. This means that we don’t need to get acknowledgments from the servers for 
a committed transaction t. Instead, we can clean up their log entries as soon as t < tlow. 

The price for this scheme is that we do need acknowledgements from the servers for aborted 
transactions. That is OK, since aborts are assumed to be rare. However, if the coordinator crashes 
before writing a commit record for t, it doesn’t know who the servers are, so it doesn’t know 
when they have all heard about the abort. This means that the coordinator must remember 
forever the transactions that are aborted by its crashes. However, there are not many of these, so 
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the cost is small. For a more complete explanation of this efficient presumed commit, see the 
paper by Lampson and Lomet.1 

Coordinating synchronization 

Simply requiring serializability at each site in a distributed transaction system is not enough, 
since the different sites could choose different serialization orders. To ensure that a single global 
serialization order exists, we need stronger constraints on the individual sites. We can capture 
these constraints in a spec. As with the ordinary concurrency described in handout 20, there are 
many different specs we could give, each of which corresponds to a different class of mutually 
compatible concurrency control methods (but where two concurrency control methods from two 
different classes may be incompatible). Here we illustrate one possible spec, which is appropriate 
for systems that use strict two-phase locking and other compatible concurrency control methods. 

Strict two-phase locking is one of many methods that serializes transactions in the order in which 
they commit. Our goal is to capture this constraint—that committed transactions are serializable 
in the order in which they commit—in a spec for individual sites in a distributed transaction 
system. This cannot be done directly, because commit decisions are made in a decentralized 
manner, so no single site knows the commit order. However, each site has some information 
about the global commit order. In particular, if a site hears that transaction A has committed 
before it processes an operation for transaction B, then B must follow A in the global commit 
order (assuming that B eventually commits). Given a site's local knowledge, there is a set of 
global commit orders consistent with its local knowledge (one of which must be the actual 
commit order). Thus, if a site ensures serializability in all possible commit orders consistent with 
its local knowledge, it is necessarily ensuring serializability in the global commit order. 

We can capture this idea more precisely in the following spec. (Rather than giving all the details, 
we sketch how to modify the spec of concurrent transactions given in handout 20.) 

• Keep track of a partial order precedes on transactions, which should record that A precedes 
B whenever the Commit procedure for A happens before Do for B. This can be done either by 
keeping a history variable with all external operations recorded (and defining precedes as a 
function on the history variable), or by explicitly updating precedes on each Do(B), by 
adding all pairs (A, B) where A is known to be committed. 

• Change the constraint Serializable in the invariant in the spec to require serializability in 
all total orders consistent with precedes, rather that just some total order consistent with xc. 
Note that an order consistent with precedes is also externally consistent. 

 It is easy to show that the order in which transactions commit is one total order consistent with 
precedes; thus, if every site ensures serializability in every total order consistent with its local 
precedes order, it follows that the global commit order can be used as a global serialization 
order. 

                                                 
1 B. Lampson and D Lomet, A new presumed commit optimization for two phase commit. Proc. 19th VLDB 
Conference, Dublin, 1993, pp 630-640. 
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21.  Distributed Systems 

The rest of the course is about distributed computing systems. In the next four lectures we will 
characterize distributed systems and study how to specify and code communication among the 
components of a distributed system. Later lectures consider higher-level system issues: 
distributed transactions, replication, security, management, and caching. 

The lectures on communication are organized bottom-up. Here is the plan: 

1. Overview.  

2. Links. Broadcast networks. 

3. Switching networks. 

4. Reliable messages. 

5. Remote procedure call and network objects. 

Overview 

An underlying theme in computer systems as a whole, and especially in distributed systems, is 
the tradeoff between performance and complexity. Consider the problem of carrying railroad 
traffic across a mountain range.1 The minimal system involves a single track through the 
mountains. This solves the problem, and no smaller system can do so. Furthermore, trains can 
travel from East to West at the full bandwidth of the track. But there is one major drawback: if it 
takes 10 hours for a train to traverse the single track, then it takes 10 hours to switch from E-W 
traffic to W-E traffic, and during this 10 hours the track is idle. The scheme for switching can be 
quite simple: the last E–W train tells the W-E train that it can go. There is a costly failure mode: 
the East end forgets that it sent a ‘last’ E-W train and sends another one; the result is either a 
collision or a lot of backing up. 

The simplest way to solve both problems is to put in a second track. Now traffic can flow at full 
bandwidth in both directions, and the two-track system is even simpler than the single-track 
system, since we can dedicate one track to each direction and don’t have to keep track of which 
way traffic is now running. However, the second track is quite expensive. If it has to be 
retrofitted, it may be as expensive as the first one. A much cheaper solution is to add sidings: 
short sections of double track, at which trains can pass each other. But now the signaling system 
must be much more complex to ensure that traffic between sidings flows in only one direction at 
a time, and that no siding fills up with trains. 

                                                 
1 This example is due to Mike Schroeder. 
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What makes a system distributed? 

One man’s constant is another man’s variable.       
Alan Perlis 

A distributed system is a system where I can’t get my work done because a computer has 
failed that I’ve never even heard of. 

Leslie Lamport 

There is no universally accepted definition of a distributed system. It’s like pornography: you 
recognize one when you see it. And like everything in computing, it’s in the eye of the beholder. 
In the current primitive state of the art, Lamport’s definition has a lot of truth. 

Nonetheless, there are some telltale signs that help us to recognize a distributed system: 

It has concurrency, usually because there are multiple general-purpose computing elements. 
Distributed systems are closely related to multiprocessors. 

Communication costs are an important part of the total cost of solving a problem on the 
system, and hence you try to minimize them. This is not the same as saying that the cost of 
communication is an important part of the system cost. In fact, it is more nearly the opposite: 
a system in which communication is good enough that the programmer doesn’t have to worry 
about it (perhaps because the system builder spent a lot of money on communication) is less 
like a distributed system. Distributed systems are closely related to telephone systems; 
indeed, the telephone system is by far the largest example of a distributed system, though its 
functionality is much simpler than that of most systems in which computers play a more 
prominent role. 

It tolerates partial failures. If some parts break, the rest of the system keeps doing useful 
work. We usually don’t think of a system as distributed if every failure causes the entire 
system to go down. 

It is scaleable: you can add more components to increase capacity without making any 
qualitative changes in the system or its clients. 

It is heterogeneous. This means that you can add components that implement the system’s 
internal interfaces in different ways: different telephone switches, different computers 
sending and receiving E-mail, different NFS clients and servers, or whatever. It also means 
that components may be autonomous, that is, owned by different organizations and managed 
according to different policies. It doesn’t mean that you can add arbitrary components with 
arbitrary interfaces, because then what you have is chaos, not a system. Hence the useful 
reminder: “There’s no such thing as a heterogeneous system.” 
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Layers 

Any idea in computing is made better by being made recursive. 
Brian Randell 

There are three rules for writing a novel.  
Unfortunately, no one knows what they are.  

Somerset Maugham 

You can look at a computer system at many different scales. At each scale you see the same 
basic components: computing, storage, and communications. The bigger system is made up of 
smaller ones. Figure 1 illustrates this idea over about 10 orders of magnitude (we have seen it 
before, in the handout on performance. 

But Figure 1 is misleading, because it doesn’t suggest that different levels of the system may 
have quite different interfaces. When this happens, we call the level a layer. Here is an example 
of different interfaces that transport bits or messages from a sender to a receiver. Each layer is 
motivated by different functionality or performance than the one below it. This stack is ten layers 
deep. Note that in most cases the motivation for separate layers is either compatibility or the fact 
that a layer has other clients or other code. 

 

 Internet 

LAN 

Multiprocessor 

Processor chip 

64-bit register 

50 MB RAM 

100 ms 

1 ms 

1 µs 

2 ns 64 

1K 

500 (uniprocessors) 

100K 

1 

500 

500K 

50M 

1 / 50 MB 

500 / 25 GB 

50 M / 2.5 PB 

How fast? How many?  Slowdown Total  

Fig. 1.  Scales of interconnection. Relative speed and size are in italics.  
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 What Why 
a) a TCP reliable transport link function:  reliable stream 
b) on an Internet packet link function:  routing 
c) on the PPP header compression protocol  performance:  space 
d) on the HDLC data link protocol  function:  packet framing 
e) on a 14.4 Kbit/sec modem line  function:  byte stream 
f)  on an analog voice-grade telephone line  function:  3 KHz low-latency signal 
g) on a 64 Kbit/sec digital line multiplexed  function:  bit stream 
h) on a T1 line multiplexed  performance:  aggregation 
i)  on a T3 line multiplexed  performance:  aggregation 
j)  on an OC-48 fiber.  performance:  aggregation 

On top of TCP we can add four more layers, some of which have interfaces that are significantly 
different from simple transport. 
 What Why 
w) mail folders function:  organization 
x) on a mail spooler function:  storage 
y) on SMTP mail transport function:  routing 
z) on FTP file transport function:  reliable char arrays 

Now we have 14 layers with two kinds of routing, two kinds of reliable transport, three kinds of 
stream, and three kinds of aggregation. Each serves some purpose that isn’t served by other, 
similar layers. Of course many other structures could underlie the filing of mail messages in 
folders. 

Here is an entirely different example, code for a machine’s load instruction: 

 What Why 
a) load from cache function:  data access 
b) miss to second level cache performance:  space 
c) miss to RAM performance:  space 
d) page fault to disk performance:  space 

Layer (d) could be replaced by a page fault to other machines on a LAN that are sharing the 
memory (function: sharing)2, or layer (c) by access to a distributed cache over a multiprocessor’s 
network (function: sharing). Layer (b) could be replaced by access to a PCI I/O bus (function: 
device access), which at layer (c) is bridged to an ISA bus (function: compatibility).  

                                                 
2  K. Li and P. Hudak: Memory coherence in shared virtual memory systems. ACM Transactions on Computer 
Systems 7, 321-359 (1989) 
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Another simple example is the layering of the various facsimile standards for transmitting 
images over the standard telephone voice channel and signaling. Recently, the same image 
encoding, though not of course the same analog encoding of the bits, has been layered on the 
internet or e-mail transmission protocols. 

Addressing 

Another way to classify communication systems is in terms of the kind of interface they provide:  

messages or storage,  
the form of addresses, 
the kind of data transported, 
other properties of the transport. 

 

Tightly 
coupled 

Loosely 
coupled 

Message 
passing 

Shared 
Memory 

Integration 

Com-
muni-
cation 

Local area 
networks 

Wide area 
networks 

Systolic 
arrays 

Shared memory 
multi-processors 

Shared memory 
multi-computers 

Clustered 
multi-computers 

Vector 
processors 

Networked 
multi-processors 

Interconnected 
multi-processors 

Distributed 
shared memory 

 

Here are a number of examples to bear in mind as we study communication. The first table is for 
messaging, the second for storage. 
 

System Address Sample address Data value Delivery 
    Ordered Reliable 

J-machine3 source route 4 north, 2 east 32 bytes yes yes 
IEEE 802 LAN 6 byte flat FF F3 6E 23 A1 92 packet no no 
IP 4 byte hierarchical 16.12.3.134 packet no no 
TCP IP + port 16.12.3.134 / 3451 byte stream yes yes 
RPC TCP + procedure 16.12.3.134 / 3451 / 

Open 
arg. record yes yes 

E-mail host name + user blampson@microsoft.com String no yes 

                                                 
3 W. Dally: A universal parallel computer architecture. New Generation Computing 11(1993), pp 227-249  
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System Address Sample address Data value 

Main memory 32-bit flat 04E72A39 2n bytes, n=4 
File system4 path name /udir/bwl/Mail/inbox/214 0-4 Gbytes 
World Wide 
Web 

protocol +  
host name +  
path name 

http://research.microsoft.com/ 
lampson/default.html 

typed,  
variable size 

Layers in a communication system 

The standard picture for a communication system is the OSI reference model, which shows peer-
to-peer communication at each of seven layers (given here in the opposite order to the examples 
above): 

physical (volts and photons),  
data link,  
network,  
transport,  
session,  
presentation, and  
application.  

This model is often, and somewhat pejoratively, called the ‘seven-layer cake’. The peer-to-peer 
aspect of the OSI model is not as useful as you might think, because peer-to-peer communication 
means that you are writing a concurrent program, something to be avoided if at all possible. At 
any layer peer-to-peer communication is usually replaced with client-server communication (also 
known as request-response or remote procedure call) as soon as possible. 

The examples we have seen should make it clear that real systems cannot be analyzed so neatly. 
Still, it is convenient to use the first few layers as tags for important ideas, which we will study 
in this order: 

Data link layer: framing and multiplexing. 

Network layer: addressing and routing (or switching) of packets. 

Transport layer: reliable messages. 

Session layer: naming and encoding of network objects. 

We are not concerned with volts and photons, and the presentation and application layers are 
very poorly defined. Presentation is supposed to deal with how things look on the screen, but it’s 
unclear, for example, which of the following it includes: the X display protocol, the Macintosh 
PICT format and the PostScript language for representing graphical objects, or the Microsoft RTF 
format for editable documents. In any event, all of these topics are beyond the scope of this 
course. 

Figure 2 illustrates the structure of communication and code for a fragment of the Internet. 

                                                 
4 M. Satyanarayanan: Distributed file systems. In S. Mullender (ed.) Distributed Systems, Addison-Wesley, 1993, pp 
353-384 
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Fig. 2: Protocol stacks for peer-to-peer communication 

Principles5 

There are a few important ideas that show up again and again at the different levels of distributed 
systems: recursion, addresses, end-to-end reliability, broadcast vs. point-to-point, real time, and 
fault-tolerance. 

Recursion 

The 14-layer example of coding E-mail gives many examples of encapsulating a message and 
transmitting it over a lower-level channel. It also shows that it can be reasonable to code a 
channel using the same kind of channel several levels lower.  

Another name for encapsulation is ‘multiplexing’. 

Addresses 

Multi-party communication requires addresses, which can be flat or hierarchical. A flat address 
has no structure: the only meaningful operation (other than communication) is equality. A 
hierarchical address, sometimes called a path name, is a sequence of flat addresses or simple 
names, and if one address is a prefix of another, then in some sense the party with the shorter 
address contains, or is the parent of, the party with the longer one. Usually there is an operation 
to enumerate the children of an address. Flat addresses are usually fixed size and hierarchical 
ones variable, but there are exceptions. An address may be hierarchical in the code but flat at the 
interface, for instance an Internet address or a URL in the World Wide Web. The examples of 
addressing that we saw earlier should clarify these points; for more examples see the handout on 
naming. 

People often make a distinction between names and addresses. What it usually boils down to is 
that an address is a name that is interpreted at a lower level of abstraction. 

                                                 
5 My thanks to Alex Shvartsman for some of the figures in this section. 
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End-to-end reliability 

A simple way to obtain reliable communication is to rely on the end points for every aspect of 
reliability, and to depend on the lower level communication system only to deliver bits with 
some reasonable probability. The end points check the transmission for correctness, and retry if 
the check fails.6 

For example, an end-to-end file transfer system reads the file, sends it, and writes it on the disk 
in the usual way. Then the sender computes a strong checksum of the file contents and sends 
that. The receiver reads the file copy from his disk, computes a checksum using the same 
function, and compares it with the sender’s checksum. If they don’t agree, the check fails and the 
transmission must be retried. 

In such an end-to-end system, the total cost to send a message is 1 + rp, where r = cost of retry 
(if the cost to send a simple message is 1) and p = probability of retry.  This is just like fast path 
(see handout 10 on performance). Note, however, that the retry itself may involve further retries; 
if p << 1 we can ignore this complication. For good performance (near to 1) rp must be small. 
Since usually r > 1, we need a small probability of failure: p << 1/r < 1. This means that the link, 
though it need not have any guaranteed properties, must transmit messages without error most of 
the time. To get this property, it may be necessary to do forward error correction on the link, or 
to do retry at a lower level where the cost of retry is less. 

Note that p applies to the entire transmission that is retried. The TCP protocol, for example, 
retransmits a whole packet if it doesn’t get a positive ack. If the packet travels over an ATM 
network, it is divided into small ‘cells’, and ATM may discard individual cells when it is 
overloaded. If it takes 100 cells to carry a packet, ppacket = 100 pcell. This is a big difference. 

Of course r can be measured in different ways. Often the work that is done for a retry is about 
the same as the work that is done just to send, so if we count r as just the work it is about 1. 
However, the retry is often invoked by a timeout that may be long compared to the time to send. 
If latency is important, r should measure the time rather than the work done, and may thus be 
much greater than 1. 

Broadcast vs. point-to-point transmission 

It’s usually much cheaper to broadcast the same information to n places than to send it 
individually to each of the n places. This is especially true when the physical communication 
medium is a broadcast medium. An extreme example is direct digital satellite broadcast, which 
can send a megabyte to everyone in the US for about $.05; compare this with about $.02 to send 
a megabyte to one place on a local ISDN telephone link. But even when the physical medium is 
point to point and switches are needed to connect n places, as is the case with telephony or ATM, 
it’s still much cheaper to broadcast because the switches can be configured in a tree rooted at the 
source of the broadcast and the message needs to traverse each link only once, instead of once 
for each node that the link separates from the root. Figure 3 shows the number of times a 

                                                 
6 J. Saltzer, D. Reed, and D. Clark: End-to-end arguments in system design. ACM Transactions on Computer 
Systems 2, 277-288 (1984). 
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message from the root would traverse each link if it were sent individually to each node; in a 
broadcast it traverses each link just once. 

Historically, most LANs have done broadcast automatically, in the sense that every message 
reaches every node on the LAN, even if the underlying electrons or photons don’t have this 
property; we will study broadcast networks in more detail later on. Switched LANs are 
increasingly popular, however, because they can dramatically increase the total bandwidth 
without changing the bandwidth of a single link, and they don’t do broadcast automatically. 
Instead, the switches must organize themselves into a spanning tree that can deliver a message 
originating anywhere to every node. 

Broadcast is a special case of ‘multicast’, where messages go to a subset of the nodes. As nodes 
enter and leave a multicast group, the shape of the tree that spans all the nodes may change. Note 
that once the tree is constructed, any node can be the root and send to all the others. There are 
clever algorithms for constructing and maintaining this tree that are fairly widely implemented in 
the Internet.7 

Real time 

Although often ignored, real time plays an important role in distributed systems. It is used in 
three ways: 

To decide when to retry a transmission if there is no response. This often happens when there 
is some kind of failure, for instance a lost Internet IP packet, as part of an end-to-end 
protocol. If the retransmission timeout is wrong, performance will suffer but the system will 
usually still work. When timeouts are used to control congestion, however, making them too 
short can cause the bandwidth to drop to 0. 

                                                 
7 S, Deering et al., An architecture for wide-area multicast routine, ACM SigComm Computer Communication 
Review, 24, 4 (Oct. 1994), pp 126-135. 
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Fig. 3: The cost of doing broadcast with point-to-point communication 
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time-
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To ensure the stability of a load control system based on feedback. This requires knowing the 
round trip time for a control signal to propagate. For instance, if a network provides a ‘stop’ 
signal when it can’t absorb more data, it should have enough buffering to absorb the 
additional data that may be sent while the ‘stop’ signal makes its way back to the sender. If 
the ‘stop’ comes from the receiver then the receiver should have enough buffering to cover a 
sender-receiver-sender round trip. If the assumed round-trip time is too short, data will be 
lost; if it’s too long, bandwidth will suffer.  

 

Sender ReceiveMessages

Round 
trip 

stop

Time 
Buffer 
reserve 

 

To code “bounded waiting” locks, which can be released by another party after a timeout. 
Such locks are called ‘leases’; they work by requiring the holder of the lock to either fail or 
release it before anyone else times out.8. If the lease timeout is too short the system won’t 
work. This means that all the processes must have clocks that run at roughly the same rate. 
Furthermore, to make use of a lease to protect some operation such as a read or write, a 
process needs an upper bound on how the operation can last, so that it can check that it will 
hold the lease until the end of that time. Leases are used in many real systems, for example, 
to control ownership of a dual-ported disk between two processors, and to provide coherent 
file caching in distributed file systems. See handout 18 on consensus for more about leases. 

 

Time

Lock x Touch x

Timeout 

 

Fault tolerance 

Fault tolerance is always based on redundancy. The simplest strategy for fault-tolerance is to get 
the redundancy by replicating fairly large components or actions. Here are three ways to do it: 

                                                 
8 C. Gray and D. Cheriton, Leases: An efficient fault-tolerant mechanism for distributed file cache consistency, 
Proc. 12th Symposium on Operating Systems Principles, Dec. 1989, pp 202-210. 
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1. Duplicate components, detect errors, and ignore bad components (replicate in space). 

2. Detect errors and retry (replicate in time, hoping the error is transient). 

3. Checkpoint, detect errors, crash, reconfigure without the bad components, and  
    restart from the checkpoint (a more general way to replicate in time) 

There is a space-time tradeoff illustrated in the following picture. 

Time 

 

Space 

Triple modular redundancy 

RAID disks 

Checkpointing

Try-fail-retry 

N-version programming 

 

Highly available systems use the first strategy. Others use the second and third, which are 
cheaper as long as errors are not too frequent, since they substitute duplication in time for 
duplication in space (or equipment). The second strategy works very well for communications, 
since there is no permanent state to restore, retry is just resend, and many errors are transient. 
The third strategy is difficult to program correctly without transactions, which are therefore an 
essential ingredient for complex fault tolerant systems. 

Another way to look at the third approach is as failover to an alternate component and retry; this 
requires a failover mechanism, which for communications takes the simple form of changes in 
the routing database. An often-overlooked point is that unless the alternate component is only 
used as a spare, it carries more load after the failure than it did before, and hence the 
performance of the system will decrease.  

