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24. Network Objects

We have studied how to build up communications from physical signals to a reliable message
channel defined by the Channel spec in handout 21 on distributed systems. This channel delivers
bytes from a sender to a receiver in order and without loss or duplication as long as there are no
failures; if there are failures it may lose some messages.

Usually, however, a user or an application program doesn’t want reliable messages to and from a
fixed party. Instead, they want access to a named object. A user wants to name the object with a
World Wide Web URL (perhaps implicitly, by clicking on a hypertext link), and perhaps to pass
some parameters that are supplied as fields of a form; the user expects to get back a result that
can be displayed, and perhaps to change the state of the object, for instance, by recording a
reservation or an order. A program may want the same thing, or it may want to call a procedure
or invoke a method of an object.

In both cases, the object name should have universal scope; that is:
It should be able to refer to an object on any computer that you can communicate with.

It should refer to the same object if it is copied to any computer that you can communicate
with.
As we learned when we studied naming, it’s possible to encode method names and arguments
into the name. For example, the URL

http://altavista.digital.conm cgi-bin/query?&what =web&qg=but | er +| anpson

could be written in Spec as Al t avi st a. Query("web", {"butler"”, "lanmpson"}).So we can
write a general procedure call as a path name. To do this we need a way to encode and decode

the arguments; this is usually called ‘marshaling’ and “‘unmarshaling’ in this context, but it’s the

same mechanism we discussed in handout 7.

So the big picture is clear. We have a global name space for all the objects we could possibly talk
about, and we find a particular object by simply looking up its name, one component at a time.
This summary is good as far as it goes, but it omits a few important things.

* Roots. The global name space has to be rooted somewhere. A Web URL is rooted in the
Internet’s Domain Name Space (DNS).

e Heterogeneity. There may be a variety of communication protocols used to reach an object,
hardware architectures and operating systems implementing it, and programming languages
using it. Although we can abstract the process of name lookup as we did in handout 12, by
viewing the directory or context at each point as a function N - > (D + V), there may be very
different code for this lookup operation at different points. In a URL, for example, the host
name is looked up in DNS, the next part of the name is looked up by the HTML server on
that host, and the rest is passed to some program on the server.
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* Efficiency. If we anticipate lots of references to objects, we will be concerned about
efficiency. There are various tricks that we can use to make things run faster:

Use specialized interfaces to look up a name. An important case of this is to pass a whole
path name along to the lookup operation so that it can be swallowed in one gulp, rather
than looking it up one simple name at a time.

Cache the results of looking up prefixes of a name.

Change the representation of an object name to make it efficient in a particular situation.
This is called ‘swizzling’. One example is to encode a name in a fixed size data structure.
Another is to make it relative to a locally meaningful root, in particular, to make it a
virtual address in the local address space.

e Fault tolerance. In general we need to deal with both volatile and stable (or persistent)
objects. Volatile objects may disappear because of a crash, in which case there has to be a
suitable error returned. Stable objects may be temporarily unreachable. Both kinds of objects
may be replicated for availability, in which case we have to locate a suitable replica.

e Location transparency. ldeally, local and remote objects behave in exactly the same way. In
fact, however, there are certainly performance differences, and methods of remote objects
may fail because of communication failure or failure of the remote system.

* Data types and encoding. There may be restrictions on what types of values can be passed as
parameters to methods, and the cost of encoding may vary greatly, depending on the
encoding and on whether encoding is done by compiled code or by interpreting some
description of the type.

*  Programming issues. If the objects are typed, the type system must deal with evolution of the
types, because in a big system it isn’t practical to recompile everything whenever a type
changes. If the objects are garbage collected, there must be a way to know when there are no
longer any references to an object.

Another way of looking at this is that we want a system that is universal, that is, independent of
the details of the code, in as many dimensions as possible.
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Function Independent of How

Transport bytes Communication protocol Reliable messages

Transport meaningful Architecture and language Encode and decode

values Stubs and pickles

Network references Location, architecture, and  Globally meaningful names

language

Request-response Concurrency Server: work queue
Client: waiting calls

Evolution Version of an interface Subtyping

Fault tolerance Failures Replication and failover

Storage allocation Failures, client programs Garbage collection

There are lots of different kinds of network objects, and they address these issues in different
ways and to different extents. We will look closely at two of them: Web URLs, and Modula-3
network objects. The former are intended for human consumption, the latter for programming,
and indeed for fairly low level programming.

Web URLSs

Consider again the URL

http://altavista.digital.com cgi-bin/query?&what =web&q=but| er +| anpson

It makes sense to view htt p: // al tavi st a. di gi t al . comas a network object, and an HTTP Get
operation on this URL as the invocation of a quer y method on that object with parameters
(what : ="web", q:="butl er+l anpson") . The name space of URL objects is rooted in the
Internet DNS; in this example the object is just the host named by the DNS name plus the port
(which defaults to 80 as usual). There is additional multiplexing for the RPC server cgi - bi n.
This server finds the procedure to run by looking up quer y in a directory of scripts and running
it.

HTTP is a request-response protocol. Internet TCP is the transport. This works in the most
straightforward way: there is a new TCP connection for each HTTP operation (although the
latest version, HTTP 1.2, has provision for caching connections, which cuts the number of round
trips and network packets by a factor of 3 when the response data is short). The number of

instructions executed to do an invocation is not very important, because it takes a user action to
cause an invocation.

In the invocation, all the names in the path name are strings, as are all the parameters. The data
type of the response is always HTML. This, however, can contain other types. Initially GIF (for
images) was the only widely supported type, but several others (for example, JPEG for images,
Java and ActiveX for code) are now routinely supported. An arbitrary embedded type can be
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handled by dispatching a ‘helper’ program such as a Postscript viewer, a word processor, or a
spreadsheet.

It’s also possible to do a Put operation that takes an HTML value as a parameter. This is more
convenient than coding everything into strings in a Get . Methods normally ignore parameters
that they don’t understand, and both methods and clients ignore the parts of HTML that they
don’t understand. These conventions provide a form of subtyping.

There is no explicit fault tolerance, though the Web inherits fault-tolerance for transport from IP
and the ability to have multiple servers for an object from DNS. In addition, the user can retry a
failed request. This behavior is consistent with the fact that the Web is used for casual browsing,
so it doesn’t really have to work. This usage pattern is likely to evolve into one that demands
much higher reliability, and a lot of the code will have to change as well to support it.

Normally objects are persistent (that is, stored on the disk) and read-only, and there is no notion
of preserving state from one operation to the next, so there is no need for storage allocation.
There is a way to store server state in the client, using a data structure called a ‘cookie’; the user
is responsible for getting rid of these. Cookies are often used as pointers back to writeable state
in the server, but there are no standard ways of doing this.

As everyone knows, the Web has been extremely successful. It owes much of its success to the
fact that an operation is normally invoked by a human user and the response is read by the same
user. When things go wrong, the user either gives up, makes the best of it, or tries something
else. It’s extremely difficult to write programs that use HTTP, because there are so many things
that can happen.

Modula-3 network objects

We now look at the Module-3 network object system, which has an entirely different goal: to be
used by programs. The things to be done are the same: name objects, encode parameters and
responses, process request and response messages. However, most of the coding techniques are
quite different. This system is described in the paper by Birrell et al. (handout 24). It addresses
all of these issues in the table above except for fault-tolerance, and provides a framework for that
as well. These network objects are closely integrated with Modula-3’s strongly typed objects,
which are similar to the typed objects of C++, Java, and other ‘object-oriented’ programming
languages.

Why objects, rather than procedures? Because objects subsume the notions of procedure,
interface, and reference/pointer. By an object we mean a collection of procedures that operate on
some shared state; an object is just like a Spec module; indeed, its behavior can be defined by a
Spec module. An essential property of an object is that there can be many codes for the same
interface. This is often valuable in ordinary programming, but it’s essential in a distributed

system, because it’s normal for different instances of the same kind of object to live on different
machines. For example, two files may live on different file servers.

Although in principle every object can have its own procedures to implement its methods,
normally there are lots of objects that share the same procedure code, each with its own state. A
set of objects with the same code is often called a ‘class’. The standard code for an object is a
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record that holds its state along with a pointer to a record of procedures for the class. Indeed,
Spec classes work this way.

The basic idea

We begin with a spec for network objects. The idea is that you can invoke a method of an object
transparently, regardless of whether it is local or remote.

Client Client
- ocall | call N
Server Server

If it’s local, the code just invokes the method directly; if it’s remote, the code sends the
arguments in a message and waits for a reply that contains the result. A real system does this by
supplying a ‘surrogate’ object for a remote object. The surrogate has the same methods as the
local object, but the code of each method is a ‘stub’ or ‘proxy’ that sends the arguments to the
remote object and waits for the reply. The source code for the surrogate class is generated by a
‘stub generator’ from the declaration of the real class, and then compiled in the ordinary way.

void inner(long size, long A[], long B[], long *result)

A[l..size] B[l..size]

result return value

CLIENT

SERVER

We can’t do this in a general way in Spec. Instead, we change the call interface for methods to a
single procedure Cal | . You give this procedure the object, the method, and the arguments (with
type Any), and it gives back the result. This gives us clumsy syntax for invoking a method,
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Call (o, "meth", args) instead of 0. met h( ar gs) , and sacrifices static type checking, but it
also gives us transparent invocation for local and remote objects.

An unrealistic form of this is very simple.
MODULE Obj ect0 =

TYPE O
Met hod

Met hod -> (PROC (Any) -> Any) % Object
String % Method name

PROC Cal | (o, nethod, any) -> Any RAISES {failed} =
RET o( net hod) (any)

END Obj ect 0

What’s wrong with this is that it takes no account of what happens when there’s a failure. The
machine containing the remote object might fail, or the communication between that machine
and the invoker might fail. Either way, it won’t be possible to satisfy this spec. When there’s a
failure, we expect the caller to see a f ai | ed exception. But what about the method? It may not
be invoked at all, or it may be invoked but no result returned to the caller, or it may still be
running after the caller gets the exception. This third case can arise if the remote object gets the
call message, but communication fails and the caller times out while the remote method is still
running; such a call is called an ‘orphan’. The following spec expresses all these possibilities;
Fork(p, a) isa procedure that runs p(a) in a separate thread. We assume that the atomicity of
the remote method when there’s a failure (that is, how much of it gets executed) is already
expressed in its definition, so we don’t have to say anything about it here.

MODULE Obj ect =

TYPE O = Method -> (PROC (Any) -> Any) % Object
Met hod = String % Method name
VAR failure : Bool := false

PROC Cal | (o, nethod, any) -> Any RAISES {failed} =
RET o(net hod) (any)
] failure =>
BEG N SKIP [] o(nethod)(any) [] Fork(o(method), any) END;
RAI SE fail ed

END Obj ect

Now we examine basic code for this spec in terms of messages sent to and from the remote
object. In the next two sections we will see how to optimize this code.

Our code is based on the idea of a Space, which you should think of as the global name of a
process or address space. Each object and each thread is local to some space. An object’s state is
directly addressable there, and its methods can be directly invoked from a thread local to that
space. We assume that we can send messages reliably between spaces using a channel Ch with

the usual Get and Put procedures. Later on we discuss how to code this on top of standard
networking.

For network objects to work transparently,
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we must have a globally valid name for an object,
we must be able to find its space from its global name, and
we must be able to convert between local and global names.

We go from global to local in order to find the object in its own space to invoke a method,; this is
sometimes called ‘swizzling’. We go from local to global to send (a reference to) the object from
its own space to another space; this is sometimes called ‘unswizzling’.

Looking at the spec, the most obvious approach is to simply encode the value of an Oto make it
remote. But this requires encoding procedures, which is fraught with difficulty. The whole point
of a procedure is that it reads and changes state. Encoding a function, as long as it doesn’t
depend on global state, is just a matter of encoding its code, since given the code it can execute
anywhere. Encoding a procedure is not so simple, since when it runs it has to read and change
the same state regardless of where it is running. This means that the running procedure has to
communicate with its state. It could do this with some low level remote read and write operations
on state components such as bytes of memory. Systems that work this way are called ‘distributed
shared memory’ systems,. The main challenge is to make the reads and writes efficient in spite of
the fact that they involve network communication. We will study this problem in handout 30
when we discuss caching.

This is not what remote procedures or network objects are about, however. Instead of encoding
the procedure code, we encode a reference to the object, and send it a message in order to invoke
a method. This reference is a Renot e; it is a path name that consists of the Space containing the
object together with some local name for the object in that space. The local name could be just a
Local Obj, the address of the object in the space. However, that would be rather fragile, since
any mistake in the entire global system might result in treating an arbitrary memory address as

the address of an object. It is prudent to name objects with meaningless object identifiers or

O d’s, and add a level of indirection for exporting the name of a local object, export: O d ->
Local Obj . We thus have Renot e = [space, oid].

We summarize the encoding and decoding of arguments and results in two procedures Encode
and Decode that map between Any and Dat a, as described in handout 7. In the next section we
discuss some of the details of this process.

MODULE Net Obj = % codes Obj ect

TYPE O = (Local Obj + Renpte)
Local Obj = Object.O % A local object
Renot e = [space, oid] % Wire Rep for an object
ad = Int % Object Identifier
Space = Int % Address space
Dat a = SEQ Byte
Cld = Int % Call Identifier
Req = [for: Cld, rempte, nethod, datal % Request
Resp = [for: Cd, dat a] % Response
M (Req + Resp) % Message

Handout 24. Network Objects

6.826—Principles of Computer Systems 2000

CONST r . Space := ...
sendSR = Ch.SR{s :=r}
VAR export Space -> O d -> Local Obj % One per space

PROC Cal | (o, nethod, any) -> Any RAISES {failed} =
IF o IS Local bj => RET o(nethod) (any)
[*] VAR cid := NewCld(), to :=0.space |
Ch. Put (sendSR{r := to}, Req{cid, renpte, method, Encode(any)});
VAR m |
IF << (to, m := Ch.Get(r); mIS Resp /\ mfor = cid => SKIP >>;
RET Decode(m dat a)
[1 Ti meout () => RAISE failed
Fl
Fl

After sending the request, Cal | waits for a response, which is identified by the right CI d in the
for field. If it hasn’t arrived by the time Ti neout () is true, Cal | gives up and raises f ai | ed.

Note the Spec hack: an atomic command that gets from the channel only the response to the
current ci d. Other threads, of course, might assign other ci d’s and extract their responses from
the same space-to-space channel. Code has to have this demultiplexing in some form, since the
channel is between spaces and we are using it for all the requests and responses between those
two spaces. In a real system the calling thread registers its Cl d and wait on a condition. The code
that receives messages looks up the Cl d to find out which condition to signal and where to queue
the response.

THREAD Server() =
DO VAR m from Space, renote, result: Any |
<< (from m := Ch.Get(r); mIS Req => SKIP >>;
renpte := mrenpte;
I F renpte.space = r => VAR local := export(r)(renmote.oid) |
result := local (mnmethod)(Decode(mdata));
Ch. Put (sendSR{r := fron}, Resp{mfor, Encode(result)})
[*1 ... % not local object; error
Fl
oD

Note that the server thread runs the method. Of course, this might take a while, but we can have
as many of these server threads as we like. A real system has a single receiving thread, interrupt
routine, or whatever that finds an idle server thread and gives it a newly arrived request to work
on.

FUNC Encode(any ) -> Data
FUNC Decode(data) -> Any

END Net Obj

We have not discussed how to encode exceptions. As we saw when we studied the atomic
semantics of Spec, an exception raised by a routine is just a funny kind of result value, so it can
be coded along with the ordinary result. The caller checks for an exceptional result and raises the
proper exception.
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This module uses a channel Ch that sends messages between spaces. It is a slight variation on the
perfect channel described in handout 20. This version delivers all the messages directed to a
particular address, providing the source address of each one. We give the spec here for
completeness.

MODULE Per f ect SR

M % Message

Al = % Address
TYPE Q = SEQ M % Queue: channel state

SR = [s: A r: A % Sender - Receiver
VAR q 1= (SR -> Q{* -> {}} % all initially empty
APROC Put (sr, m = << q(sr) :=q(sr) + {n} >>

APROC Get(r: A -> (AL M = << VAR sr, m| sr.r =r /\ m= g(sr).head =>
q(sr) :=q(sr).tail; RET (sr.s, m >>

END Perfect SR
MODULE Ch = Perfect SR[ Net Obj. M Net Obj . Space]

Now we explain how types and references are handled, and then we discuss how the space-to-
space channels are actually coded on top of a wide variety of existing communication
mechanisms.

Types and references

Like the Modula 3 system described in handout 25, most RPC and network object systems have
static type systems. That is, they know the types of the remote procedures and methods, and take
advantage of this information to make encoding and decoding more efficient. In Net Obj the
argument and result are of type Any, which means that Encode must produce a self-describing
Dat a result so that Decode has enough information to recreate the original value. If you know the
procedure type, however, then you know the types of the argument and result, and Decode can be
type specific and take advantage of this information. In particular, values can simply be encoded
one after another, a 32-bit integer as 4 bytes, a record as the sequence of its component values,
etc., just as in handout 7. The Ser ver thread reads the object r enot e from the message and
converts it to a local object, just as in Net Obj . Then it calls the local object’s di sp method,
which decodes the method, usually as an integer, and switches to method-specific code that
decodes the arguments, calls the local object’s method, and encodes the result.

This is not the whole story, however. A network object system must respect the object types,
decoding an encoded object into an object of the same type (or perhaps of a supertype, as we
shall see). This means that we need global as well as local names for object types. In fact, there
are in general two local types for each global type G, one which is the type of local objects of

type G, and another which is the type of remote objects of type G. For example, suppose there is a
network object type Fi | e. A space that implements some files will have a local type MyFi | e for
its code. It may also need a surrogate type Sr gFi | e, which is the type of surrogate objects that
are implemented by a remote space but have been passed to this one. Both MyFi | e and SrgFi | e
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are subtypes of Fi | e. As far as the runtime is concerned, these types come into existence in the
usual way, because code that implements them is linked into the program. In Modula 3 the global
name is the “fingerprint’ FP of the type, and the local name is the ‘typecode’ TC. The stub code
for the type registers the local-global mapping with the runtime in tables FPt oTC: FP -> TCand
TCQtoFP: TC -> FP.!

When a network object r enot e arrives and is decoded, there are three possibilities:

» It corresponds to a local object, because r enot e. space = r. The export table maps
renot e. oi d to the corresponding Local Obj .

* It corresponds to an existing surrogate. The sur r ogat es table keeps track of these in
surrogates: Space -> Renote -> Local Obj. Inhandout 24 the export and
surrogat es tables are combined into a single Obj Tbl .

* A new surrogate has to be created for it. For this to work we have to know the local surrogate
type. If we pass along the global type with the object, we can map the global type to a local
(surrogate) type, and then use the ordinary New to create the new surrogate.

Almost every object system, including Modula 3, allows a supertype (more general type) to be
‘narrowed’ to a subtype (more specific type). We have to know the smallest (most specific) type
for a value in order to decide whether the narrowing is legal, that is, whether the desired type is a
supertype of the most specific type. So the global type for the object must be its most specific
type, rather than some more general one. If the object is coming from a space other than its
owner, that space may not even have any local type that corresponds to the objects most specific
type. Hence the global type must include the sequence of global supertypes, so that we can
search for the most specific local type of the object.

It is expensive to keep track of the object’s sequence of global types in every space that refers to
it, and pass this sequence along every time the object is sent in a message. To make this cheaper,
in Modula 3 a space calls back to the owning space to learn the global type sequence the first
time it sees a remote object. This call is rather expensive, but it also serves the purpose of
registering the space with the garbage collector (making the object ‘dirty”).

This takes care of decoding. To encode a network object, it must be in export so that it has an
a d. Ifit isn’t, it must be added with a newly assigned O d.

Where there are objects, there must be storage allocation. A robust system must reclaim storage
using garbage collection. This is especially important in a distributed system, where clients may
fail instead of releasing objects. The basic idea for distributed garbage collection is to keep track
for each exported object of all the spaces that might have a reference to the object. A space is
supposed to register itself when it acquires a reference, and unregister itself when it gives up the
reference (presumably as the result of a local garbage collection). The owner needs some way to
detect that a space has failed, so that it can remove that space from all its objects. The details are
somewhat subtle and beyond the scope of this discussion.

! There’s a kludge that maps the local typecode to the surrogate typecode, instead of mapping the fingerprint to
both.
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Practical communication

This section is about optimizing the space-to-space communication provided by Per f ect SR.
We’d like the efficiency to be reasonably close to what you could get by assembling messages by
hand and delivering them directly to the underlying channel. Furthermore, we want to be able to
use a variety of transports, since it’s hard to predict what transports will be available or which
ones will be most efficient. There are several scales at which we may want to work:

Bytes into or out of the channel.
Data blocks into or out of the channel.

Directly accessible channel buffers. Most channels will take bytes or blocks that you give
them and buffer them up into suitable blocks (called packets) for transmission).

Transmitting and receiving buffers.
Setting up channels to spaces.
Passing references to spaces.

At the lowest level, we need efficient access to a transport’s mechanism for transmitting bytes or
messages. This often takes the form of a ‘connection’ that transfers a sequence of bytes or
messages reliably and efficiently, but is expensive to keep around. A connection is usually tied to
a particular address space and, unlike an address, cannot be passed around freely. So our grand
strategy is to map Space -> Connect i on whenever we do a call, and then send the message
over the connection. Because this mapping is done frequently, it must be efficient. In the most
general case, however, when we have never talked to the space before, it’s a lot of work to figure
out what transports are available and set up a connection. Caching is therefore necessary.