In general, fault tolerance requires timeouts, since otherwise you wait indefinitely for a response 
from a faulty component. Timeouts in turn require knowledge of how long things should take, as 
we saw in the previous discussion of real time. When this knowledge is precise, we call the 
system ‘synchronous’; timeouts can be short and failure detection rapid, conditions that are 
usually met at low levels in a system. It’s common to design a snoopy cache, for instance, on the 
assumption that every processor will respond in the same cycle so that the responses can be 
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combined with an ‘or’ gate.9 Higher up there is a need for compatibility with several codes, and 
each lower level with caching adds uncertainty to the timing. It becomes more difficult to set 
timeouts appropriately; often this is the biggest problem in building a fault-tolerant system. 
Perhaps we should specify the real-time performance of systems more carefully, and give up the 
use of caches such as virtual memory that can cause large variations in response time. 

All these methods have been used at every level from processor chips to distributed systems. In 
general, however, below the level of the LAN most systems are synchronous and not very fault-
tolerant: any permanent failure causes a crash and restart. Above that level most systems make 
few assumptions about timing and are designed to keep working in spite of several failures. From 
this difference in requirements follow many differences in design. 

In a system that cannot be completely reset, it is important to have self-stabilization: the system 
can get from an arbitrary state (which it might land in because of a failure) to a good state.10 

In any fault-tolerant system the algorithms must be ‘wait-free’ or ‘non-blocking’, which means 
that the failure of one process (or of certain sets of processes, if the system is supposed to 
tolerate multiple failures) cannot keep the system from making progress.11 Unfortunately, simple 
locking is not wait-free. Locking with leases is wait-free, however. We will study some other 
wait-free algorithms that don’t depend on real time. We said a little about this subject in handout 
14 on practical concurrency.12 

Performance of communication 

Communication has the same basic performance measures as anything else: latency and 
bandwidth. 

• Latency: how long a minimum communication takes. We can measure the latency in bytes by 
multiplying the latency time by the bandwidth; this gives the capacity penalty for each 
separate operation. There are standard methods for minimizing the effects of latency: 

Caching reduces latency when the cache hits. 

Prefetching hides latency by the distance between the prefetch and the use. 

Concurrency tolerates latency by giving something else to do while waiting. 

• Bandwidth: how communication time grows with data size. Usually this is quoted for a two-
party link. The “bisection bandwidth” is the minimum bandwidth across a set of links that 
partition the system if they are removed; it is a lower bound on the possible total rate of 
uniform communication. There are standard methods for minimizing the cost of bandwidth: 

                                                 
9 Hennessey and Patterson, section 8.3, pp 654-676. 
10 G. Varghese and M. Jayaram, The fault span of crash failures, JACM, to appear. Available here. 
11 These terms are not actually synonyms. In a wait-free system every process makes progress. In a non-blocking 
system some process is always making progress, but it’s possible for a process to be starved indefinitely. 
12 M. Herlihy. Wait-free synchronization.  ACM Transactions on Programming Languages and Systems 13, 1 (Jan. 
1991), pp 124-149. 
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Caching saves bandwidth when the cache hits. 

More generally, locality saves bandwidth when cost increases with distance. 

‘Combining networks’ save bandwidth to a hot spot by combining several operations into 
one, several loads or increments for example. 

Code shipping saves bandwidth by sending the code to the data.13 

In addition, there are some other issues that are especially important for communication: 

• Connectivity: how many parties you can talk to. Sometimes this is a function of latency, as in 
the telephone system, which allows you to talk to millions of parties but only one at a time. 

• Predictability: how much latency and bandwidth vary with time. Variation in latency is 
called ‘jitter’; variation in bandwidth is called ‘burstiness’. The biggest difference between 
the computing and telecommunications cultures is that computer communication is basically 
unpredictable, while telecommunications service is traditionally highly predictable. 

• Availability: the probability that an attempt to communicate will succeed.  

Uniformity of performance at an interface is often as important as absolute performance, because 
dealing with non-uniformity complicates programming. Thus performance that depends on 
locality is troublesome, though often rewarding. Performance that depends on congestion is even 
worse, since congestion is usually much more difficult to predict than locality. By contrast, the 
Monarch multiprocessor14 provides uniform, albeit slow, access to a shared memory from 64K 
processors, with a total bandwidth of 256 Gbytes/sec and a very simple programming model. 
Since all the processors make memory references synchronously, it can use a combining network 
to eliminate many hot spots. 

Specs for communication 

Regardless of the type of message being transported, all the communication systems we will 
study implement one of a few specs. All of them are based on the idea of sending and receiving 
messages through a channel. The channel has state that is derived from the messages that have 
been sent. Ideally the state is the sequence of messages that have been sent and not yet delivered, 
but for weaker specs the state is different. In addition, a message may be acknowledged. This is 
interesting if the spec allows messages to be lost, because the sender needs to know whether to 
retransmit. It may also be interesting if the spec does not guarantee prompt delivery and the 
sender needs to know that the message has been delivered. 

None of the specs allows for messages to be corrupted in transit. This is because it’s easy to 
convert a corrupted message into a lost message, by attaching a sufficiently good checksum to 
each message, and discarding any message with an incorrect checksum. It’s important to realize 
that the definition of a ‘sufficiently good’ checksum depends on a model of what kind of errors 
can occur. To take an extreme example, if the errors are caused by a malicious adversary, then 

                                                 
13 Thanks to Dawson Engler for this observation. 
14 R. Rettberg et al.: The Monarch parallel processor hardware design. IEEE Computer 23, 18-30 (1990) 
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the checksum must involve some kind of secret, called a ‘key’; such a checksum is called a 
‘message authentication code’. At the opposite extreme, if only single-bit errors are expected, 
(which is likely to be the case on a fiber optic link where the errors are caused by thermal noise) 
then a 32-bit CRC may be good; it is cheap to compute and it can detect three or fewer single-bit 
errors in a message of less than about 10 KB. In the middle is an unkeyed one-way function like 
MD5.15 

These specs are for messages between a single sender and a single receiver. We allow for lots of 
sender-receiver pairs initially, and then suppress this detail in the interests of simplicity. 

MODULE Channel[ 
M,       % Message 
A ] =    % Address 

TYPE Q = SEQ M % Queue: channel state 
SR = [s: A, r: A] % Sender - Receiver 
K = ENUM[ok, lost] % acK 

... 

END Channel 

Perfect channels 

A perfect channel is just a FIFO queue. This one is unbounded. Note that Get blocks if the queue 
is empty. 

VAR q := (SR -> Q){* -> {}} % all initially empty 

APROC Put(sr, m)   = << q(sr) := q(sr) + {m} >> 
APROC Get(sr) -> M = << VAR m | m = q(sr).head => q(sr) := q(sr).tail; RET m >> 

Henceforth we suppress the sr argument and deal with only one channel, to reduce clutter in the 
specs. 

Reliable channels 

A reliable channel is like a perfect channel, but it can be down, in which case the channel is 
allowed to lose messages. Now it’s interesting to have an acknowledgment. This spec gives the 
simplest kind of acknowledgment, for the last message transmitted. Note that GetAck blocks if 
status is nil; normally this is true iff q is non-empty. Also note that if the channel is down, 
status can become lost even when no message is lost. 

VAR q := {} 
status : (K + Null) := ok 
down := false 

APROC Put(m)        = << q := q + {m}, status := nil >> 

APROC Get() -> M    = << VAR m | m = q.head =>  
q := q.tail; IF q = {} => status := ok [*] SKIP FI; RET m >> 

                                                 
15 B. Schneier, Applied Cryptography, Wiley, 1994, p 329. 
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APROC GetAck() -> K = << VAR k | k = status => status := ok; RET k >> 

APROC Crash()       = down := true 
APROC Recover()     = down := false 

THREAD Lose()       = DO  % internal action 
<< down =>  

IF  VAR q1, q2, m | q = q1 + {m} + q2 =>  
q := q1 + q2; IF q2 = {} => status := lost [*] SKIP FI 

[*] status := lost  
FI >> 

[*] SKIP OD 

Unreliable channels 

An unreliable channel is allowed to lose, duplicate, or reorder messages at any time. This is an 
interesting spec because it makes the minimum assumptions about the channel. Hence anything 
built on this spec can work on the widest variety of channels. The reason that duplication is 
important is that the way to recover from lost packets is to retransmit them, and this can lead to 
duplication unless a lot of care is taken, as we shall see in handout 26. A variation (not given 
here) bounds the number of times a message can be duplicated. 

VAR q := Q{} % as a multiset! 

APROC  Put(m)     = << q := q \/ {m} >> 
APROC  Get() -> M = << VAR m | m IN q => q := q - {m}; RET m >> 

THREAD Lose()     = DO VAR m | << m IN q => q := q -  {m} >> [*] SKIP OD 
THREAD Dup()      = DO VAR m | << m IN q => q := q \/ {m} >> [*] SKIP OD 

An unreliable FIFO channel is a model of a point-to-point wire or of a broadcast LAN without 
bridging or switching. It preserves order and does not duplicate, but can lose messages at any 
time. This channel has Put and Get exactly like the ones from a perfect channel, and a Lose 
much like the unreliable channel’s Lose. 

VAR q := Q{} % all initially empty 

APROC  Put(m)     = << q := q + {m} >> 
APROC  Get() -> M = << VAR m | m = q.head => q := q.tail; RET m >> 

THREAD Lose()     =  
DO << VAR q1, q2, m | q = q1 + {m} + q2 => q := q1 + q2 >> [*] SKIP OD 

These specs can also be written in an ‘early-decision’ style that decides everything about 
duplication and loss in the Put. As usual, the early decision spec is shorter. It takes a prophecy 
variable (handout 8) to show that the code with Lose and Dup implements the early decision spec 
for the unreliable FIFO channel, and for the unordered channel it isn’t true, because the early 
decision spec cannot deliver an unbounded number of copies of m. Prophecy variables can work 
for infinite traces, but there are complicated technical details that are beyond the scope of this 
course. 
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Here is the early decision spec for the unreliable channel: 

VAR q := Q{} % as a multiset! 

APROC  Put(m)     = << VAR i: Nat => q := q \/ {j :IN i.seq | | m} >> 
APROC  Get() -> M = << VAR m | m IN q => q := q - {m}; RET m >> 

and here is the one for the unreliable FIFO channel 

VAR q := Q{} % all initially empty 

APROC  Put(m)     = << q := q + {m} [] SKIP >> 
APROC  Get() -> M = << VAR m | m = q.head => q := q.tail; RET m >> 
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22. Paper on Autonet 

The attached paper by Mike Schroeder and many others on the Autonet local area network is 
included as an example both of a high-performance switched network and of a fault-tolerant 
distributed system. The interplay between the hardware and software aspects of the systems is 
especially worth studying. 
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Autonet: 
A High-Speed, Self-Configuring Local Area Network 

Using Point-to-Point Links 

Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M. Needham, 
Thomas L. Rodeheffer, Edwin H. Satterthwaite, Charles P. Thacker 

April 21, 1990 

 

A slightly different version of this paper appeared in the IEEE Journal on Selected Areas of 
Communications 9, 8, October 1991. 

This version was converted from Acrobat PDF and may have errors. 

A companion paper is Thomas L. Rodeheffer and Michael D. Schroeder, Automatic 
Reconfiguration in Autonet, Proceedings of the 13th ACM Symposium on Operating System 
Principles, 1991, pp 183-187. 

Abstract 

Autonet is a self-configuring local area network composed of switches interconnected by 100 
Mbit/second, full-duplex, point-to-point links. The switches contain 12 ports that are internally 
connected by a full crossbar. Switches use cut-through to achieve a packet forwarding latency as 
low as 2 microseconds per switch. Any switch port can be cabled to any other switch port or to a 
host network controller. 

A processor in each switch monitors the network’s physical configuration. A distributed 
algorithm running on the switch processors computes the routes packets are to follow and fills in 
the packet forwarding table in each switch. This algorithm automatically recalculates the 
forwarding tables to incorporate repaired or new links and switches, and to bypass links and 
switches that have failed or been removed. Host network controllers have alternate ports to the 
network and fail over if the active port stops working. 

With Autonet, distinct paths through the set of network links can carry packets in parallel. Thus, 
in a suitable physical configuration, many pairs of hosts can communicate simultaneously at full 
link bandwidth. The aggregate bandwidth of an Autonet can be increased by adding more links 
and switches. Each switch can handle up to 2 million packets/second. Coaxial links can span 100 
meters and fiber links can span two kilometers. 

A 30-switch network with more than 100 hosts is the service network for Digital’s Systems 
Research Center. 
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1. Introduction 

The Ethernet [10], with 10 Mbit/s host-to-host bandwidth and 10 Mbit/s aggregate bandwidth, 
has done well as the standard local area network (LAN) for high-performance workstations, but 
it is becoming a bottleneck in demanding applications. One modern workstation can use an 
Ethernet’s entire data transfer capacity, and workstations are getting faster and more numerous. 
There is an increasing need for a faster, higher-capacity LAN. 

This need is being addressed commercially by the FDDI [4, 5] token ring LAN. With ten times 
greater host-to-host and aggregate bandwidth, FDDI will provide considerable relief for the 
Ethernet bottleneck. Autonet is an alternative approach to a higher-speed, higher-capacity, 
general-purpose LAN that could replace Ethernet. The fundamental advantage of Autonet over 
FDDI is greater aggregate bandwidth from the same link bandwidth. With FDDI the aggregate 
network bandwidth is limited to the link bandwidth; with Autonet the aggregate bandwidth can 
be many times the link bandwidth. Other advantages of Autonet over FDDI include lower 
latency, a more flexible approach to high availability, and a higher operational limit on the 
number of host that can be attached to a single LAN. Also, Autonet appears to be simpler than 
FDDI. There is no intrinsic reason why an Autonet should cost more than an FDDI ring. 

Any replacement for Ethernet must retain Ethernet’s high availability and largely automatic 
operation, and be capable of efficiently supporting the protocols that work on Ethernet. Low 
latency is important in a new network because distributed computing makes request/response 
protocols such as RPC [9] as important as bulk-data transfer protocols. Because security will 
become increasingly important in the next decade, a new LAN must not hinder encrypted 
communication. Autonet addresses all these requirements. 

The primary goal of the Autonet project was to build an useful local area network, rather than to 
do research into component technologies for computer networks. Except in a few aspects, 
Autonet is designed using ideas that have been tried in other systems in different combinations. 
But bringing together just the right pieces can be a challenge in itself, and can produce a result 
that advances the state of the art. 

Building Autonet required combining expertise in networking, hardware design, computer 
security, system software, distributed systems, proof of algorithms, performance modeling, and 
simulation. While a primary purpose for Autonet was to support for distributed computing, 
Autonet’s implementation uses distributed computing to perform its status monitoring and 
reconfiguration. 

The development goal for Autonet was producing a network that would be put into service use. 
The prospect of service use forced us to develop practical solutions to both the big and the little 
problems encountered in the design process, and generated a strong preference for simplicity in 
the design. In early 1990 an Autonet replaced an Ethernet as the service LAN for our building, 
connecting over 100 computers. Service use is allowing the effectiveness of the design to be 
evaluated and the design to be improved based on operational experience. 

Section 2 of this paper contains a brief description of Autonet, to provide context for the rest of 
the paper. Section 3 describes the major design decisions that define the network. Section 4 
highlights the areas where Autonet appears to break new ground. Section 5 provides a more 

6.826—Principles of Computer Systems   2000 

Handout 22. Paper on Autonet 4 

detailed description of the components of the network. Section 6 describes the operation of these 
components. Finally, section 7 discusses our early experience with Autonet and indicates 
directions for future work. 

2. Overview 

An Autonet, such as the one illustrated in Figure 1, consists of a number of switches and host 
controllers connected by 100 Mbit/s full-duplex links. As shown by the gray arrows, a packet 
generated by a source host travels through one or more switches to reach a destination host. 
Switches contain logic to forward packets from an input port to one or more output ports, as 
directed by the destination address in each packet’s header. A non-blocking crossbar in each 
switch connects the input and output ports. Depending on the topology, the network can handle 
many packets at once. Packets even can flow simultaneously in opposite directions on a link. 

 

host 

controller  switch 
link 

alternate  

 

Figure 1: A portion of an Autonet installation 

Switches can be interconnected in an arbitrary topology, and this topology will change with time 
as new switches and links are added to the network, or as switches and links fail. A processor in 
each switch monitors the state of the network. Whenever the topology changes, all switch 
processors execute a distributed reconfiguration algorithm. This algorithm determines the new 
topology and loads the forwarding tables of each switch to route packets using all operational 
switches and links. In normal operation the switch processor does not participate in the 
forwarding of packets. 
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Switches forward packets using a cut-through technique that minimizes switching latency. There 
is a small amount of buffering associated with each switch input port and a flow control 
mechanism that ensures these buffers do not overflow. Except during reconfiguration, Autonet 
never discards packets. 

Hosts are connected to the Autonet via dual-ported controllers. For best network availability, a 
host is connected to two switches; the controller design allows only one of these connections to 
be used at a time. An Autonet ought to accommodate at least 1000 dual-connected hosts. 
Possible improvements to the reconfiguration algorithm would allow even larger Autonets. 

3. Design decisions 

This section summarizes the major decisions of the Autonet design. 

3.1 Point-to-point links at 100 Mbit/s 

Ethernet uses a broadcast physical medium. Each packet sent on an Ethernet segment is seen by 
all hosts attached to the segment. As described by Tobagi [20], the minimum size of an Ethernet 
packet is determined by the need to detect collisions between packets. Reliable collision 
detection requires that each packet last a minimum time. At high bit rates this time translates into 
unacceptably large minimum packet sizes. Most 100 Mbit/s and faster networks, including 
Autonet, use point-to-point links to get away from these limitations. Using point-to-point links 
also can produce a design that is relatively independent of the specific link technology. As long 
as a link technology has the needed length, bandwidth, and latency characteristics, then it can be 
incorporated into the network with appropriate interface electronics. 

We settled on 100 Mbit/s for the link bandwidth in Autonet because that speed is much faster 
than Ethernet, but still well within the limits of standard signaling technology. We chose the 
AMD TAXI chip set [3] to drive the links, leaving the subtleties of phase-locked loops and data 
encoding on the link to others. The overall Autonet design should scale to ten times faster links. 

We engineered Autonet to tolerate transmission delays sufficient for fiber optic links up to 2 km 
in length. The first link we have implemented uses 75 ohm coaxial cable, with full-duplex 
signaling on a single cable. Electrical considerations limit these coax links to a maximum length 
of 100 m. If both link types were implemented they could be mixed in a single installation: 
coaxial links might be used within a building because of their lower cost; fiber optic links might 
be used between buildings because of their longer length limit. 

3.2 Unconstrained topology with pre-calculated packet routes 

An Autonet is physically built from multi-port switches interconnected by point-to-point links in 
an arbitrary topology (although the network will work better when thought is given to the 
topology). Any switch port can be cabled to any other switch port, or to a port on a host 
controller. A packet is routed from switch to switch to its destination according to pre-calculated 
forwarding tables that are tailored to the current physical configuration. 

A tree-shaped flooding network, like Hubnet [13], has an aggregate network bandwidth that is 
limited to the link bandwidth and has limited ability to configure around broken components. A 
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ring topology like that used in FDDI has similar limitations. In addition, a ring has latency 
proportional to the number of hosts. A reasonably configured Autonet has latency proportional to 
the log of the number of switches. Autonet handles many packets simultaneously along different 
routes, has unconstrained topology, and allows a great deal of flexibility in establishing routes 
that avoid broken components. 

3.3 Automatic operation 

One of the virtues of Ethernet and FDDI is that in normal operation no management is required 
to route packets. Even when multiple networks are interconnected with bridges [14], a 
distributed algorithm executed by the bridges determines a forwarding pattern to interconnect all 
segments without introducing loops. The bridge algorithm also automatically reconfigures the 
forwarding pattern to include new equipment and to avoid broken segments and bridges. 

Autonet also operates automatically. This function is provided by software executing on the 
control processor in each switch that monitors the physical installation. Whenever a switch or 
link fails, is repaired, is added, or is removed, this software triggers a distributed reconfiguration 
algorithm. The algorithm adjusts the packet routes to make use of all operational links and 
switches and to avoid all broken ones. Of course, human network management is still required to 
repair broken equipment and adjust the physical installation to reflect substantially changed 
loads. 

3.4 Crossbar switches 

An Autonet switch has 12 full-duplex ports that are internally interconnected by a crossbar. We 
chose a crossbar because its structure is simple and its performance is easy to understand, 
although a more sophisticated switch fabric could be used if it allowed a single input port to 
connect simultaneously to any set of output ports to support broadcast. 

The small number of ports is a direct result of wanting to get the system into service quickly. All 
the Autonet hardware is built out of off-the-shelf components, and 12 ports was all that could be 
fit into a reasonably sized switch without using custom integrated circuits. The Autonet switch 
design would scale easily to 32 or 64 ports per switch by using higher levels of circuit 
integration. Such larger switches would be more cost-effective for all but the smallest 
installations, because fewer ports would be used for switch-to-switch links. A virtue of our small 
switch is that it generates a higher switch count, which in turn provides a more interesting test for 
the distributed reconfiguration algorithm. 

3.5 Limited buffering with flow control 

Autonet uses a FIFO buffer at each receiving switch port. A start/stop flow control scheme 
signals the transmitter to stop sending more bytes down the link when the receiving FIFO is 
more than half full. Packets are not discarded by the receiving switch in normal operation. With 
our flow control scheme a 1024-byte FIFO is sufficient to absorb the round-trip latency of a 2 
km fiber optic link, although we actually use a 4096-byte FIFO to obtain deadlock-free routing 
for broadcast packets. The FIFO is only big enough to contain a few average-sized packets or 
less than one maximum-sized packet. Flow control is independent of packet boundaries so a 
single packet can be in several switches at once. A consequence of this scheme is that congestion 
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can back up through the network, potentially delaying even packets that will not be routed over 
the congested link. Limited buffering also implies that a switch must be able to start forwarding a 
packet without having the entire packet in the local buffer. In fact, in Autonet such cut-through 
forwarding can begin after only 25 bytes have arrived. 

An alternative buffering scheme would be to provide many packets of buffering at each receiving 
switch port, say using 1 Mbyte of memory, and to provide no flow control at this level. The port 
would have a higher capacity to absorb incoming traffic during periods of congestion, delaying 
the need to respond to the congestion and allowing time for congestion avoidance mechanisms to 
work. Also, longer links could be used because the absence of flow control eliminates the 
maximum link latency constraint. Eventually, though, a port would have to defend itself by 
discarding arriving packets. 

We chose limited buffering with flow control because it uses less memory per switch port, 
making the switches simpler and smaller. In the absence of proven mechanisms for avoiding 
congestion, an additional advantage of our scheme may be that communication protocols will be 
more stable because the flow control scheme responds to link overload by backing up packets 
rather than by throwing them away. 

3.6 Deadlock-free, multipath routing 

Because Autonet uses flow controlled FIFOs for buffering and does not discard packets in 
normal operation, deadlock is possible if packets are routed along arbitrary paths. Deadlocks can 
be dealt with by detecting and breaking them, or by avoiding them. For Autonet we chose the 
latter approach. Detecting deadlocks reliably and quickly is hard, and discarding an individual 
packet to break a deadlock complicates the switch hardware. Our scheme uses deadlock-free 
routes while still allowing packet transmission on all working links. (See section 4.2.) The 
scheme has the property that it allows multiple paths between a particular source and destination, 
and takes advantage of links installed as parallel trunks. 

3.7 Short addresses 

The Autonet reconfiguration algorithm assigns a short address to each switch and host in the 
network. (A few short addresses are reserved for special purposes like broadcast.) Short 
addresses contain only enough bits (11 bits in the prototype) to name all switch ports in a 
maximal-sized Autonet. A forwarding table in each switch, indexed by a packet’s destination 
short address (and incoming port number), allows the switch to quickly pick a suitable link for 
the next step in a route to the packet’s destination. The forwarding table is constructed as part of 
the distributed configuration algorithm that runs whenever the physical installation changes, 
breaks, or is repaired. The short address of a switch or host can change when reconfiguration 
occurs, although it usually does not. 

Autonet’s addressing scheme lies between source routing, as used in Nectar [6] for example, and 
addressing by unique identifier (UID), as used in Ethernet. Of the three schemes, UID addressing 
is the most complex in a network that requires explicit routing, because the network must know a 
route to each UID-identified destination and do one or more UID-keyed lookups to forward a 
packet. Source routing removes from the network the responsibility for determining routes, 
placing it instead with the hosts in smart controllers or in system software. The network must 
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contain mechanisms to report the physical configuration to the hosts and to alter packets as they 
are forwarded. Source routing eliminates the possibility of dynamic choice of alternative routes. 
In comparison, Autonet’s use of short addresses results in relatively simple switch hardware 
without giving up dynamic multipath routing. 

When considering alternative addressing schemes for LANs we must keep in mind that Ethernet 
has established UID addressing as the standard interface for datagrams. What the network 
hardware does not provide, the host software must. So the design question becomes one of 
splitting the work of providing UID addressing between network switches, host controllers, and 
host software. For Autonet, all host controllers and switches have 48-bit UIDs; host software 
implements UID addressing based on Autonet short addresses. (See section 3.11.) 

3.8 Hardware-supported broadcast 

Because Ethernet naturally supports broadcast, high-level protocols have come to depend upon 
low-latency broadcast within a LAN. Autonet switch hardware can transmit a packet on multiple 
output ports simultaneously. This capability is used to implement LAN-wide broadcast with low 
latency by flooding broadcast packets on a spanning tree of links. Since a broadcast packet must 
go everywhere in a network, the aggregate broadcast bandwidth is limited to the link bandwidth. 
As we found out, supporting broadcast complicates the problem of providing deadlock-free 
routing. (See section 6.6.6.) Having low-latency broadcast, however, simplifies the problem of 
mapping destination UIDs to short addresses. 

3.9 Alternate host ports 

In an Autonet, a host is directly connected to an active switch. In an Ethernet-based extended 
LAN, a host is directly connected to a passive cable. An active switch has a greater tendency to 
fail than a passive cable. The specific availability goal for Autonet is that no failure of a single 
network component will disconnect any host. Thus, Autonet allows each host to be connected to 
two different switches. The mechanism we chose for dual connection is to provide two ports on 
an Autonet host controller. The host chooses and uses one of the ports, switching to the alternate 
port after accumulating some evidence that the chosen port is not working. 

Having alternate ports simplifies other areas of the design. For example, without alternate ports 
serious consideration would need to be given to providing “hot swap” for port cards in switches: 
otherwise, turning off a switch to change or add a port card would disable the network for all 
directly connected hosts. With alternate ports on host controllers, hot swap is not necessary: 
turning off a switch simply causes the connected hosts to adopt their alternate ports to the 
network. Port failover usually can be done without disrupting communication protocols. The 
obvious disadvantage of having alternate ports is the increased cost of more host-to-switch links 
and extra switches. For 100 Mbit/s links, however, the cost per link is quite low compared to the 
cost of the host that typically would be connected to such a network. 

3.10 Integrated encryption 

Security in most distributed systems must be based on encrypted communication. We wanted 
encrypted packets to be handled with the same latency and throughput as unencrypted ones -- 
secure communication is more likely to be used if there is no performance penalty. Therefore we 
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have put a pipelined encryption chip in the host controller. This chip can encrypt and decrypt 
packets as they are sent or received with no increase in latency over unencrypted packets. 

3.11 Generic LAN abstraction 

Because of short addresses, Autonet presents a different interface to host software than does 
Ethernet. When faced with the job of integrating Autonet into our operating system, we quickly 
decided that this difference should be hidden at a low level in the host software. The interface 
“LocalNet” makes available to higher-level software multiple generic LANs that carry Ethernet 
datagrams addressed by UID. Machinery inside LocalNet notices whether an Ethernet or an 
Autonet is being used. For packets transmitted over Autonet, LocalNet supplies the Autonet 
packet header complete with destination and source short addresses. LocalNet learns the 
correspondence between UIDs and short addresses by inspecting arriving packets. 

4. Innovations 

In a few areas the Autonet design appears to break new ground. We highlight these areas here. 
Later sections describe these features in more detail. 

4.1 Distributed spanning tree algorithm with termination detection 

Deadlock-free routing and the flooding pattern for broadcast packets in Autonet are both based 
on identifying a spanning tree of operational links. The spanning tree is computed using a 
distributed algorithm similar to Perlman’s [16]. That algorithm has the property that all nodes 
will eventually agree on a unique spanning tree, but no node can ever be sure that the 
computation has finished. For Autonet, indefinite termination is unacceptable, because an 
Autonet cannot carry host traffic while reconfiguration is in progress. To do so would invite 
deadlock caused by inconsistent forwarding tables in the various switches. 

To eliminate this problem we extended Perlman’s distributed spanning tree algorithm to notify 
the switch chosen as the root as soon as the tree has been determined. This prompt notice of 
termination allows the Autonet to open for business quickly after a reconfiguration and 
guarantees that all switch forwarding tables describe consistent deadlock-free routes. 

4.2 Up*/down* routing  

Deadlock-free routing in Autonet is based on a loop-free assignment of direction to the 
operational links. The basis of the assignment is the spanning tree described in the previous 
section, with “up” for each link being the end that is “closer” to the spanning tree root. The result 
of this assignment is that the directed links do not form loops. We define a legal route to be one 
that never uses a link in the “up” direction after it has used one in the “down” direction. This 
up*/down* routing guarantees the absence of deadlocks while still allowing all links to be used 
and all hosts to be reached. 

4.3 Dynamic learning of short addresses  

The LocalNet layer of host software, mentioned above, is given UID-addressed packets to 
transmit over the network. If a packet is to be delivered over an Autonet then LocalNet must 
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provide the complete Autonet packet header, including the short addresses of the source and 
destination. 

LocalNet uses a UID-addressed cache for recording the short addresses corresponding to various 
destination UIDs. The information in this UID cache comes from inspecting the source short-
address and source UID in each packet that is received. When the specific short address of a 
destination is not known, a packet is transmitted using the broadcast short address; the 
destination UID in the packet allows the intended target host to accept the packet and all other 
hosts to reject it. The next response from the destination allows LocalNet to learn the correct 
short address. If responses are not forthcoming, LocalNet also can request the short address of 
another host by using Autonet broadcast to contact the LocalNet implementation at that host. 
This scheme allows a host to track the short addresses of various destinations without generating 
many extra packets and without bothering higher layers of software. The learning algorithm 
requires only 15 extra instructions per packet received. 

4.4 Automatic reconfiguration  

The Autonet reconfiguration mechanism is based on each switch monitoring the state of its ports. 
Hardware status indicators report illegal transmission codes, syntax errors, lack of progress, and 
other conditions for each port. As an end-to-end check, the switch control program verifies a 
good port by exchanging packets with the neighboring switch. The appearance or disappearance 
of a responding neighbor on some port will cause a switch to trigger a reconfiguration. 

Building a stable, responsive mechanism for detecting faults and repairs has proved to be subtly 
difficult. The hard problems are determining error fingerprints for each commonly occurring 
fault, and designing hysteresis into the reconfiguration mechanism so that faults are responded to 
quickly but intermittent switches or links are ignored for progressively longer periods. 
Experience with an operational Autonet has allowed us to develop its fault and repair detection 
mechanisms to achieve both responsiveness and stability. 

4.5 First-come, first-considered port scheduler  

Packets arriving at an Autonet switch must in turn be forwarded to one or more output ports. 
(Packets destined for the control processor on the local switch are forwarded to a special internal 
port.) For packets to a single destination host, the switch determines a set of output ports by 
lookup in the forwarding table. Any port in the set can be used to send the packet. For broadcast 
packets the switch determines by lookup in the forwarding table the set of output ports that must 
forward the packet simultaneously. Scheduling the output ports to fulfill both sorts of requests 
must be done carefully to prevent starvation of particular input ports, which in turn could lead to 
performance anomalies including deadlocks. 

An Autonet switch includes a strict first-come, first-considered scheduler that polls the 
availability of output ports and assigns them to the forwarding requests generated by the input 
ports. This scheduler, implemented in a single Xilinx programmable gate array [21], eliminates 
the problem of starvation and is a key element in achieving Autonet’s best-case switch transit 
latency of 2 µs (achieved when the router queue is empty and a suitable output port is available). 
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5. Components 

We begin a more detailed description of the Autonet design with an overview of the hardware 
and software components. 

5.1 Switch hardware  

Figure 2 presents a block diagram of the Autonet switch. The switching element is a 13 by 13 
crossbar constructed from paired 8-to-1 multiplexer chips. Twelve of the crossbar inputs and 
outputs are connected to link units that can terminate external links. The 13th input and output 
are connected via a special link unit to the switch’s control processor, so it can send and receive 
packets on the network. The crossbar provides a 9-bit data path from any input to any free output 
as well as a 1-bit path in the other direction. The former is used to forward packet data and the 
packet end marker; the latter to communicate a flow control signal. The crossbar also can 
connect a single input port to an arbitrary set of output ports. 

The control processor is a Motorola 68000 [15] running on a 12.5 MHz clock. The processor 
uses 1 Mbyte of video RAM as both its main memory and its buffers for sending and receiving 
packets: the processor uses the random access ports to the memory while the crossbar uses the 
serial access ports. A 64-Kbyte ROM is available for booting the control processor at power-up. 
The processor has access to a timer that interrupts every 328 µs for calculating timeouts. Because 
of limited space on the board, however, no CRC or encryption hardware is provided. CRCs for 
packets to/from the control processor are checked/generated by software. Currently none of the 
packets sent or received by the control processor are encrypted. The control processor also has 
access to a ROM containing the switch’s 48-bit UID, and to red and green LEDs on the switch 
front panel. 

A link unit implements one switch port. It terminates both channels of a full-duplex coaxial link, 
receiving from one channel and transmitting to the other. The receive path uses the AMD TAXI 
receiver to convert from the 100 Mbit/s serial data stream on the link to a 9-bit parallel format. 
The 9th bit distinguishes the 256 data byte values from 16 command values used for packet 
framing and flow control. The arriving data bytes (and packet end marks) are buffered in a 4096 
by 9 bit FIFO. Logic at the output of the FIFO captures the address bytes from the beginning of 
an arriving packet and presents them to the switch’s router. Once the router has set up the 
crossbar to forward the packet, the link unit removes the packet bytes from the FIFO and 
presents them to the crossbar input. The flow control signal from the crossbar enables and 
disables the forwarding of packet bytes through the crossbar. As soon as a packet end command 
is removed from the FIFO and forwarded, the output port or ports become available for 
subsequent packets. 

The transmit path in the link unit accepts parallel data from the crossbar and presents it to the 
AMD TAXI transmitter, which converts it to 100 Mbit/s serial form and sends it down the link. 
The receive and transmit portions of a single link unit are tied together so that the flow control 
state derived from the receiving FIFO can be transmitted back over the transmit channel on the 
same link. (See section 6.2.) A link unit does not include CRC hardware; an Autonet switch does 
not check or generate CRCs on forwarded packets. 
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Figure 2: Structure of an Autonet switch 

A link unit maintains a set of status bits that can be polled by the control processor. These status 
bits are a primary source of information for the algorithms that monitor the condition of the ports 
on a switch to decide when a network reconfiguration should occur. The control processor also 
has some control over the operation of an individual link unit. Via a control register each link 
unit can be instructed to illuminate LEDs on its front panel, to send special-purpose flow control 
directives, and to ignore received flow control. 

The router contains 64 Kbytes of memory for the forwarding table and a routing engine that 
schedules the use of switch output ports. The forwarding tables are loaded by the control 
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processor as part of a network reconfiguration. The routing engine is implemented in a single 
Xilinx 3090 programmable gate array. 

Most of the switch runs on a single 80 ns clock. Link units can forward one byte of packet data 
into the crossbar on each clock cycle. The router can make a forwarding decision and set up a 
crossbar connection every 6 clock cycles, so the packet forwarding rate is about 2 million 
packets per second. The latency from receiving the first bit of a packet on an input link to 
forwarding the first bit on an output link is 26 to 32 clock cycles if the output link and router are 
not busy. 

The Autonet switch is packaged on 5 card types in a 45 x 18 x 30 cm Eurocard enclosure. A 
completely populated switch contains 12 link units, 5 2-bit crossbar slices, 1 control processor, 
and 1 router, all implemented on 10 x 16 cm cards. The backplane, into which all other card 
types plug at right angles, is a 43 x 13 cm board. A switch draws about 160 w of power. 

5.2 Controller hardware 

The first host controller for Autonet, shown in Figure 3, attaches to the Digital Equipment 
Corporation Q-bus [11] that is used in our Firefly [19] multiprocessor computers. In general, we 
believe that a network controller should be both simple and fast, and play no role in the correct 
operation of the network fabric. Operating  at the full 100 Mbit/s network  bandwidth with low 
latency requires a completely pipelined structure and packet cut-through for transmit and receive. 
Simplicity requires no higher-level protocol processing in the controller. In the case of this first 
controller, however, the 14 Mbit/s bandwidth of the Firefly Q-bus allows use of a shared data bus 
within the controller and elimination of cut-through with little impact on controller latency or 
throughput. 

The network ports are each implemented in a small cabinet kit designed to be mounted in the 
Firefly chassis. The cabinet kit includes the TAXI transmitter and receiver, and the circuit for 
driving the link. A signal on the ribbon cable to the controller card selects which cabinet kit is in 
use. Selection of which port to use is done by the host software. 

The controller itself fills a 10.5 x 8.5 inch quad Q-bus card. The receive path is pipelined up to 
the point where arriving packets are stored in a 128-Kbyte receive buffer. The transmit path is 
pipelined outward from a 128-Kbyte transmit buffer. CRC checking and generation are done 
with a Xilinx 3020 [21]. Encryption is handled by an AMD 8068 encryption chip [2]. The 
connections between the transmit buffer, receive buffer, CRC chip, encryption chip, and Q-bus 
are via a 16-bit internal bus. The controller board includes a ROM containing a 48-bit UID that 
can be used as the host’s UID address. 

The controller’s operation is under the direction of a microprogram executing on an AMD 29116 
microprocessor [1]. The microcode initially comes from a 12-Kbyte boot ROM, but microcode 
can subsequently be downloaded from the host over the Q-bus. Microcode downloading has 
allowed us to experiment easily with the controller-to-host interface. This controller is able to 
use the full Q-bus bandwidth to send and receive packets. Encrypted packets can be sent and 
received with no performance penalty.  
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Figure 3: Structure of the Q-bus Autonet controller 

5.3 Link hardware 

The first links implemented for Autonet use 75 ohm coaxial cable. A hybrid circuit allows both 
channels of a full-duplex link to be carried on a single cable. This implementation has the 
consequence that signals transmitted on an Autonet port can be reflected and correctly received 
at the same port. Reflection occurs when no cable is attached, when an unterminated cable is 
attached, and when the attached cable terminates at an unpowered remote port. Thus, a host or 
switch must be prepared to receive its own packets. 

The circuit driving the links includes a high-pass filter that prevents frequencies below about 10 
MHz from being transmitted. This filter is needed because the data encoding scheme used by the 
TAXIs allows signals with low frequency components to be generated by sending certain legal 
sequences of bytes and commands. Without the filter, low frequency transitions can prevent the 
receiver from recovering the data correctly. 
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The service network in our building uses Belden 82108 low-loss cable and standard cable 
television “F” connectors. We accept cabinet kits and link unit cards for service if a packet-
echoing protocol can send and receive 40,000 packets of 1,500 bytes each over a 100-meter link 
between the test host and test switch without a CRC error. 

5.4 Switch control program 

Autopilot, the software that executes on the control processor of each switch, is responsible for 
implementing Autonet’s automatic operation. Its major functions are propagating and rebooting 
new versions of itself, responding to monitoring and debugging packets, monitoring the physical 
network, answering short-address request packets from attached hosts, triggering 
reconfigurations when the physical network changes, and executing the distributed 
reconfiguration algorithm. 

The Autopilot source code consists of about 20,000 lines written in C and 3500 lines written in 
assembler. This generates a 62,000-byte object program. A stable version of Autopilot is 
included in the switch boot ROMs and is automatically loaded when power is turned on or the 
switch is reset. Whenever a new version is ready for use, it is down loaded from the 
programming environment (a Firefly workstation) over the Autonet itself into the nearest switch. 
The version of Autopilot running there accepts the new version, boots it, and then propagates it 
to neighboring switches. 

The structure of Autopilot is typical of small, real-time, control programs. Interrupt routines 
enqueue and dequeue buffers for packets sent and received by the control processor. Everything 
else runs at process level as tasks under the control of a non-preemptive scheduler. Tasks are 
structured as procedure calls that run to completion within a few milliseconds. The task 
scheduler manages a timer queue for tasks that need to be run after a timeout has expired. 
Current timeout resolution is 1.2 milliseconds. The major algorithms in Autopilot are described 
in later sections. 

5.5 The SRC service LAN 

The service Autonet for SRC contains 30 switches. The current topology uses four of the twelve 
ports on each switch for links to other switches and eight ports for links to hosts. With each host 
connected to two switches, this configuration has the capacity to attach 120 hosts. The Autonet is 
connected to the Ethernet in the building via a bridge. Thus the Autonet and Ethernet behave as a 
single extended LAN. 

The hosts on Autonet are Firefly workstations and servers. A Firefly contains 4 CVax processors 
providing about 3 MIPS each and can have up to 128 Mbytes of memory. Typical workstations 
have 32 or 64 Mbytes of memory. All processors see the same memory via consistent caches. At 
least until the Autonet proves itself to be stable and reliable, and the more disruptive experiments 
stop, most Fireflies are connected to both the Autonet and the Ethernet. The choice of which 
network to use can be changed while the system is running. Switching from one network to the 
other can be done in the middle of an RPC call or an IP connection without disrupting higher-
level software. 
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to controllerto controller  

Figure 4: Structure of low-level LAN software for the Firefly 

5.6 Host software 

The Firefly host software for Autonet includes a driver for the controller, the LocalNet generic 
LAN with UID cache, and the Autonet-to-Ethernet bridging software. This software is written in 
Modula 2+ [18] and executes in VAX kernel mode. The Firefly scheduler provides multiple 
threads [7, 8] per address space (including the kernel), and the Autonet host software is written 
as concurrent programs that execute simultaneously on multiple processors. 

Figure 4 illustrates the structure of the low-level LAN software for the Firefly. The LocalNet 
interface presents a set of generic, UID-addressed LANs that carry Ethernet datagrams. The 
GetInfo procedure allows clients to discover which generic nets correspond to physical 
networks. The SetState procedure allows clients to enable and disable these networks. An 
Ethernet datagram can be sent via a specific network with the Send procedure. The Receive 
procedure blocks the calling thread until a packet arrives from some network. The result of 
Receive indicates on which network the packet arrived. Usually many threads are blocked in 
Receive. Finally, the StartForwarding procedure causes the host to begin acting as a bridge 
between two networks. 

For transmission on Autonet, the LocalNet UID cache provides the short address of a packet’s 
destination. This cache is kept up-to-date by observing the source UID and source short-address 
of all packets that arrive on the Autonet, and by occasionally requesting a short address from 
another LocalNet implementation using Autonet broadcast. (See section 6.8.1.) When a host is 
acting as an Autonet-to-Ethernet bridge, LocalNet observes the packets arriving on Ethernet as 
well, using the UID cache to record which hosts are reachable via the Ethernet. Thus, by looking 
up the destination UID of each packet that arrives on either network, LocalNet can determine 
whether the packet needs to be forwarded on the other network. (See section 6.8.2.) 