The general mechanism we use is Space -> SET Endpoint -> Location -> Connection.
The Space is globally unique, but has no other structure. It appears in every Renot e and every
surrogate object, so it must be optimized for space. An Endpoi nt is a transport-specific address;
there is a set of them because a space may implement several transports. Because Endpoi nt ’s are
addresses, they are just bytes and can be passed freely in messages. A Locat i on is an object; that
is, it has methods that call the transport’s code. Converting an Endpoi nt into a Locat i on

requires finding out whether the Endpoi nt ’s transport is actually implemented here, and if it is,
hooking up to the transport code. Finally, a Locat i on object’s new method yields a connection.
The Locat i on may cache idle connections or create new ones on demand, depending on the
costs.

Consider the concrete example of TCP as the channel. An Endpoi nt is a DNS name or an IP
address, a port number, and a UID for an address space that you can reach at that IP and port if it
hasn’t failed; this is just bits. The corresponding Locat i on is an object whose new method
generates a TCP connection to that space; it works either by giving you an existing TCP
connection that it has cached, or by creating a new TCP connection to the space. A Connect i on
is a TCP connection.

As we have seen, a Space is an abbreviation, translated by the addr s table. Thus
addrs: Space -> SET Endpoi nt. We need to set up addr s for newly encountered Space’s,
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and we do this by callback to the source of the Space, maintaining the invariant: have r enot e
==> addrs! (renot e. space) . This ensures that we can always invoke a method of the remote,
and that we can pass on the space’s Endpoi nt ’s when we pass on the remote. The callback
returns the set of Endpoi nt ’s that can be used to reach the space.

An Endpoi nt should ideally be an object with a | ocat i on method, but since we have to
transport them between spaces, this would lead to an undesirable recursion. Instead, an Endpoi nt
is just a string (or some binary record value), and a transport can recognize its own endpoints.
Thus instead of invoking endpoi nt . | ocati on, we invoke t r. | ocat i on for each transport t r
that is available, until one succeeds and returns a Locat i on. If a Transport doesn’t recognize
the Endpoi nt , it returns ni | instead. If there’s no Tr ansport that recognizes the Endpoi nt , then
it’s of no use.

A Connect i on is a bi-directional channel that has the SR built in and has M = Byt e; it connects a
caller and a server thread (actually the thread is assigned dynamically when a request arrives, as
we saw in Net Obj ect ). Because there’s only one sender and one receiver, it’s possible to stuff
the parts of a message into the channel one at a time, and the caller does not have to identify

itself but can take anything that comes back as the response. Thus the connection replaces

Net Obj . CI d. The idea is that a TCP connection could be used directly as a Connect i on. You can
make a Connect i on from a Locat i on. The reason for having both is that a Locat i on is justa
small data structure, while a Connect i on may be much more expensive to maintain. A caller
acquires a Connect i on for each call, and releases it when the call is done. The code can choose
between creating and destroying connections on the one hand, and caching them on the other,
based on the cost of creating one versus the cost of maintaining an idle one.

The byte stream code should provide multi-byte Put and Get operations for efficiency. It may
also provide access to the underlying buffers for the stream, which might make encoding and
decoding more efficient; this must be done in a transport-independent way. Transmitting and
receiving the buffers is handled by the transport. We have already discussed how to obtain a
connection to a given space.

Actually, of course, the channels are usually not perfect but only reliable; that is, they can lose
messages if there is a crash. And even if there isn’t a crash, there might be an indefinite delay
before a message gets through. If you have a transactional queuing system the channels might be
perfect; in other words, if the sender doesn’t fail it will be able to queue a message. However, the
response might be long delayed, and in practice there has to be a timeout after which a call raises
the exception Cal | Fai | ed. At this point the caller doesn’t know for sure whether the call
completed or not, though it’s likely that it didn’t. In fact, it’s possible that the call might still be
running as an ‘orphan’.

For maximum efficiency you may want to use a specialized transport rather than a general one
like RPC. Handout 11 described one such transport and analyzes its efficiency in detail.

Bootstrapping

So far we have explained how to invoke a method on a remote object, and how to pass references
to remote objects from one space to another. To get started, however, we have to obtain some
remote objects. If we have a single remote directory object that maps names to objects, we can

Handout 24. Network Objects 12
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look up the names of lots of other objects there and obtain references to them. To get started, we
can adopt the convention that each space has a special object with O d 0 that is a directory.
Given a space, we can forge Renot e{ space, 0) to get a reference to this object.

Actually we need not a Space but a Locat i on that we can use to get a Connect i on for invoking
a method. To get the Locat i on we need an Endpoi nt , that is, a network address plus a well-
known port number plus a standard unique identifier for the space. So given an address, say

www. mi cr osof t . com we can construct a Locat i on and invoke the lookup method of the
standard directory object. If a server thread is listening on the well-known port at that address,
this will work.

A directory object can act as a ‘broker’, choosing a suitable representative object for a given
name. Several attempts have been made to invent general mechanisms for doing this, but usually
they need to be application-specific. For example, you may want the closest printer to your
workstation that has B-size paper. A generic broker won’t handle this well.

Handout 24. Network Objects 13
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25. Paper: Network Objects

The attached paper on network objects by Birrell, Nelson, Owicki, and Wobber isafairly
complete description of aworking syslem. The main smplification isthat it supportsasingle
language, Modula 3, which is smilar to Java. The paper explains most of the detail required to
make the system rdidble and efficient, and it gives the internd interfaces of the implementation.
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Authors Abstract

A network object is an object whose methods can be invoked over anetwork. The Modula-3
network objects system is novel for its overal simplicity. It provides distributed type safety
through thenarrowest surrogate rule, which allows programmersto export new versionsof dis-
tributed services as subtypes of previousversions. Thisreport describesthe design and imple-
mentation of the system, including a thorough description of realistic marshaling algorithms
for network objects, precise informal specifications of the major system interfaces, lessons
learned from using the system, and performance resullts.
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1 Overview

In pure obj ect-oriented programming, clients cannot access the concrete state of an object di-
rectly, but only viathe object’s methods. This methodology applies beautifully to distributed
computing, sincethe method calls are aconvenient place to insert the communi cation required
by the distributed system. Systems based on this observation began to appear about a decade
ago, including Argus[16], Eden[1], and early work of Shapiro[24], and more keep arriving
every day. It seemsto be the destiny of distributed programming to become object-oriented,
but the details of the transformation are hazy. Should objects be mobileor stationary? Should
they be communicated by copying or by reference? Should they be active? Persistent? Repli-
cated? |s the typical object a menu button or an X server? |s there any difference between
inter-program typechecking and intra-program typechecking?

We believe that the way to make progress in these issues is to discuss them in the context
of real implementations. To this end, this report describes a distributed programming system
for Modula-3, that we call network objects.

Network objects provide functionality similar to remote procedure call (RPC), but they are
more general and easier to use. Our network objects are not mobile, but we make it easy to
communicate objects either by copying or by reference. Our objects are passive: they have
no implicitly associated thread of control, nor isthere any implicit synchronization associated
with calling their methods. Our objects are not persistent or replicated. They are sufficiently
lightweight that it would be perfectly practical to use one per menu button. We provide strong
inter-program typechecking.

The primary distinguishing aspect of our system isitssimplicity. We restricted our feature
set to those features that we believe are valuable to al distributed applications (distributed
type-checking, transparent invocation, powerful marshaling, efficient and convenient access
to streams, and distributed garbage collection), and we omitted more complex or speculative
features (object mobility, transactions).

We organized the implementation around a small number of quitesimpleinterfaces, each of
whichisdescribed inthisreport. Thereport also describesanumber of implementationdetails
that have been omitted from previously published work, including simple algorithmsfor mar-
shaling and unmarshaling network objects in a heterogeneous network. All of this materia
makes the report longer than we would like, but to make progress in the complicated design
space of distributed object systemsit seems necessary to describereal systemsin more detail
than is customary in the research literature.

We now briefly introduce some of the central aspects of our design.

Distributed typechecking. Our system provides strong typechecking via the narrowest sur-
rogate rule, which will be described in detail below. In a distributed environment it can be
very difficult to release anew version of aservice, since old clients must be supported as well
as new ones. The narrowest surrogate rule allows a programmer to rel ease a new version of
the service as a subtype of the old version, which supports both old and new clients and en-
surestype safety. The narrowest surrogate rule could also be useful in other situations where
separately compiled programs need to communicate in atype-safe way; for example, it could
be used to solve the problem of version skew in shared libraries.

Transparent remote invocation. In our system, remote invocations are syntactically identi-
cal tolocal ones; their method signaturesareidentical. A client invokingamethod of an object
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need not know whether the object islocal or remote.

Powerful marshaling. Asin any distributed programming system, argument values and re-
sults are communicated by marshaling them into a sequence of bytes, transmitting the bytes
from one program to the other, and then unmarshaling them into valuesin the receiving pro-
gram. The marshaling code is contained in stub modules that are generated from the object
type declaration by a stub generator. Our marshaling code relies heavily on a genera -purpose
mechanism called pickles. Pickles use the same runtime-type data structures used by the local
garbage collector to perform efficient and compact marshaling of arbitrarily complicated data
types. Our stub generator produces in-line code for simpletypes, but calls the pickle package
for complicated types. This combination strategy makes simple calls fast, handles arbitrary
data structures, and guarantees small stub modules.

We believeit is better to provide powerful marshaling than object mobility. The two facili-
tiesare similar, since both of them allow the programmer the option of communi cating objects
by reference or by copying. Either facility can be used to distribute data and computation as
needed by applications. Object mobility offers slightly more flexibility, since the same object
can be either sent by reference or moved; while with our system, network objects are always
sent by reference and other objects are always sent by copying. However, thisextraflexibility
doesn’'t seem to us to be worth the substantial increase in complexity of mobile objects. For
example, asystem like Hermes[ 5], though designed for mobile objects, could beimplemented
straightforwardly with our mechanisms.

Leveraging general-pur posestreams. Our whol e design makes heavy use of object-oriented
buffered streams. These are abstract types representing buffered streams in which the method
for filling the buffer (in the case of input streams) or flushing the buffer (in the case of output
streams) can be overridden differently in different subtypes. The representation of the buffer
and the protocol for invoking the flushing and filling methods are common to al subtypes,
so that generic facilities can deal with buffered streams efficiently, independently of where
the bytes are coming from or going to. To our knowledge these streams were first invented
by the designers of the OS6 operating system[26]. In Modula-3 they are called readers and
writerg[18].

Because we use readers and writers, our interface between stubs and protocol-specific com-
munication code (which we call transports) is quite simple. This choice wasinitially contro-
versial, and viewed as a likely source of performance problems. However, since readers and
writers are buffered streams, it is still possible for the stubs to operate directly on the buffer
when marshaling and unmarshaling simple types, so there is not much loss of efficiency for
simple calls. And for arguments that need to be pickled, it is afurther simplification that the
streams used by the transport interface are of the same type as those assumed by the pickle
package.

Marshaling support for streams. Inter-process byte streams are more convenient and effi-
cient than RPC for transferring large amounts of unstructured data, as criticshave often pointed
out. We have therefore provided specia marshaling support for Modula-3's standard stream
types (readers and writers). We marshal readers and writers by defining surrogate readers and
writers as subtypes of the abstract stream types. To communicate a stream from one program
to another, a surrogate stream is created in the receiving program. Data is copied over the
network between the buffers of the real stream and the surrogate stream.

Here again the preval ence of readers and writersisimportant: the stream typesthat the mar-
shaling code supports are not some new kind of stream invented for marshaling purposes, but
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exactly the readers and writers used by the existing public interfaces in the Modula-3 library.

Distributed garbage collection. Garbage collection isaval uabletool for programming dis-
tributed systems, for all the reasons that apply to programsthat run in a single address space.
Our distributed collector alows network objects to be marshaled freely between processes
without fear of memory leakage. We employ a fault-tolerant and efficient agorithm for dis-
tributed garbage collection that is a generalization of reference counting; it maintains a set of
identifiers for processes with references to an object. Distributed collection is driven by the
loca collectors in each process; there is no need for global synchronization. Our agorithm,
however, does not collect circular structures that span more than one address space.

1.1 Related work

We have built closely on the ideas of Emerald[14] and SO 25]; our main contribution has
been to select and simplify the essential features of these systems. One important simplifica-
tion is that our network objects are not mobile. Systems like Orca[2] and Amber[7] aim at
using objects to obtain performance improvements on a multiprocessor. We hope that our de-
sign can be used in this way, but our main goa was to provide reliable distributed services,
and consequently our system is quite different. For example, the implementations of Orca
and Amber described in the literature require more homogeneity than we can assume. (Rus-
tan Leino has implemented a version of Modula-3 network objects on the Caltech Mosaic, a
fine-grained mesh multiprocessor[15]. But we will not describe hiswork here)

Systemslike Argus[16, 17] and Arjuna[ 8] arelike network objectsinthat they aimto support
the programming of reliable distributed services. However, they differ from network objects
by providing larger building blocks, such as stable state and multi-machine atomic transac-
tions, and are oriented to objects that are implemented by whole address spaces. Our network
objects are more primitive and fine-grained.

The Spring subcontract is an intermediary between adistributed application and the under-
lying object runtime[11]. For example, switching the subcontract can control whether objects
arereplicated. A derivative of thisidea has been incorporated into the object adaptor of the
Common Object Request Broker Architecture[19]. We haven’t aimed at such aflexible struc-
ture, although our highly modular structure allows playing some similar tricks, for example
by building custom transports.

1.2 Definitions

A Modula-3 object isareference to adatarecord paired with amethod suite. The method suite
isarecord of procedures that accept the object itself as afirst parameter. A new object type
can be defined as a subtype of an existing type, in which case objects of the new type have all
the methods of the old type, and possibly new onesaswell (inheritance). The subtype can aso
provide new implementations for selected methods of the supertype (overriding). Modula-3
objects are aways references, and multiple inheritance is not supported. A Modula-3 object
includes a typecode that can be tested to determine its type dynamically[18].

A network object isan object whose methods can beinvoked by other programs, in addition
to the program that allocated the object. The program invoking the method is called the client
and the program containing the network object is called the owner. The client and owner can
be running on different machines or in different address spaces on the same machine.
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A remote reference in aclient program actually pointsto alocal object whose methods per-
form remote procedure calls to the owner, where the corresponding method of the owner’s
object isinvoked. The client program need not know whether the method invocationis local
or remote. Thelocal object is called a surrogate (also known as a proxy).

The surrogate object’s typewill be declared by astub generator rather than written by hand.
Thistypedeclaration includesthe method overrides that are anal ogousto aconventional client
stub module. There are three object typesto keep in mind: the network object type T at which
the stub generator is pointed; the surrogate type TSr g produced by the stub generator, which
isasubtypeof T with method overridesthat perform RPC calls; and thetype Tl npl of thereal
object alocated in the owner, also a subtype of T. The type T is required to be a pure object
type; that is, it declares methods only, no datafields. Thetype TI npl generally extends T with
appropriate data fields.

If program A has a reference to a network object owned by program B, then A can pass the
reference to athird program C, after which C can call the methods of the object, just asif it had
obtained the reference directly from the owner B. Thisiscalled athird party transfer . In most
conventional RPC systems, third party transfers are problematical; with network objects they
work transparently, as we shall see.

For example, if anetwork nodeoffers many services, instead of running all the serversit may
run adaemon that accepts arequest and startsthe appropriate server. Some RPC systemshave
special semantics to support this arrangement, but third-party transfers are al that is needed:
the daemon can return to the client an object owned by the server it has started; subsequent
calls by the client will be executed in the server.

When a client first receives a reference to a given network object, either from the owner
or from athird party, an appropriate surrogate is created by the unmarshaling code. Careis
required on several counts.

First, different nodes in the network may use different underlying communications meth-
ods (transports). To create the surrogate, the code in the client must select atransport that is
shared by the client and owner—and this selection must be made in the client before it has
communicated with the owner.

Second, the type of the surrogate must be selected. That is, we must determine the type
TSr g corresponding to thetype TI npl  of the real object in the owner. But there can be more
than one possible surrogate type availablein the client, since TSr g isnot uniquely determined
by Tl npl . Aswe shall see, this situation arises quite commonly when new versions of net-
work interfaces are released. The ambiguity is resolved by the narrowest surrogate rule: the
surrogate will have the most specific type of all surrogate types that are consistent with the
type of the object in the owner and for which stubs are availablein the client and in the owner.
Thisrule is unambiguous because Modula-3 has single inheritance only.

Since the type of the surrogate depends on what stubs have been registered in the owner as
well asinthe client, it can’t be determined statically. A runtime type test will amost always
be necessary after the surrogate is created.

1.3 Examples

The narrowest surrogate rule is useful when network interfaces change over time, as they a-
waysdo. Thissection presentssomeexamplestoillustratethisutility. Theexamplesalso show
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how network objects generalize and simplify features of conventional RPC. The examplesare
based on the following trivia interface to afile service:

| NTERFACE FS;
| MPORT Net Qbj ;

TYPE

File = NetObj. T OBJECT METHODS
get Char (): CHAR
eof (): BOCLEAN

END,

Server = NetObj.T OBJECT METHODS
open(name: TEXT): File

END,

END FS.

The interface above is written in Modula-3. It declares object types FS. Fi | e, a subtype of
Net Obj . T extended with two methods, and FS. Ser ver, a subtype of Net Obj . T with one
extramethod. Any data fields would go between OBJECT and METHODS, but these types are
pure. It is conventional to name the principa type in an interface T; thus Net Qbj . T isthe
principal typeinthe Net Obj interface.

In our design, all network objects are subtypes of the type Net Obj . T. Thus the interface
above defines two network object types, one for opening files, the other for reading them. If
the stub generator is pointed at the interface FS, it produces a module containing client and
server stubsfor both types.

Here is a sketch of an implementation of the FS interface:

MODULE Server EXPORTS Mai n;
| MPORT Net Obj, FS;

TYPE

File = FS.File OBJECT
<buffers, etc.>

OVERRI DES
get Char : = CGet Char;
eof := Eof

END;

Svr = FS. Server OBJECT
<directory cache, etc.>

OVERRI DES
open : = Qpen

END,

<code for GCetChar, Eof, and Open>;

BEG N
Net Qbj . Export (NEW Svr), "FS1");
<pause indefinitely>

END Server.

Thecall Net Obj . Export (obj, nn) exportsthe network object obj ; that is, it places aref-
erence toit in atable under the name nm whence clients can retrieve it. Thetableistypically
contained in an agent process running on the same machine as the server.

Here isaclient, which assumesthat the server is running on a machine named ser ver :

MODULE Cl i ent EXPORTS Mai n;
| MPORT Net Qbj, FS, 1O

VAR
s: FS.Server := NetQbj.lnport("FS1", NetObj.Locate("server"));
f := s.open("/usr/dict/words");

BEG N
VWHI LE NOT f.eof () DO 10O PutChar(f.getChar()); END

END Cient.

Thecall Net Qbj . Locat e( nm) returns ahandle on the agent process running on the machine
named nm The call to Net Qbj . | npor t returns the network object stored in the agent’s ta-
ble under the name FS1; in our example this will be the Svr object exported by the server.
I nport, Export, and Locat e are described further in the section below on bootstrapping.

The client program invokes the remote methods s. open, f . get Char, and f . eof . The
network object s was exported by name, using the agent running on the machine ser ver .
But the object f isanonymous; that is, it is not present in any agent table. The vast majority
of network objects are anonymous; only those representing major services are named.

For comparison, hereisthe samefunctionality asit would beimplemented with an RPC that
is not object-oriented, such as DCE RPC[20]. The interface would define afile as an opaque

type:
| NTERFACE FS;

TYPE T,

PROC Open(n: TEXT): T;
PROC Get Char (f: T): CHAR;
PROC Eof (f: T): BOQL;

END FS.

A conventional RPC stub generator would transform thisinterface into aclient stub, a server
stub, and a modified client interface containing explicit binding handles:

| NTERFACE FSO i ent ;

| MPORT FS;

TYPE Bi ndi ng;

PROCEDURE | nport (host Nane: TEXT): Bi ndi ng;
PROCEDURE Open(b: Binding, n: TEXT): FS. T;
PROCEDURE Get Char (b: Binding, f: FS.T): CHAR
PROCEDURE Eof (b: Binding, f: FS.T): BOO;

END FSO i ent.




Theserver wouldimplement theFS interface and the client would usethe FSCl i ent interface.
In FSA i ent , the type Bi ndi ng represents a handle on a server exporting the FS interface,
and the type T represents a so-called context handle on an open file in one of these servers.
Hereisthe same client computation coded using the conventional version:

MODULE dient;
| MPORT FSClient, 1O

VAR

b := FSCient.|nmport("server");

f := FSAient.Open(b, "/usr/dict/words");
BEG N

VWH LE NOT FSClient.Eof(b, f) DO
| O Put Char (FSO i ent. Get Char (b, f))
END

END dient.

Comparing the two versions, we see that the network object s playstherole of the bindingb,
and the network object f playstherole of the context handlef . Network objects subsumethe
two notions of binding and context handle.

In the conventional version, the signaturesof the proceduresin FSCl i ent differ from those
in FS, because the binding must be passed. Thusthe signatureisdifferent for local and remote
cals. (Inthisexample, DCE RPC couldinfer the binding from the context handle, alowing the
signatures to be preserved; but the DCE programmer must be aware of both notions.) More-
over, athough conventional systems tend to allow bindings to be communicated fredly, they
don’'t do the same for context handles: It is an error (which the system must detect) to passa
context handle to any server but the one that created it.