6. Functions and algorithms 

We now consider in more detail the major functions and algorithms of Autonet. 
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6.1 Link syntax 

The TAXI transmitter and receiver are able to communicate 16 command values that are distinct 
from the 256 data byte values. We use these commands to communicate flow control directives 
and packet framing. When a TAXI transmitter has no other data or command values to send, it 
automatically sends a sync command to maintain synchronization between the transmitter and 
receiver. Thus, one can think of the serial channel between a TAXI transmitter and receiver as 
carrying a continuous sequence of slots that can either be filled with data bytes or commands, or 
be empty. 

In Autonet, flow control prevents a sender from overflowing the FIFO in the receiving switch. 
Autonet communicates flow control information by time multiplexing the slots on a channel. 
Every 256th slot is a flow control slot. The remaining slots are data slots. Normally start or 
stop directives occupy each flow control slot, independent of what is being communicated in the 
data slots. To make it easy for a switch to tell whether a link comes from another switch or from 
a host, host controllers send a host directive instead of start. Because flow control directives 
are assigned unique command values, they can be recognized even when they appear 
unexpectedly in a data slot. Thus, the flow control system is self-synchronizing. Flow control is 
discussed in more detail in the next section. 

Two special-purpose flow control directives, idhy and panic, may also be sent. Idhy, which 
stands for “I don’t hear you”, is sent on a switch-to-switch link when one switch determines that 
the link is defective, to make sure the other switch declares the link to be defective as well. 
Panic is intended to be sent to force the other switch to reset its link unit, clearing the receive 
FIFO and reinitializing the link control hardware so reconfiguration packets can get through. We 
have not yet implemented the panic facilities. 

The data slots carry packets. A packet is framed with the commands begin and end. Data slots 
within packets are filled with sync commands when flow control stops packet data from being 
transmitted. Transmitters are required to keep up with the demand for data bytes, so neither 
controllers nor switches may send sync commands within packets when flow is allowed. Thus, a 
link is never wasted by idling unnecessarily within a packet, and a link unit can assume that in 
normal operation packet bytes are available to retrieve from the FIFO. Between packets all data 
slots are filled with sync commands. 

6.2 Flow control 

Figure 5 illustrates the Autonet flow control mechanism. The figure contains pieces of two 
switches and a link between them. The names “channel 1” and “channel 2” refer to the two 
unidirectional channels on the link. In the receiving link unit of channel 1, a status signal from 
the FIFO chip indicates whether the FIFO is more or less than half full. This information 
determines the flow control directives being sent on channel 2, the reverse channel of the same 
link. When a flow control slot occurs, a start command is sent if the receiving FIFO is less than 
half full; stop is sent if it is more than half full. Back at the receiving link unit of channel 2, the 
flow control directives generate a flow control signal for the crossbar. If the output port is 
forwarding a packet, then the flow control signal uses the 1-bit reverse path through the crossbar 
to open and close the throttle on the FIFO that is the source of the packet. 
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An important special case is a port that is receiving no flow control commands. Because the host 
controller transmits only sync commands on its alternate link, receiving no flow control usually 
means that the other end of the link is connected to an alternate host port. Receiving no flow 
control commands should cause a link control unit to act as though host (or start if that 
directive has been received more recently than host) is being received, thus allowing packets to 
be forwarded on such a link, effectively discarding them. Due to an oversight in the design, 
however, link units that are receiving no flow control keep acting on the last flow control 
directive received. The last directive could have been stop; it is unpredictable following switch 
power up. Switch software detects and clears the backups that can result from such indefinite 
cessation of flow. 

This flow control scheme can cause congestion to back up across several links. Consider a 
sequence of switches ABCD along the path of some packet. If the receiving FIFO in C issues 
stop, say because the CD link is not available at the moment, then the FIFO in B will stop 
emptying. Packet bytes arriving from A will start accumulating in B’s FIFO and eventually B 
will have to issue stop to A. Thus congestion can back up through the network until the source 
controller is issued a stop. If the congestion persists long enough, then the network software on 
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the host would stop sending packets; threads making calls to transmit packets would delay 
returning until more packets could be sent. 

Autonet host controllers may not send stop commands. Thus, a slow or overloaded host cannot 
cause congestion to back up into the network. A slow host should have enough buffering in its 
controller to cover the bursts of packets that will be generated by the communication protocols 
being used. A controller will discard received packets when its buffers fill up. 

We can now understand the relationship between FIFO length, the frequency of flow control 
slots, and link latency. Assume that the FIFO holds N bytes and that it issues stop whenever the 
FIFO contains more than (1 - f) N bytes, where 0 < f ≤ 1. A flow control command is sent every S 
slots. Assume that the link latency is W slot transmission times. In the worst case the receiving 
FIFO is not being emptied and the transmitter sends bytes continuously unless stopped. At the 
time the receiver causes a stop command to be sent, its FIFO may contain as many as (1 - f) N + 
(S - 1) bytes. Another 2 W bytes will arrive at the FIFO before the stop is effective, assuming 
the transmitter acts on the received stop with no delay. To prevent the FIFO from overflowing 
then, it must be that: 

 N  ≥  (1 - f) N + (S - 1) + 2 W  

From the speed of light, the velocity factor of fiber optic cable (which is a bit slower than coaxial 
cable), and a slot transmission time of 80 ns we can compute that W = 64.1 L, where L is the 
cable length in kilometers. Thus: 

 N  ≥  (S - 1 + 128.2 L) / f 

For S = 256 slots, f = 0.5, and L = 2 km, we see that N must be 1024 bytes. 

With these choices of S, f, and L, Autonet actually uses 4096-byte FIFOs. The larger FIFO is 
used to solve a deadlock problem that is associated with broadcast packets, as explained in 
section 6.6.6. The solution to the problem is to have a transmitter of a broadcast packet ignore 
stop commands until the end of the broadcast packet is reached, and make the receiver FIFO big 
enough to hold any complete broadcast packet whose transmission began under a start 
command. Thus, for broadcast packets flow control acts only between packets. For this case, we 
can calculate the maximum allowable broadcast packet length as the FIFO size minus the worst 
case count of bytes already in the FIFO when the first byte of the broadcast packet arrives. Thus: 

 B  ≤  N - (1 - f) N - (S - 1) - 128.2 L  

So, taking B into account, the size needed for the FIFO becomes: 

 N  ≥  (B + S - 1 + 128.2 L) / f 

The minimum acceptable value for B is about 1550 bytes. This size allows Autonet to broadcast 
the maximum-sized Ethernet packet with an Autonet header prepended. The corresponding N is 
about 4096 bytes. This increase in FIFO size is one of the costs of supporting low-latency 
broadcast in Autonet. 
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6.3 Address interpretation 

As indicated earlier, Autonet packets contain short addresses. In our implementation a short 
address is 11 bits, although increasing it to 16 bits would be a straightforward design change. 
The short address is contained in the first two bytes of a packet. 

As shown in Figure 6, address interpretation starts as soon as the two address bytes have arrived 
at the head of the FIFO in a link unit. The short address is concatenated with the receiving port 
number and the result used to index the switch’s forwarding table. Each 2-byte forwarding table 
entry contains a 13-bit port vector and a 1-bit broadcast flag. The bits of the port vector 
correspond to the switch’s ports, with port 0 being the port to the control processor. When the 
broadcast flag is 0, the port vector indicates the set of alternative ports that could forward the 
packet. The switch will choose the first port that is free from this set. If several of the ports are 
free then the switch chooses the one with the lowest number. When the broadcast flag is 1, the 
port vector indicates the set of ports that must forward the packet simultaneously. Forwarding 
will not begin until all these ports are available. A broadcast entry with all 0’s for the port vector 
tells the switch to discard the packet. 

 

Link vector  

B = and/or 

Incoming link # 

Forwarding table 

02134 . . .  

Address bytes 

Arriving packet 

FIFO 

 

Figure 6: Interpretation of switch forwarding table 

Because address interpretation in a switch requires just a lookup in an indexed table, it can be 
done quickly by simple hardware. Specification of alternative ports allows a simple form of 
dynamic multipath routing to a destination. For example, multiple links that interconnect a pair 
of switches can function as a trunk group. Including the receiving port number in the forwarding 
table index has several benefits; it provides a way to differentiate the two phases of flooding a 
broadcast packet (see section 6.6.6); it allows one-hop switch-to-switch packets to be addressed 
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with the outbound port number; it provides a way to prevent packets with corrupted short 
addresses from taking routes that would generate deadlocks. 

The mechanism for interpreting short addresses allows considerable latitude in the way short 
addresses are used. We have adopted the following assignments: 
 

Short address Packet destination 
 

 0000 From a host; the control processor of the switch attached to the active host 
port 

 0001 - 000F From a switch; the switch or host attached to the addressed switch port 
 0010 - FFEF Particular host or switch (packet discarded if address not in use) 
 FFF0 - FFFB Packet discarded (reserved address values) 
 FFFC From a host; loopback from switch attached to the active host port 
 FFFD Every switch and every host 
 FFFE Every switch 
 FFFF Every host 

 

Here each short address is expressed as 4 hexadecimal digits, but prototype switches interpret 
only the low order 11 bits of these values. 

As part of the distributed reconfiguration algorithm performed by the switches, each useable port 
of each working switch in a physical installation is assigned one of the short addresses in the 
range “0010” through “FFEF”. The assignment is made by partitioning a short address into a 
switch number and a port number, and assigning the switch numbers as part of reconfiguration. 
The forwarding tables are filled in to direct a packet (from any source) containing one of these 
destination short addresses to the switch control processor or host attached to the identified port. 
If the address is not in use, then the forwarding tables will at some point cause the packet to be 
discarded. The forwarding tables also discard packets that arrive at a switch port that is not on 
any legal route to the addressed destination; such misrouted packets may occur if bits in the 
destination short address are corrupted during transmission. 

A host on the Autonet discovers its own short address by sending a packet to address “0000”. 
This address directs the packet to the control processor of the local switch. The processor is told 
the port on which the packet arrived and knows its own switch number. Thus it can reply with a 
packet containing the host’s short address. 

The forwarding tables in every switch will reflect a packet addressed to “FFFC” back down the 
reverse channel of the link on which it was received. Thus, packets sent by a host to this address 
will be looped back to that host. This feature is used by a host to test its links to the network. 

A packet addressed to “FFFF” from a host or switch will be delivered to all host ports in the 
network. (Section 6.6.6 describes the flooding pattern used.) The addresses “FFFD” and “FFFE” 
work in a similar way. 

Finally, the addresses “0001” through “000F” are reserved for one-hop packets between 
switches. Each switch forwarding table directs a packet so addressed to be transmitted on the 
numbered local port if the packet is from port 0 (the control processor port); it directs 
transmission to port 0 if the packet is from any other port. 
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6.4 Scheduling switch ports 

Once the appropriate entry has been read from a switch’s forwarding table, the next step in 
delivering a packet is scheduling a suitable transmission port. Scheduling needs to be done in a 
way that avoids long-term starvation of a particular request. The availability of the Xilinx 
programmable gate array allowed this problem to be solved by the simple strategy of 
implementing a strict first-come, first-considered scheduler. 

Figure 7 illustrates the scheduling engine that contains a queue of forwarding requests. The 
queue slots are the columns in the figure. Only 13 slots are required because with head-of-line 
blocking, each port can request scheduling for at most one packet at a time; only the packet at the 
head of the FIFO is considered. Each queue slot can remember the result of a forwarding table 
lookup along with the number of the receive port that is requesting service. 

When a request arrives at the scheduling engine, the request shifts to the right-most queue slot 
that is free. Periodically a vector representing the free transmit ports enters the scheduling engine 
from the right. This vector is matched with occupied queue slots proceeding from right to left, in 
the arrival order of the requests. Each forwarding request in turn has the opportunity to capture 
useful free ports. 

If a request is for alternative ports (broadcast = 0), then it will capture any free transmit port that 
matches with the requested port vector. If multiple matches occur, then the free port with the 
lowest number port is chosen. For alternative ports, a single match allows the satisfied request to 
be removed from the queue and newer requests to be moved to the right. The satisfied request is 
output from the scheduling engine and is used to set up the crossbar, allowing packet 
transmission to begin. 
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Figure 7: Scheduling engine for switch output ports 
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If a request is for simultaneous ports (broadcast = 1), then it will accumulate all free transmit ports 
that match the requested port vector. In the case that some requested ports still remain unmatched 
the vector of free ports proceeds on to newer requests, minus the ports previously captured. If the 
matches complete the needed transmit port set, then the satisfied broadcast request is removed 
from the queue, as above. The crossbar is set up to forward from the receive port to all requested 
transmit ports, and packet transmission is started. 

The scheduling engine can accept and schedule one request every 480 ns and thus is able to 
process up to 2 million requests per second. 

Notice that the scheduling engine allows requests to be serviced out-of-order when useful free 
ports are not suitable for older requests. Queue jumping allows some requests to be scheduled 
faster than they would be with a first-come, first-served discipline. Also notice that a broadcast 
request will effectively get higher and higher priority until it is at the head of the queue. Once 
there, the request has first choice on free transmit ports; each time a needed port becomes free, 
the broadcast request reserves it. Thus, the broadcast request is guaranteed to be scheduled 
eventually, independent of the requests being presented by the other receive ports. 

6.5 Port state monitoring 

Our goal of automatic operation requires that the network itself keep track of the set of links and 
switches that are plugged together and working, and determine how to route packets using the 
available equipment. Further, the network should notice when the set of links and switches 
changes, and adjust the routing accordingly. Changes might mean that equipment has been added 
or removed by the maintenance staff. Most often changes will mean that some link or switch has 
failed. 

Autopilot, the switch control program, monitors the physical condition of the network. The 
Autopilot instance on each switch keeps watch on the state of each external port. By periodically 
inspecting status indicators in the hardware, and by exchanging packets with neighboring 
switches, Autopilot classifies the health and use of each port. When it detects certain changes in 
the state of a port, it triggers the distributed reconfiguration algorithm to compute new 
forwarding tables for all switches. 

The mechanism for monitoring port states has several layers. The lowest layer is hardware in 
each link unit that reports hardware status to the control processor of the switch. The next layer is 
a status sampler implemented in software that evaluates the hardware status of all ports. The 
third layer is a connectivity monitor, also implemented in software, that uses packet exchange to 
determine the health and identity of neighboring switches. Stabilizing hysteresis is provided by 
two skeptic algorithms. We now explain these mechanisms in more detail. 

6.5.1 Port states 

The port state monitoring mechanism dynamically classifies each port on an Autonet switch into 
one of following six states: 
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Port state Definition 
 

s.dead  The port does not work well enough to use. 
s.checking The port is being monitored to determine if it is attached to a host or to a 

switch. 
s.host  The port is attached to a host. 
s.switch.who The port is being probed to determine the identity of the attached switch. 
s.switch.loop The port is attached to another port on the same switch, or is reflecting 

signals. 
s.switch.good The port is attached to a responsive neighbor switch. 

 

Figure 8 illustrates these port states and shows the actions associated with the state transitions. 
As will be explained in more detail in the next two sections, the state transitions shown as black 
arrows are the responsibility of the status sampler; those shown as gray arrows are the 
responsibility of the connectivity monitor. The actions triggered by a transition are indicated by 
the attached action descriptions. 
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Figure 8: Switch port states and transitions 
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6.5.2 Hardware port status indicators 

Each link unit reports status bits that help Autopilot note changes in the state of the port. These 
status bits can be read by the control processor of the switch. Some status bits indicate the 
current condition of a port: 
 

Status bit Current port condition represented 
 

IsHost  last flow control received on link indicates a host is attached 
XmitOK last flow control received on link allows transmission 
InPacket transmitter is in the middle of a packet 

 

Other status bits indicate that one or more occurrences of a condition have occurred since the bit 
was last read by the control processor: 
 

Status bit Accumulated port condition represented 
 

BadCode TAXI receiver reported violation 
BadSyntax out-of-place flow control directive, unused command value received, 

improper packet framing 
Overflow FIFO overflow occurred 
Underflow FIFO underflow occurred inside a packet 
IdhySeen idhy flow control directive received 
PanicSeen panic flow control directive received 
ProgressSeen FIFO forwarded some bytes or has seen no packets 
StartSeen start or host flow control directive received 

 

There is considerable design latitude in choosing exactly which conditions to report in hardware 
status bits. As we will see below, all switch-to-switch links are verified periodically by packet 
exchange. The hardware status bits provide a more prompt hint that something might have 
changed. If most changes of interest reflect themselves in the hardware status bits, however, then 
port status changes will be noticed more quickly; Autopilot can use the hardware status change 
to trigger an immediate verification by packet exchange. 

6.5.3 Status sampler 

The next layer of port state monitoring is the status sampler. This code, which runs continuously, 
periodically reads the link unit status bits. A counter corresponding to each status bit from each 
port is incremented for each sampling interval in which the bit was found to be set. The status 
sampler also counts CRC errors on packets received by the local control processor (such as the 
connectivity test or reply packets described in the next section), even though CRC errors are 
actually detected by software. Based on the status counts accumulated over certain periods, each 
port is dynamically classified into one of the four states s.dead, s.checking, s.host, and 
s.switch.who. 

When a switch boots, all ports are initially classified as s.dead. This state represents ports that 
are to be evaluated, but not used. While classified as s.dead, a switch port is forced to send idhy 
in place of normal flow control to guarantee that the remote port will be classified by the 
neighboring switch as no better than s.checking. Receiving idhy is not counted as an error when 
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a port is classified as s.dead. When a port has exhibited no bad status for the appropriate period, 
it moves from s.dead to s.checking. The length of the error-free period required is determined by 
the status skeptic described in section 6.5.5. A port is directed to send normal flow control when 
it enters s.checking. A port that has no bad status counts except for receiving idhy stays 
classified as s.checking. 

Once a port is in s.checking, the status sampler waits for idhy flow control to cease, and then 
tries to determine whether the port is cabled to a switch or to a host. The IsHost bit is used to 
distinguish the cases. Reflecting ports, and ports cabled to another port on the same switch, will 
be classified as s.switch.who, because such ports receive the start flow control directives sent 
from the local switch, causing IsHost to be FALSE. Alternate host ports will send continuous sync 
commands, but no flow control directives. This pattern generates BadSyntax and makes the IsHost 
bit useless, so a port showing constant BadSyntax status, but no other errors, is classified as s.host. 

When a port’s state is changed to s.host, the local forwarding table is updated to permit 
communication over the port. The port’s entries in the forwarding table are set to forward all 
suitably addressed packets to the port and to allow packets received from the port to be 
forwarded to any destination in the network. Because both active and alternate host ports are 
classified as s.host, switching to the alternate by a host will cause no forwarding table changes, 
assuming that the alternate port does not then start producing bad status counts. 

When a port is changed from s.checking to s.switch.who, the forwarding table is set to allow the 
control processor to exchange one-hop packets with the possible neighboring switch. This 
forwarding table change allows the connectivity monitor to probe the neighboring switch in 
order to distinguish between the states s.switch.who, s.switch.loop, and s.switch.good. 

A port moves back to s.dead from other states if certain limits are exceeded on the bad status 
counts accumulated over a time period. As indicated in Figure 8, transitions back to s.dead will 
cause the local forwarding table to be changed to stop packet communication through the port. 

A side effect of status sampler operation is the removal of long-term blockages to packet flow. 
By reading the StartSeen bit, the status sampler counts intervals during which only stop flow 
control directives are received at each port. When such intervals occur too frequently, the port is 
classified as s.dead. The associated changes to the forwarding table cause all packets addressed 
to the port to be discarded, preventing the port from causing congestion to back up into the 
network. The ProgressSeen status bit allows the status sampler to count intervals during which a 
packet has been available in a FIFO to be forwarded, but made no progress. From this count the 
status sampler can classify a port as s.dead and remove it from service when it is stuck due to 
local hardware failure. 

6.5.4 Connectivity monitor 

A transition from s.checking to s.switch.who means that the status sampler approves the port for 
switch-to-switch communication. A port thus approved is always being scrutinized by the top 
layer of port state monitoring, the connectivity monitor. The state s.switch.who means that 
Autopilot does not know the identity of the connected switch. 

The connectivity monitor tries to determine the UID and remote port number for the connected 
switch. The connectivity monitor periodically transmits a connectivity test packet on the port and 
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watches for a proper reply. As long as no proper reply is received, the port remains classified as 
s.switch.who. Thus, a non-responsive remote switch will cause the port to remain in this state 
indefinitely. To be accepted, a reply must match the sequence information in the test packet and 
echo the UID and port number of the test packet originator. The connectivity monitor looks at 
the source UID of an accepted reply packet to distinguish a looped or reflecting link from a link 
to a different switch. In the former case, the connectivity monitor relegates the port to 
s.switch.loop; such ports are of no use in the active configuration. In the latter case, the 
connectivity monitor sets the state to s.switch.good and initiates a reconfiguration of the entire 
network. The reconfiguration causes all switches to compute new forwarding tables that take into 
account the existence of the new switch-to-switch link (and possibly a new switch). 

The connectivity monitor continuously probes all ports in the three s.switch states. At any time it 
may cause the transitions to and from s.switch.who shown by gray arrows in Figure 8. In the case 
of a transition from s.switch.good to s.switch.who, a network-wide reconfiguration is initiated to 
remove the link from the active configuration. Note from Figure 8 also that a network-wide 
reconfiguration is initiated when the status sampler, described in the previous section, removes 
its approval of a port in s.switch.good by reclassifying it as s.dead. 

6.5.5 The skeptics 

Two algorithms in Autopilot prevent links that exhibit intermittent errors from causing 
reconfigurations too frequently. They are the status skeptic and the connectivity skeptic. 