The conventional version becomes even more awkward when the same address spaceisboth
aclient and a server of the same interface. In our FS example, for example, a server address
space must instantiatethe opaquetypeFS. T toaconcrete type containing the buffers and other
data representing an open file. On the other hand, a client address space must instantiate the
opague type FS. T to a concrete type representing a context handle. (Thistypeisdeclared in
the client stub module.) These conflicting requirements make it difficult for a single address
space to be both aclient and a server of the sameinterface. Thisproblemiscalled type clash.
It can be finessed by compromising on type safety; but the network object solution avoidsthe
problem nestly and safely.

Object subtyping together with the narrowest surrogate rule make it easy to ship anew ver-
sion of the server that supports both old and new clients, at |east in the common case in which
the only changes are to add additional methods. For example, suppose that we want to ship a
new file server in which the files have a new method called cl ose. First, we define the new
type as an extension of the old type:

TYPE
NewFS. File = FS. Fil e OBJECT METHODS
cl ose()
END,

Since an object of type NewFS. Fi | e includes al the methods of an FS. Fi | e, the stub for
aNewFS. Fil e isaso astub for an FS. Fi | e. When a new client—that is, a client linked

with stubs for the new type—opens afile, it will get a surrogate of type NewrS. Fi | e, and be
ableto invokeits cl ose method. When an old client opens a file, it will get a surrogate of
typeFS. Fi | e, and will be able to invoke only itsget Char and eof methods. A new client
dealing with an old server must do a runtime type test to check the type of its surrogate.

The extreme case of the narrowest surrogate rule occurs when a network object isimported
into a program that has no stubs linked into it at all. In this case the surrogate will have type
Net Qbj . T, since every program automatically gets (empty) stubs for thistype. You might
think that a surrogate of type Net bj . T isuseless, sinceit has no methods. But the surrogate
can be passed on to another program, where its type can become more specific. For example,
the agent process that implements Net Obj . | nport and Net Obj . Export isatrivid one-
page program containing atable of objectsof typeNet Cbj . T. The agent needs noinformation
about the actual subtypes of these objects, since it doesn’t cal their methods, it only passes
them to third parties.

1.4 Failuresemanticsand alerts

An ordinary procedure call has no special provision for notifying the caller that the callee has
crashed, since the caller and the callee are the same program. But a remote procedure call
mechanism must define some failure semantics that cover this situation, in order to make it
possibleto program reliable applications.

In theory, distributed computations can be more reliable than centralized ones, since if a
machine crashes, the program can shift the computation to use other machines that are till
working. But it isn't easy to put this theory into practice. Many distributed systems end up
being lessreliable than their centralized equival ents, because they are vulnerableto thefailure
of many machines instead of just one. Leslie Lamport, prominent both as a theorist and as a
suffering user, has facetiously defined a distributed system as one in which “the failure of a
computer you didn’t even know existed can render your own computer unusable’.

Many methodol ogies and tools have been proposed to aid in programming replicated dis-
tributed services that survive the failures of individual replicas. Our network object system
isintended to provide a more fundamental communicationsprimitive: replicated services can
be built out of network objects, but so can non-replicated services.

The failure semantics of network objects are similar to those of many conventional RPC
systems. The runtime raises the exception Net Qbj . Er r or inthe client if the owner crashes
whilethemethod call isin progress. Therefore, in seriousapplications, all methods of network
objects should include this exception in their RAI SES set. (Failure to include the exception
would cause the client to crash in this situation, which isusually not what you want a serious
applicationto do.)

Unfortunately, there is no absolutely reliable way that one machine can tell if another has
crashed, since the communication network can fail, and a live machine can't distinguish it-
self from adead machineif it cannot communicate. Therefore, the exception Net Qbj . Er r or
doesn’t guarantee that the owner has crashed: possibly communication has failed. In the lat-
ter case, the method call in the owner may continue to execute, even while the client runtime
raises Net Qbj . Error . The abandoned computation in the owner is called an orphan. To
build an application that is robust in the presence of communication failures, the program-
mer must ensure that the computati on meets its specification even in the presence of orphaned
computations.




Modula-3 provides a mechanism for alerting athread. Thisis not an interrupt, but a polite
request for the thread to stop at the next convenient point and raise a pre-defined exception.
When programming a lengthy computation that might for any reason be subject to cancella
tion, it is good style to check periodically to seeif the thread has been alerted.

If athread engaged in aremote call is aerted, the runtime raises Net Qoj . Err or in the
calling thread and simultaneously attempts to notify and alert the server thread executing the
cal. Thereason that Net Qbj . Er r or israised isthat thereisno guarantee that the attempt to
aert the server thread will succeed; therefore, an orphan may have been created.

The network object system also uses derts to handle the situation in which a client crashes
whileit has an outstanding remote method call. In thiscase, the network object runtimeaerts
the thread that is executing the method call in the owner. Therefore, most methods of network
objects should include Thr ead. Al ert ed intheir RAI SES sets.

2 Implementation

This subsection describes the structure of our implementation. Much of the lower levels of
our system are similar to that of conventional RPC, as described by Birrell and Nelson[4]. We
will concentrate on the implementation aspects that are new in network objects.

2.1 Assumptions

Weimplemented our system with Modula-3 and Unix, but our design would work on any sys-
tem that providesthreads, garbage collection, and object types with single inheritance. At the
next level of detail, we need the following capabilities of the underlying system:

1. Object typeswith single inheritance.

2. Threads (lightweight processes).

3. Some form of reliable, inter-address-space communication.
4

. Garbage collection, together with a hook for registering a cleanup routine for selected
objects to be called when they are collected (or explicitly freed).

[

. Object-oriented buffered streams (readers and writers).

6. Runtime type support as follows. Given an object, to determine its type; given atype:
to determine its supertype, to alocate and object of the type, and to enumerate the sizes
and types of the fields of the type.

7. A method of communicating object types from one address space to another.

We will elaborate on the last item.

The Modula-3 compiler and linker generate numerical typecodes that are unique within a
given address space. But they are not unique across address spaces and therefore cannot be
used to communicate types between address spaces. Therefore, the Modula-3 compiler com-
putes afingerprint for every object type appearing in the program being compiled. A finger-
print isasixty-four bit checksum with the property that (with overwhelming probability) two

9

types have the same fingerprint only if they are structurally identical. Thus afingerprint de-
notesatypeindependently of any address space. Every address space containstwo tables map-
ping between its typecodes and the equivalent fingerprint. To communicate a typecode from
one address space to another, the typecode is converted into the corresponding fingerprint in
the sending address space and the fingerprint is converted into the corresponding typecodein
thereceiving address space. If thereceiving program does not contain acodefor thetypebeing
sent, then the second table lookup will fail.

2.2 Pickles

We useamechanism known as pi ckl esto handl e the more complex cases of marshaling, specif-
ically thosethat involve references types as arguments or results. Our pickles packageissim-
ilar to the value transmission mechanism described by Herlihy and Liskov[12], who seem to
be the first to have described the problem in detail. However, our package is more general
because it handles subtyping and dynamic types.

For simple usage, our pickle package provides a simple interface. Pi ckl e. Wite(ref,
wr) writes a flattened representation of the dynamically typed value r ef to the writer wr .
Pi ckl e. Read(rd) readsthe representation of avalue from the reader r d and returns a dy-
namically typed reference to acopy of the origina value.

The pickle package relies on the compile-time and runtime type support described earlier,
and in particular on the existence of typefingerprints. Given thissupport, the basic method for
writing apickleis quite simple. It writes the fingerprint of the given value's type on the byte
stream, followed by the referent’s data fields. The method recurses on any constituent val-
ues that are themsel ves references types. Reading istheinverse operation: read afingerprint,
alocate avalue, examinethe type, read datafields and recursively read reference fields.

Oneminor complicationisthe problem of keeping the val uesindependent of machinearchi-
tecture (for example, byte order or word length). We do this by encoding the salient properties
of thearchitectureinasmall number of bytesat the start of the pickle, thenwritingthepicklein
the sender’s nativeform. This approach is efficient in homogeneous cases, and no more costly
than anything else in heterogeneous cases. We assume that all architectures can be described
by our header. If there were an aberrant architecture, its pickle package would be required to
map to and from a standard one on sending and receiving.

A dlightly more significant complication is detecting and dealing with multiple occurrences
of the samereference within asingle pickled vaue. Thishappensin cyclic structuresand a so
in graph-like structures that are not trees. (We make no attempt to preserve sharing between
separate pickles.)

When writing a pickle, the sender maintains a hash table keyed by references. The values
in this table are small integers, alocated sequentially within each particular pickle. When a
reference isfirst encountered in writing apickle, it isentered in thetable and all ocated a small
integer. Thisinteger iswritten on the byte stream after the reference’s fingerprint, asthe defin-
ing occurrence. Then the pickle package writesthe referent by recursing. If areferenceisen-
countered for a second or subsequent timein a single pickle, the reference’'s small integer is
found in the hash table and written on the byte stream as a subsequent occurrence; in this case
thereis no need to examine or write the referent.

When reading a pickle, the receiver maintains an array indexed by these small integers.
When it encounters the first occurrence of areference’s small integer, it alocates the storage
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and records the new reference in the appropriate entry of the array, and proceeds to read the
referent from the byte stream. When it encounters a subsegquent occurrence of the reference’'s
small integer, it just uses the reference obtained by indexing the table.

Thedefault behavior of the picklepackageisn't satisfactory for all types. Problemscan arise
if the concrete representation of an abstract typeisn’t an appropriate way to communicate the
value between address spaces. To deal with this, the pickle package permits clients to specify
custom procedures for pickling (and therefore for marshaling) particular datatypes. Typicaly
theimplementer of an abstract datatype specifies such a custom procedure if thetype's values
aren't transferable by straightforward copying. We usethisfacility to marshal network objects,
readers, and writers that are embedded in structures that would ordinarily be marshaled by
value.

The narrowest surrogate rule places a serious constraint on the pickles design: since pick-
ling and unpickling an object can make itstype less specific, the unpickler must check that an
unpickled object islegal at the positionin which it occurs. It is possible for the unpickler to
check this because the runtime provides the ability to enumerate the types of the fields of an
object.

Thereare many subtletiesinthe design of the pickles package. Theability to register custom
pickling procedures for selected types has atricky interaction with subtyping. It isalso tricky
to define and efficiently compute type fingerprints for recursive and opaque types. But the
details are beyond the scope of the present work.

2.3 Garbagecallection

Our system includes network-wide, reference-counting garbage collection. For each network
object, the runtimerecords the set of clients containing surrogates for the object (the dirty set).
Aslongasthisset isnon-empty, theruntimeretainsapointer tothe object. Theretained pointer
protectsthe object from the owner’s garbage collector, even if nolocal referencestoit remain.
When a surrogate is created, the client runtime adds its address space to the dirty set for the
concrete object by makinga“dirty call” totheowner. When asurrogateisreclaimed, theclient
runtime deletes its address space from the dirty set by making a“clean call”. When the dirty
set becomes empty, the owner’s runtime discards the retained pointer, alowing the owner’s
local garbage collector to reclaim the object if no local references remain. To trigger theclean
cal, the client runtime relies on the assumed ability to register cleanup hooks for surrogates
with thelocal collector.

Thisscheme will not garbage-collect cyclesthat span address spaces. To avoid this storage
leak, programmers are responsiblefor explicitly breaking such cycles.

If program A sends program B areference to an object owned by a third program C, and A
then dropsits reference to the object, we must ensure that the dirty call from B precedes the
clean cal from A, to avoid the danger that the object at C will be prematurely collected. This
isnot aproblem if the object is sent as an argument to aremote method call, sincein thiscase
the calling thread retains a reference to the object on its stack while it blocks waiting for the
return message, which cannot precede the unmarshaling of the argument. But if the object
is sent as a result rather than an argument, the danger is real. Our solution is to require an
acknowledgement to any result message that contains a network object: the procedure that
executes the call in the owner blocks waiting for the acknowledgement, with the reference to
the object onitsstack. The stack reference protects the object from the garbage collector. This

1

solutionincreasesthe message count for method call sthat return network objects, but it doesn’t
greatly increase the latency of such calls, since the thread waiting for the acknowledgement is
not on the critical path.

By maintaining the set of clients containing surrogates rather than a simple count, we are
ableto remove clientsfrom thedirty set when they exit or crash. The mechanism for detecting
that clients have crashed is transport-specific, but for all reasonable transports there is some
danger that anetwork partition that prevents communication between the owner and client will
be misinterpreted asaclient crash. In thiscase, the owner’s object might be garbage collected
prematurely. Because communicationisunreliable, therisk of premature collectionisinherent
in any strategy that avoids storage leaks in long-running servers. Since we never reuse object
IDs, we can detect premature collection if it occurs.

Dirty cals are synchronous with surrogate creation, but clean calls are performed in the
background and can be batched. If aclean call fails, it will be attempted again. If adirty call
fails, the client schedulesthe surrogate to be cleaned (since the dirty call might have added the
client to the dirty set before failing) and rai ses the exception Net Qbj . Er r or . Clean and dirty
calls carry sequence numbersthat increase monotonically with respect to any given client: the
owner ignores any clean or dirty call that is out of sequence. Thisrequires the owner to store
asequence number for each entry in the dirty set, aswell as a sequence number for each client
for which a call hasfailed. The sequence numbers for clients that have successfully removed
themselves from the dirty set can be discarded.

A companion paper[3] presents the details of the collection algorithm and a proof of itscor-
rectness.

24 Transports

There are many protocols for communicating between address spaces (for example, shared
memory, TCP, and UDP), and many irksome differences between them. Weinsulatethemain
part of the network object runtime from these differences viathe abstract type Tr anspor t . T.

A Transport. T object generates and manages connections between address spaces. Dif-
ferent subtypes are implemented using different communication mechanisms. For example, a
TCPTr ansport . Tisasubtypethat uses TCP.

Each subtypeis required to provide a way of naming address spaces. A transport-specific
name for an address space is called an endpoint. Endpoints are not expected to be human-
sensible. Naming conventionsensure that an endpoint generated by onetransport subtypewill
be meaningful only to other instances of the same subtype. (Some usetheterm “endpoint” ina
weaker sense, meaning littlemorethan aport number. For us, different instancesof aprogram
areidentified by different endpoints.)

The f r onEndpoi nt method of a Tr ansport . T enables creation of connections to rec-
ognized endpoints. If tr isaTransport. T and ep is an endpoint recognized by t r , then
tr. fronEndpoi nt (ep) returnsalocat i on (described in the next paragraph) that gener-
aes connections to the address space named by ep. If t r doesn’t recognize ep, then such an
invocation returns NI L.

A Locat i on isan object whose new method generates connections to a particular address
space. When aclient hasfinished using aconnection, it should passthe connectiontothef r ee
method of the location that generated it. This alows transports to manage the alocation and
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deallocation of connections so as to amortize the overhead of connection establishment and
maintenance.

The system uses the type St ubLi b. Conn to represent connections. It is perfectly possible
toimplement aclass of connection that communi cates with datagrams according to a protocol
that makes idle connections essentially freg[4]. That is, in spite of its name, implementations
of thetype St ubLi b. Conn need not be connection-oriented in the standard sense of the term.

A connection ¢ contains areader c. r d and a writer c. wr . Connections comein pairs; if
¢ and d are paired, whatever iswritten to c. w can be read from d. r d, and vice-versa. Or-
dinarily ¢ and d will bein different address spaces. Values are marshaled into a connection’s
writer and unmarshaled from a connection’s reader. Since readers and writers are buffered,
the marshaling code can treat them either as streams of bytes (most convenient) or as streams
of datagrams (most efficient).

One of thetwo connectionsin apair istheclient side and the other isthe server side. Trans-
ports are required to provide athread that listens to the server side of a connection and calls
into the network object runtime when a message arrives indicating the beginning of aremote
cal. Thisis caled dispatching, and is described further below.

A connection is required to provide away of generating a“back connection”: the location
c. | oc must generate connections to the address space at the other side of c. If ¢ isa server-
side connection, the connections generated by c. | oc have the oppositedirection asc; if ¢ is
a client-side connection, they havethe same directionasc.

A transport isresponsible for monitoring the liveness of address spaces for which it haslo-
cations or connections. Thisisdiscussed in more detail |ater when we specify the interface to
the transport system.

25 Basicrepresentations

We will now describe the wire representation of network objects, the client and server stubs
involved in remote invocation, and the al gorithms we use to marshal and unmarshal network
objects. In these descriptionswe will use Modula-like pseudocode.

The wire representation for a network object isapair (sp, i) wheresp isaSpacel D(a
number that identifies the owner of the object) andi isan Qbj | D (anumber that distinguishes
different objects with the same owner):

TYPE WreRep = RECORD sp: Spacel D; i: Objl D END
Each address space maintains an object table obj t bl that contains al its surrogates and all
its network objects for which any other space holds a surrogate:

VAR objtbl: WreRep -> Netoj . T;

We usethenotation A - > B to namethe type of atable with domain type A and element type
B. We will use array notation for accessing the table, even though it isimplemented as a hash
table. We writedomai n( t bl ) to denote the set of elements of thedomain of t bl .

We now specify the representation of the opaguetypeNet Qbj . T.In Modula-3, the REVEAL
statement permits such a specification to be visible within a bounded scope.

REVEAL
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Net Cbj . T = OBJECT
srgt, inTbl: BOOLEAN,
wrep: WreRep;
| oc: Location;

di sp: Dispatcher

END;

TYPE Di spatcher = PROC(c: StubLib.Conn; obj: NetObj.T);

The field obj . sr gt indicates whether obj is a surrogate. The field obj . i nThl indicates
whether obj ispresent in obj Thl , and thisis guaranteed to be the case if obj isasurrogate
or if another address space holdsasurrogate for it. If obj . i nThl iSTRUE, thenobj . wrep is
the wire representation of the object.

If obj is asurrogate is then obj . | oc isalocati on that generates connections to the
owner’'saddressspaceat obj . wr ep. sp,andobj . di sp isunused. Otherwise, if obj . i nTbl
iS TRUE, then obj . di sp isthe dispatcher procedure for the object, and obj . | oc is unused.
Thecdl obj . di sp(c, obj) unmarshalsamethod humber and arguments from c, callsthe
appropriate method of obj , and marshastheresulttoc.

2.6 Remoteinvocation

Toillustratethe stepsin aremote method invocation we continuewith our exampleof asimple
fileservice. Inthat example, we defined thetypeFS. Ser ver withasinglemethodopen. The
corresponding stub-generated surrogate type declaration looks like this:

TYPE
SrgSvr = FS. Server OBJECT
OVERRI DES
open : = SrgQpen
END;

PROCEDURE SrgQpen(obj: SrgSvr; n: TEXT): FS.File =
VAR

c := obj.loc.new);
res: FS.File;
BEG N
Qut Net Obj (c, obj);
Qutlnteger(c, 0);
Qut Text (¢, n);
<flush buffers to network>;
res := InNetbj(c);
obj.loc.free(c);
RETURN res
END Sr gOpen;

The procedures Qut Net Obj and | nNet Cbj are described in the next subsection. Procedures
for marshaling basic types (likeQut I nt eger ) areinthe St ubLi b interface which we specify
later in the report. (Actually, St ubLi b. Qut Ref subsumes both Qut Net Cbj and Qut Text ,
but we ignore that here.)

The method being invoked isidentified on thewire by itsindex; the open method hasindex
zero. The code presented would crash with a narrow fault if the network object returned by
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I nNet Obj were not of type FS. Fi | e. For example, thiswould happen if appropriate stubs
had not been linked into the client or owner. The actual system would raise an exception in-
stead of crashing.

Onthe server side, the thread forked by the transport to service aconnection ¢ calsinto the
network object runtimewhen it detects an incoming RPC call. The procedureit calls executes
code something like this:

VAR obj := InNetCbj(c); BEGA N obj.disp(c, obj) END

The dispatcher procedures are typically written by the stub generator. The dispatcher for the
typeFS. Ser ver would look something likethis:

PROCEDURE SvrDi sp(c: StubLib. Conn; obj: FS. Server) =

VAR nethl D := Inlnteger(c); BEG N
IF methiID = 0 THEN
VAR
n :=InText(c);
res := obj.open(n);
BEG N

Qut Net Obj (c, res);
<flush buffers to network>
END
ELSE
<error, non-existent nethod>
END

END Svr Di sp;

Thestubshave anarrow interface to therest of the system: they call thenewandf r ee methods
of Locat i on objectsto obtain and rel ease connections, and they register their surrogate types
and dispatcher procedures where the runtime can find them, in the globd table st ubs:

VAR stubs: Typecode -> StubRec;
TYPE St ubRec = RECORD srgType: TypeCode; disp: Dispatcher END;

An address space has stubsfor t ¢ if and only if t ¢ isinthedomain of st ubs. If t c isinthe
domain of st ubs, then st ubs[ t c] . srgType isthe typecode for the surrogate type for t c,
andst ubs[tc] . di spistheowner dispatcher procedurefor handling calls to objects of type
tc.

A stub modulethat declares a surrogate type sr g TC and dispatcher di sp for anetwork ob-
jecttypet c asosetsstubs[tc] := (srgTC, disp). The network object runtime auto-
matically registers a surrogate type and null dispatcher for the type Net Qbj . T.

Intheactual systemthest ubs tableisindexed by stub protocol version aswell astypecode,
to make it easy for a program to support multiple protocol versions. The actual system also
includes code for relaying exceptionsraised in the owner to the client, and for relaying thread
alerts from the client to the owner.

2.7 Marshaling network abjects
Thecall Qut Net Obj (c, obj) writesthe wire representation of obj to the connectionc:
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PROCEDURE Qut Net Obj (c: StubLib. Conn; obj: NetQoj.T) =
BEG N
IF obj = NIL THEN
Qut WreRep(c, (-1,-1));

ELSE
I F NOT obj.inTbl THEN
VAR i := NewObj I D(); BEGN
obj.wep := (SelfID(), i);
obj tbl[obj.wep] := obj;
obj.inTbl := TRUE
obj.srgt := FALSE;
obj . disp := GetDi sp( TYPECODE(0bj))
END
END;
Qut WreRep(c, obj.wep)
END

END Qut Net Qbj ;

PROCEDURE Get Di sp(tc: |INTEGER): Dispatcher =
BEG N
VWH LE NOT tc I N donai n(stubs) DO tc := Supertype(tc) END;
RETURN stubs[tc].disp

END Get Di sp;

In the above we assumethat NewObj | D() returnsan unused object ID, that Sel f 1 D() returns
the Spacel Dof thecdler, and that Super t ype(t c) returnsthe code for the supertype of the
type whose codeist c.

The corresponding call 1 nNet Obj (c¢) reads a wire representation from the connection ¢
and returns the corresponding network object reference:

PROCEDURE | nNet Obj (¢: StubLib. Conn): Net Cbj.T =

VAR wep := InWreRep(c); BEG N
IF wep.i = -1 THEN
RETURN NI L

ELSIF wep | N domai n(objtbl) THEN
RETURN obj t bl [ wr ep]
ELSE
RETURN NewSr gt (wrep, c)
END
END | nNet Obj ;

The call NewSr gt (wrep, c) creates a surrogate for the network object whose wire repre-
sentation iswr ep, assuming that c is a connection to an address space that knowswr ep. sp.
(We say that an address space sp1 knows an address space sp2 if spl=sp2 orif sp1 contains
some surrogate owned by sp2.)

NewsSr gt locates the owner, determines the typecode of the surrogate, and enters it in the
object table:

PROCEDURE NewsSr gt (wrep: WreRep; c: StubLib.Conn): NetObj.T =
VAR
| oc : = FindSpace(w ep.sp, conn);
tc := ChooseTC(loc, wep.i);
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res := Allocate(tc);
BEG N
res.wep := wep;
res.srgt := TRUE;
res.inThl := TRUE;
objtbl [wep] := res;
RETURN r es
END NewSr gt ;

Thecall Fi ndSpace(sp, c) returnsalocat i on that generates connectionstosp, or raises
Net Qbj . Er r or if thisisimpossible. It requiresthat ¢ beaconnection to an address space that
knows about sp. The call ChooseTC(| oc, i) implementsthe narrowest surrogate rule. It
returnsthelocal codefor thelocal surrogatetypefor theobject whoselD isi and whose owner
is the address space to which | oc generates connections. Thecall Al | ocat e(t c) alocates
an object with type codet c.

Toimplement Fi ndSpace without resorting to broadcast, each address space maintainsin-
formation about its own transports and the endpoints of the address spaces it knows about.
Thisinformationis maintained in the variablest r and nanes:

VAR tr: SEQ Transport.T];
VAR nanes: Spacel D -> SEQ Endpoi nt];

The sequencet r liststhetransportsavailablein thisspace, in decreasing order of desirability.
Typicaly, it isinitialized by the network object runtime and is constant thereafter. For any
space sp, the sequence names|[ sp] contains the endpointsfor sp recognized by sp’s trans-
ports. We write SEQ T] to denote the type of sequences of el ements of type T.

The fast path through Fi ndSpace finds an entry for sp in names; thisentry is the list of
names for sp recognized by sp’s transports. These names are presented to the transportst r
available in this space; if oneis recognized, a common transport has been found; if noneis
recognized, there is no common transport.

Thefirst time an address space receives a reference to an object owned by sp, therewill be
no entry for sp inthe space’'s nametable. Inthiscase, Fi ndSpace obtainsthe name sequence
for sp by making an RPC call to the address space from which it received the reference into
sp. Thisisour first example of an RPC call that is nested inside an unmarshaling routine; we
will use the notation RPC(1 oc, P(args)) toindicate an RPC call to P(ar gs) directed at
the address space identified by thelocation | oc. Hereistheimplementation of Fi ndSpace:

PROCEDURE Fi ndSpace(sp: Spacel D, c¢: StubLib.Conn): Location =
BEG N
I F NOT sp I N domai n(nanmes) THEN
nanmes[sp] := RPC(c.loc, GetNanmes(sp));
END;
VAR nm : = nanmes[sp]; BEA N
FORi := 0 TO LAST(tr) DO
FOR| := 0 TO LAST(nm) DO
VAR loc :=tr[i].fronEndpoint(nn{j]); BEG N
IF loc # NIL THEN RETURN | oc END
END
END
END;

17

RAI SE Net Qoj . Error
END
END Fi ndSpace;

PROCEDURE Cet Names(sp) = BEGA N RETURN names[sp] END Get Nanes;

Placing thei loop outside thej loop gives priority to the client’s transport preference over
the owner’s transport preference. The choiceis arbitrary: usualy the only point of transport
preference is to obtain a shared memory transport if one is available, and this will happen
whichever loopis outside.

Theonly remaining procedureis Choos e TC, which mustimplement the narrowest surrogate
rule. According to thisrule, the surrogate type depends on which stubs have been registered
inthe client and in the owner: it must determinethe narrowest supertypefor which both client
and owner have aregistered stub. Thisrequiresacall to the owner at surrogéate creation time,
which we combine with the call required by the garbage collector: thecal Dirty(i, sp)
adds sp to thedirty set for object numberi and returns the supertypes of the object’s type for
which stubs are registered in the owner.

PROCEDURE Dirty(i: OojlID; sp: SpacelD): SE( Fingerprint] =

VAR

tc := TYPE(objtbl[(Sel fID(), i)]);

res: SEQ Fingerprint] := <enpty sequence>;
BEG N

<add sp to object i's dirty set>;
WHI LE NOT tc I N domai n(stubs) DO tc := Supertype(tc) END
LOOP
res. addhi (TCToFP(tc));
IF tc = TYPECODE(Net Obj . T) THEN EXI T END;
tc := Supertype(tc)
END;
RETURN res
END Dirty;

PROCEDURE ChooseTC(l oc: Location; i: ObjID): |NTEGER =
VAR fp: SEQ Fingerprint]; BEG N
fp := RPC(c.loc, Dirty(i, SelflX)));
FORj := 0 TO LAST(fp) DO
| F FPTOTC(fp[j]) I N donai n(stubs) THEN
RETURN st ubs( FPToTC(fp[j])).srgType
END
END

END ChooseTC;

TheloopsinDi rt y are guaranteed to terminate, because stubsare automatically registered for
Net Qbj . T. In ChooseTC we assume that TCToFP and FPToTC convert between equival ent
typecodes and fingerprints (if thereisno local typecode for f p, we assume that FPToTC( f p)
returns some illegal typecode never present in st ubs). We also assume that s. addhi ( x)
extends the sequence s with the new element x.

This concludes our description of the algorithms for marshaling network objects. We have
omitted anumber of details. For example, to avoid cluttering up the program, we haveignored
synchronization; the real program must protect the various global tables with locks. Some
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care isrequired to avoid deadlock; for example, it is not attractive to hold alock all the way
through acall to NewSr gt . Instead, wemake an entry in the surrogate tabl e at the beginning of
the procedure, recording that a surrogate is under construction, and do not reacquire the table
lock until the end of the sequence, when the surrogate has been fully constructed. A thread
that encounters a surrogate under construction simply waits for it to be constructed.

2.8 Marshaling streams

An important feature of our treatment of streams is that data is not communicated via RPC,
but by the underlying transport-specific communication. Thisfacility is analogous to the re-
mote pipes of DCE RPC, but with acritical difference: the streamswe pass are not limitedin
scope to the duration of the RPC call. When we marsha a stream from process A to process
B, process B acquires a surrogate stream attached to the same data as the original stream. In
process B the surrogate stream can be used at will, long after the call that passed it is finished.
In contrast, in ascheme such as the pipes provided in DCE, the datain the pipe must be com-
municated in its entirety at the time of the RPC call (and at a particular point in the call too).
Our facility is aso anaogous to the remote pipes of Gifford and Glasser[10], but is simpler
and more transparent.

Readers and writers are marshaled very similarly; to be definite, consider areader r d. The
sending process has a concrete reader r d in hand. The marshaling code must create a surro-
gatereader r dsr g inthe receiving process, such that r dsr g deliversthe contentsof r d. The
generd strategy is to allocate a connection between the sender and receiver, alocater dsr g
in thereceiver so that it reads from the connection, and fork a thread in the sender that reads
buffers from r d and sends them over the connection. (The thread could be avoided by doing
an RPC tofill the buffer of r dsr g whenever it isempty, but thiswould increase the per-buffer
overhead of the cross-address space stream.) For the detailed strategy we explored two de-
signs.

In the first design, the sender uses the connection ¢, over which r d is to be marshaled, to
create anew connectionnc : = c. | oc. new() . The sender then chooses a unique 1D, sends
the ID over nc, sendsthe ID over ¢ asthe wire representation of r d, and forks a thread that
copiesdatafrom rd into nc. In the receiving process, two threads are involved. The thread
servicing the connection nc reads the ID (distinguishing it from an incoming call message)
and places the connection in a table with the ID as key. The thread unmarshaling the reader
looks up the connection in the table and all ocates the surrogate reader r dsr g using that con-
nection. This seems simple, but the details became rather complicated, for example because
of the difficulty of freeing connectionsin the table when callsfail a inopportunetimes.

The second design employs a network object called aVoucher with amethod cl ai mthat
returns a reader. Vouchers have nonstandard surrogates and dispatchers registered for them,
but are otherwise ordinary network objects.

To marshal r d, the sending process allocates a voucher v with a data field v. r d of type
reader, setsv. rd : = rd, and callsQut Net Obj (v) . When the receiving process unmarshals
anetwork object and findsit isasurrogate reader voucher vs, it calsvs. cl ai n() and returns
the resulting reader.

Thecl ai mmethod of asurrogate voucher vs invokesvs. | oc. new() to obtainanew con-
nection nc. It then marshalsvs tonc (just like an ordinary surrogate method call). But then,
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instead of sending arguments and waiting for a result, it alocates and returns the surrogate
reader r dsr g, giving it the connection nc as a source of data.

Onthe server side, the voucher dispatcher is called by atransport-supplied thread, just asfor
an ordinary incoming call. The arguments to the dispatcher are the server side of the connec-
tion nc and the voucher vs containing the original reader vs. r d. The dispatcher procedure
plays the role of the forked thread in the first design: it reads buffers from vs. r d and sends
them over nc.

The second design relies on the transport to provide the required connection and thread, and
relies on the ordinary network object marshaling machinery to connect the surrogate voucher
with the original reader. This makes the protocol simple, but it costs three messages (a round
trip for thedirty call for the voucher; then another message to launch the voucher dispatcher).
It would be easy enough to avoid the all-but-useless dirty call by dedicating a bit in the wire
representation to identify vouchers, but perhaps not so easy to stomach the change. On the
other hand, the first design uses only one message (to communicate the | D from the sender to
the receiver), and this message could perhaps be piggybacked with the first buffer of data.

We chose the second design, because: (1) it istrivial to implement; (2) given that cross-
address space streamsare intended for bulk datatransfer, it isnot clear how important theextra
messages are; and (3) if experience leads usto get rid of the extra messages, it is not obvious
whether to choose thefirst design or to optimize the second.

29 Bootstrapping

Themechanismsdescribed so far produce surrogate network objectsonly asaresult of method
callson other surrogate network objects. We have asyet noway to forge an original surrogate.
To do this we need the ingredients of a surrogate object: a Locat i on, an object ID, and a
surrogate type. To make it possible to forge the object 1D and type, we adopt the following
convention: every program into which network objects are linked owns a special object with
an ID of zero, of a known type. The methods of the specia object implement the operations
required by the network object runtime (reporting in clean and dirty, Get Nanes, etc.). The
specia object also hasget and put methodsimplementing atable of named network objects.
Atinitializationtimethe network object runtimeall ocates a special object with ID 0 and places
itinobj t bl .

All that remainsto forge an original surrogateistoobtainalLocat i on valid for some other
program into which network objects have been linked. Fundamentally, the only way to obtain
alocat i onistocall sometransport’sf r onEndpoi nt method—that is, the program forging
the surrogate must know an address where something islistening. For thisstep the application
hastwo choices. We provide anetwork object agent that listensat awell-known TCP port; thus
asurrogate for the agent’s special object can beforged given the |P name of the node on which
itisrunning. If every node runs the agent from its start-up script, then no other well-known
portsare needed: applicationscan export their objects by putting them in thetable managed by
the agent’s special object, and their clients can get them from the sametable. If the application
writer prefers not to rely on the agent, he can choose his own transport and well-known port
and configure his program to listen at that port and to forge surrogates for the specia objects
at that port.

The procedures Net Obj . | nport and Net Qbj . Expor t , which appeared in our file server
example, implement object bootstrapping. These procedures simply forge a surrogate for the
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specia object of someagent process, and theninvoketheget or put method onthat surrogate.

3 Public Interfaces

In this section and the next, we present the major system interfaces exactly as they appear
in the network objects programmers library. This section describesthe Net Obj , Net St r eam
and Net Obj Not i fi er interfaces, aswell asthe stub generator. Theseinterfacesare sufficient
for most network objects clients. The following section presentsimportant internal interfaces
that are not used by most clients.

Theinterfaces in this section depend on afew local-level facilitiesfrom the SRC Modula-3
runtimelibrary[18, 13]. We summarize these dependencies here:

e AnAt om Tisauniquerepresentation for aset of equal texts(likealLisp atomic symbol).
Atoms are often used to parameterize exceptions.

e An AtonLi st. Tisalinked list of atoms. Atom lists are used for propagating lists of
nested exception parameters up the call stack.

e A Rd. T represents an abstract data source. The Rd interface provides operations for
reading data and re-positioning the stream.

e AW . Trepresentsan abstract datasink. Thew interface providesoperationsfor writing
data and re-positioning the stream.

e Thread. Al ert ed isthe exception to be raised by an alerted thread.

e The WeakRef interface allows clientsto register garbage collection finalization proce-
dures for objectsin the traced heap. In other words, a client can obtain notification just
prior to collection of heap storage.

3.1 NetObj interface

This is the primary public interface for using network objects. Before listing the interface,
here are afew definitions.

A programinstance is an activation of a program. The same program can have many in-
stances running concurrently or consecutively. A program instance can be thought of as an
address space, although the design does not preclude theimplementation of aprogram instance
by a suite of address spaces.

Recall that an agent is a program that provides a table that maps names to network objects.
Any program can be an agent, but every machine has a particul ar default agent. Ownerstyp-
ically make network objects available to clients by inserting them into an agent’s table, using
the procedure Net Qbj . Export . Clients typically use Net Qbj . | npor t to retrieve network
objects from the table.

| NTERFACE Net Ovj ;
| MPORT Atom Atonlist, Thread;
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TYPE
T <. ROOT;
Address <: REFANY;

Net Obj . T istheroot type of al network objects. A Net Cbj . Addr ess designates aprogram
instance.

PROCEDURE Locate (host: TEXT): Address
RAI SES {Invalid, Error, Thread. Al erted};

Return an address for the default agent at the machine whose human-sensible name is
host .

The naming convention used by Locat e is system-dependent. For example, in an Internet
environment, Locat e( " decsr c. pa. dec. cont') returnsthe address of the default agent on
the machinedecsr ¢ inthe DEC Palo Alto Internet domain.

Locat eraises| nval i d if it determinesthat host isnot avalid name. ItraisesError if it
isunableto interpret thename or determineitsvalidity, typically becauseit isunableto contact
the naming authority, or if there is no standard agent running on the specified host.

PROCEDURE Export (name: TEXT; obj: T; where: Address := NL)
RAI SES {Error, Thread. Al erted};

Set t abl e[ nane] : = obj wheret abl e is the table provided by the agent whose
address iswher e, or by the default agent for the local machine if wher e=NI L. Thiscan
be used with obj =NI L to remove an entry from the table.

PROCEDURE | nport (nanme: TEXT; where: Address := NIL): T
RAI SES {Error, Thread. Al erted};

Returnt abl e[ nanme] wheret abl e is the table provided by the agent whose address
iswher e, or by the default agent for the local machine if wher e=Ni L. | nport returns
NI L if t abl e contains no entry for nane.

EXCEPTI ON Error (AtonList.T), Invalid,

VAR (* CONST*)
Commfai l ure, M ssingObj ect, NoResources,
NoTransport, UnsupportedDataRep, Al erted: AtomT;

END Net Qbj .

The exception Net Qbj . Er r or indicates that a failure occured during a remote method in-
vocation. Every remote method should therefore include this exception in its raises clause.
If Net Obj . Err or isnot raised, then the invocation completed successfully. If it israised, it
may or may not have compl eted successfully. It ispossiblethat an orphaned remoteinvocation
continued to execute at the owner, while the client raised Net Obj . Error .

The first atom in the argument to Net Obj . Err or explains the reason for the failure; any
subsequentsatoms provideimplementation-specificdetail. Theatom ConmFai | ur e indicates
communication failure, which might be network failure or a crash on aremote machine. The
aom M ssi ngQObj ect indicates that some network object, either the one whose method is
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invoked or an argument to that method, has been garbage-collected by its owner. (Thisindi-
cates that the owner mistakenly determined that one of its clients was dead.) NoResour ces
indicates that the call failed because of alack of resources, for example Unix file descrip-
tors. NoTr anspor t indicatesthat an attempt to unmarshal an object failed because the client
and owner shared ho common transport protocol implementation and were therefore unable
to communicate. Unsuppor t edDat aRep indicates a mismatch between the network repre-
sentation of dataand the ability of areceiver to handleit, for example a64-bit | NTEGER with
non-zero high-order bits is not meaningful as an | NTEGER on a 32-bit machine. Al erted
indicates that a client thread was aerted in the middle of a remote call and that an orphaned
remote computationmight still bein progress. (Threadsalerted inremotecallsmight alsoraise
Thr ead. Al ert ed; inwhich caseit isguaranteed that no orphansremain.) If thefirst atomin
the argument list does not appear in thisinterface, a network object runtimeerror isindicated.

3.2 NetStream interface

The Net St r eaminterface describes the marshaling of readers and writers, and provides pro-
cedures that you will need to useif you plan to reuse a stream after marshaling it.

The network object runtime allows subtypesof Rd. T and W . T to be marshaled as parame-
ters and as results of remote method invocation. To communicate areader or writer from one
program to another, a surrogate stream is created in the receiving program. We call the origi-
nal reader or writer the concrete stream. Datais copied over the network between the concrete
stream and the surrogate stream. Surrogate streams are free-standing entities, valid beyond the
scope of the remote call that produced them. Data can be transmitted on a surrogate stream at
close to the bandwidth supported by the underlying transport.

Theinitia position of the surrogate reader or writer equal s the position of the corresponding
concrete stream at thetimeit wasmarshaled. All surrogate readers and writers are unseekable.
Dataistransferred between surrogates and concrete streamsin background. Therefore, unde-
fined behaviour will result if you 1) perform local operations on the concrete stream while a
surrogate for it exists, or 2) create two surrogates for the same stream by marshaling it twice.
There is a mechanism, described below, for shutting down a surrogate stream so that the un-
derlying stream can be remarshaled.

Calling W . Fl ush on asurrogate writer flushes al outstanding data to the concrete writer
and flushes the concrete writer. CallingW . d ose flushes and then closes both the surrogate
and the concrete writer. Similarly, acall on Rd. O ose on asurrogate closes both readers.

Clientswho marshal streamsretain responsibility for closingthem. For example, Rd. Cl ose
on a surrogate can fail due to the network, leaving the owner responsible for closing the con-
crete reader. The WeakRef interface can be used to register a GC cleanup procedure for this
purpose.

The Rel easeW procedure is used to shut down a surrogate writer so that the underlying
writer can be reused. It flushes any buffered data, closesthe surrogate, and frees any network
resources associated with the surrogate. It leaves the concrete writer in a state where it can be
reused locally or remarshaled.

Similarly. the Rel easeRd procedure is used to shut down a surrogate reader so that the
underlying reader can be reused. It closes the surrogate, frees any network resources associ-
ated with the surrogate, and |eaves the concrete reader in a state where it can be reused lo-
cally or remarshaled. There isan important difference between releasing readers and writers:
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Rel easeRd discards any data buffered in the surrogate or in transit.

| NTERFACE Net Stream
| MPORT Rd, W, Thread;
PROCEDURE Rel easeRd(rd: Rd.T)
RAI SES {Rd. Fai l ure, Thread. Al erted};

If r d isa surrogate reader, release all network resources associated with r d, discard all
buffered data, closer d, but do not close the concrete reader for r d. This procedureisa
no-op if r d is not a surrogate.

PROCEDURE Rel easeW (wr: W.T)
RAI SES {W . Failure, Thread. Al erted};

If wr isasurrogate writer, flush wr, release all network resources associated with wr ,
close wr, but do not close the concrete writer for wr. This procedure is ano-op if wr is
not a surrogate.

END Net Stream

3.3 NetObjNotifier interface

TheNet Qoj Not i i er interfacealowsthe holder of asurrogate object to request notification
of when the object’s owner becomes inaccessible. This can be useful, for example, if it is
necessary to remove surrogates from a table upon termination of the programs holding their
corresponding concrete objects.

| NTERFACE Net Obj Not i fi er:
| MPORT Net Qbj ;

TYPE
Owner St ate = {Dead, Fail ed};

Notifierd osure = OBJECT METHODS
notify(obj: NetObj.T; st: OmerState);
END;

PROCEDURE AddNotifier(obj: NetObj.T; cl: Notifierdosure);

Arrangethat acall to cl . not i fy will be scheduled when obj becomes inaccessible.
If obj is not a surrogate object then AddNot i fi er has no effect. If obj is aready
inaccessible at thetime AddNot i fi er iscalled, thenacall tocl . noti fy isscheduled
immediately.