The status skeptic controls the length of the error-free holding period required before a port can 
change from s.dead to s.checking. The length of the holding period for a particular port depends 
on the recent history of transitions to s.dead: transitions to s.dead lengthen the holding period; 
intervals in s.host or any of the s.switch states shorten the next holding period. 

The connectivity skeptic operates in a similar manner to increase the period over which good 
connectivity responses must be received before a port is changed from s.switch.who to 
s.switch.good. This skeptic therefore limits the rate at which an unstable neighboring switch can 
trigger reconfigurations. The sequences of delays introduced by the skeptic algorithms are still 
being adjusted. 

6.6 Reconfiguration and routing 

We are now ready to describe how Autopilot calculates the packet routes for a particular physical 
configuration and how it fills in the forwarding tables in a consistent manner. The goals for 
routing are to make sure all hosts and switches can be reached, to make sure no deadlocks can 
occur, to use all correctly operating links, and to obtain good throughput for the entire network. 
The distributed reconfiguration algorithm achieves these goals by developing a set of loop-free 
routes based on link directions that are determined from a spanning tree of the network. 

Reconfiguration involves all operational network switches in a five step process: 
 

1. Each switch reloads its forwarding table to forward only one-hop, switch-to-switch 
packets and exchanges tree-position packets with its neighbors to determine its position 
in a spanning tree of the topology. 
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2. A description of the available physical topology and the spanning tree accumulates while 
propagating up the tree to the root switch. 

3. The root assigns short addresses to all hosts and switches. 
4. The complete topology, spanning tree, and assignments of short addresses are sent down 

the spanning tree to all switches. 
5. Each switch computes and loads its own forwarding table, based on the information 

received in step 4, and starts accepting host-to-host traffic. 
 

Because host packets will be discarded during the reconfiguration process, it is important that the 
entire process occur quickly, certainly in less that a second. Note that the reconfiguration process 
will configure physically separated partitions as disconnected operational networks. 

As described in the previous section, reconfiguration starts at one or more switches that have 
noticed relevant port state changes. In step 1 these initiating switches clear their forwarding 
tables and send the first tree-position packets to their neighbors. Other switches join the 
reconfiguration process when they receive tree-position packets and they, in turn, send such 
packets to their neighbors. In this way the reconfiguration algorithm starts running on all 
connected switches. 

The reloading of the forwarding tables in step 1 has two purposes. First, it eliminates possible 
interference from host traffic, allowing the reconfiguration to occur more quickly. Second, it 
guarantees that no old forwarding tables will still exist when the new tables are put into service 
at step 6: coexistence could lead to deadlock and packets being routed in loops. 

6.6.1 Spanning tree formation 

The distributed algorithm used to build the spanning tree is based on one described by Perlman 
[16]. Each node maintains its current tree position as four local variables: the root UID, the tree 
level at this switch (0 is the root), the parent UID, and the port number to the parent. Initially, 
each switch assumes it is the root. A switch reports this initial tree position and each new 
position to each neighboring switch by sending tree-position packets, retransmitting them 
periodically until an acknowledgment is received. 

Upon reception of a tree-position packet from a neighbor over some port, a switch decides if it 
would achieve a better tree position by adopting that port as its parent link. The port is a better 
parent link if it leads to a root with a smaller UID than the current position, if it leads to a root 
with the same UID as the current position but via a shorter tree path, if it leads to the same root 
via the same length path but through a parent with a smaller UID, or if it leads to the current 
parent but via a lower port number. 

If each switch sends tree-position packets to all neighbors each time it adopts a new position, 
then eventually all switches will learn their final position in the same spanning tree. 
Unfortunately, no switch will ever be certain that the tree formation process has completed, so 
the switches will not be able to decide when to move on to step 2 of the reconfiguration 
algorithm. To eliminate this problem we extend Perlman’s algorithm. We say that a switch S is 
stable if all neighbors have acknowledged S’s current position and all neighbors that claim S as 
their parent say they are stable. While transitions from unstable to stable and back can occur 
many times at most switches, a transition from unstable to stable will occur exactly once at the 
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switch which is the root of the spanning tree. Thus, when some switch becomes stable while 
believing itself to be the root of the spanning tree, then the spanning tree algorithm has 
terminated and all switches are stable. 

Conceptually, implementing stability just requires augmenting the acknowledgment to a tree-
position packet with a “this is now my parent link” bit. A neighbor acknowledges with this bit set 
TRUE when it determines that its tree position would improve by becoming a child of the sender 
of the tree-position packet. Thus a switch will know which neighbors have decided to become 
children, and can wait for each of them to send a subsequent “I am stable” message. When all 
children are stable then a switch in turn sends an “I am stable” message to its parent. 

Step 2 of the reconfiguration process has the topology and spanning tree description accumulate 
while propagating up the spanning tree to the root switch. This accumulation is implemented by 
expanding the “I am stable” messages into topology reports that include the topology and 
spanning tree of the stable subtree. As stability moves up the forming spanning tree towards the 
root, the topology and spanning tree description grows. When the switch thinking itself to be the 
root receives reports from all its children, then it is certain that spanning tree construction has 
terminated, and it will know the complete topology and spanning tree for the network. A non-
root switch will know that spanning tree formation has terminated when it receives the complete 
topology report that is handed down the new tree from the root in step 4. Each switch can then 
calculate and load its local forwarding table from complete knowledge of the current physical 
topology of the network. The upward and downward topology reports are all sent reliably with 
acknowledgments and periodic retransmissions. 

6.6.2 Epochs 

To prevent multiple, unsynchronized changes of port state from confusing the reconfiguration 
process, Autopilot tags all reconfiguration messages with an epoch number. Each switch contains 
the local epoch number as a 64-bit integer variable, which is initialized to zero when the switch 
is powered on. When a switch initiates a reconfiguration, it increments its local epoch number 
and includes the new value in all packets associated with the reconfiguration. Other switches will 
join the reconfiguration process for any epoch that is greater than the current local epoch, and 
reset the local epoch number variable to match. 

Once a particular epoch starts at each switch, then any change in the set of useable switch-to-
switch links visible from that switch (that is, port state changes in or out of s.switch.good) will 
cause Autopilot to add one to its local epoch and initiate another reconfiguration. Such changes 
can be caused by the status sampler and the connectivity monitor, which continue to operate 
during a reconfiguration. Thus, the reconfiguration algorithm always operates on a fixed set of 
switch-to-switch links during a particular epoch. 

If a switch sees a higher epoch number in a reconfiguration packet while still involved in an 
earlier reconfiguration, it forgets the tree position and other state of the earlier epoch and joins 
the new one. If changes in port state stop occurring for long enough, then the highest numbered 
epoch eventually will be adopted by all switches, and the reconfiguration process for that epoch 
will complete. Completion is guaranteed eventually because the status and connectivity skeptics 
reject ports for increasingly long periods. 
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6.6.3 Assigning short addresses 

Short addresses are derived from switch numbers that are assigned during the reconfiguration 
process. Each switch remembers the number it had during the previous epoch, and proposes it to 
the root in the topology report that moves up the tree. A switch that has just been powered-on 
proposes number 1. The root will assign the proposed number to each switch unless there is a 
conflicting request. In resolving conflicts the root satisfies the switch with the smallest UID and 
then assigns unrequested low numbers to the losers. 

A short address is formed by concatenating a switch number and a port number. (The port 
number occupies the least significant bits.) For a host, then, the short address is determined by 
the switch port where it attaches to the network. A host’s alternate link thus has a distinct short 
address. For a switch’s control processor, the port number 0 is used. Because switches propose to 
reuse their switch numbers from the previous epochs, short addresses tend to remain the same 
from one epoch to the next. 

6.6.4 Computing packet routes 

To complete step 5 of the reconfiguration process, each switch must fill in its local forwarding 
table based on the topology and spanning tree information that is received from the root. Autonet 
computes the packet routes based on a direction imposed by the spanning tree on each link. In 
particular, the “up” end of each link is defined as: 
 

1. The end whose switch is closer to the root in the spanning tree. 
2. The end whose switch has the lower UID, if both ends are at switches with the same tree 

level. 
 

The “up” end of a host-to-switch link is the switch end. Links looped back to the same switch are 
omitted from a configuration. The result of this assignment is that the directed links do not form 
loops. 

To eliminate deadlocks while still allowing all links to be used, we introduce the up*/down* 
rule: a legal route must traverse zero or more links in the “up” direction followed by zero or 
more links in the down direction. Put in the negative, a packet may never traverse a link in the 
“up” direction after having traversed one in the “down” direction. 

Because of the ordering imposed by the spanning tree, packets following the up*/down* rule can 
never deadlock, for no deadlock-producing loops are possible. Because the spanning tree 
includes all switches, and a legal route is up the tree to the root and then down the tree to any 
desired switch, each switch and host can send a packet to every switch or host via a legal route. 
Because the up*/down* rule excludes only looped-back links, all useful links of the physical 
configuration can carry packets. 

While it is possible to fill in the forwarding tables to allow all legal routes, it is not necessary. 
The current version of Autopilot allows only the legal routes with the minimum hop count. 
Allowing longer than minimum length routes, however, may be quite reasonable, because the 
latency added at each switch is so small. When multiple routes lead from a source to a 
destination, then the forwarding table entries for the destination short address in switches at 
branch points of the routes show alternative forwarding ports. The choice of which branch to 
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take for a particular packet depends on which links are free when the packet arrives at that 
switch. Use of multiple routes allows out-of-order packet arrivals. 

Note that the up*/down* rule can be enforced locally at each switch. Recall that Autonet 
forwarding tables are indexed by the incoming port number concatenated with the short address 
of the packet destination. If this short address were corrupted during transmission, then it might 
cause the next switch to forward the packet in violation of the up*/down* rule. To prevent this 
possibility, the forwarding table entries at a switch that correspond to forwarding from a “down” 
link to an “up” link are set to discard packets. 

6.6.5 Performance of reconfiguration 

With the first implementation of Autopilot, reconfiguration took about 5 seconds in our 30-
switch service network. The 30 switches are arranged as an approximate 4 x 8 torus, with a 
maximum switch-to-switch distance of 6 links. The reconfiguration time is measured from the 
moment when the first tree-position packet of the new epoch is sent until the last switch has 
loaded its new forwarding table. This initial implementation was coded to be easy to understand 
and debug. As confidence in its correctness has grown, we have begun to improve the 
performance. The current version reconfigures in about 0.5 seconds. We believe we can achieve 
a reconfiguration time of under 0.2 seconds for this network.1 We do not yet understand fully 
how reconfiguration times vary with network size and topology, but it should be a function of the 
maximum switch-to-switch distance. 

6.6.6 Broadcast routing and broadcast deadlock 

A packet with a broadcast short address is forwarded up the spanning tree to the root switch and 
then flooded down the spanning tree to all destinations. This is a case where the incoming port 
number is a necessary component of the forwarding table index. Here, the incoming port 
differentiates the up phase from the down phase of broadcast routing. With the Autonet flow 
control scheme described earlier, however, broadcast packets can generate deadlocks. 

Figure 9 illustrates the problem. Here we see part of a network including five switches V, W, X, 
Y, Z, and three hosts A, B, and C. The solid links are in the spanning tree and the arrow heads 
indicate the “up” end of each link. Host B is sending a packet to host C via the legal route 
BWYZC. This packet is stopped at switch Z by the unavailability of the link ZC. It is a long 
packet, however, and parts of it still reside in switches Y and W. As a result, the link WY is not 
available. At the same time, a broadcast packet from host A is being flooded down the spanning 
tree. It has reached switch V and is being forwarded simultaneously on links VW and VX, the 
two spanning tree links from V. The broadcast packet flows unimpeded through X and Z, and is 
starting to arrive at host C, where its arrival is blocking the delivery of the packet from B to C. 
At switch W the broadcast packet needs to be forwarded simultaneously on links WB and WY. 
Because WY is occupied, however, the broadcast packet is stopped at W, where it starts to fill 
the FIFO of the input port. As long as the FIFO continues to accept bytes of the packet, it can 
continue to flow out of switch V down both spanning tree links. But when the FIFO gets half 

                                                 
1 Later work has yielded a 170 ms reconfiguration time. 
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full, flow control from W will tell V to stop sending. As a result, sending also will stop down the 
VXZC path. At this point we have a deadlock. 

 

 W 

Y Z 

C  

V 

X 

B 

A 

 

Figure 9: Broadcast deadlock 

The solution to this broadcast deadlock problem was discussed in section 6.2. The transmitter of 
a broadcast packet ignores stop flow control commands until the end of the broadcast packet is 
reached, and the receiver FIFO is made big enough to hold any complete broadcast packet whose 
transmission began under a start command. In our example, switch V will ignore the stop 
from W and complete sending the broadcast packet. Thus, the broadcast packet will finish 
arriving at C and link ZC will become free to break the deadlock. 

6.7 Debugging and monitoring 

The main tool underlying Autonet’s debugging and monitoring facilities is a source-routed 
protocol (SRP) that allows a host attached to Autonet to send packets to and receive packets from 
any switch. The source route is a sequence of outbound switch port numbers that constitute a 
switch-by-switch path from packet source to packet destination. The source route is embedded in 
the data part of the SRP packet. At each stage along this path the packet is received, interpreted, 
and forwarded by the switch control processor. Each forwarding step is done using the 
destination short address that delivers the packet to the control processor of the switch next in the 
source route. Delivery of SRP packets depends only on the constant part of a switch’s forwarding 
table that permits one-hop communication with neighbor switches. Thus, SRP packets are likely 
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to get through even when routing for other packets is inoperative. In particular, the SRP packets 
continue to work during reconfiguration. 

Based on SRP, we are developing a set of tools for debugging and monitoring Autonet. For 
example, Autopilot keeps in memory a circular log of events associated with reconfiguration. 
The log entries are timestamped with local clock values. An SRP protocol allows an Autonet 
host to retrieve this log. By normalizing the timestamps and merging the logs for all switches, a 
complete history of a reconfiguration can be displayed. The merged log is a powerful tool for 
discovering functional and performance anomalies. Another protocol layered on SRP allows 
most switch state variables to be retrieved, including the forwarding table. A protocol to recover 
the physical network topology and the current spanning tree has also been built. 

Tracking down a difficult bug usually requires adding statements to Autopilot to enter extra 
entries in the log, downloading this new version of Autopilot, waiting for all switches to boot the 
new version, triggering the problem, retrieving all the logs, and inspecting them. This debugging 
method is just a more cumbersome version of adding print statements to a program! 

6.8 A generic LAN 

The LocalNet generic LAN interface in the host software hides most differences between 
Autonet and Ethernet from client software. To simplify implementing LocalNet, we have 
defined client Autonet packets to consist of a 32-byte Autonet header followed by an 
encapsulated Ethernet packet. Two differences, however, are not hidden from the clients. First, 
Autonet packets may contain more data than Ethernet packets. Second, Autonet packets may be 
encrypted. When either of these differences are exploited, LocalNet clients must be aware that 
an Autonet is being used. 

The format of an Autonet packet is:  
  

 Bytes Field use 
 

 2  Destination short address 
 2  Source short address 
 2  Autonet type (type = 1 is shown) 
 26  Encryption information 
 6  Destination UID 
 6   Source UID 
 2  Ethernet type 
 0 - 64K Data (1500-byte limit for broadcast & Ethernet bridging) 
 8  CRC 

 

The destination short address field is the only part of the packet examined by the switches as the 
packet traverses the network. It contains the short address of the host (or switch control 
processor) to which this packet is directed, or some special-purpose address such as the 
broadcast address. The source short address is used by the receiving host (or switch) to learn the 
short address of the packet sender. The type field identifies the format of the packet. The format 
described here is the one used for encapsulated Ethernet packets. Reconfiguration, SRP, and 
special switch diagnostic protocols use different Autonet type values. 
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A large fraction of the header consists of encryption information. The encryption header, whose 
details we omit here, is used by the receiving controller to decide whether to decrypt this packet, 
which part of the packet to decrypt, which key to use, and where in memory to place the packet 
after decryption. The encryption facilities are based on Herbison’s master key encryption scheme 
[12]. A complete description awaits experience in using these facilities to provide secure 
communication. 

The destination UID, source UID, and Ethernet type fields form the header of an Ethernet packet 
that has been encapsulated within an Autonet packet. The data field may be up to 64K bytes in 
length for normal Autonet packets; broadcast packets and packets to be bridged to an Ethernet 
are constrained to the 1500-byte Ethernet limit. The CRC field is generated and checked by the 
controller. 

Occasionally hosts will misaddress packets by placing the wrong short address in the header. 
This might happen when, for example, a short address changes after a network reconfiguration. 
The receiving host is responsible for checking the destination UID in the packet and discarding 
misaddressed packets. The receiving host also does filtering on multi-cast UIDs. These function 
are done by the Autonet driver software for the Firefly, but they could be done by the controller 
if it were deemed necessary to avoid overloading a host. 

6.8.1 Learning short addresses  

In order to hide the differences in addressing between the Autonet and the Ethernet, LocalNet 
maintains a cache of mappings from 48-bit Ethernet UIDs to short addresses. The Autonet driver 
updates the UID cache by observing the correspondence between the source short address and 
source UID fields of arriving packets, and, if necessary, by sending Address Resolution Protocol 
(ARP) requests [17]. An ARP reply sent on Autonet will contain the correct source short address 
in the Autonet header. When transmitting a packet to an Autonet, LocalNet obtains the 
destination short address using a cache lookup keyed with the destination UID. 

When an Autonet host first boots, it knows only two short addresses: address “FFFF”, which 
reaches all hosts on the Autonet, and address “0000”, which reaches the local switch. The host 
contacts the local switch to obtain its own short address, which it then inserts in the source short-
address field of all packets that it transmits. Thereafter, the host uses the following algorithm for 
transmitting and receiving packets: 
 

Receiving: The source short address is entered in the cache entry for the source UID, and a 
timestamp is updated in the cache entry. If the packet was sent to the broadcast short address, 
but was addressed to the UID of the receiving host (rather than to the broadcast UID), then 
the sending host no longer knows the receiver’s short address and an ARP response is 
immediately sent to the sending host in order to update its cache entry. 

 

Transmitting: The cache entry for the destination UID is found, and the short address in the 
entry is copied into the packet before it is transmitted. If necessary, a new cache entry is 
created giving the short address for this UID as “FFFF”, the broadcast short address. If the 
cache entry was updated within the two seconds prior to its use, or if it is updated in the two 
seconds following its use, no further action is taken. Otherwise, an ARP request is sent to the 
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short address given in the cache entry. If no response is received within two seconds, the 
short address in the cache entry is set to the broadcast short address, which action is 
equivalent to removing the entry from the cache. If a packet to be transmitted is larger than 
the maximal broadcast packet, and the short address of the destination is unknown, the packet 
is discarded and an ARP request is sent in its place. 

 

This algorithm does not attempt to maintain cache entries that are not being used by the host, so 
no ARP packets are sent unless a host has recently failed to respond to some other packet. 
Moreover, ARP packets are usually directed to the last known address of the destination, rather 
than being broadcast. Packets are sent to the broadcast short address only when the real short 
address of the destination is unknown. This is typically the case for the first packet sent between 
a pair of hosts, and for the packets sent to a host that has recently crashed, or changed its short 
address. Fortunately, higher-level protocols seldom transmit large numbers of packets to hosts 
that do not respond, so the total number of packets sent to the broadcast short address is quite 
small. It might be necessary to review this algorithm if higher-level protocols that do not behave 
in this way were to become commonplace. 

This algorithm generates few additional packets, but can take several seconds to update a cache 
after a short address has changed. In order to minimize the delays seen by higher-level protocols, 
hosts broadcast an ARP response packet when their short address changes, so other hosts can 
update their caches immediately. Short addresses change quite infrequently, so this does not lead 
to a large number of broadcasts. If the number of broadcasts of this type were to become 
excessive, an alternative approach is to send packets to hosts whose short address cache entries 
have recently been updated. This has the effect of updating the caches of hosts that were recently 
using the changed short address. 

The current techniques for managing short addresses are good enough that hosts can change 
short addresses without causing protocol timeouts, yet generate little additional load on the 
network or the hosts. The code for accessing the short address cache adds 15 VAX instructions 
to both the transmit path and the receive path. 

6.8.2 Bridging 

A bridge is a device that sits between two networks and forwards packets from one to the other. 
It differs from a gateway in that a bridge is usually transparent to protocols above the data link 
layer. It differs from a repeater in that not all packets need appear on both sides of a bridge. 
Existing Ethernet bridges [14] forward packets from one Ethernet to another only if it appears 
likely that a host on the other network might wish to receive a packet. They do this by observing 
the traffic on both networks and learning which side each host is on. When the destination is on 
the other network, or when the location of the destination is unknown, they forward the packet. 

We have implemented software that enables a Firefly to function as an Ethernet bridge, an 
Autonet bridge, and an Autonet-to-Ethernet bridge. Although we normally use only the last 
variation, it is easier to understand its operation by first considering a bridge between two 
Autonets. An Autonet bridge is slightly more complicated than an Ethernet bridge because a 
short address is not useful outside a single Autonet. When an Autonet bridge forwards a packet, 
it must modify the short addresses in the header. The destination short address is found using the 
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techniques described in the previous section; the source short address is simply the short address 
of the bridge on the destination network. Unlike an Ethernet bridge, which receives all packets 
on the attached Ethernets, an Autonet bridge receives only broadcast packets and packets sent to 
its short address. Thus an Autonet bridge receives only a fraction of the packets on the attached 
networks and forwards most of the packets it receives. 

As well as forwarding packets, an Autonet bridge also responds to ARP packets for hosts known 
to be on its other network. If the bridge is unsure of the location of a host, it does not respond to 
ARP requests immediately, but sends its own ARP requests on the other network; it responds to 
the original ARP request only if the destination responds. To hosts on the bridged Autonets, an 
Autonet bridge behaves like a large number of hosts sharing the same short address. 

An Autonet-to-Ethernet bridge, the variation we normally use, has a few extra complications. It 
refuses to forward encrypted packets or packets longer than the maximum Ethernet size, though 
such forwarding could be arranged with a special encapsulation protocol. The bridge marks the 
header of all packets from the Ethernet to indicate to Autonet hosts that they should not attempt 
to use either encrypted communication or long packets when talking to the source host. This 
bridge adds or removes Autonet headers as packets are forwarded between the two networks. 
ARP packets from the Autonet are dealt with as previously described, except that they are never 
forwarded to the Ethernet. Instead, the location of Ethernet hosts is deduced from the client 
packets they send, in the same way as it is by Ethernet bridges. 

In our Autonet-to-Ethernet bridge built on a Firefly, two of the four processors are devoted to 
forwarding packets: one executes the Ethernet driver thread and another executes the Autonet 
driver thread. In one second, the bridge can discard about 5000 small packets (66 bytes each), or 
forward over 1000 small packets, or forward 200-300 maximum-size Ethernet packets. The 
bridge is limited by its CPU when dealing with small packets, and by the speed of its I/O bus 
when dealing with large packets. The latency of the bridge is about a millisecond for a small 
packet. The bridge uses the LocalNet UID cache to remember which hosts are on which network 
as well as to map UIDs to short addresses for Autonet hosts. Using a single cache requires that a 
given UID be on one network or the other, never both. 

6.8.3 Managing alternate links 

Each host is connected to the Autonet via two links, but only one is in use at any given time. The 
Autonet driver is responsible for deciding which link to use, and for switching to the alternate 
link if the active link fails. 

In normal operation, the driver sends a packet to the local switch every few seconds, both to 
confirm the host’s short address, and to verify that the link works. If the controller reports a link 
error, or if the switch fails to respond promptly, the driver tries to contact the local switch more 
vigorously. If the local switch has still not responded within three seconds, the driver switches 
links. After switching links, the driver forgets its short address, and tries to contact the local 
switch attached to the new link. If the switch responds, the host advertises its new short address 
and continues. If there is no response, the driver switches back to the first link after ten seconds. 
If neither link is operational, a host will switch between them once every ten seconds until it can 
contact a local switch. 
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The driver interface lets a client program switch the active link on demand and gather error rate 
statistics. Thus the alternate link can be tested, and if necessary replaced, before it is needed. 

The current timeouts for link failover are quite long, and we expect to reduce them significantly 
in order to meet client failover requirements. At present, the mechanism is sufficient to allow a 
switch to fail without disrupting higher-level protocols. An enhancement to the protocol used 
between the switch and host would allow the driver to choose between two working links 
connected to different Autonet partitions by selecting the larger of the two partitions. Experience 
so far indicates that partition is extremely unlikely in a well connected Autonet, and so this 
improvement is likely to be of only marginal benefit. 

7. Conclusions and future work 

We are beginning to accumulate operational experience with Autonet. Our initial experience 
confirms that the goal of largely automatic operation of a network using arbitrary topology and 
active switches is realistic. Autonet is now the service network for most of the workstations at 
SRC. A new distributed file system is coming online with its servers only on Autonet. Once 
reconfiguration time was reduced below 1 second we ceased receiving complaints from users 
about the new network. Before that, with reconfigurations taking more than four seconds, users 
complained of dropped connections and RPC call failures. These symptoms were especially 
noticeable when the release of a new version of Autopilot caused 30 or more reconfigurations in 
quick succession. We now limit the disruption caused by the release of new Autopilot versions 
by making compatible versions propagate more slowly. Now users find Autonet 
indistinguishable from Ethernet. So far Autonet’s higher bandwidth is largely masked by the 
Fireflies. 

Even though Autonet has been in service for only a limited time, we have already learned some 
useful lessons. We would make several improvements to the switch hardware on the next 
iteration. The most significant change would be to allow the control processor to update the 
forwarding table without first resetting the switch. Resetting destroys all packets in the switch. 
Coupling resetting with reloading causes the initial forwarding table reload of a reconfiguration 
to destroy some tree-position packets, thus making reconfiguration take longer. Also, 
incremental reloads of the forwarding table to isolate problematic host links during normal 
operation are fairly disruptive with the present design. 

One amusing surprise was caused by the fact that an unterminated link reflects signals. Such an 
unterminated link will occur, for example, when a host on the network is turned off. A packet 
addressed to the particular host would be reflected and retransmitted repeatedly, although for 
such unicast packets this would not be disruptive. Broadcast packets, however, are another 
matter. A reflected broadcast packet looks like a new broadcast packet, and is forwarded up the 
spanning tree to the root switch and then flooded down the spanning tree to all hosts where, of 
course, it is reflected again by the reflecting link. A “broadcast storm” results, with all hosts on 
the network receiving thousands of broadcast packets per second. Fortunately, the transition from 
terminated to unterminated almost always causes enough BadCode status to be counted at the link 
unit to cause the status sampler to classify the link broken and remove it from the forwarding 
table. We believe that a better solution to this problem is to make packets traveling in the “up” 
direction over a link look different than those traveling in the “down” direction. For example, 
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different start flow control commands could be used. The link unit could then automatically 
discard packets headed in the wrong direction. 

Another hardware change would be to make host controllers transmit the host flow control 
directive on the alternate port. This change would make it simpler for Autopilot to detect switch 
posts that are connected to alternate host ports. 

Some lessons are quite mundane. The female F-connectors on host cabinet kits and switch link 
units have flats on their threaded barrel to allow a wrench to be used when mounting them. These 
flats make screwing on a cable very difficult, because it’s hard to get the threads started 
correctly. The connectors without flats on the threads would be much better. 

Autopilot has provided a series of interesting lessons. As a distributed program it has 
demonstrated a series of instructive bugs which we plan to document in another report. We have 
been reminded how hard such bugs are to find when packet traffic between switches cannot be 
observed directly and limited debugger facilities are available. Merging the logs of all switches is 
a very powerful technique for function and performance debugging, but synchronizing the 
timestamps from the individual logs must be done with high precision for the merged log to be 
useful. 

Getting the status sampler, connectivity monitor, hardware skeptic, and connectivity skeptic 
algorithms structured and tuned for smooth operation also has been hard. Achieving both 
responsiveness and stability has required several iterations of the design. Further iterations 
probably will occur. 

We expect that continued service use of the network will provide more lessons and expose areas 
where improvements in performance and reliability can be made. 

Future work planned with Autonet includes building higher-speed controllers; developing 
network monitoring and management tools; improving the performance of reconfiguration; 
understanding how reconfiguration time varies with network size and topology; using the 
encryption facilities to support secure, authenticated communication; and applying the Autonet 
architecture to much faster links. We are interested in exploring modified algorithms that can 
perform local reconfigurations quickly when global reconfigurations are not required; finding 
ways to partition large installations into separately reconfigurable regions; and understanding the 
performance characteristics of different topologies and different routing algorithms. 

We also would like to learn how to write an Autonet installation guide. For a network like 
Autonet to be widely employed, simple recipes must be developed for designing the topology of 
the physical configuration. The number of switches and the pattern of the switch-to-switch and 
host-to-switch links determine network capacity, reliability, and cost. Site personnel will need 
detailed guidance on determining a reasonable pattern to follow when installing the network and 
when growing it to meet increased load. 
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23.  Networks — Links and Switches  

This handout presents the basic ideas for transmitting digital data over links, and for connecting 
links with switches so that data can pass from lots of sources to lots of destinations. You may 
wish to read chapter 7 of Hennessy and Patterson for a somewhat different treatment, more 
focused on interconnecting the components of a multiprocessor computer.1 

Links  

A link is an unreliable FIFO channel. As we mentioned earlier, it is an abstraction of a point-to-
point wire or of a simple broadcast LAN. It is unreliable because noise or other physical 
problems can corrupt messages. 

There are many kinds of physical links, with cost and performance that vary based on length, 
number of drops, and bandwidth. Here are some current examples. Bandwidth is in 
bytes/second2, and the “+” signs mean that software latency must be added. The nature of the 
messages reflects the origins of the link. Computer people prefer variable-size packets, which are 
good for bursty traffic. Communications people prefer bits or bytes, which are good for fixed-
bandwidth voice traffic and minimize the latency and buffering added by collecting voice 
samples into a message. 

A physical link can be unidirectional (‘simplex’) or bidirectional (‘duplex’). A duplex link may 
operate in both directions at the same time (‘full-duplex’), or in one direction at a time (‘half-
duplex’). A pair of simplex links running in opposite directions forms a full-duplex link. So does 
a half-duplex link in which the time to reverse direction is negligible, but in this case the peak 
full-duplex bandwidth is half the half-duplex bandwidth. If most of the traffic goes in one 
direction, however, the usable bandwidth of a half-duplex link may be nearly the same as that of 
a full-duplex link. 

To increase the bandwidth of a link, run several copies of it in parallel. This goes by different 
names; ‘space division multiplexing’ and ‘striping’ are two of them. Common examples are: 

Parallel busses, as in the first five lines of the table. 

Switched networks: the telephone system and switched LANs. 

Multiple disks, each holding part of a data block, that can transfer in parallel. 

Cellular telephony, using spatial separation to reuse the same frequencies. 

In the latter two cases there must be physical switches to connect the parallel links. 

Another use for multiple links is fault tolerance, discussed earlier. 

                                                 
1 My thanks to Alex Shvartsman for some of the figures in this handout. 
2 Beware: communications people usually quote bits/sec. 
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Medium Link Bandwidth Latency Width Message 
Alpha chip on-chip bus 4 GB/s 2 ns 64 8 bytes 
PC board RAMbus 0.5 GB/s 150 ns 8 packet, < 100 B 
 PCI I/O bus 133 MB/s 250 ns 32 packet 
Wires HIPPI3 100 MB/s 100 ns 32 packet 
 Fibre channel4 100 MB/s 250 ns 1 packet 
 IEEE 13945 50 MB/s 250 ns 1 packet 
 SSA6 20 MB/s 500 ns 1 packet 
 SCSI 20 MB/s 500 ns 16 packet 
 USB 1.5 MB/s 5 µs 1 ? 
LAN FDDI 12.5 MB/s 20 + µs 1 packet, 20-4500 B 
 Gigabit 

Ethernet 
125 MB/s 1 + µs 1 packet, 64-1500 B 

 Fast Ethernet7 12.5 MB/s 10 + µs 1 packet, 64-1500 B 
 Ethernet 1.25  MB/s 100 + µs 1 packet, 64-1500 B 
Wireless WaveLAN .25 MB/s 100 + µs 1 packet, < 1500 B 
Fiber (Sonet) OC-48 300  MB/s 5 µs/km 1 1 byte or 1 cell 
Coax cable T3 6  MB/s 5 µs/km 1 1 byte 
Copper pair T1 0.2  MB/s 5 µs/km 1 1 byte 
Copper pair ISDN 16  KB/s 5 µs/km 1 1 byte 
Broadcast CAP 16 3 MB/s 3 µs/km 6 MHz 1 byte or 1 cell 

 

Flow control 

Many links do not have a fixed bandwidth that is known to the sender, because the link is being 
shared (that is, there is multiplexing inside the link) or because the receiver can’t always accept 
data. In particular, fixed bandwidth is bad when traffic is bursty, because it will be either too 
small or too large. If the sender doesn’t know the link bandwidth or can’t be trusted to stay 
below it, some kind of flow control is necessary to match the flow of traffic to the link’s or the 
receiver’s capacity. A link can provide this in two ways, by contention or by scheduling. In this 
case these general strategies take the form of backoff or backpressure. 

Backoff 

In backoff the link drops excess traffic and signals ‘trouble’ to the sender, either explicitly or by 
failing to return an acknowledgment. The sender responds by waiting for a while and then 
retransmitting. The sender increases the wait by some factor (say 2) after every trouble signal 
and decreases it with each trouble-free send. This is called ‘exponential backoff'; when the 

                                                 
3 D. Tolmie and J. Renwick, HIPPI: Simple yields success. IEEE Network  7, 1 (Jan. 1993), pp 28-32. 
4 M. Sachs and A. Varman, Fibre channel and related standards. IEEE Communications 34, 8 (Aug. 1996), pp 40-
49. 
5 G. Hoffman and D. Moore, IEEE 1394: A ubiquitous bus. Digest of Papers, IEEE COMPCON ’95, 1995, pp 334-
338. 
6 http://www.ssaia.org 
7 M. Molle and G. Watson, 100Base-T/IEEE 802.12/Packet switching. IEEE Communications 34, 8 (Aug. 1996), pp 
63-73. 
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increasing factor is 2, it is ‘binary exponential backoff’. It is used in the Ethernet8 and in TCP9, 
and is analyzed in some detail in a later section.  

Exponential backoff works because it adjusts the rate of sending so that most packets get 
through. If every sender does this, then every sender’s delay will jiggle around the value at which 
the network is just managing to carry all the traffic. This is because a wait that is too short will 
overload the network, some packets will be lost, and the sender will increase the wait. On the 
other hand, a wait that is too long will always succeed, and the sender will decrease it. Of course 
these statements are probabilistic: sometimes a conservative sender will lose a packet because 
someone else overloaded the network.  

The precise details of how the wait should be lengthened (backed off) and shortened depend on 
the properties of the channel. If the ‘trouble’ signal comes back very quickly and the cost of 
trouble is small, senders can shorten their waits aggressively; this happens in the Ethernet, where 
collisions are detected in at most 64 byte times and abort the transmission immediately, so that 
senders can start with 0 wait for each new message. Under the opposite conditions, senders must 
shorten their waits cautiously; this happens in TCP, where the ‘trouble’ signal is only the lack of 
an acknowledgment, which can only be detected by timeout and which cannot abort the 
transmission immediately. The timeout should be roughly one round-trip time; the fact that in 
TCP it’s often impossible to get a good estimate of the round-trip time is a serious complication. 

An obvious problem with backoff is that it requires all the senders to cooperate. A sender who 
doesn’t play by the rules can get an unfair share of the link resource, and in many cases two such 
senders can cause the total throughput of the entire link to become very small. 

Backpressure 

In backpressure the link tells the sender explicitly how much it can send without suffering losses. 
This can take the form of start and stop signals, or of ‘credits’ that allow a certain amount of 
additional traffic to be sent. The number of unused credits the sender has is called its ‘window’. 
Let b be the bandwidth at which the sender can send when it has permission and r be the time for 
the link to respond to new traffic from the sender. A start–stop scheme can allow rb units of 
traffic between a start and a stop; a link that has to buffer this traffic will overrun and lose traffic 
if r is too large. A credit scheme needs rb credits when the link is idle to keep running at full 
bandwidth; a link will underrun and waste bandwidth if r is too large.10  

Start–stop is used in the Autonet11 (handout 22), and on RS-232 serial lines under the name XON-
XOFF. The Ethernet, although it uses backoff to control acquiring the channel, also uses 
backpressure, in the form of carrier sense, to keep a sender from interrupting another sender that 
has already acquired the channel; this is called ‘deference’. TCP uses credits to allow the receiver 
to control the flow. It also uses backoff to deal with congestion within the link itself (that is, in 

                                                 
8 R. Metcalfe and D. Boggs: Ethernet: Distributed packet switching for local computer networks. Communications 
of the ACM 19, 395-404 (1976) 
9 V. Jacobsen: Congestion avoidance and control. ACM SigComm Conference, 1988, pp 314-329. C. Lefelhocg et 
al., Congestion control for best-effort service. IEEE Network  10, 1 (Jan 1996), pp 10-19. 
10 H. Kung and R. Morris, Credit-based flow control for ATM networks. IEEE Network  9, 2 (Mar. 1995), pp 40-48. 
11 M. Schroeder et al., Autonet: A high-speed self-configuring local area network using point-to-point links. IEEE 
Journal on Selected Areas in Communication 9, 8 (Oct. 1991), pp 1318-1335. 
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the underlying packet network). Having both mechanisms is confusing, and it’s even more 
confusing (though clever) that the waits required by backoff are coded by fiddling with credits. 

The failure modes of the two backpressure schemes are different. A lost ‘stop’ may cause lost 
data. A lost credit may reduce the bandwidth but doesn’t cause data to be lost. On the other hand, 
‘start’ and ‘stop’ are idempotent, so that a good state is restored just be repeating them. This is 
not true for credits of the form “send n more messages”. There are several ways to get around 
this problem with credits: 

Number the messages, and send credits in the form “n messages after message k”. Such a 
credit resets the sender’s window completely. TCP uses this scheme, counting bytes rather 
than messages. On an unreliable channel, however, it only works if each message carries its 
own number, and this is extra overhead that is serious if the messages are small (for instance, 
ATM cells are only 53 bytes). 

Stop sending messages and send a ‘resync’ request. When the receiver gets this it returns an 
absolute rather than an incremental credit. Once the sender gets this it resets its window and 
starts sending again. 

Know the round-trip time between sender and receiver, and keep track of m, the number of 
messages sent during the last round-trip time. The receiver sends an absolute credit n, and the 
sender sets its window to n – m, since there are m messages outstanding that the receiver 
didn’t know about when it issued n credits. This works well for links coded by wires because 
the round-trip time is constant. It works poorly if the link has internal buffering because the 
round-trip time varies. 

Another form of flow control that is similar to backpressure is called ‘rate-based’. It assigns a 
maximum transmission bandwidth or ‘rate’ to each sender, undertakes to deliver traffic up to that 
bandwidth with high probability, and is free to discard excess traffic. The rate is measured by 
taking a moving average across some time window.12 

Framing 

The idea of framing (sometimes called ‘acquiring sync’) is to take a stream of X’s and turn it into 
a stream of Y’s. An X might be a bit and a Y a byte, or an X might be a byte and a Y a packet. This 
is a parsing problem. It occurs repeatedly in communications, at every level from analog signals 
through bit streams, byte streams, and streams of cells up to encoded procedure calls. We looked 
at this problem abstractly and in the absence of errors when we studied encoding and decoding in 
handout 7. For communication the parsing has to work even though physical problems such as 
noise can generate an arbitrary prefix of X’s before a sequence of X’s that correctly encode some 
Y’s. 

If an X is big enough to hold a label, framing is easy: You just label each X with the Y it is part of, 
and the position it occupies in that Y. For example, to frame (or encapsulate) an IP packet on the 
Ethernet, just make the ‘protocol type’ field of the packet be ‘IP’, and if the packet is too big to 

                                                 
12 F. Bonomi and K. Fendick, The rate-based flow control framework for the available bit rate ATM service. IEEE 
Network  9, 2 (Mar. 1995), pp 25-39. 
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fit in an Ethernet packet, break it up into ‘fragments’ and add a part number to each part. The 
receiver collects all the parts and puts them back together.13 The jargon for the entire process is 
‘fragmentation/re-assembly’. 

If X is small, say a bit or a byte, or even the measurement of a signal’s voltage level, more 
cleverness is needed. There are many possibilities, all based on the idea of a ‘sync’ pattern that 
allows the receiver to recognize the start of a Y no matter what the previous sequence of X’s has 
been. 

Certain values of X can be reserved to mark the beginning or the end of a Y. In FDDI14, for 
example, 4 bits of data are coded in 5 bits on the wire. This is done because the wire doesn’t 
work if there are too many 0’s or too many 1’s in a row, so it’s not possible to simply send 
the data bytes. However, the wire’s demands are weak enough that there are more than 16 
allowable 5-bit combinations, and one of these is used as the sync mark for the start of a 
packet.15 If a ‘sync’ appears in the middle of a packet, that is taken as an error, and the next 
legal symbol is the start of a new packet. A simpler version of this idea requires at least one 
transition on every bit (in Ethernet) or byte (in RS-232); the absence of a transition for a bit 
or byte time is a sync. 

Certain sequences of X can be reserved to mark the beginning of a Y. If these sequences occur 
in the data, they must be ‘escaped’ or coded in some other way. A familiar example is C’s 
literal strings, in which '\' is used as an escape, and to represent a '\' you must write '\\'. 
In HDLC an X is a bit, the rule is that more than n 0 bits is a sync for some small value of n, 
and the escape mechanism, called ‘bit-stuffing’, adds a 1 after each sequence of n data zeros 
when sending and removes it when receiving. In RS-232 an X is a high or low voltage level, 
sampled at say 10 times the bit rate, a Y is (usually) 8 data bits plus a ‘start bit’ which must be 
high and a ‘stop bit’ which must be low. Thus every Y begins with a low-high transition 
which determines the phase for the rest of the Y (this is called ‘clock recovery’), and a 
sequence of 9 or more bit-times worth of low is a sync. 

The sequences used for sync can be detected probabilistically. In telephony T-1 signaling 
there is a ‘frame’ of 193 bits, one sync bit and 192 data bits. The data bits can be arbitrary, 
but they are xored with a ‘scrambling’ sequence to make them pseudo-random. The encoding 
specifies a definite pattern (say “010101”) for the sync bits of successive frames (which are 
not scrambled). The receiver decodes by guessing the start of a frame and checking a number 
of frames for the sync pattern. If it’s not there, the receiver makes a different guess. After at 
most 193 tries it will have guessed right. This takes a lot longer than the previous schemes to 
acquire sync, but it uses a constant amount of extra bandwidth (unlike escape schemes), and 
much less than fixed sync schemes: 1/193 for T-1 instead of 1/5 for FDDI, 1/2 for Ethernet, 
or 1/10 for RS-232. 

                                                 
13 Actually fragmentation is usually done at the IP level itself, but the idea is the same. 
14 F. Ross: An overview of FDDI: The fiber distributed data interface. IEEE Journal on Selected Areas in 
Communication 7 (1989) 
15 Another symbol is used to encode a token, and several others are used for somewhat frivolous purposes.  
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Multiplexing 

Multiplexing is a way to share a link among multiple senders and receivers. It raises two issues: 

Arbitration (for the sender)—when to send. 