END Net Obj Noti fi er.

Thenot i fy method of aNot i fi er d osur e object isinvoked when the concrete object cor-
responding to the surrogate obj becomes inaccessible. The procedure AddNot i fi er must
have been called to enable this notification. There may be morethanoneNot i fi er Cl osur e
for the same surrogate. At notification time, the st argument isDead if and only if the object
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owner is known to be permanently inaccessible. Otherwise st isFai | ed. It is possiblefor
not i fy to be called multiple times on the same object. Any invocations on obj are guaran-
teed to fail in atimely fashion subsequent to a closure notification with st = Dead.

In general, a surrogate object can still be collected if a notifier closure is registered for it.
However, if the closure object contains areference to the surrogate, then its registration might
delay or prevent collection. Therefore this should be avoided.

Although this interface is organized to enable notification of owner death on a per object
basis, in practice thisis achieved by monitoring the state of the owner’s address space. This
means that death notification will be more or less simultaneousfor all surrogates whose con-
crete objects have the same owner.

34 Thestub generator

The stub generator isaprogram that generates stubsfor M odul a3 network object types. There
are restrictions on the subtypes of Net Obj . T for which the stub generator can produce stubs;
anetwork object type that obeysthemissaid to be valid. Hereisalist of these restrictions:

1. A valid network object type must be pure, that is it cannot contain data fields, either in
its declaration or in arevelation.

2. To generate stubs for a network object | . T, the stub generator must be able to deter-
mine a complete revelation for al opaque supertypesof | . T (including | . T itself, if it
is opaque) up to Net Obj . T.

3. A method argument may not be of type PROCEDURE or have a component that is of type
PROCEDURE. (A network object with an appropriate method can aways be sent instead
of a procedure.)

4. A Modula-3 method declaration specifiesthe set of exceptionsthat the method can raise.
It is possible to specify (via RAI SES ANY) that any exception can be raised, but thisis
not alowed for avalid network object type.

5. The methods of the type and its supertypes must have distinct names.

Given avalid network object type, the stub generator lays down code that implements pa-
rameter marshaling and remote invocation for that type's methods. For both arguments and
results, subtypes of Net Obj . T are marshaed as network references, subtypes of Rd. T and
W . T are marshaled as surrogate streams, and all other parameters are marshaled by copying.
The copying is performed by the pickles package if the parameter is areference.

VAL UE and READONLY parameters are copied only once, from the caller to the owner of the
object. VARparametersare normally copied from caller to owner onthecall, and from owner to
caler whenthecall returns. The pragma<* OUT* > on aVAR parameter in amethod declaration
indicatesthat the parameter may be given an arbitrary legal value when the method isinvoked.
The stub generator may use this information to optimize method invocation by not copying
the parameter’s value from caller to owner. At present, the stub generator does not make this
optimization.

Any changein marshaling protocol that would make stubsincompatibleisimplemented asa
new version of thestub generator. Typically, the previousversionwill continueto be supported
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for sometime after the rel ease of anew one. Thus, multipleversions of the stub generator may
sometimes exist at the sametime.

Stubs for multiple versions may be linked into the same program. Method invocation be-
tween two programsis possible so long as the owner and the caller have at least one common
version of the stubsfor the network object in question. The network object runtime will use
the most recent version of the protocol that is availablein both programs. Thisallows gradual
migration of applications from the old to the new protocol.

4 Internal Interfaces

In this section we present themain internal systemsinterfaces. Thetypical programmer using
network objects has no need to read them, but we present them here in order to document the
structure of the system. These are the interfaces you would use to write a new stub generator,
hand-code stubsfor some particular network object type, or add anew transport to the system.

4.1 StubLibinterface

Thisinterface contains procedures to be used by stub code for invoking remote object meth-
ods and servicing remote invocations. Each stub module provides type-dependent network
support for marshaling and unmarshaling method calls for a specific subtype of Net Obj . T.
Usually, stubs are built automatically. For each Net Obj . T subtype T intended to support re-
mote method invocation there must be both aclient and aserver stub. The client stub definesa
subtypeof Tinwhichevery method isoverridden by aprocedure i mplementing remote method
invocation. Such a surrogate object is constructed by the network object runtime whenever a
reference to anon-local object is encountered. The server stub consists of asingle procedure
of type Di spat cher that is called to unmarsha and dispatch remote invocations. A surro-
gate type and null dispatcher for Net Cbj . T are defined and registered by the network object
systemitself.

| NTERFACE St ublLi b;
| MPORT Atom Atonlist, NetObj, Rd, W, Thread;
TYPE Conn <: ROOT;

A remote object invocation can be viewed as an exchange of messages between client and
server. The messages are exchanged via an object of type Conn, which is opague in thisin-
terface. The St ubConn interface reveals more of thistype's structure to clients who wish to
hand-code stubs for efficiency. A Conn is unmonitored: clients must not access it from two
threads concurrently.

TYPE
Byte8 = BITS 8 FOR [0. . 255];
Dat aRep = RECORD
private, intFnt, floatFm, charSet: ByteS;
END;

VAR (*CONST*) NativeRep: DataRep;
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ThetypeDat aRep describesthe format used to encode characters, integers, and floating point
numbersinnetwork data. Dataisawaysmarshaedinthe sender’s nativeformat. Nat i veRep
isaruntime constant that describes the native format of the current environment.

Stubs may optimizein-lineunmarshaling by first checking that the incoming representation
isthe same asthe native one for all datatypesrelevant to thecall. If it is not, then the generic
data unmarshaling routines at the end of this interface should be used.

Automatic conversion between the data representations is performed wherever possible. If
conversionisimpossible, Net Obj . Er r or israised with Net Obj . Unsuppor t edDat aRepin
the argument atom list.

Concrete values for the elements of Dat aRep are not defined here asit is sufficient to com-
pare against Nat i veRep and invoke the marshaling procedures defined below if the encoding
isnon-native.

TYPE
Int32 = BITS 32 FOR [-16_7FFFFFFF-1..16_7FFFFFFF] ;
St ubPr ot ocol = | nt32;

CONST
Nul | St ubProt ocol = -1;

Syst enfst ubPr ot ocol = O;

The type St ubPr ot ocol indicates the version of the stub compiler used to generate a par-
ticular stub. Multiple stubs for the same network object can coexist within the same program
(for example, the outputs of different stub compilers). During surrogate creation, the network
object runtime negotiates the stub protocol version with the object owner.

Nul | St ubPr ot ocol isaplaceholder to indicate the absence of a stub protocol value. The
value Syst ent ubPr ot ocol indicatesthe fixed stub encoding used by theruntimetoimple-
ment primitivesthat operate prior to any version negotiation.

VAR (*CONST*) Unnmarshal Failure: Atom T,

Unnar shal Fai | ur e should be used as an argument to Net Obj . Er r or whenever stubsen-
counter anetwork datum that isincompatiblewith the target type. For example, the stub code
might encounter a CARDI NAL value greater than LAST( CARDI NAL) or an unrecognized re-
mote method specification.

TYPE Typecode = CARDI NAL;
Typecode isthetype of those values returned by the Modula-3 TYPECODE operator.

PROCEDURE Regi st er (

pureTC. Typecode; stubProt: StubProtocol;

surrTC. Typecode; disp: Dispatcher);
Let T be the type whose typecode is pur e TC, and let sr gT be the type whose typecode
issurr TC. Set the client surrogate type and dispatch procedure for T to besr gT and
di sp, respectively. The st ubPr ot parameter indicates the stub compiler version that
generated the stub being registered.

The following constraint applies to stub registration. If stubs are registered for types Aand B,
where B is a supertype of A, then the protocol versions registered for B must be a superset of
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the versions registered for A. If thisruleis violated, attempts to invoke remote methods may
raiseNet Qoj . Error.

Note that a concrete object of type Awill receive method invocations only for stub versions
for which Aisregistered. Thisistrue evenif asupertype of Aisregistered with additional stub
versions.

Regi st er must be called before any object of type T ismarshaled or unmarshaled.

Client stub procedures

Hereisasimplified sketch of the procedure calls performed by aclient to make a remote call
to amethod of obj :

VAR
c := StartCall (obj, stubProt);
resDat aRep: Dat aRep;
BEG N
<marshal to "c" the number of this nethod>
<marshal to "c" the nethod argunents>

resDat aRep : = Awai t Resul t (conn);
<unmarshal from"c" the nmethod results>
<results will be in wire format "resDataRep">
EndCal | (c, TRUE)

END;

For both arguments and results, the sender always marshals values in its native format; the
receiver performs any conversionsthat may be needed. The procedure result typically begins
with an integer specifying either anormal return or an exceptional return. If a protocol error
occurs, theclient shouldcall EndCal | (¢, FALSE) insteadof EndCal | (¢, TRUE).Thisre-
quiresTRY FI NALLY instead of the simplestraight-linecode above; amore compl ete example
is presented in the next section.

Here are the specifications of the client protocol procedures:

PROCEDURE StartCall (obj: NetObj.T; stubProt: StubProtocol): Conn
RAI SES {Net Cbj . Error, W. Failure, Thread. Al erted};

Return a connection to the owner of obj , write to the connection a protocol request to
perform a remote method call to obj , using the data representation Nat i veRep. The
vauest ubPr ot isthe stub protocol version under which the arguments and results will
be encoded.

Upon return from St ar t Cal |, the client stub should marshal a specification of the method
being invoked followed by any arguments.

PROCEDURE Awai t Resul t (c: Conn): DataRep
RAI SES {Net Ovj . Error, Rd.Failure, W.Failure,
Thread. Al erted};

Avai t Resul t indicates the end of the arguments for the current method invocation,
and blocks waiting for areply message containing the result of theinvocation. It returns
the data representation used to encode the result message.
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Upon return from Awai t Resul t the client stub should unmarshal any results.

PROCEDURE EndCal | (c: Conn; reUse: BOOLEAN)
RAI SES {Net Qbj . Error, Rd.Failure, W.Failure,

Thread. Al erted};

EndCal I must be called at the end of processing a remote invocation, whether or not
the invocation raised an exception. The argument r eUse must be FALSE if the client
has been unable, for any reason, to unmarshal either a normal or exceptional result.
It is aways safe to call EndCal | with reUse set to FALSE, but performance will be
improved if r eUse is TRUE whenever possible.

EndCal | determines, by examining c, whether the result message requires acknowledgement,
that is, whether the result contained any network objects. If an acknowledgement isrequired,
itissent. EndCal | thenreleasesc. After EndCal | returns, ¢ should not be used.

Server dispatcher procedures
Next we consider the server-side stub, which consists of a registered dispatcher procedure.

TYPE Di spat cher = PROCEDURE(
c: Conn; obj: NetQbj.T; rep: DataRep; stubProt: StubProtocol)

RAI SES {Net Obj . Error, Rd.Failure, W.Failure, Thread. Al erted};

A procedure of typeDi spat cher isregistered for each network object type T for which stubs
exist. Thedispatcher is called by the network object runtime when it receives aremote object
invocation for an object of type T. The r ep argument indicates the data representation used
to encode the arguments of the invocation. The st ubPr ot argument indicates the version of
stub protocol used to encode the call arguments. The same protocol should be used to encode
any results.

The dispatcher procedure is responsible for unmarshaling the method number and any ar-
guments, invoking the concrete object’s method, and marshaling any results.

Hereisasimplified sketch of atypica dispatcher:

PROCEDURE Di spatch(c, obj, rep) =

BEG N
<unmar shal from"c" the nethod nunber>
<unmar shal from"c" the nethod argunents>
<argunents will be in the wire format "rep">
<cal| the appropriate nethod of "obj">
StartResult(c);
<marshal to "c" the nethod result or exception>

END Di spat ch;

Hereisthe specification of St art Resul t :

PROCEDURE St art Resul t (c: Conn)
RAI SES {W . Failure, Thread. Al erted};

Start Resul t must be called by the server stub to initiate return from a remote
invocation before marshaling any results.
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Uponreturnfrom St ar t Resul t the stub code should marshal any resultsor error indications.

Mar shaling of reference types
The following procedures are made available for marshaling of subtypes of REFANY.

PROCEDURE CQut Ref (c: Conn; r: REFANY)
RAI SES {W . Failure, Thread. Al erted};

Marshal the data structure reachable from r . Certain datatypes are handled specially:
subtypes of Net Obj . T are marshaled as network references. Subtypes of Rd. T and
W. T are marshaled as surrogate streams. The types TEXT and REF ARRAY OF TEXT
are marshaled by copying via custom code for speed. All others are marshaled by
copying as pickles. Subtypes of Net Qbj . T, Rd. T, and W. T which are embedded
within other datatypes are also marshaled by reference.

PROCEDURE | nRef (c: Conn; rep: DataRep; tc:=-1): REFANY

RAI SES {Net Cbj . Error, Rd.Failure, Thread. Al erted};
Unmarshal a marshaled subtype of REFANY as pickled by Qut Ref . If t ¢ is non-
negative, it is the typecode for the intended type of the reference. The exception
Net Qbj . Error (Unmar shal Fai | ur e) israised if theunpickled result is not a subtype
of thistype. If t ¢ is negative, no type checking is performed.

Qut Ref and | nRef use picklesand therefore are affected by any custom pickling procedures
that have been registered. The network objects runtimeitself registers procedures for pickling
network objects and streams. Therefore, for any network objects or streamsthat are reachable
from the reference r are pickled by reference as described el sewhere in thisreport.

Marshaling of generic data

The St ubLi b interface also provides a suite of procedures to facilitate the marshaling and
unmarshaling of primitivedatatypes. For the sake of brevity, we usethe| NTEGER datatype as
an example. The actual interface providesroutinesto handle al other typesthat are primitive
in Modula-3 such as CARDI NAL, REAL, and LONGREAL.

PROCEDURE Cut I nteger(c: Conn; i: | NTECER)
RAI SES {W . Failure, Thread. Al erted};

PROCEDURE | nl nteger (c: Conn; rep: DataRep;
mn := FIRST(I NTEGER); max := LAST(INTEGER)): | NTEGER

RAI SES {Net Cbj . Error, Rd.Failure, Thread. Al erted};

Since al marshaling procedures output their parameters in the native representation of the
sender, they can betrivially replaced by inline code that manipul atesthe writer buffer directly.
All unmarshaling procedures decode the incoming wire representation as indicated by r ep
and return their results in native format. These procedures can be replaced by inline unmar-
shaing code whenever the relevant elements of r ep match the corresponding elements of
Nat i veRep.
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Finally, theSt ubLi b interface providestwo proceduresfor raising Net Cbj exceptionscon-
veniently:
PROCEDURE Rai seUnnar shal Fai |l ure() RAISES {Net Cbj.Error};
Raise Net Qbj . Er r or with UnmarshalFailure in the argument list.

PROCEDURE Rai seCommtai | ure(e: AtonlList.T) RAISES {Netbj.Error};
Raise Net Qbj . Err or with the result of prepending Net Qbj . ConmrFai | ur e to e.

END St ubLi b.

4.2 An example stub
Thissubsectionillustratesthe use of the St ubL.i b interface by presenting hand-generated stub
code for a simple network object type, Exanpl e. T:

| NTERFACE Exanpl e;

| MPORT Net Obj, Thread;

EXCEPTI ON I nval i d;

TYPE
T = Net Obj . T OBJECT METHODS
get (key: TEXT) : TEXT
RAI SES {Invalid, NetObj.Error, Thread. Al erted};
END,

END Exanpl e.

Notice that the object methods must raise Net Obj . Er r or or else communications failures
will be treated as checked runtime errors. Also notice that Thr ead. Al ert ed is present in
the RAI SES clause of all methods. Thisis not required, but is strongly advised. If an ob-
ject method does not propagate the Thr ead. Al ert ed exception, then not only is it impos-
sibleto aert remote invocations, but the server implementation must guarantee that Al er t ed
will never be raised. This guarantee must hold even though the network object runtime uses
Thr ead. Al ert torecover server threads when the client address space dies.
The following modul e defines and registers both client and server stubsfor Exanpl e. T:

MODULE Exanpl e;

| MPORT Net Cbj, StubLib, Thread, Rd, W;

TYPE P = { Gt }; R={ O Invalid};
The enumerated types P and R define values to be associated with the methods of T and with
the various results (normal return or exception) of these methods.

TYPE StubT = T OBJECT OVERRI DES get := SurrogateGet; END,

The type St ubT is the surrogate object type for T. It provides method overrides that perform
remote invocation.
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CONST St ubVersion = StubLib. Syst entt ubPr ot ocol ;

This constant will be set by the stub generator to denote the stub generator version that created
agiven stub.

PROCEDURE SurrogateGet (t: StubT; key: TEXT) : TEXT
RAI SES {Invalid, NetQoj.Error, Thread. Al erted} =
VAR reuse : = FALSE;
rep: StubLib. Dat aRep;
c: StubLib. Conn;

res: TEXT;
BEG N
TRY
c := StubLib.StartCall (t, StubVersion);
TRY

StubLi b. QutInt32(c, ORD(P.Get));
St ubLi b. Qut Ref (¢, key);
rep := StubLib. Anai t Result(c);
CASE StubLib.Inlnt32(c, rep) OF
| ORD(R OK) =>
res := StubLib.InRef(c, rep, TYPECODE(TEXT));
reuse : = TRUE;
| ORD(R Invalid) =>
reuse : = TRUE;
RAI SE | nvali d;
ELSE
St ubLi b. Rai seUnnmar shal Fai | ure();
END;
FI NALLY
St ubLi b. EndCal | (¢, reuse);
END;
EXCEPT
| Rd.Failure(ec) => StubLib. Rai seConmfai |l ure(ec);
| W.Failure(ec) => StubLib. Rai seConmfai | ure(ec);
END;
RETURN res;
END Surrogat eCet;

I nvoke isthe server stub dispatcher for T. It is called when the network object runtime re-
celves amethod invocation for an object of type T.

PROCEDURE | nvoke(
c: StubLib.Conn; obj: NetObj.T; rep: StubLib. DataRep;
<*UNUSED* > st ubProt: StubLib. StubProtocol)
RAI SES {Net Cbj . Error, Rd.Failure, W.Failure,
Thread. Al erted} =
VAR t := NARROWobj, T);
BEG N
TRY
CASE St ubLib. Inlnt32(c, rep) OF
| ORD(P.Get) => CetStub(c, t, rep);
ELSE St ubLi b. Rai seUnnmar shal Fai |l ure();
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END;
EXCEPT
| Invalid =>
StubLi b. Start Resul t(c);
StubLi b. QutInt32(c, ORD(R Invalid));
END;
END | nvoke;

There is one server side stub procedure for each method of T.

PROCEDURE Get Stub (c: StubLib.Conn; t: T, rep: StubLib. DataRep)
RAI SES {lnvalid, NetQoj.Error, Rd.Failure,
W . Failure, Thread.Al erted} =

VAR key, res: TEXT;

BEG N
key := StubLib.InRef(c, rep, TYPECODE(TEXT));
res := t.get(key);
StubLi b. Start Resul t(c);
StubLi b. QutInt32(c, ORD(R OK));
St ubLi b. Qut Ref (¢, res);

END Cet St ub;

All stub codeisregistered with the network object runtime by the main body of the stub mod-
ule. The protocol number is set to the stub protocol constant defined above.

BEG N
St ubLi b. Regi ster (
TYPECODE(T), StubVersion, TYPECODE(StubT), Invoke);
END Exanpl e.

4.3 StubConninterface

A St ubLi b. Conn represents a bidirectional connection used to invoke remote methods by
the network objects runtime. Here we reveal that a connection ¢ consists of a message reader
c. rd and amessage writer c. wr .

Connections come in matching pairs; the two elements of the pair are typicaly in different
address spaces. If c1 and c2 are paired, thetarget of c1. wr isequal to the source of c2. rd,
and viceversa. Thusthe messageswrittentoc1. wr can beread fromc2. r d, and vice versa.

| NTERFACE St ubConn;

| MPORT MsgRd, MsgW, StublLib;

REVEAL St ubLib. Conn <: Public;

TYPE Public = OBJECT rd: MsgRd. T; w: MgW.T END;
END St ubConn.

ThetypesMsgW . Tand MsgRd. T are subtypesof the standard Modula-3 streamtypesw . T
and Rd. T; they are described in detail in the next subsection. Since they are subtypes, any of
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the standard stream operations can be used on them. For example, in a hand-coded stub you
could replace the pair

St ubLi b. Qut Byte(c, byte)
b := StubLib.InByte(c)

with the pair

W . Put Char (c. w, VAL(byte, CHAR))
b := ORD(Rd. Get Char(c.rd)).

Thegain in speed from this change will be very modest. To make optimization worthwhile,
you will want to make direct access to the buffers in the reader and writer. To do this, import
theRdd ass and W O ass interfaces[18]. Importing these interfaces will allow you to write
stubs that operate directly on the reader and writer buffers.

If you use this optimization, you will have to be careful about locks. All readers and writ-
ers contain an internal lock used to serialize operations. It is arequirement of the St ubLi b
interface that all parameters of type Conn be passed with both streams unlocked. It isafur-
ther requirement that no client thread operate on the streamswhile an activation of aSt ubLi b
procedureisin progress.

4.4 Messagereadersand writers

The byte streams of the readers and writers in a St ubLi b. Conn are divided into segments
called messages. Messages are convenient for delineating call and return packets, and seem
essential for sending both data and control information for surrogate streams.

We define the types MsgRd. T and MsgW . T to present the abstraction of a stream of mes-
sages. A message isa sequence of bytesterminated by an end-of-message marker. Theinitial
positionisat the start of the first message. Messages can be of zero length.