Addressing (for the receiver)—when to receive. 

A ‘multiplexer’ implements arbitration; it combines traffic from several input links onto one 
output link. A ‘demultiplexer’ implements addressing; it separates traffic from one input link 
onto several output links. The multiplexed links are called ‘sub-channels’ of the one link, and 
each one has an address. Figure 1 shows various examples; the ovals are buffers.  

perfect (lossless) mux

output buffered mux

input buffered mux

unbuffered mux

demux

broadcast

arbitration addressing

                               

Fig. 1.  Multiplexers and demultiplexers. Traffic flows from left to right. 

There are three main reasons for multiplexers: 

• Traffic may flow between one node and many on a single wire, for example when the one 
node is a busy server or the head end of a cable TV system. 

• One wide wire may be cheaper than many narrow ones, because there is only one thing to 
install and maintain, or because there is only one connection at the other end. Of course the 
wide wire is more expensive than a single narrow one, and the multiplexers must also be paid 
for. 

• Traffic aggregated from several links may be more predictable than traffic from a single one. 
This happens when traffic is bursty (varies in bandwidth) but uncorrelated on the input links. 
An extreme form of bursty traffic is either absent or present at full bandwidth. This is 
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standard in telephony, where extensive measurements of line utilization have shown that it’s 
very unlikely for more than 10% of the lines to be active at one time. 

There are many techniques for multiplexing. In the analog domain: 

• Frequency division  (FDM) uses a separate frequency band for each sub-channel, taking 
advantage of the fact that eint is a convenient basis set of orthogonal functions. The address is 
the frequency band of the sub-channel. FDM is used to subdivide the electromagnetic 
spectrum in free space, on cables, and on optical fibers; on fibers it’s usually called ‘wave 
division multiplexing’ 

• Code division (CDM) uses a different coordinate system in which a basis vector is a time-
dependent sequence of frequencies. This smears out the cross-talk between different sub-
channels. The address is the ‘code’, the sequence of frequencies. CDM is used for military 
communications and in a new variety of cellular telephony. Figure 2 illustrates the simplest 
form of CDM, in which n senders share a digital channel. Bits on the channel have length 1, 
each sender’s bits have length n (5 in the figure), and a sender has an n-bit ‘code’ (10010 in 
the figure) which it ‘xor’s with its current data bit. The receiver xor’s the code in again and 
looks for either all zeros or all ones. If it sees something intermediate, that is interference 
from a sender with a different code. If the codes are sufficiently orthogonal (agree in few 
enough bits), the contributions of other senders will cancel out. Clearly longer code words 
work better. 

Send 01101
10010
01101

Receive with
code 01000

Receive with
code 10010

Code 10010

Data 101

0 5

3 22

5

 

Fig 2: Simple code division multiplexing 

In the digital domain time-division multiplexing (TDM) is the standard method. It comes in two 
flavors: 

— Fixed TDM, in which n sub-channels are multiplexed by dividing the data sequence on the 
main channel into fixed-size slots (single bits, bytes, or whatever) and assigning every nth slot to 
the same sub-channel. Usually all the slots are the same size, but it’s sufficient for the sequence 
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of slot sizes to be fixed. The 1.5 Mbit/sec T1 line that we discussed earlier, for example, has 24 
sub-channels and ‘frames’ of 193 bits. One bit marks the start of the frame, after which the first 
byte belongs to sub-channel 1, the second to sub-channel 2, and so forth. Slots are numbered 
from the start of the frame, and a sub-channel’s slot number is its address. Note that this scheme 
requires framing to find the start of the frame (hence the name). But the addressing has no direct 
code (there is an “internal fragmentation” cost if the fixed channels are not fully utilized). 

— Variable TDM, in which the data sequence on the main channel is divided into ‘packets’. One 
packet carries data for one sub-channel, and the address of the sub-channel appears explicitly in 
the packet. If the packets are fixed size, they are often called ‘cells’, as in the Asynchronous 
Transfer Mode (ATM) networking standard. Fixed-size packets are used in other contexts, 
however, for instance to carry load and store messages on a programmed I/O bus. Variable sized 
packets (up to some maximum that either is fixed or depends on the link) are usual in computer 
networking, for example on the Ethernet, token ring, FDDI, or Internet, as well as for DMA bursts 
on I/O busses. 

All these methods fix the division of bandwidth among sub-channels except for variable TDM, 
which is thus better suited to handle the burstiness of computer traffic. This is the only 
architectural difference among them. But there are other architectural differences among 
multiplexers, resulting from the different ways of coding the basic function of arbitrating among 
the input channels. The fixed schemes do this in a fixed way that is determined which the sub-
channels are assigned. This is illustrated at the top of figure 1, where the wide main channel has 
enough bandwidth to carry all the traffic the input channels can offer. Arbitration is still 
necessary when a sub-channel is assigned to an input channel; this operation is usually called 
‘circuit setup’. 

With variable TDM there are many ways to arbitrate, but they fall into two main classes, which 
parallel the two methods of flow control described in the section on links above: 

• Collision (parallel to backoff): an input channel simply sends its traffic, but has some way to 
tell whether the traffic was accepted. If not, it ‘backs off’ by waiting for a while, and then 
retries. The input channel can get an explicit and immediate collision signal, as on the 
Ethernet, it can get a delayed collision signal in the form of a ‘negative acknowledgment’, or 
it can infer a collision from the lack of an acknowledgment, as in TCP. 

• Scheduling (parallel to backpressure): an input channel makes a request for service and the 
multiplexer eventually grants it; I/O busses and token rings work this way. Granting can be 
centralized, as in many I/O busses, or distributed, as in a daisy-chained bus or a token ring 
like FDDI. 

Flow control means buffering, as we saw earlier, and there are several ways to arrange buffering 
around a multiplexer, shown on the left side of figure 1. Having the buffers near the arbitration 
point is good because it reduces the round-trip time r and hence the size of the buffers. Output 
buffering is good because it allows arbitration to ignore contention for the output until the buffer 
fills up, but the buffer may cost more because it has to accept traffic at the total bandwidth of all 
the inputs. A switch coded by a shared memory pays this cost automatically, and the shared 
memory acts as a shared buffer for all the outputs. 
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A multiplexer can be centralized, like a T1 multiplexer or a crosspoint in a crossbar switch, or it 
can be distributed along a bus. It seems natural to use scheduling with a centralized multiplexer 
and collision with a distributed one, but the examples of the Monarch memory switch16 and the 
token ring described below show that the other combinations are also possible. 

Multiplexers can be cascaded to increase the fan-in. This structure is usually combined with a 
converter. For example, 24 voice lines, each with a bandwidth of 64 Kb/s, are multiplexed to one 
1.5 Mb/s T1 line, 30 of these are multiplexed to one 45 Mb/s T3 line, and 50 of these are 
multiplexed to one 2.4 Gb/s OC-48 fiber which carries 40,000 voice sub-channels. In the Vax 
8800, 16 Unibuses are multiplexed to one BI bus, and 4 of these are multiplexed to one internal 
processor-memory bus. 

Demultiplexing uses the same physical mechanisms as multiplexing, since one is not much use 
without the other. There is no arbitration, however; instead, there is addressing, since the input 
channel must select the proper output channel to receive each sub-channel. Again both 
centralized and distributed code are possible, as the right side of figure 1 shows. In distributed 
code the input channel is broadcast to all the output channels, and an address decoder picks off 
the sub-channel as its data fly past. Either way it’s easy to broadcast a sub-channel to any 
number of output channels. 

Broadcast networks 

From the viewpoint of the preceding discussion of links, a broadcast network is a link that carries 
packets, roughly one at a time, and has lots of receivers, all of which see all the packets. Each 
packet carries a destination address, each receiver knows its own address, and a receiver’s job is 
to pick out its packets. It’s also possible to view a broadcast network as a special kind of 
switched network, taking the viewpoint of the next lecture. 

Viewed as a link, a broadcast network has to solve the problems of arbitration and addressing. 
Addressing is simple, since all the receivers see all the packets. All that is needed is ‘address 
filtering’ in the receiver. If a receiver has more than one address the code for this may get tricky, 
but a simple, if costly, fallback position is for the receiver to accept all the packets, and rely on 
some higher-level mechanism to sort out which ones are really meant for it. 

The tricky part is arbitration. A computer’s I/O bus is an example of a broadcast network, and it 
is one in which each device requests service, and a central ‘arbiter’ grants bus access to one 
device at a time. In nearly all broadcast networks that are called networks, it is an article of 
religion that there is no central arbiter, because that would be a single point of failure, and 
another scheme would be required so that the distributed nodes could communicate with it17. 
Instead, the task is distributed among all the senders. As with link arbitration in general, there are 
two ways to do it: scheduling and contention. 

                                                 
16 R. Rettberg et al.: The Monarch parallel processor hardware design. IEEE Computer 23, 18-30 (1990) 
17 There are times when this religion is inappropriate. For instance, in a network based on cable TV there is a highly 
reliable place to put the central arbiter: at the head end (or, in a fiber-to-the-neighborhood system, in the fiber-to-
coax converter. And by measuring the round-trip delays between the head end and each node, the head end can 
broadcast “node n can make its request now” messages with timing which ensures that a request will never collide 
with another request or with other traffic. 
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Arbitration by scheduling: Token rings 

Scheduling is deterministic, and the broadcast networks that use it are called ‘token rings’. The 
idea is that each node is connected to two neighbors, and the resulting line is closed into a circle 
or ring by connecting the two ends. Bits travel around the ring in one direction. Except when it is 
sending its own packets, a node retransmits every bit it receives. A single ‘token’ circulates 
around the ring, and a node can send when the token arrives at the node. After sending one or 
more packets, the node regenerates the token so that the next node can send. When its packets 
have traveled all the way around the ring and returned, the node ‘strips’ them from the ring. This 
results in round-robin scheduling, although there are various ways to add priorities and semi-
synchronous service.  

 Node 

Node Node 

Node
token 

 

 

Rings are difficult to engineer because of the closure properties they need to have:  

• Clock synchronization: each node transmits everything that it receives except for sync marks 
and its own packets. It’s not possible to simply use the receive clock for transmitting, so the 
node must generate its own clock. However, it must keep this clock very close to the clock of 
the preceding node on the ring to keep from having to add sync marks or buffer a lot of data. 

• Maintaining the single token: with multiple tokens the broadcasting scheme fails. With no 
tokens, no one can send. So each node must monitor the ring. When it finds a bad state, it 
cooperates with other nodes to clear the ring and elect a ‘leader’ who regenerates the token. 
The strategy for election is that each node has a unique ID. A node starts an election by 
broadcasting its ID. When a node receives the ID of another node, it forwards it unless its 
own ID is larger, in which case it sends its own ID. When a node receives its own ID, it 
becomes the leader; this works because every other node has seen the leader’s ID and 
determined that it is larger than its own. 

• Preserving the ring connectivity in spite of failures. In a simple ring, the failure of a single 
node or link breaks the ring and stops the network from working at all. A ‘dual-attachment’ 
ring is actually two rings, which can run in parallel when there are no failures. If a node fails, 
splicing the two rings together as shown in figure 3 restores a single ring. Tolerating a single 
failure can be useful for a ring that runs in a controlled environment like a machine room, but 
is not of much value for a LAN where there is no reason to believe that only one node or link 
will fail. FDDI has dual attachment because it was originally designed as a machine room 
interconnect; today this feature adds complexity and confuses customers.  
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• A practical way to solve this problem is to connect all the nodes to a single ‘hub’ in a so-
called ‘star’ configuration, as shown in figure 4. The hub detects when a node fails and cuts it 
out of the ring. If the hub fails, of course, the entire ring goes down, but the hub is a simple, 
special-purpose device installed in a wiring closet or machine room, so it’s much less likely 
to fail than a node. The drawback of a hub is that it contains much of the hardware needed for 
the switches discussed in the next lecture, but doesn’t provide any of the performance gains 
that switches do. 

 

Fig. 3: A dual-attachment ring tolerates failure of one node 

In spite of these problems, two token rings are in wide use, though much less wide than Ethernet: 
the IBM token ring and FDDI. In the case of the IBM token ring this happened because of IBM’s 
marketing prowess; their salesmen persuaded bankers that they didn’t want precious packets 
carrying bank balances to collide on the Ethernet. In the case of FDDI it happened because most 
people were busy deploying Ethernet and developing Ethernet bridges and switches; the FDDI 
standard gained a lot of momentum before anyone noticed that it isn’t very good. 

 

Fig. 4: A ring with a hub tolerates multiple failures 

Arbitration by contention: Ethernet 

Contention, using backoff, is probabilistic, as we saw when we discussed backoff on links. It 
wastes some bandwidth in unsuccessful transmissions. In the case of a broadcast LAN, 
bandwidth is wasted whenever two packets overlap at the receiver; this is called a ‘collision’. 
How often does it happen? 
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In a ‘slotted Aloha’ network a node can’t tell that anyone else is sending; this model is 
appropriate for the radio transmission from feeble terminals to a central hub that was used in the 
original Aloha network. If everyone sends the same size packet (desirable in this situation 
because long packets are more likely to collide) and the senders are synchronized, we can think 
of time as a sequence of ‘slots’, each one packet long. In this situation exponential backoff gives 
an efficiency of 1/e = .37 (see below). 

If a node that isn’t sending can tell when someone else is sending (‘carrier sense’), then a 
potential sender can ‘defer’ to a current sender. This means that once a sender’s signal has 
reached all the nodes without a collision, it has ‘acquired’ the medium and will be able to send 
the rest of its packet without further danger of collision. If a sending node can tell when someone 
else is sending (‘collision detection’) both can stop immediately and back off. Both carrier sense 
and collision detection are possible on a shared bus and are used in the Ethernet. They are also 
possible in a system with a head end that can hear all the nodes, even if the nodes can’t hear each 
other: the head end sends a collision signal whenever it hears more than one sender. 

 

packet packet packet packet 

time

idle 

Contention 
interval 

Contention 
slots 

 

The critical parameter for a ‘CSMA/CD’ (carrier sense multiple access/collision detection) 
network like the Ethernet is the round-trip time for a signal to get from one node to another and 
back. After a maximum round-trip time RT without a collision, a sender knows it has acquired 
the medium. For the Ethernet this time is about 50 µs = 64 bytes at the 10 Mbits/sec transmission 
time; this comes from a maximum diameter of 2 km = 10 µs (at 5 µs/km for signal propagation 
in cable), 10 µs for the time a receiver needs to read the ‘preamble’ of the packet and either 
synchronize with the clock or detect a collision, and 5 µs to pass through a maximum of two 
repeaters, which is 25 µs, times 2 for the round trip. A packet must be at least this long or the 
sender might finish sending it before detecting a collision, in which case it wouldn’t know 
whether the transmission was successful. 

The 100 Mbits/sec fast Ethernet has the same minimum packet size, and hence a maximum 
diameter of 5 µs, 10 times smaller. Gigabit Ethernet has a maximum diameter of .5 µs or 100 m. 
However, it normally operates in ‘full-duplex’ mode, in which a wire connects only two nodes 
and is used in only one direction, so that two wires are needed for each pair of nodes. With this 
arrangement only one node ever sends on a given wire, so there is no multiplexing and hence no 
need for arbitration.  
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Here is how to calculate the throughput of Ethernet. If there are k nodes trying to send, p is the 
probability of one station sending, and r is the round trip time, then the probability that one of the 
nodes will succeed is A = kp(1-p)k-1. This has a maximum at p=1/k, and the limit of the 
maximum for large k is 1/e = .37. So if the packets are all of minimum length this is the 
efficiency. The expected number of tries is 1/A = e = 2.7 at this maximum, including the 
successful transmission. The waste, also called the ‘contention interval’, is therefore 1.7r. For 
packets of length l the efficiency is l/(l + 1.7r)=1/(1 + 1.7r/l) ~ 1 - 1.7r/l when 1.7r/l is small. 
The biggest packet allowed on the Ethernet is 1.5 Kbytes = 20 r, and this yields an efficiency of 
91.5% for the maximum r. Most networks have a much smaller r than the maximum, and 
correspondingly higher efficiency. 

But how do we get all the nodes to behave so that p=1/k? This is the magic of exponential 
backoff. A is quite sensitive to p, so if several nodes are estimating k too small they will fail and 
increase their estimate. With carrier sense and collision detect, it’s OK to start the estimate at 0 
each time as long as you increase it rapidly. An Ethernet node does this, doubling its estimate at 
each backoff by doubling its maximum backoff time, and making it smaller by resetting its 
backoff time to 0 after each successful transmission. Of course each node must chose its actual 
backoff time randomly in the interval 0 .. maximum backoff. As long as all the nodes obey the 
rules, they share the medium fairly, with one exception: if there are very few nodes, say two, and 
one has lots of packets to send, it will tend to ‘capture’ the network because it always starts with 
0 backoff, whereas the other nodes have experienced collisions and therefore has a higher 
backoff. 

The TCP version of exponential backoff doesn’t have the benefit of carrier sense or collision 
detection. On the other hand, routers have some buffering, so it’s not necessary to avoid 
collisions completely. As a result, TCP has ‘slow start’; it transmits slowly until it gets some 
acknowledgments, and then speeds up. When it starts losing packets, it slows down. Thus each 
sender’s estimate of k oscillates around the true value (which of course is always changing as 
well). 
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All versions of backoff arbitration have the problem that a selfish node that doesn’t obey the 
rules can get more than its share. 

Since the Ethernet works by sharing a passive medium, a failing node can only cause trouble by 
‘babbling’, transmitting more than the protocol allows. The most likely form of babbling is 
transmitting all the time, and Ethernet interfaces have a very simple way of detecting this and 
shutting off the transmitter.  

Most Ethernet installations do not use a single wire with all the nodes attached to it. Although 
this configuration is possible, the hub arrangement shown in figure 5 is much more common 
(contrary to the expectations of the Ethernet’s designers). An Ethernet hub just repeats an 
incoming signal to all the nodes. Hub wiring has three big advantages: 

It’s easier to run Ethernet wiring in parallel with telephone wiring, which runs to a hub. 

The hub is a good place to put sensors that can measure traffic from each node and switches 
that can shut off faulty or suspicious nodes. 

Once wiring goes to a hub, it’s easy to replace the simple repeating hub with a more 
complicated one that does some amount of switching and thus increases the total bandwidth. 
It’s even possible to put in a multi-protocol hub that can detect what protocol each node is 
using and adjust itself accordingly. This arrangement is standard for fast Ethernet, which runs 
at 100 Mbits/sec instead of 10, but is otherwise very similar. A fast Ethernet hub 
automatically handles either speed on each of its ports. 

 

Fig. 5: An Ethernet with a hub can switch out failed nodes 

A drawback is that the hub is a single point of failure. Since it is very simple, this is not a major 
problem. It would be possible to connect each node to two hubs, and switch to a backup if the 
main hub fails, but people have not found it necessary to do this. Instead, nodes that need very 
high availability of the network have two network interfaces connected to two different hubs. 

Switches 

The modern trend in local area networks, however, is to abandon broadcast and replace hubs 
with switches. A switch has much more silicon than a hub, but silicon follows Moore’s law and 
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gets cheaper by 2x every 18 months. The cost of the wires, connectors, and packaging is the 
same, and there is much more aggregate bandwidth. Furthermore, a switch can have a number of 
slow ports and a few fast ones, which is exactly what you want to connect a local group of clients 
to a higher bandwidth ‘backbone’ network that has more global scope. 

In the rest this handout we describe the different kinds of switches, and consider ways of 
connecting switches with links to form a larger link or switch.  

A switch is a generalization of a multiplexer or demultiplexer. Instead of connecting one link to 
many, it connects many links to many. Figure 6(a) is the usual drawing for a switch, with the 
input links on the left and the output links on the right. We view the links as simplex, but usually 
they are paired to form full-duplex links so that every input link has a corresponding output link 
which sends data in the reverse direction. Often the input and output links are connected to the 
same nodes, so that the switch allows any node to send to any other. 

A basic switch can be built out of multiplexers and demultiplexers in the two ways shown in 
figure 6(b) and 6(c). The latter is sometimes called a ‘space-division’ switch since there are 
separate multiplexers and demultiplexers for each link. Such a switch can accept traffic from 
every link provided each is connected to a different output link. With full-bandwidth 
multiplexers this restriction can be lifted, usually at a considerable cost. If it isn’t, then the switch 
must arbitrate among the input links, generalizing the arbitration done by its component 
multiplexers, and if input traffic is not reordered the average switch bandwidth is limited to 58% 
of the maximum by ‘head-of-line blocking’.18 

Some examples reveal the range of current technology. The range in latencies for the LAN 
switches and IP routers is because they receive an entire packet before starting to send it on. For 
Email routers, latency is not usually considered important. 

 
Medium Link Bandwidth Latency Links 
Alpha chip register file 48 GB/s 2 ns 6 
Wires Cray T3D 85 GB/s 1 µs 2K 
 HIPPI 1.6 GB/s 1 µs 16 
LAN Switched gigabit 

Ethernet 
1 GB/s 5-100 µs 8 

 FDDI Gigaswitch 275 MB/s 10–400 µs 22 
 Switched Ethernet 10 MB/s 100–1200 µs 8 
IP router many 1-30  MB/s 50–5000 µs 8 
Email router SMTP 10-1000 KB/s 1-100 s many 
Copper pair Central office 80 MB/s 125 µs 50K 

                                                 
18 M. Karol et al., Input versus output queuing on a space-division packet switch. IEEE Transactions on 
Communications 35, 12 (Dec. 1897), pp 1347-1356. 
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Storage can serve as a switch of the kind shown in figure 6(b). The storage device is the common 
channel, and queues keep track of the addresses that input and output links should use. If the 
switching is coded in software, the queues are kept in the same storage, but sometimes they are 
maintained separately. Bridges and routers usually code their switches this way. 

 
 

(a) The usual representation of a switch 
 

mux demux

limited bandwidth

full bandwidth

 
 

(b) Mux–demux code 
 

demux mux

       

=

       
 

(c) Demux–mux code, usually drawn as a crossbar  

Fig. 6.  Switches. 
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Pipelines 

What can we make out of a collection of links and switches. The simplest thing to do is to 
concatenate two links using a connecting node, as in figure 7, making a longer link. This 
structure is sometimes called a ‘pipeline’. The only interesting thing about it is the rules for 
forwarding a single traffic unit:  

Can the unit start to be forwarded before it is completely received (‘wormholes’ or ‘cut-
through’)19, and  

Can parts of two units be intermixed on the same link (‘interleaving’), or must an entire unit 
be sent before the next one can start?  

 
Node

Time 

L1
L2
L3

Node

Time 

L1
L2
L3

Time = Links * (Latency + Time-on-link) 

Time = Links * Latency + Time-on-link 

Store and 
forward 

Wormhole 

 

As we shall see, wormholes give better performance when the time to send a unit is not small, 
and often it is not because often a unit is an entire packet. Furthermore, wormholes mean that a 
connector need not buffer an entire packet. 

The latency of the composite link is the total delay of its component links (the time for a single 
bit to traverse the link) plus a term that reflects the time the unit spends entering links (or leaving 
them, which takes the same time). With no wormholes a unit doesn’t start into link i until all of it 
has left link i-1, so this term is the sum of the times the unit spends entering each link (the size of 

                                                 
19 L. Ni and P. McKinley: A survey of wormhole routing techniques in direct networks. IEEE Computer 26, 62-76 
(1993). 
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Fig. 7.  Composing switches by concatenating. 
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the unit divided by the bandwidth of the link). With wormholes and interleaving, it is the time 
entering the slowest link, assuming that the granularity of interleaving is fine enough. With 
wormholes but without interleaving, each point where a link feeds a slower one adds the 
difference in the time a unit spends entering them; where a link feeds a faster one there is no 
added time because the faster link gobbles up the unit as fast as the slower one can deliver it.  

 

 

B1
B2 B3

Bn

L1
L2 L3 Ln

Latency = L1 + L2 + L3 + Ln  
 

This rule means that a sequence of links with increasing times is equivalent to the slowest, and a 
sequence with decreasing times to the fastest, so we can summarize the path as alternating slow 
and fast links s1 f1 s2 f2 ... sn fn (where fn could be null), and the entering time is the total time to 
enter slow links minus the total time to enter fast links. We summarize these facts: 
 

Wormhole Interleaving Time on links 
No — Σ ti 
Yes No Σ tsi – Σ tfi = Σ (tsi – tfi ) 
Yes Yes max ti 

The moral is to use either wormholes or small units, and to watch out for alternating fast and 
slow links if you don’t have interleaving. However, a unit shouldn’t be too small on a variable 
TDM link because it must always carry the overhead of its address. Thus ATM cells, with 48 bytes 
of payload and 5 bytes of overhead, are about the smallest practical units (though the Cambridge 
slotted ring used cells with 2 bytes of payload). This is not an issue for fixed TDM, and indeed 
telephony uses 8 bit units. 

There is no need to use wormholes for ATM cells, since the time to send 53 bytes is small in the 
intended applications. But Autonet, with packets that take milliseconds to transmit, uses 
wormholes, as do multiprocessors like the J-machine20 which have short messages but care about 
every microsecond of latency and every byte of network buffering. The same considerations 
apply to pipelines. 

Meshes 

If we replace the connectors with switch nodes, we can assemble a mesh like the one in figure 8. 
The mesh can code the bigger switch above it; note that this switch has the same nodes on the 
input and output links. The heavy lines in both the mesh and the switch show the path from node 

                                                 
20 W. Dally: A universal parallel computer architecture. New Generation Computing 11, 227-249 (1993). 
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3 to node 2. The pattern of links between internal switches is called the ‘topology’ of the mesh. 
The figure is oversimplified in at least two ways: Any of the intermediate nodes might also be an 
end node, and the internet has 60 million nodes rather than 4. 

The new mechanism we need to make this work is routing, which converts an address into a 
‘path’, a sequence of decisions about what output link to use at each switch. Routing is done with 
a map from addresses to output links at each switch. In addition the address may change along 
the path; this is coded with a second map, from input addresses to output addresses.  

 1 1 

1 

2 3 
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3 3 
4 4 

route 
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5i 

 

Fig. 8. Composing switches in a mesh. 

What spec does a mesh network satisfy? We saw earlier that a broadcast network provides 
unreliable FIFO delivery. In general, a mesh provides unreliable unordered delivery, because the 
routes can change, allowing one packet to overtake another, even if the links are FIFO. This is 
fine for IP on the Internet, which doesn’t promise FIFO delivery. When switches are used to 
extend a broadcast LAN transparently, however, great care has to be taken in changing routes to 
preserve the FIFO property, even though it has very little value to most clients. This use of 
switching is called ‘bridging’. 

Addresses 

There are three kinds of addresses. In order of increasing cost to code the maps, and increasing 
convenience to the end nodes, they are: 

• Source addresses: the address is just the sequence of output links to use; each switch strips 
off the one it uses. In figure 8, the source addresses of node 2 from node 3 are (d, e) and (a, 
b, c, e).The IBM token ring and several multiprocessors (including the MIT J-machine and the 
Cosmic Cube21) use this. A variation distributes the source route across the path; the address 
(called a ‘virtual circuit’) is local to a link, and each switch knows how to map the addresses 
on its incoming links. ATM uses this variation, and so does the ‘shuffle-exchange’ network 
shown below. 

                                                 
21 C. Seitz: The cosmic cube. Communications of the ACM 28, 22-33 (1985) 
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• Hierarchical addresses: the address is hierarchical. Each switch corresponds to one node in 
the address tree and knows what links to use to get to its siblings, children, and parent. The 
Internet22 and cascaded I/O busses use this. 

• Flat addresses: the address is flat, and each switch knows what links to use for every address. 
Broadcast networks like Ethernet and FDDI use this; the code is easy since every receiver sees 
all the addresses and can just pick off those destined for it. Bridged LANs also use flat 
routing, falling back on broadcast when the bridges lack information about where an end-
node address is. The mechanism for routing 800 telephone numbers is mainly flat. 

Deadlock 

Traffic traversing a composite link needs a sequence of resources (most often buffer space) to 
reach the end, and usually it acquires a resource while holding on to existing ones. This means 
that deadlock is possible. The left side of figure 9 shows the simplest case: two nodes with a 
single buffer pool in each, and links connecting them. If traffic must acquire a buffer at the 
destination before giving up its buffer at the source, it is possible for all the messages to deadlock 
waiting for each other to release their buffers.23 

The simple rule for avoiding deadlock is well known (see handout 14): define a partial order on 
the resources, and require that a resource cannot be acquired unless it is greater in this order than 
all the resources already held. In our application it is usual to treat the links as resources and 
require paths to be increasing in the link order. Of course the ordering relation must be big 
enough to ensure that a path exists from every sender to every receiver. 

The right side of figure 9 shows what can happen even at one cell of a simple rectangular grid if 
this problem is ignored. The four paths use links as follows: 1—EN, 2—NW, 3—WS, 4—SE. 
There is no ordering that will allow all four paths, and if each path acquires its first link there is 
deadlock. 

                                                 
22 W. Stallings, IPV6: The new Internet protocol. IEEE Communications 34, 7 (Jul 1996), pp 96-109. 
23 Actually, this simple configuration can only deadlock if each node fills up with traffic going to the other node. 
This is  very unlikely; usually  some of the buffers will hold traffic for other nodes to the left or right, and this will 
drain out in time.  
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The standard order on a grid is: l1 < l2 iff they are head to tail, and either they point in the same 
direction, or l1 goes east or west and l2 goes north or south. So the rule is: “Go east or west first, 
then north or south.” On a tree l1 < l2 iff they are head to tail, and either both go up toward the 
root, or l2 goes down away from the root. The rule is thus “First up, then down.” On a DAG 
impose a spanning tree and label all the other links up or down arbitrarily; the Autonet does this. 

Note that this kind of rule for preventing deadlock may conflict with an attempt to optimize the 
use of resources by sending traffic on the least busy links. 

Although figure 9 suggests that the resources being allocated are the links, this is a bit 
misleading. It is the buffers in the receiving nodes that are the physical resource in short supply. 
This means that it’s possible to multiplex several ‘virtual’ links on a single physical link, by 
dedicating separate buffers to each virtual link. Now the virtual links are resources that can run 
out, but the physical links are not. The Autonet does not do this, but it could, and other mesh 
networks such as AN224 have done so, as have several multiprocessor interconnects. 

Topology 

In the remainder of the handout, we study mechanisms for routing in more detail.25 It’s 
convenient to divide the problem into two parts: computing the topology of the network, and 
making routing decisions based on some topology. We begin with topology, in the context of a 
collection of links and nodes identified by index types L and N. A topology T specifies the nodes 
that each link connects. For this description it’s not useful to distinguish routers from hosts or 
end-nodes, and indeed in most networks a node can play both roles. 

These are simplex links, with a single sender and a single receiver. We have seen that a 
broadcast LAN can be viewed as a link with n senders and receivers. However, for our current 
purposes it is better to model it as a switch with 2n links to and from each attached node. 
Concretely, we can think of a link to the switch as the physical path from a node onto the LAN, 

                                                 
24 T. Anderson et al., High-speed switch scheduling for local area networks. ACM Transactions on Computer 
Systems 11, 4 (Nov. 1993), pp 319-352. 
25 This is a complicated subject, and our treatment leaves out a lot. An excellent reference is R. Perlman, 
Interconnections: Bridges and Routers , Addison-Wesley, 1992. Chapter 4 on source routing bridges is best left 
unread. 
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Fig. 9. Deadlock.  The version on the left is simplest, but can’t happen with more than 1 buffer/node 
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and a link from the switch as the physical path the other way together with the address filtering 
mechanism.  

Note that a path is not uniquely determined by a sequence of nodes (much less by endpoints), 
because there may be multiple links between two nodes. This is why we define a path as SEQ L 
rather than SEQ N. Note also that we are assuming a global name space N for the nodes; this is 
usually coded with some kind of UID such as a LAN address, or by manually assigned addresses 
like IP addresses. If the nodes don’t have unique names, life becomes a lot more confusing. 

We name links with local names that are relative to the sending node, rather than with global 
names. This reflects the fact that a link is usually addressed by an I/O device address. The link 
from a broadcast LAN node to another node connected to that LAN is named by the second 
node’s LAN address. 

MODULE Network[ 
L   % Link; local name 
N ]   % Node; global name 

TYPE Ns = SET N 
T  = N -> L -> N SUCHTHAT (\ t | t.dom={n|true}) % Topology; defined at each N 
P  = [n, r: SEQ L] WITH {"<=":=Prefix} % Path starting at n 

Here t(n)(l) is the node reached from node n on link l. For the network of figure 8,  
t(3)(a) = 1 
t(3)(d) = 4 
t(1)(a) = 3 
t(1)(b) = 5i 
etc. 

Note that a T is defined on every node, though there may not be any links from a node. A path is 
not just a sequence of nodes because there can be multiple links from one node to another. 

The End function computes the end node of a path. A P is actually a path if End is defined on it, 
that is, if each link actually exists. A path is acyclic if the number of distinct nodes on it is one 
more than the number of links. We can compute all the nodes on a path and all the paths between 
two nodes. All these notions only make sense in the context of a topology that says how the 
nodes and links are hooked up. 

FUNC End(t, p) -> N = RET (p.r = {} => p.n [*] End(t, P{t(p.n)(p.r.head), p.r.tail}) 

FUNC IsPath(t, p) -> Bool = RET End!(t, p) 

FUNC Prefix(p1, p2) -> Bool = RET p1.n = p2.n /\ p1.r <= p2.r 

FUNC Nodes(t, p) -> Ns = RET {p' | p' <= p | End(t, p')) 

FUNC IsAcyclic(t, p) -> Bool = RET IsPath(t, p) /\ Nodes(t, p).size = p.r.size + 1 

FUNC Paths(t, n1, n2)  -> SET p =  
RET {p | p.n = n1 /\ End(t, p) = n2 /\ IsAcyclic(t, p)} 

Like anything else in computing, a network can be recursive. This means that a connected sub-
network can be viewed as a single node. To make this precise we define the restriction of a 
topology to a set of nodes, keeping only the links between nodes in the set. Then we can collapse 
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a topology to a smaller one in which a connected ns appears as a single representative node n0, 
by replacing all the links into ns with links to n0 and discarding all the internal links. The 
outgoing links have to be named by pairs [n, ll], since the naming scheme is local to a node; 
here we use ll for the ‘lower-level’ links of the original T. Often collapsing is tied to hierarchical 
addressing, so that an entire subtree will be collapsed into a single node for the purposes of 
higher-level routing. 

 

n1

n2
n3 n0

ns = {n1, n2, n3}
n0 IN ns 

 
TYPE L = (L + [n, ll]) 

FUNC Restrict(t, ns) -> T =  
RET (\ n | (\ l | (n IN ns /\ (t(n)(l) IN ns => t(n)(l)) )) 

FUNC IsConnected(t, ns) -> Bool =  
RET (ALL n1 :IN ns, n2 :IN ns | Paths(Restrict(t, ns), n1, n2) # {}) 

FUNC Collapse(t, ns, n0) -> T = n0 IN ns /\  IsConnected(t, ns) => 
RET (\ n | (\ l |  

( ~ n IN ns => (t(n)(l) IN ns => n0 [*] t(n)(l))  
[*] n = n0 /\ l IS [n, ll] /\ l.n IN n’ /\ ~ t(l.n)(l.ll) IN ns => 

t(l.n)(l.ll) ) )) 

How does a network find out what its topology is? Aside from supplying it manually, there are 
two approaches. In both, each node learns which nodes are ‘neighbors’, that is, are connected to 
its links, by sending ‘hello’ messages down the links.  

1. Run a global computation in which one node is chosen to learn the whole topology by 
becoming the root of a spanning tree. The root collects all the neighbor information and 
broadcasts what it has learned to all the nodes. The Autonet uses this method. 

2. Run a distributed computation in which each node periodically tells its neighbors everything 
it knows about the topology. In time, any change in a node’s neighbors will spread 
throughout the network. There are some subtleties about what a node should do when it gets 
conflicting information. The Internet uses this method, which is called ‘link-state routing’, 
and calls it OSPF. 

In a LAN with many connected nodes, usually most are purely end-nodes, that is, do not do any 
switching of other people’s packets. The end-nodes don’t participate in the neighbor 
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computation, since that would be an n2 process. Instead, only the routers on the LAN participate, 
and there is a separate scheme for the end-nodes. There are two mechanisms needed: 

1. Routers need to know what end-nodes are on the LAN. Each end-node can periodically 
broadcast its IP address and LAN address, and the routers listen to these broadcasts and 
cache the results. The cache times out in a few broadcast intervals, so that obsolete 
information doesn’t keep being used. Similarly, the routers broadcast the same information 
so that end-nodes can find out what routers are available. The Internet often doesn’t do this, 
however. Instead, information about the routers and end-nodes on a LAN is manually 
configured. 

2. An end-node n1 needs to know which router can reach a node n2 that it wants to talk to; that 
is, n1 needs the value of sw(n1)(n2) defined below. To get it, n1 broadcasts n2 and expects 
to get back a LAN address. If node n2 is on the same LAN, it returns its LAN address. 
Otherwise a router that can reach n2 returns the router’s LAN address. In the Internet this is 
done by the address resolution protocol (ARP). Of course n1 caches this result and times out 
the cache periodically.  

The Autonet paper describes a variation on this, in which end-nodes use an ARP protocol to map 
Ethernet addresses into Autonet short addresses. This is a nice illustration of recursion in 
communication, because it turns the Autonet into a ‘generic LAN’ that is essentially an Ethernet, 
on top of which IP protocols will do another level of ARP to map IP addresses to Ethernet 
addresses.  

Routing 

For traffic to make it through the network, each switch must know which link to send it on. We 
begin by studying a simplified situation in which traffic is addressed by the N of its destination 
node. Later we consider the relationship between these globally unique addresses and real 
addresses. 

A SW tells for each node how to map a destination node into a link26 on which to send traffic; you 
can think of it as the dual of a topology, which for each node maps a link to a destination node. 
Then a route is a path that is chosen by sw.  

TYPE SW  = N -> N -> L  

PROC Route(t, sw, n1, n2) -> P = VAR p :IN Paths(t, n1, n2) | 
(ALL p' | p' <= p /\ p'.r # {} ==>  
          p'.r.last = sw(End(t, p'{r := p'.r.reml})(n2)) => RET p 

Here sw(n1)(n2) gives the link on which to reach n2 from n1. Note that if n1 = n2, the empty 
path is a possible result. There is nothing in this definition that says the route must be efficient. 
Of course, Route is not part of the code, but simply a spec. 

                                                 
26 or perhaps a set of links, though we omit this complication here. 
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We could generalize SW to N -> N -> SET L, and then 

PROC Route(t, sw, n1, n2) -> SET P = RET {p :IN Paths(t, n1, n2) | 
(ALL p' | p' <= p /\ p'.r # {} ==>  
          p'.r.last IN sw(End(t, p'{r := p'.r.reml})(n2))} 

We want consistency between sw and t: the path sw chooses actually gets to the destination and 
is acyclic. Ideally, we want sw to choose a cheapest path. This is easy to arrange if everyone 
knows the topology and the Cost function. For concreteness, we give a popular cost function: the 
length of the path. 

FUNC IsConsistent(t, sw) -> Bool =  
RET ( ALL n1, n2 | Route(t, sw, n1, n2) IN Paths(t, n1, n2) ) 

FUNC IsBest(t, sw) -> Bool = VAR best := {p :IN Paths(t,n1,n2) | | Cost(p)}.min | 
RET ( ALL n1, n2 | Cost(Route(t, sw, n1, n2)) = best ) 

FUNC Cost(p) -> Int = RET p.r.size  % or your favorite 

Don’t lose sight of the fact that this is not code, but rather the spec for computing sw from t. 
Getting t, computing sw, and using it to route are three separate operations. 

There might be more than one suitable link, in which case L is replaced by SET L, or by a 
function that gives the cost of each possible L. We work out the former: 

TYPE SW  = N -> N -> SET L  

PROC Routes(t, sw, n1, n2) -> SET P = RET { p :IN Paths(t, n1, n2) | 
(ALL p' | p' <= p /\ p'.r # {} ==>  
          p'.r.last IN sw(End(t, p'{r := p'.r.reml})(n2)) } 

FUNC IsConsistent(t, sw) -> Bool =  
RET ( ALL n1, n2 | Routes(t, sw, n1, n2) <= Paths(t, n1, n2) ) 

FUNC IsBest(t, sw) -> Bool = VAR best := {p :IN Paths(t,n1,n2) | | Cost(p)}.min | 
RET ( ALL n1, n2 | (ALL p :IN Routes(t, sw, n1, n2) | Cost(p) = best) ) 

Addressing 

In a broadcast network addressing is simple: since every node sees all the traffic, all that’s 
needed is a way for each node to recognize its own addresses. In a mesh network the sw function 
in every router has to map each address to a link that leads there. The structure of the address can 
make it easy or hard for the router to do the switching, and for all the nodes to learn the topology. 
Not surprisingly, there are tradeoffs. 

It’s useful to classify addressing schemes as local (dependent on the source) or global (the same 
address works throughout the network), and as hierarchical or flat. 
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 Flat Hierarchical 

Local — Source routing  
Circuits = distributed source routing: 
route once, keep state in routers. 

Global LANs: router knows links to everywhere 
By broadcast 
By learning 

Fallback is broadcast, e.g. in bridges. 

IP, OSI: router knows links to parent, 
children, and siblings. 

 

Source routing is the simplest for the switches, since all work of planning the routes is unloaded 
on the sender and the resulting route is explicitly encoded in the address. The drawbacks are that 
the address is bigger and, more seriously, that changes to the topology of the network must  be 
reflected in changes to the addresses. 

Congestion control 

As we have seen, we can view an entire mesh network as a single switch. Like any structure that 
involves multiplexing, it requires arbitration for its resources. This network-level arbitration is 
not the same as the link-level arbitration that is requires every time a unit is sent on a link. 
Instead, its purpose is to allocate the resources of the network as a whole. To see the need for 
network-level arbitration, consider what happens when some internal switch or link becomes 
overloaded. 

As with any kind of arbitration, there are two possibilities: scheduling, or contention and 
backoff. Scheduling can be done statically, by allocating a fixed bandwidth to a path or ‘circuit’ 
from a sender to a receiver. The telephone system works this way, and it does not allow traffic to 
flow unless it can commit all the necessary resources. A variation that is proposed for ATM 
networks is to allocate a maximum bandwidth for each path, but to overcommit the network 
resources and rely on traffic statistics to make it unlikely that the bluff will be called. 

Alternatively, scheduling can be done dynamically by backpressure, as in the Autonet and AN2. 
We studied this method in connection with links, and the issues are the same in networks. One 
difference is that the round-trip time may be longer, so that more buffering is needed to support a 
given bandwidth. In addition, the round-trip time is usually much more variable, because traffic 
has to queue at each switch. Another difference is that because a circuit that is held up by 
backpressure may be tying up resources, deadlock is possible. 

Contention and backoff are also similar in links and networks; indeed, one of the backoff links 
that we studied was TCP, which is normally coded on top of a network. When a link or switch is 
overloaded, it simply drops some traffic. The trouble signal is usually coded by timeout waiting 
for an ack. There have been a number of proposals for an explicit ‘congested’ signal, but it’s 
difficult to ensure that this signal gets back to the sender reliably. 