If the end-of-message marker is encountered while reading from a MsgRd. T, it is repre-
sented by EndCf Fi | e on the reader. The next Msg method can be used to advance to the
next message in the stream. This method waits for the next message and returns TRUE when
it becomes available. A return value of FALSE indicatesthat there are (and will be) no further
messages. Thereader’s current position is set to zero on return from next Msg, and the reader
no longer reports EndCf Fi | e (unless of course the next message is zero length).

If next Msg is invoked when the reader is not at EndCf Fi | e, the remaining bytes in the
current message are skipped.

Asfor al readers, calling Rd. Cl ose on aMsgRd. T releases al associated resources.

Hereisalisting of theinterface:

| NTERFACE MsgRd;

| MPORT Thread, Rd;

TYPE
T = Rd. T OBJECT METHODS
next Msg(): BOCLEAN RAI SES {Rd. Failure, Thread. Al erted};

END MsgRd.
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As with aMsgRd. T, the next Msg method of a MsgW . T can be used to end the current
message and position the writer at the start of the next message. Thewriter’s current position
isreset to zero on return from next Msg.

Invoking W . Fl ush on aMsgW . T flushes the current buffer to the abstract writer target,
but does not end the current message.

Asfordl writers, calingw .  ose onaMsgW . Treleasesall associated resources. G ose
also flushes and terminatesthe current message. This meansthat a zero-length messageissent
at close timeif no data has been written into the current message (for example, directly after
next Msg or writer initiaization).

Hereisalisting of theinterface:

| NTERFACE MsgW ;
| MPORT Thread, W;

TYPE
T =W.T OBJECT METHODS
next Msg() RAISES {W. Failure, Thread. Al erted};
END,

END MsgW .

There are two final clauses in the specification of message readers and message writers.
First, their buffers must be word-aligned in memory. More precisely, if bytei in the data
stream is stored in the buffer at memory address j , theni andj must be equal modulo the
machine word size. This requirement allows optimized stubs to read and write scalar word
valuesfrom the buffer efficiently. Second, their buffers must not betoo small. More precisely,
when the next Msg method of awriter returns, there must be at least 24 bytes of free spacein
the writer buffer, and when the next Msg method of areader returns, there must be at least 24
bytes of message datain the reader buffer. This requirement allowsthe runtimeto efficiently
read and write the headers required by the network object protocol.

45 Transport interface

TheTr ansport interface separates the main part of the network object runtime system from
the partsthat deal with low-level communication. It istheinterface that must be implemented
to extend the systemto use new communication protocols. Theinterfaceisreasonably narrow:

| NTERFACE Tr ansport;
| MPORT Net Gbj, Net Obj Notifier, StubLib, StubConn, Thread;

TYPE
T <. Public;
Endpoi nt = TEXT;
Public = OBJECT METHODS
f ronEndpoi nt (e: Endpoint): Location;
t oEndpoi nt (): Endpoi nt;
serviceCal | (t: StubLib. Conn): (*reUse*) BOOLEAN
RAI SES {Thread. Al ert ed};
END;
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Location <: LocationP;

Locati onP = OBJECT METHODS
new(): StubLib. Conn RAI SES {Net Cbj.Error, Thread. Alerted};
free(c: StubLib.Conn; reUse: BOOLEAN);
dead(st: NetCbj Notifier.OmerState);

END;

Conn = St ubConn. Publ i c BRANDED OBJECT
|l oc: Location
END;

REVEAL
Net Obj . Addr ess = BRANDED REF ARRAY OF Endpoi nt;
St ubLi b. Conn <: Conn;

END Transport.
Themain ideasin the interface were described earlier. To summarize these briefly:

e A Transport. T isan object that manages connections of some particular class (e.g.,
TCP).

e ATransport. Locati onisan object that creates connections of some particular class
to some particular address space.

e A Transport. Endpoi nt isatransport-specific name for an address space (e.g., an IP
address plus a port number plus a non-reusable process ID).

e ThefronEndpoi nt method of atransport converts an endpoint into alocation, or into
NI L if the endpoint and transport are of different classes.

Here are specifications for the methods of aTr ansport. T:

e Thet oEndpoi nt method returns an endpoint for the address space itself. The resulting
endpoint should be recognized by thef r onEndpoi nt method of transports of the same
classanywhereinthenetwork. That is, if programinstanceP callst r . t oEndpoi nt (),
producing an endpoint ep, thenthecall t r 1. f r onEndpoi nt ( ep) executed inany pro-
gram instance either returnsNI L (if t r and t r 1 are of different classes) or returns alo-
cation that generates connectionsto P.

e Transports are required to provide the threads that listen to the server sides of connec-
tions. When a message arrives on the connection indicating the beginning of a remote
cal, thethreads arerequired to call theser vi ceCal I method of their transport. Thede-
fault value of thismethod locates and callsthe dispatcher procedure. Ordinarily atrans-
port implementation will not need to overridetheser vi ceCal I method. If conn isthe
argument to ser vi ceCal | , then at entry conn. r d is positioned at the start of thein-
comingmessage. Theser vi ceCal | method processesthe incoming remoteinvocation
and sendstheresult onconn. wr . If it returns TRUE, then theremote invocati on was pro-
cessed without error and the transport can cache the connection. If it returns FALSE, a
protocol error occurred during the call, and the transport i mplementation should destroy
the connection.
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And here are the specifications for the methods of a Tr ansport . Locat i on:

e The new method of a location returns a connection to the address space for whichiit is
alocation. Thecal | oc. new() returns a connection whose server sideis that address
space and whose client side is the program instance making the call. The caller must
pass the resulting connection to | oc. f r ee when it isfinished withiit.

e Thecalloc.free(c, reUse) freesthe connection c, which must have been gener-
ated by | oc. new() . If r eUse iSTRUE, the client assertsthat the connectionisin asuit-
able state for executing another remote method call. In particular, c. w must be posi-
tioned at the beginning of a message.

e A transport isresponsible for monitoring the liveness of program instances for which it
has locations or connections. The method of monitoring depends on the transport. For
example, the transport might periodically ping the other program instances. A program
isconsidered dead if it exits, crashes, or if the underlying communi cation network cannot
reach it for an appreciable amount of time. Supposethat | oc isalocation that generates
connections to some program instance P. If P dies, the transport that provided | oc is
responsible for calling the method | oc. dead(st) . (The network object runtime im-
plements this method; the transport should not override it.) The argument st indicates
whether thetransport has detected apermanent failure, or onethat ispotentially transient.
Inadditiontocaling! oc. dead, thetransport isresponsiblefor alerting all threadsit has
spawned to handle method invocations on behalf of P.

A transport is expected to manage the connections it creates. If creating connections is ex-
pensive, then the transport’s locations should cache them. |f maintaining idle connections
is expensive, then the transport’s locations should free them. Often connections are time-
consuming to create, but then tie up scarce kernel resources when idle. Therefore transports
typically cache idle connections for alimited amount of time.

The Tr anspor t interface reveals the representation of Net Obj . Addr ess: an addressis
simply an array of endpoints for the program instance designated by the address. The end-
pointsare generaly of different transport classes; they provide aternative ways of communi-
cating with the program instance. The modules of the network object runtimethat require this
revelation are exactly the modules that import the transport interface, so thisis a convenient
placeto put it.

TheTr ansport interface also reveals moreinformation about thetype St ubLi b. Conn. If
t isaSt ubLi b. Conn,thent. | oc isalLocat i on that generates connectionsto the program
instance at the other end of t . The connections generated by t . | oc connect the same pair of
programinstancesthatt connects, butift isahandleon the server side of theconnection, then
the connections generated by t . | oc will reverse the direction of t : their client side will be
t 'sserver side, and vice versa (so-called back connections). On theother hand, if t isahandle
on the client side of the connection, then the connections generated by t . | oc will bein the
samedirectionast . A transport must ensure that the | oc field is defined in all connections
returned by any of itslocations.
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5 Performance

Our system was designed and implemented in ayear by the four authors. The network object
runtime is 4000 lines, the stub generator 3000 lines, the TCP transport 1500 lines, the pickle
package 750 lines, and the network object agent 100 lines. All the codeisin Modula-3.

We haven't attempted extensive performance optimization, but we have measured thetimes
for some basic operations. The numbers given in Table 1 were taken using Digital worksta-
tions equipped with DECchip 21064 processors (at 175 MHz) running OSF/1 and communi-
cating over a 100 megabit/sec AN1 network[22]. The numbers include the cost of Modula-3
runtime checks.

Table 1. Sample remote invocation timings

Call parameters Elapsed time/call
Null call 960 usec
Ten integer arguments 1010 usec
REF CHAR argument 1280 usec
Linked list argument 5200 usec
Network object argument () 1030 usec
Network object argument (c) 1050 usec
Network object argument (¢, d) 2560 usec
Network object result (s) 1180 usec
Network object result (c) 1190 usec
Network object result (¢, d) 2680 usec

() concrete object marshaled
(s) surrogate object marshaled
(d) dirty call required

On our test configuration, it takes 660 microseconds for a C program to echo a TCP packet
from user space to user space. A null network object method invocation takes an additional
300 microseconds. The difference is primarily due to the cost of two Modula-3 user space
context switches (64 microseconds), the cost of marshaling and unmarshaling the object whose
null method is being invoked, and the cost of the wire protocol used to frame invocation and
result packets.

Theten integer argument test showsthat theincremental cost of aninteger argument isabout
5 microseconds. The REF CHAR test measures the cost of marshaling asmall data structure by
pickling. This minimal use of the pickle machinery adds an additional 220 microseconds to
the null call. The linked list test measures the cost of marshaling a complex data structure, in
this case a doubly-linked list with 25 elements. The additional cost per element isroughly 80
microseconds.

The next six tests show the tota cost of various calls involving a single network object ar-
gument or result (in addition to the object whose method isbeing invoked). An*“(s)” indicates
that the argument or result is marshaled as a surrogate and unmarshaled as a concrete object.
A “(c)” indicatesthat theargument or result ismarshal ed asaconcrete object and unmarshaled
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asasurrogate. A “(d)” indicatesthat adirty call isrequired.

The incrementa cost of a surrogate network object argument that does not lead to a dirty
call isroughly 70 microseconds. A concrete network object argument is somewhat more ex-
pensive. If adirty call isrequired, thereis an additional cost of about 1500 microseconds.

Network object results are more expensive than arguments, because of the acknowledge-
ment that must be sent when the result message contains anetwork object. In theteststhat do
not involve dirty calls, thiscost shows up as adifference of approximately 150 microseconds,
but in the tests that do involve dirty calls the cost seemsto belost in the noise.

We a so measured the performance of marshaled readers and writers. Since thereisonly a
minimal layer of protocol between marshaled data streams and the underlying network trans-
port, thereislittle difference in bandwidth. In the test configuration described above, our im-
plementation delivers over 95 percent of the full network bandwidth (100 M Bits/sec). We at-
tributeour failureto achieve full network bandwidthto thecost of user-space thread emulation,
Unix non-blocking I/0, and TCP protocol overhead.

The purpose of our project wasto find an attractive design, not to optimize performance, and
our numbers reflect this. Nevertheless, the performance of our system is adequate for many
purposes. It iscompetitivewith the performance of commercially available RPC systems[20],
and we believe that our design does not preclude the sort of performance optimizations re-
ported in the literature] 23, 27]. Furthermore, our use of buffered streams for marshaling per-
mitscareful hand-tuning of stubswhile still offering the flexibility of agenera purpose stream
abstraction.

6 Experience

Our network obj ects system hasbeen working for amost twoyears. Severa projectshave built
on the system, including the Siphon distributed software repository[21], the Argo teleconfer-
encing system[9], and the Obliq distributed scripting language[6]. We report on experience
gained from these projects here.

6.1 Siphon

The Siphon system consistsof two major components. The packagetool alows software pack-
ages to be checked in and out from a repository implemented as a directory in a distributed
file system. Therepository isreplicated for availability. When anew version of a packageis
checked in, itisimmediately visibleto al programmers using the local area network. All the
files in the new version become visible simultaneously.

The siphon component is used to link repositories that are too far apart to be served by the
samedistributed file system. (Inour case, thetwo repositoriesof interest are 6000 milesapart.)
When anew version of a package is checked in at one repository, the siphon copiesit to the
other repository within afew hours. Again, all new files in a single package become visible
simultaneously.

An earlier version of this system was coded with conventional RPC. The current version
coded with network objectsisdistinctly simpler, for severa reasons.

First, picklesand network streamssimplified theinterfaces. For example, tofetch apackage,
the old siphon enumerated the elements of the directory by repeated RPC calls; the new siphon
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obtainsalinked structure of directory elementsin onecall. Also, the old siphon used multiple
threads copying large buffers of datato send largefiles; the new siphon uses a network stream.

Second, third-party transfers eliminated an interface. The previous version of the siphon
would pull anew version of a package from one of the source replicas, push it over the wide
areanetwork to apartner siphon at theother site, whichwould cacheit onitsdisk and then push
it to each of the destination replicas. Thus both apull and apush interface were required. The
new siphon transfers the object implementing the pull interface to its remote partner, which
then pullsthe files from the source replica directly. Thus the push interface was eliminated.

Third, we can take advantage of the ability to plug new transportsinto thesystem. Datacom-
pression is known to significantly increase bandwidth over wide area networks. Althoughwe
have not had need to do so, we could easily provideasubtype of Tr ansport . T that automat-
ically compresses and decompresses data. Thiswould move the compression code out of the
application and into alibrary where it could easily be reused.

Inwriting the Siphon system we deliberately stressed di stributed garbage collection by per-
forming no explicit deallocations. Theresults of thisstrategy were mixed. Therewere no seri-
ousmemory |leaks and garbage coll ection overhead was not a problem, but automatic reclama-
tion was not astimely as wewould have liked. The fundamental problem isthat performance
tradeoffs made in the local collector may not be appropriate for the distributed case. For ex-
ample, it may be perfectly acceptable for the collector to delay reclaiming some small object,
but if the object is a surrogate this can prevent the reclamation of an object that holds some
important resource. We also found that the Modula-3 local collector occasionally failsto free
unreachable objects because of its conservative strategy, and that this is more of a problem
for distributed computationsthan for local ones. We conclude that for an application like the
Siphon system that holds important resources like Unix file handles, it is necessary either to
rewrite thelocal collector or to code the application to free resources explicitly.

6.2 Argo

Argo isadesktop tel ecollaboration system using audio, video, ashared whiteboard, and shared
application windows to facilitate cooperation among multiple users who may be separated
across long distances. A central function of Argo is conference control, which coordinates
the sharing of the various mediaand toolsto provide a coherent model of group collaboration.
This shared state is held in a small special-purpose database that is implemented in terms of
network objects.

The conference control server’s database defines three types of objects: users, conferences,
and members. A user object represents ahuman user of the system; aconference object repre-
sentsan collaboration, such asavirtual conference room. Thebasic event isthat usersjoin and
leave conferences. A member representsa {user, conf} pair and is created automatically when
auser joins a conference. Each object in the database has alist of properties whose meaning
is defined by client programs. General property lists were chosen instead of a predefined hi-
erarchy of subtypesto increase independence among client programs.

The primary function of the server is to notify clients of events that occur in its database.
This is done via callbacks. A client program registers a handler object and an event filter.
When an event passes the filter, an appropriate callback method of the client’s handler object
isinvoked, and is passed the rel evant database object(s) that were involved in the event. For
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example, when a user joins a conference, the client programs involved in the conference are
notified and can obtain the properties of the new user’s object.

Callbacks like those employed in Argo are commonplace in non-distributed applications,
and network objects extend this style to distributed programming. Nonetheless, transparent
distributedinvocationisnot apanaces; distributed programsareinherently more complex than
centralized ones. For example, callbacks from the Argo server to clients cannot be treated
like local callbacks: the server must protect itself against clients that crash or are too slow,
especially whenlocksareinvolved. Although good toolscan hidemany of thetiresomedetails
of distributed programming, they do not yet eliminate the fundamental issues that must be
faced in designing a robust distributed system.

The ease of defining, debugging and modifying the Argo conference control system and
its protocol via network objects has been quite striking. Because of the leverage provided by
Modula-3 and network objects, the entire conference control server implementation contains
only 1400 lines of source code.

6.3 Oblig

Obliq is a lexically-scoped, untyped, interpreted language that supports distributed object-
oriented computation. Obliq objects have state and are local to a site, but computations can
roam over the network.

The characteristics of Modula-3 network objects had a major influence on Oblig, not just
in the implementation, but also in the language design. All Obliq objects are implemented as
network objects, so thereisno artificial separation between loca Obliqg objects and those that
may be remotely accessed. Also, al Obliq program variables are network objects, including
global variables. Therefore, a remote computation can still access global state at the site at
which it originated. Two elements of the network objects system were particularly useful in
simplifyingthe Obliqgimplementation. Distributed garbage collectionrelieved concerns about
space reclamation, and marshaling viapicklesmadeit easy to transmit complex datastructures
such as the runtime representation of Obliqvalues.

6.4 Other work

Network objects are also in usein asystem for continuous performance monitoring. The sys-
tem provides atelemonitoring server which can be directed by the user to retrieve and process
event logs from remote programs. The logs are communicated to the telemonitor via remote
readers. Because a monitored program may disconnect from one telemonitor and reconnect
to another, this application requires the ability to disconnect a network reader and reconnect
the underlying data stream to a different process. Thisworks, but requires extralogic in the
application. In order to guarantee that no datais lost, the telemonitor must call the monitored
program to indicate that it is disconnecting.

Our experience with the continuous monitoring project showed us that the design of reader
and writer marshaling is trickier than it would at first appear. The semantics of marshaled
streams are surprisingly difficult to specify and there are many design tradeoffs involved. We
chose to give rather weak semantics, barring third-party marshaling of streams and specify-
ing little about the state of a concrete stream after marshaling. Providing stronger guarantees
would have had ahigh cost in either throughput or complexity.
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We have also implemented secure network objects. A secure network object method can
authenticate its caller, which allows security based on access control lists. A secure network
object can also be passed to third parties and cannot be forged, which allows security based
on capabilities. A client can use secure and ordinary insecure network objects together in the
same application, incurring a performance penalty only for secure invocations or third party
transfers of secure objects. Leendert van Doorn hasimplemented secure network objects[28],
but the implementation has not yet been released or extensively used.

We learned three thingsfrom our secure network object implementation. First, the design of
the secure system followed naturally from that of the insecure system. A large-scale redesign
was not necessary. Second, because we use readers and writers for marshaling, it was easy
to insert reader and writer subtypes that perform the cryptographic functions necessary for
network security. Finally, because of our desire to make remote invocations transparent, we
did not identify the caller viaan implicit argument to the owner’s method. Instead, we require
calersto pass an explicit extraargument if they want to identify themselves. This argument
is of adistinguished type that is marshaled specially.

Several users of network objects have noted our lack of support for object persistence. We
notethat Carsten Weich hasrecently added support for stable objectsto the Modula-3 runtime
system. He captures a stable snapshots of an object’s state and then writes the arguments of
update methods into aredo log using techniques quite similar to marshaling.

Providing support for stable concrete objectsisnot thewhol e story, however. Inadistributed
system, it can be valuable for a surrogate object to remain valid after restart of the owner’s
address space. We have not implemented this facility, although we believe that it would be
straightforward to do so with alibrary built on top of the existing network object system.

7 Conclusion

The narrowest surrogate rule is flexible, but the associated type checking is dynamic rather
than static, which has all the usual disadvantages. Because programs can be relinked and re-
run at any time, it seemsimpossibleto provide purely static type checking in adistributed en-
vironment. Dynamic checking imposes a burden of discipline upon programmers. The most
common failureduring the early stages of debugging a network objectsapplicationisanarrow
fault (failure of aruntimetype-check). For example, if a programmer forgets to link in stubs
for asubtype A of Net Qbj . T, animport of an A object will succeed, but theresultant surrogate
will have type Net Obj . T and any attempt to NARROWIt to an A object will fail.

Even an application that has been in service for along time can crash with anarrow fault if
some programmer carel essly changes alow-level interface and rebuilds another program with
which the application communicates. Because of this danger, programmers should minimize
external dependencies when defining a network object subtype. It is aso important that the
implementation of type fingerprinting not introduce spurious dependencies.

Programmers appreciate the narrowest surrogate rule, and more than one has asked for com-
parableflexibility inthe case of ordinary objects. (If an attempt is madeto unpicklean ordinary
object into aprogram that does not contain the type of the object, an exception israised.) But
in this case liberality seems unsound. Supposetype ABisderived from A, and that we contrive
to send a copy (rather than areference) of an object of type AB into a program that knowsthe
type A but not the type AB. One can imagine doing this either by ignoring the B datafields and
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methods, or by somehow holdingthem inreserve. In either case, the new program can operate
on the A part of the state, for example by reading or writing data fields or by calling methods
of A. However, there is no guarantee that these operationswill bevalid, sincetheoriginal type
AB may have overridden some of the methods of A; for example in order to accommodate a
changeinthe meaning of therepresentation of the Afields. Thenarrowest surrogate rule seems
sound only when objects are transmitted by reference.

The programmers that have used network objects have found the abstractionsit offers to be
simple yet powerful. By providing transparent remote invocation through Modula-3 objects,
we eliminatemany of the fussy detail sthat make RPC programming tedious. Through the use
of pickles, and by implementing third party network object transfers and marshaled abstract
streams, we remove many restrictions about what can be marshaed, and we do so without
increasing the complexity of generated stubs. The strength of our system comes not from pro-
liferating features, but from carefully analyzing the requirements of distributed programming
and designing a small set of general features to meet them.
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26. Reliable Messages

The attached paper on reliable messages is Chapter 10 from the book Distributed Systems:
Architecture and Implementation, edited by Sape Mullender, Addison-Wesley, 1993. It contains
a careful and complete treatment of protocols for ensuring that a message is delivered at most

once, and that if there are no serious failures it is delivered exactly once and its delivery is

properly acknowledged.
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Reliable Messages and
Connection Establishment

Butler W. Lampson

1 Introduction

Given an unreliable network, we would like to reliably deliver messages from a sender to a
receiver. This is the function of the transport layer of the ISO seven-layer cake. It uses the
network layer, which provides unreliable message delivery, as a channel for communication
between the sender and the receiver.

Ideally we would like to ensure that

* messages are delivered in the order they are sent,
* every message sent is delivered exactly once, and
+ an acknowledgement is returned for each delivered message.

Unfortunately, it’s expensive to achieve the second and third goals in spite of crashes and an
unreliable network. In particular, it’s not possible to achieve them without making some change
to stable state (state that survives a crash) every time a message is received. Why? When we
receive a message after a crash, we have to be able to tell whether it has already been delivered.
But if delivering the message doesn’t change any state that survives the crash, then we can’t tell.

So if we want a cheap deliver operation that doesn’t require writing stable state, we have to
choose between delivering some messages more than once and losing some messages entirely
when the receiver crashes. If the effect of a message is idempotent, of course, then duplications
are harmless and we will choose the first alternative. But this is rare, and the latter choice is
usually the lesser of two evils. It is called ‘at-most-once’ message delivery. Usually the sender
also wants an acknowledgement that the message has been delivered, or in case the receiver
crashes, an indication that it might have been lost. At-most-once messages with
acknowledgements are called ‘reliable’ messages.

There are various ways to implement reliable messages. An implementation is called a
‘protocol’, and we will look at several of them. All are based on the idea of tagging a message
with an identifier and transmitting it repeatedly to overcome the unreliability of the channel. The
receiver keeps a stock of good identifiers that it has never accepted before; when it sees a
message tagged with a good identifier, it accepts it, delivers it, and removes that identifier from
the good set. Otherwise, the receiver just discards the message, perhaps after acknowledging it.
In order for the sender to be sure that its message will be delivered rather than discarded, it must

This paper originally appeared as chapter 10 in Distributed Systems, ed. S. Mullender, Addison-Wesley, 1993, pp
251-281. It is the result of joint work with Nancy Lynch and Jergen Segaard-Andersen.
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tag the message with a good identifier.

What makes the implementations tricky is that we expect to lose some state when there is a
crash. In particular, the receiver will be keeping track of at least some of its good identifiers in
volatile variables, so these identifiers will become bad at the crash. But the sender doesn’t know
about the crash, so it will go on using the bad identifiers and thus send messages that the receiver
will reject. Different protocols use different methods to keep the sender and the receiver more or
less in sync about what identifiers to use.

In practice reliable messages are most often implemented in the form of ‘connections’. The
idea is that a connection is ‘established’, any amount of information is sent on the connection,
and then the connection is ‘closed’. You can think of this as the sending of a single large
message, or as sending the first message using one of the protocols we discuss, and then sending
later messages with increasing sequence numbers. Usually connections are full-duplex, so that
either end can send independently, and it is often cheaper to establish both directions at the same
time. We ignore all these complications in order to concentrate on the essential logic of the
protocols.

What we mean by a crash is not simply a failure and restart of a node. In practice, protocols
for reliable messages have limits, called ‘timeouts’, on the length of time for which they will
wait to deliver a message or get an ack. We model the expiration of a timeout as a crash: the
protocol abandons its normal operation and reports failure, even though in general it’s possible
that the message in fact has been or will be delivered.

We begin by writing a careful specification S for reliable messages. Then we present a ‘lower-
level’ spec D in which the non-determinism associated with losing messages when there is a
crash is moved to a place that is more convenient for implementations. We explain why D
implements S but don’t give a proof, since that requires techniques beyond the scope of this
chapter. With this groundwork, we present a generic protocol G and a proof that it implements
D. Then we describe two protocols that are used in practice, the handshake protocol H and the
clock-based protocol C, and show how both implement G. Finally, we explain how to modify our
protocols to work with finite sets of message identifiers, and summarize our results.

The goals of this chapter are to:

+ Give a simple, clear, and precise specification of reliable message delivery in the presence
of crashes.

+ Explain the standard handshake protocol for reliable messages that is used in TCP, ISO
TP4, and many other widespread communication systems, as well as a newer clock-based
protocol.

» Show that both protocols can be best understood as special cases of a simpler, more
general protocol for using identifiers to tag messages and acknowledgements for reliable
delivery.

+  Use the method of abstraction functions and invariants to help in understanding these three
subtle concurrent and fault-tolerant algorithms, and in the process present all the hard parts
of correctness proofs for all of them.

» Take advantage of the generic protocol to simplify the analysis and the arguments.
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1.1 Methods

We use the definition of ‘implements’ and the abstraction function proof method explained in
Chapter 3. Here is a brief summary of this material.

Suppose that X and Y are state machines with named transitions called actions; think of X as a
specification and Y as an implementation. We partition the actions of X and Y into external and
internal actions. A behavior of a machine M is a sequence of actions that M can take starting in
an initial state, and an external behavior of M is the subsequence of a behavior that contains only
the external actions. We say Y implements X iff every external behavior of Y is an external
behavior of X.! This expresses the idea that what it means for Y to implement X is that from the
outside you don’t see Y doing anything that X couldn’t do.

The set of all external behaviors is a rather complicated object and difficult to reason about.
Fortunately, there is a general method for proving that Y implements X without reasoning
explicitly about behaviors in each case. It works as follows. First, define an abstraction function f
from the state of Y to the state of X. Then show that Y simulates X:

1. f'maps an initial state of Y to an initial state of X.

2. For each Y-action and each reachable state y there is a sequence of X-actions (perhaps
empty) that is the same externally, such that the following diagram commutes.

X-actions
Jo) —————> /")

f f

Y-action
y———————*)

A sequence of X-actions is the same externally as a Y-action if they are the same after all
internal actions are discarded. So if the Y-action is internal, all the X-actions must be internal
(perhaps none at all). If the Y-action is external, all the X-actions must be internal except one,
which must be the same as the Y-action.

A straightforward induction shows that Y implements X: For any Y-behavior we can construct
an X-behavior that is the same externally, by using (2) to map each Y-action into a sequence of
X-actions that is the same externally. Then the sequence of X-actions will be the same externally
as the original sequence of Y-actions.

In order to prove that Y simulates X we usually need to know what the reachable states of Y
are, because it won’t be true that every action of Y from an arbitrary state of Y simulates a
sequence of X-actions; in fact, the abstraction function might not even be defined on an arbitrary
state of Y. The most convenient way to characterize the reachable states of Y is by an invariant,

1 Actually this definition only deals with the implementation of safety properties. Roughly speaking, a safety
property is an assertion that nothing bad happens; it is a generalization of the notion of partial correctness for
sequential programs. A system that does nothing implements any safety property. Specifications may also include
liveness properties, which roughly assert that something good eventually happens; these generalize the notion of
termination for sequential programs. A full treatment of liveness is beyond the scope of this chapter, but we do
explain informally why the protocols make progress.

Handout 26. Reliable Messages 4



6.826—Principles of Computer Systems

a predicate that is true of every reachable state. Often it’s helpful to write the invariant as a
conjunction, and to call each conjunct an invariant. It’s common to need a stronger invariant than
the simulation requires; the extra strength is a stronger induction hypothesis that makes it
possible to establish what the simulation does require.

So the structure of a proof goes like this:

+ Establish invariants to characterize the reachable states, by showing that each action
maintains the invariants.

* Define an abstraction function.

» Establish the simulation, by showing that each Y-action simulates a sequence of X-actions
that is the same externally.

This method works only with actions and does not require any reasoning about behaviors.
Furthermore, it deals with each action independently. Only the invariants connect the actions. So
if we change (or add) an action of Y, we only need to verify that the new action maintains the
invariants and simulates a sequence of X-actions that is the same externally. We exploit this
remarkable fact in Section 9 to extend our protocols so that they use finite, rather than infinite,
sets of identifiers.

In what follows we give abstraction functions and invariants for each protocol. The actual
proofs that the invariants hold and that each Y-action simulates a suitable sequence of X-actions
are routine, so we give proofs only for a few sample actions.

1.2 Types and notation

We use a type M for the messages being delivered. We assume nothing about M.

All the protocols except S and D use a type 7 of identifiers for messages. In general we assume
only that /s can be compared for equality; C assumes a total ordering. If x is a multiset whose
elements have a first / component, we write ids(x) for the multiset of /s that appear first in the
elements of x.

We write [-[for a sequence with the indicated elements and + for concatenation of sequences.

We view a sequence as a multiset in the obvious way. We write x = (y, *) to mean that x is a pair
whose first component is y and whose second component can be anything, and similarly for x =
*, ).

We define an action by giving its name, a guard that must be true for the action to occur, and
an effect described by a set of assignments to state variables. We encode parameters by defining
a whole family of actions with related names; for instance, gez(m) is a different action for each
possible m. Actions are atomic; each action completes before the next one is started.

To express concurrency we introduce more actions. Some of these actions may be internal,
that is, they may not involve any interaction with the client of the protocol. Internal actions
usually make the state machine non-deterministic, since they can happen whenever their guards
are satisfied, not just when there is an interaction with the environment. We mark external
actions with *s, two for an input action and one for an output action. Actions without *s are
internal.

It’s convenient to present the sender actions on the left and the receiver actions on the right.
Some actions are not so easy to categorize, and we usually put them on the left.
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2 The specification S

The specification S for reliable messages is a slight extension of the spec for a FIFO queue.
Figure 1 shows the external actions and some examples of its transitions. The basic state of S is
the FIFO queue ¢ of messages, with put(m) and get(m) actions. In addition, the status variable
records whether the most recently sent message has been delivered. The sender can use
getAck(a) to get this information; after that it may be forgotten by setting status to lost, so that
the sender doesn’t have to remember it forever. Both sender and receiver can crash and recover.
In the absence of crashes, every message put is delivered by get in the same order and is
positively acknowledged. If there is a crash, any message still in the queue may be lost at any
time between the crash and the recovery, and its ack may be lost as well.

The getAck(a) action reports on the message most recently put, as follows. If there has been no
crash since it was put there are two possibilities:

» the message is still in ¢ and getAck cannot occur;

» the message was delivered by get(m) and getAck(OK) occurs.

If there have been crashes, there are two additional possibilities:

+ the message was lost and getAck(lost) occurs;

» the message was delivered or is still in ¢ but getAck(lost) occurs anyway.

The ack makes the most sense when the sender alternates put(m) and getAck(a) actions. Note
that what is being acknowledged is delivery of the message to the client, not its receipt by some
part of the implementation, so this is an end-to-end ack. In other words, the get should be thought
of as including client processing of the message, and the ack might include some result returned
by the client such as the result of a remote procedure call. This could be expressed precisely by
adding an ack action for the client. We won’t do that because it would clutter up the presentation
without improving our understanding of how reliable messages work.

S R

e Put(m) Get(m) e

Z’ Gettek@ | 1~ 2 F o

1. a

e <L() status =? f

r Get(B) 14

Get(C) e

Get(D) r
- - )

status = OK status = lost

Figure 1. Some states and transitions for S
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Sender Receiver
Name Guard Effect Name Guard Effect
**put(m) recg = false append mto g, | *get(m) rec,=false, remove head of g,
status =7 misfirston g if ¢ = empty and status =?
then status = OK
*getAck(a recg=false, optionally
status =a  status = lost
**crashg recg = true **crash, rec, = true
*recovery recg recg = false *recover, rec, rec, = false
lose recg or rec,  delete some element from ¢;
if it’s the last then status = lost,
or status = lost
q :sequence[M] =00
status : Status = lost
recg  : Boolean = false (rec is short for ‘recovering’)
rec,  :Boolean = false

Table 1. State and actions of S

To define S we introduce the types A (for acknowledgement) with values in {OK, lost} and
Status with values in {OK, lost, ?7}. Table 1 gives the state and actions of S. Note that it says
nothing about channels; they are part of the implementation and have nothing to do with the
spec.

Why do we have both crash and recover actions, as opposed to just a crash action? A spec
that only allows messages to be lost at the time of a crash is not implemented by a protocol like
C in which the sender accepts a message with put and sends it without verifying that the receiver
is running normally. In this case the message is lost even though it wasn’t in the system at the
time of the crash. This is why we have a separate recover,. action that allows the receiver to de-
clare the point after a crash when messages are again guaranteed not to be lost. There seems to
be no need for a recover; action, but we have one for symmetry.

A spec which only allows messages to be lost at the time of a recover is not implemented by
any protocol that can have two messages in the network at the same time, because after a crashg
and before the following recover; it’s possible for the second message in the network to be
delivered, which means that the first one must be lost to preserve the FIFO property.

The simplest spec that covers both these cases can lose a message at any time between a crash
and its following recover, and we have adopted this alternative.

3 The delayed-decision specification D

Next we introduce an implementation of S, called the delayed-decision specification D, that is
more non-deterministic about when messages are lost. The reason for D is to simplify the proofs
of the protocols: with more freedom in D, it’s easier to prove that a protocol simulates D than to
prove that it simulates S. A typical protocol transmits messages from the sender to the receiver
over some kind of channel that can lose messages; to compensate for these losses, the sender
retransmits. If the sender crashes with a message in the channel it stops retransmitting, but
whether the receiver gets the message depends on whether the channel loses it. This may not be
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decided until after the sender has recovered. So the protocol doesn’t decide whether the message
is lost until after the sender has recovered. D has this freedom, but S does not.

S R
€ Put(m) Get(m) €
Z Getacka) | 1~ 2 P o
etAck(a
e 44 status = ? ?
r Get(B) Crash 1%
Get(C) ark(B) e
Get(D) Mark(D) r
Recover
Drop(B
status = lost Drop(D) status =7 #
Figure 2. Some states and transitions of D
Sender Receiver
Name Guard Effect Name Guard Effect
**put(m) recg=false append (m, +) to q, | *get(m) recy=false,  remove head of g,

status == (7, +) (m, *) first on ¢ if ¢ = empty and
status = (?, x)

then status=(OK x)

*getAck(a) recg = false, status = (a, +)

status = (a, *) or status = (lost, +)

**crashg recg = true **crashy

recg = false

recy = true

*recovery recg *recover; recy recy = false

mark recg or recy  for some element unmark for some element
of g or for status, of ¢ or for status,
mark =# mark =+
drop delete an element of ¢ with mark = #;
if it was the last element, status := (lost, +)
or if status = (*, #), status = (lost, +)
q : sequence[(M, Mark)] =00
status : (Status, Mark) = (lost, +)
recy  : Boolean = false
rec,  : Boolean = false

Table 2. State and actions of D
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D is the same as S except that the decisions about which messages to lose at recovery, and
whether to lose the ack, are made by asynchronous drop actions that can occur after recovery.
Each message in ¢, as well as the status variable, is augmented by an extra component of type
Mark which is normally + but may become # between crash and recovery because of a mark
action. At any time an unmark action can change a mark from # back to +, a message marked #
can be lost by drop, or a status marked # can be set to lost by drop. Figure 2 gives an example of
the transitions of D; the + marks are omitted.

To define D we introduce the type Mark that has values in the set {+, #}. Table 2 gives the
state and actions of D.

3.1 Proofthat D implements S

We do not give this proof;, since to do it using abstraction functions we would have to introduce
‘prophecy variables’, also known as ‘multi-valued mappings’ or ‘backward simulations’ (Abadi
and Lamport [1991], Lynch and Vaandrager [1993]). If you work out some examples, however,
you will probably see why the two specs S and D have the same external behavior.

4  Channels

All our protocols use the same channel abstraction to transfer information between the sender
and the receiver. We use the name ‘packet’ for the messages sent over a channel, to distinguish
them from reliable messages. A channel can freely drop and reorder packets, and it can duplicate
a packet any finite number of times when it’s sent;? the only thing it isn’t allowed to do is deliver
a packet that wasn’t sent. The reason for using such a weak specification is to ensure that the
reliable message protocol will work over any bit-moving mechanism that happens to be

available. With a stronger channel spec, for instance one that doesn’t reorder packets, it’s
possible to have somewhat simpler or more efficient implementations.

There are two channels s7 and rs, one from sender to receiver and one from receiver to sender,
each a multiset of packets initially empty. The nature of a packet varies from one protocol to
another. Table 3 gives the channel actions.

Protocols interact with the channels through the external actions send(...) and rcy(...) which
have the same names in the channel and in the protocol. One of these actions occurs if both its
pre-conditions are true, and the effect is both the effects. This always makes sense because the
states are disjoint.

Name Guard Effect Name Guard Effect

**sendg(p) add some number of]|| **send,;-¢(p) add some number
copies of p to sr of copies of p to rs

*revg(p)  p Osr remove one p reves(p) p Ors remove one p
from sr from rs

losegr(p)  p O sr remove one p loseys(p) p Ors remove one p
from sr from rs

Table 3. Actions of the channels

2 You might think it would be more natural and closer to the actual implementation of a channel to allow a packet
already in the channel to be duplicated. Unfortunately, if a packet can be duplicated any number of times it’s
possible that a protocol like H (see section 8) will not make any progress.
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5 The generic protocol G

The generic protocol G generalizes two practical protocols described later, H and C; in other
words, both of them implement G. This protocol can’t be implemented directly because it has
some ‘magic’ actions that use state from both sender and receiver. But both real protocols
implement these actions, each in its own way.

The basic idea is derived from the simplest possible distributed implementation of S, which
we call the stable protocol SB. In SB all the state is stable (that is, nothing is lost when there is a
crash), and each end keeps a set g or g, of good identifiers, that is, identifiers that have not yet
been used. Initially g O g;,, and the protocol maintains this as an invariant. To send a message
the sender chooses a good identifier i from g, attaches i to the message, moves i from g to a
last variable, and repeatedly sends the message. When the receiver gets a message with a good
identifier it accepts the message, moves the identifier from g, to a last, variable, and returns an
ack packet for the identifier after the message has been delivered by ger. When the receiver gets
a message with an identifier that isn’t good, it returns a positive ack if the identifier equals last,
and the message has been delivered. The sender waits to receive an ack for last before doing
getAck(OK). There are never any negative acks, since nothing is ever lost.

This protocol satisfies the requirements of S; indeed, it does better since it never loses
anything.

1. It provides at-most-once delivery because the sender never uses the same identifier for

more than one message, and the receiver accepts an identifier and its message only once.

2. It provides FIFO ordering because at most one message is in transit at a time.
3. It delivers all the messages because the sender’s good set is a subset of the receiver’s.
4. It acks every message because the sender keeps retransmitting until it gets the ack.

The SB protocol is widely used in practice, under names that resemble ‘queuing system’. It
isn’t used to establish connections because the cost of a stable storage write for each message is
too great.

In G we have the same structure of good sets and /ast variables. However, they are not stable
in G because we have to update them for every message, and we don’t want to do a stable write
for every message. Instead, there are operations to grow and shrink the good sets; these
operations maintain the invariant g [ g, as long as there is no receiver crash. When there is a
crash, messages and acks can be lost, but S and D allow this. Figure 3 shows the state and some
possible transitions of G in simplified form. The names in outline font are state variables of D,
and the corresponding values are the values of the abstraction function in that state.

Figure 4 shows the state of G, the most important actions, and the S-shaped flow of
information. The new variables in the figure are the complement of the used variables in the
code. The heavy lines show the flow of a new identifier from the receiver to the sender, back to
the receiver along with the message, and then back again to the sender along with the
acknowledgement.
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G also satisfies the requirements of S, but not quite in the same way as SB.
1. At-most-once delivery is the same as in SB.

2. The sender may send a message after a crash without checking that a previous outstanding
message has actually been received. Thus more than one message can be in transit at a
time, so there must be a total ordering on the identifiers in transit to maintain FIFO ordering
of the messages. In G this ordering is defined by the order in which the sender chooses
identifiers.

3. Complete delivery is the same as in SB as long as there is no receiver crash. When the
receiver crashes g [ g, may cease to hold, with the effect that messages that the sender
handles during the receiver crash may be assigned identifiers that are not in g,- and hence
may be lost. The protocol ensures that this can’t happen to messages whose put happens
after the receiver has recovered. When the sender crashes, it stops retransmitting the
current message, which may be lost as a result.

4. As in SB, the sender keeps retransmitting until it gets an ack, but since messages can be
lost, there must be negative as well as positive acks. When the receiver sees a message
with an identifier that is not in g, and not equal to /ast, it optionally returns a negative ack.
There is no point in doing this for a message with i < last, because the sender only cares
about the ack for last,, and the protocol maintains the invariant last, < last,. If i > last,.,
however, the receiver must sometimes send a negative ack in response so that the sender
can find out that the message may have been lost.

G is organized into a set of implementable actions that also appear, with very minor variations,
in both H and C, plus the magic grow, shrink, and cleanup actions that are simulated quite
differently in H and in C.

‘When there are no crashes, the sender and receiver each go through a cycle of modes, the
sender perhaps one mode ahead. In one cycle one message is sent and acknowledged. For the
sender, the modes are idle, [needl), send, for the receiver, they are idle and ack. An agent that is
not idle is busy. The bracketed mode is ‘internal’: it’s possible to advance to the next mode
without receiving another message. The modes are not explicit state variables, but instead are
derived from the values of the msg and last variables, as follows:

modeg = idle it msg = nil mode, = idle iff last, = nil
modeg = needl it msg # nil and lasty = nil

modeg = send it msg # nil and lastg # nil
To define G we introduce the types:
1, an infinite set of identifiers.
P (packet), a pair (I, M or A).

The sender sends (, M) packets to the receiver, which sends (/, 4) packets back. The / is there
to identify the packet for the destination. We define a partial order on / by the rule that i <i'iff i
precedes i’ in the sequence used.

The G we give is a somewhat simplified version, because the actions are not as atomic as they
should be. In particular, some actions have two external interactions, sometimes one with a
channel and one with the client, sometimes two with channels. However, the simplified version
differs from one with the proper atomicity only in unimportant details. The appendix gives a
version of G with all the fussy details in place. We don’t give these details for the C and H

mode, = ack iff last, # nil

Handout 26. Reliable Messages 12
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protocols that follow, but content ourselves with the simplified versions in order to emphasize

the important features of the protocols.

Figure 5 is a more detailed version of Figure 4, which shows all the actions and the flow of

information between the sender and the receiver. State variables are given in bold, and the black
guards on the transitions give the pre-conditions. The mark variable can be # when the receiver

has recovered since a message was put; it reflects the fact that the message may be dropped.

Sender
state

actions

choosd(i)

Receiver
state actions

X =i0 (gs O {lasts})
or mark
Y =gs Ogror recr

shrink (i)

shrinks(i)
lasts = nil
choosdi) -
send(i,
put(m) Y last s o)
(] »msg
S
e
n
d
e revil
y  getAck(a) =
-
recs

Table 4 gives the state and actions of G. The magic parts, that is, those that touch non-local
state, are boxed. The conjunct — rec has been omitted from the guards of all the sender actions

D

get(m)
>

rs
% (%
los}

OK

NR SR QX

lost

#

+

put (m)—f

Figure 5. Details of actions and information flow in G

except recoverg, and likewise for — rec, and the receiver actions.
In addition to meeting the spec S, this protocol has some other important properties:

» It makes progress: regardless of prior crashes, provided both ends stay up and the channels

don’t always lose messages, then if there’s a message to send it is eventually sent, and
otherwise both parties eventually become idle, the sender because it gets an ack, the
receiver because eventually cleanup makes mode = idle. Progress depends on doing
enough grow actions, and in particular on completing the sequence grow,(i), grows(i),

choose(i).
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Name Guard Effect Name Guard Effect
**put(m) Fzg = nil msg =m,
gs g, orrec, W‘grk:—:+|
choose(i) msg % nil, g —={ |j<i}, |*get(m) existsisuch  g,—={j|j<i},
last, = nil, last, =1, that revg,(im), last, =i,
i0gy used += [0 iOg, send,4(i, OK)
send last, # nil send,(last,, msg
*getAck(a) revyg(lastg, a)  last, = nil, sendAck exists i such optionally send,.g
msg = nil that revg, (i, *), (i, if i = last,
iOg, then OK else lost)
**crashg recg = true **crash, rec, = true
*recoverg recg lastg == nil, *recover, rec,, last, = nil,
msg = nil, used, 0 mark = #,
recg = false g, Dused)|  recy =false
shrink (i) gs—=1i} shrink (i) gr == {i}
or mark = #
grow(i) i 0 used,, g, +={i} grow (i) iU used, g, +={i},
used, += {i}
grow- i Dused, O gg, usedg +={i} cleanup last, = nil
used(i)
unmark |g, 0 g, mark =+
last, O g, O
{last,nil}
usedy :sequence[/] = [(stable) used, : set[]] = { } (stable)
g setl] ={} g cselll  ={)
lastg  :1ornil = nil last, :lornil :=nil
msg M or nil =nil mark : Mark =
recg  : Boolean = false rec, :Boolean = false
Table 4. State and actions of G

» It’s not necessary to do a stable storage operation for each message. Instead, the cost of a
stable storage operation can be amortized over as many messages as you like. G has only
two stable variables: used; and used,.. Different implementations of G handle used
differently. To reduce the number of stable updates to used,, refine G to divide used,. into
the union of a stable used,~s and a volatile used,-v. Move a set of Is from used,-s to used,-v
with a single stable update. The used,-v becomes empty in recover,; simulate this with
grow,(i) followed immediately by shrink,(i) for every i in used,-v.

» The only state required for an idle agent is the stable variable used. All the other (volatile)
state is the same at the end of a message transmission as at the beginning. The sender
forgets its state in getAck, the receiver in cleanup, and both in recover. The shrink actions
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make it possible for both parties to forget the good sets. This is important because agents
may need to communicate with many other agents between crashes, and it isn’t practical to
require that an agent maintain some state for everyone with whom it has ever
communicated.

* Anidle sender doesn’t send any packets. An idle receiver doesn’t send any packets unless
it receives one, because it sends an acknowledgement only in response to a packet. This is
important because the channel resources shouldn’t be wasted.

We have constructed G with as much non-determinism as possible in order to make it easy to
prove that different practical protocols implement G. We could have simplified it, for instance by
eliminating unmark, but then it would be more difficult to construct an abstraction function from
some other protocol to G, since the abstraction function would have to account for the fact that
after a recover,. the mark variable is # until the next put. With unmark, an implementation of G is
free to set mark back to + whenever the guard is true.

5.1 Abstraction function to D

The abstraction function is an essential tool for proving that the protocol implements the spec.
But it is also an important aid to understanding what is going on. By studying what happens to
the value of the abstraction function during each action of G, we can learn what the actions are
doing and why they work.

Definitions

cur-q = {(msg, mark)} ifmsg # nil and (lasts = nil or lasty O g;)
{} otherwise

inflighty, = {(i, m) Oids(sr) | i O g, and i # last,},
sorted by i to make a sequence

old-q = the sequence of (M, Mark)’s gotten by turning
each (i, m) in inflight, into (m, #)

inflight,; = {last} if (lasts, OK) O rs and last # last,
{} otherwise.

Note that the inflights exclude elements that might still be retransmitted as well as elements that
are not of interest to the destination. This is so the abstraction function can pair them with the #
mark.

Abstraction function

q old-q + cur-q

status  (?, mark) ifcur-g % { } (a)
(OK, +) if modey = send and last; = last, (b)
(OK, #) if modeg = send and lasts O inflight (©)
(lost, +) if modeg = send (d)

and lastg O (g, O {last,.} U inflight,)

(lost, +) if modeg = idle (e)

recCsy recCsy

The cases of status are exhaustive. Note that we do not want (msg, +) in g if modeg = send and
lastss 1 g,, because in this case msg has been delivered or lost.
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We see that G simulates the ¢ of D using old-q + cur-q, and that old-q is the leftover messages
in the channel that are still good but haven’t been delivered, while cur-¢ is the message the
sender is currently working on, as long as its identifier is not yet assigned or still good. Similarly,
status has a different value for each step in the delivery process: still sending the message (a),
normal ack (b), ack after a receiver crash (c), lost ack (d), or delivered ack (e).

5.2 Invariants

Like the abstraction function, the invariants are both essential to the proof and an important aid

to understanding. They express a great deal of information about how the protocol is supposed to
work. It’s especially instructive to see how the parts of the state that have to do with crashes
(recsy and mark) affect them.

The first few invariants establish some simple facts about the used sets and their relation to
other variables. (G2) reflects that fact that identifiers move from g to used one by one, (G3) the
fact that unless the receiver is recovering, identifiers must enter used, before they can appear
anywhere else (G4) the fact that they must enter used before they can appear in /ast variables or
channels.

If msg = nil then lasts = nil (G1)
gs N usedg={ } (G2a)
All elements of used, are distinct. (G2b)
used, U g, (G3a)
If = rec, then used, O gg U usedy (G3b)

usedg O {lastg, last,} — {nil} O ids(sr) O ids(rs) (G4)
The next invariants deal with the flow of identifiers during delivery. (G5) says that each
identifier tags at most one message. (G6) says that if all is well, g; and last, are such that a
message will be delivered and acknowledged properly. (G7) says that an identifier for a message
being acknowledged can’t be good.

{m | (i = lasty and m = msg) or (i, m) 0 sr} has 0 or 1 elements (G5)
If mark =+ and — recg and — rec, then g, 0 g, and last, U g, O {last,, nil} (G6)

g N ({last,} O ids(rs)) = { } (G7)
Finally, some facts about the identifier /ast for the message the sender is trying to deliver. It
comes later in the identifier ordering than any other identifier in s» (G8a). If it’s been delivered
and is getting a positive ack, then neither it nor any other identifier in s7 is in g,, but they are all
inused, (G8b). If it’s getting a negative ack then it won’t get a later positive one (G8c).
If lastg # nil then

ids(sr) < last (G8a)

and  iflasty = last, or (lasts,OK) Orsthen  ({lasts} U ids(sr)) ng-={} (G8b)
and ({lasts} O ids(sr)) O used,

and  if (lasty, lost) O ids(rs) then lastg # last, (G8c)
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5.3 Proof'that G implements D

This requires showing that every action of G simulates some sequence of actions of D which is
the same externally. Since G has quite a few actions, the proof is somewhat tedious. A few
examples give the flavor.

—recovers: Mark msg and drop it unless it moves to old-g; mark and drop status.

—aget(m): For the change to g, first drop everything in old-g less than i. Then m is first on ¢ since
either 7 is the smallest / in old-g, or i = last and old-q is empty by (G8a). So D’s get(m) does the
rest of what G’s does. Everything in old-g + cur-q that was < i is gone, so the corresponding M’s
are gone from ¢ as required.

We do status by the abstraction function’s cases on its old value. D says it should change to
(OK, x)iff ¢ becomes empty and it was (?, x). In cases (c-¢) status isn’t (?, x) and it doesn’t
change. In case (b) the guard i [J g, of get is false by (G8b). In case (a) either i = last or not. If
not, then cur-g remains unchanged by (G8a), so status does also and g remains non-empty. If so,
then cur-q and g both become empty and status changes to case (b). Simulate this by umarking
status if necessary; then D’s get(m) does the rest.

—agetAck(a): The g is unchanged because last; = i U ids(rs), so last; U g, by (G7) and hence cur-

q is empty, so changing msg to nil keeps it empty. Because old-g doesn’t change, ¢ doesn’t

either. We end up with status = (lost, +) according to case (), as required by D. Finally, we must

show that a agrees with the old value of status. We do this by the cases of status as we did for

get:

(a) Impossible, because it requires lastg U g, but we know last [1 ids(rs), which excludes last,
U gy by (G7).

(b) In this case lastg = last,, so (G8c) ensures a # lost, so a = OK.

(c) Ifa= OK we are fine. If a = lost drop status first.

(d) Since lastg O inflight ., only (lastg, lost) O rs is possible, so a = lost.

(e) Impossible because lastg # nil.

—shrink,: If rec, then msg may be lost from ¢; simulate this by marking and dropping it, and

likewise for status. If mark = # then msg may be lost from ¢, but it is marked, so simulate this by

dropping it, and likewise for status. Otherwise the precondition ensures that last; U g, doesn’t

change, so cur-q and status don’t. Inflight,, and hence old-q, can lose an element; simulate this

by dropping the corresponding element of ¢, which is possible since it is marked #.

6 How C and H implement G

We now proceed to give two practical protocols, the clock-based protocol C and the handshake
protocol H. Each implements G, but they handle the good sets quite differently.

In C the good sets are maintained using time; to make this possible the sender and receiver
clocks must be roughly synchronized, and there must be an upper bound on the time required to
transmit a packet. The sender’s current time time; is the only member of gg; if the sender has
already used timeg then g, is empty. The receiver accepts any message with an identifier in the
range (time, — 2€ — O, time, + 2€), where € is the maximum clock skew from real time and & the
maximum packet transmission time, as long as it hasn’t already accepted a message with a later
identifier.
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In H the sender asks the receiver for a good identifier; the receiver’s obligation is to keep the
identifier good until it crashes or receives the message, or learns from the sender that the
identifier will never be equal to last.

We begin by giving the abstraction functions from C and H to G, and a sketch of how each
implements the magic actions of G, to help the reader in comparing the protocols. Careful study
of these should make it clear exactly how each protocol implements G’s magic actions in a
properly distributed fashion.

Then for each protocol we give a figure that shows the flow of packets, followed by a formal
description of the state and the actions. The portion of the figures that shows messages being sent
and acks returned is exactly the same as the bottom half of Figure 4 for G; all three protocols
handle messages and acks identically. They differ in how the sender obtains good identifiers,
shown in the top of the figures, and in how the receiver cleans up its state. In the figures for C
and H we show the abstraction function to G in outline font.

Note that G allows either good set to grow or shrink by any number of /s through repeated
grow or shrink actions as long as the invariants g, [J g;- and lastg O g, O {last,} are maintained in
the absence of crashes. For C the increase actions simulate occurrences of several grow, and
shrink, actions, one for each i in the set defined in the table. Likewise rcv,(js, i) in H may
simulate several shrink; actions.

Abstraction functions to G

G C H

useds {i|0<i<timeg} O {sent} — {nil} used (history)

usedy {i|0<i<low} usedy

8 {times} — {sent} {i] s 1) Ors}

&r {i |low <iandi< high} {iy} — {nil}

mark #if last; O g, and deadline = nil #if modeg = needl and gg U g,
+ otherwise + otherwise

msg, lastg., and recgy, are the same in G, C, and H

sr sr the (I, M) messages in sr
rs rs the (/, A) messages in rs
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Sketch of implementations

G C H
grow(i) tick(i) sendyg(js, i)
shrink(i) tick(i"), i O {timeg} — {sent} lose,(js, i) if the last copy is lost
or rcvys(fs, 1), foreach i O gy — {i'}
grow,(i) increase-high(i'), for each mode = idle and rcvg(needl, *)
i0{i|high<i<i'}
shrink,(i) increase-low(i'), for each revg iy, done)
i0{i|low<i<i}
cleanup cleanup revglast,, done)

7  The clock-based protocol C

This protocol is due to Liskov, Shrira, and Wroclawski [1991]. Figure 6 shows the state and the
flow of information. Compare it with Figure 4 for G, and note that there is no flow of new
identifiers from receiver to sender. In C the passage of time supplies the sender with new
identifiers, and is also allows the receiver to clean up its state.

The idea behind C is to use loosely synchronized clocks to provide the identifiers for
messages. The sender uses its current time for the next identifier. The receiver keeps track of
low, the biggest clock value for which it has accepted a message: bigger values than this are
good. The receiver also keeps a stable bound 4igh on the biggest value it will accept, chosen to
be larger than the receiver’s clock plus the maximum clock skew. After a crash the receiver sets
low = high; this ensures that no messages are accepted twice.

The sender’s clock advances, which ensures that it will get new identifiers and also ensures
that it will eventually get past Jow and start sending messages that will be accepted after a
receiver crash.

It’s also possible for the receiver to advance low spontaneously (by increase-low) if it hasn’t
received a message for a long time, as long as Jow stays smaller than the current time — 2€ — 0,
where € is the maximum clock skew from real time and 0 is the maximum packet transmission
time. This is good because it gives the receiver a chance to run several copies of the protocol
(one for each of several senders), and make the values of low the same for all the idle senders.
Then the receiver only needs to keep track of a single /ow for all the idle senders, plus one for
each active sender. Together with C’s cleanup action this ensures that the receiver needs no
storage for idle senders.

If the assumptions about clock skew and maximum packet transmission time are violated, C
still provides at-most-once delivery, but it may lose messages (because low is advanced too soon
or the sender’s clock is later than Aigh) or acknowledgements (because cleanup happens too
soon).
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Sender Receiver
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Figure 6. The flow of information in C

Modes, types, packets, and the pattern of messages are the same as in G, except that the / set
has a total ordering. The deadline variable expresses the assumption about maximum packet
delivery time: real time doesn’t advance (by progress) past the deadline for delivering a packet.
In a real implementation, of course, there will be some other properties of the channel from
which the constraint imposed by deadline can be deduced. These are usually probabilistic; we
deal with this by declaring a crash whenever the channel fails to meet its deadline.

Table 5 gives the state and actions of C. The conjunct — recg has been omitted from the guards
of all the sender actions except recovers, and likewise for — rec, and the receiver actions.

Note that like G, this version of C sends an ack only in response to a message. This is unlike
H, which has continuous transmission of the ack and pays the price of a done message to stop it.
Another possibility is to make timing assumptions about rs and time out the ack; some
assumptions are needed anyway to make cleanup possible. This would be less practical but more
like H.

Note that timeg and time, differ from real time (now) by at most €, and hence time, and time,
can differ from each other by as much as 2€. Note also that the deadline is enforced by the

progress action, which doesn't allow real time to advance past the deadline unless someone is

recovering. Both crashg and crash, cancel the deadline.
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About the parameters of C
The protocol is parameterized by three constants:
+ O = maximum time to deliver a packet
* [ =amount beyond time, + 2€ to increase high
* & =maximum of |n0w - time,/s|
These parameters must satisfy two constraints:
» 0> € so that modeg = send implies last; < deadline.

* B >0 so increase-high can be enabled. Aside from this constraint the choice of B is just a
tradeoff between the frequency of stable storage writes (at least one every 3, so a bigger B
means fewer writes) and the delay imposed on recover, to ensure that messages put after

2000

recover, don’t get dropped (as much as 4€ + [3, because high can be as big as time, + 2€ +

[ at the time of the crash because of (e), and time, — 2€ has to get past this via tick, before

recover, can happen, so a bigger 3 means a longer delay).

7.1 Invariants

Mostly these are facts about the ordering of various time variables; a lot of x # nil conjuncts have
been omitted. Nothing being sent is later than time; (C1). Nothing being acknowledged is later
than Jow, which is no later than high, which in turn is big enough (C2). Nothing being sent or
acknowledged is later than /ast, (C3). The sender’s time is later than /ow, hence good unless
equal to sent (C4).

lastg < timeg (C1)
last, < low < high (C2a)
ids(rs) < low (C2b)
If — rec, then time, + 2€ < high (C20)
ids(sr) < last (C3a)
last, < last (C3b)
{i| (G, OK) Ors} < lastg (C3c¢)
low < timeg (C4)

low < time, if lasts % timeg
If a message is being sent but hasn’t been delivered, and there hasn’t been a crash, then deadline
gives the deadline for delivering the packet containing the message (based on the maximum time
for a packet that is being retransmitted to get through s7), and it isn’t too late for it to be accepted

(CS).
If deadline # nil then
now < lasty, + € +0 (C5a)
low < last (C5b)

An identifier getting a positive ack is no later than /ow, hence no longer good (C6). If it’s getting
a negative ack, it must be later than the last one accepted (C7).

If (lasts, OK) O rs then lastg < low (Co)
If (lasty, lost) O rs then last, < last (C7)
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Name Guard Effect Name Guard Effect
**put(m)  msg=nil msg =m
choose(i) msg # nil, sent =1, last; =1, | *get(m) existsisuch low =1, last, =1,
last; = nil, deadline = now+d that rev, (i, m), deadline = nil,

i=timey, izsent i O (low..high) send,(i, OK)

send lasty # nil sendg,(last,, msg)
*getAck(a) revyg(lasty, a) lastg == nil, sendAck exists i such low = max(low, i),
msg = nil that rev, (i, *), send,(i, if i = last,
i O (low..high) then OK else lost )
ifi = last,
then deadline = nil
**crashg recg = true, **crash, rec, = true,
deadline:= nil deadline= nil
*recoverg recy last == nil, *recover, rec,., last, = nil,
msg = nil, high < time,  low = high,
recg = false -2 high = time,
+2e+B,

rec, = false

increase- low<i<time, low =i

low(i) -2 -0
increase- high <i< time, high =i
high(i) +2e+
cleanup sent # timeg  sent = nil cleanup last, < time, last, == nil
—2e—28
tick(i) timeg <1, timeg =1 tick(i) time, <1, time, =1
|now—i<£ |now7i<£,
i+2€ < high
or rec,
progress(i) now<i,|i— times/r| <g, now =i
i <deadline or deadline=nil
timeg :1 =0 (stable) time, :1 =0 (stable)
sent  :lornil =nil low :1 =0
high 1 =3 (stable)
lastg 1 or nil = nil last, :lornil :=nil
msg M ornil =nil
recy,  : Boolean = false rec, :Boolean:= false
deadline : I or nil == nil
now o =0

Table 5. State and actions of C. Actions below the thick line handle the passage of time.
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8 The handshake protocol H Sender Receiver

. . . . actions state state  actions
This is the standard protocol for setting up network connections, used in TCP, ISO TP-4, and

many other transport protocols. It is usually called three-way handshake, because only three
packets are needed to get the data delivered, but five packets are required to get it acknowledged
and all the state cleaned up (Belsnes [1976]).

As in the generic protocol, when there are no crashes the sender and receiver each go through
a cycle of modes, the sender perhaps one ahead. For the sender, the modes are idle, needl, send,
for the receiver, they are idle, accept, and ack. In one cycle one message is sent and
acknowledged by sending three packets from sender to receiver and two from receiver to sender,
for a total of five packets. Table 6 summarizes the modes and the packets that are sent.

rev(needl,

The modes are derived from the values of the state variables j and /ast: " L . [copy]
modeg =idle  iff j; = last; = nil mode, =idle  iftj,= last, = nil choosd?) send(i. reri.
modes = needl iff j, % nil mode, = accept iff j,. # nil put(m) last s m)b sr E - "l‘lﬁt " ogettm) R
modeg = send it lastg # nil mode, = ack it last, # nil S »Imnsg > f B e
€ c
Sender Receiver n = e
mode send advance on packet | advance on send mode d getAck(a) @ 2 =L ; i
idle see idle put, (i, lost) when idle e % ‘ v
below to needl (i, m) arrives3 r e
el et [l o can 7
(s, I) arrives, @, 1) Grs iy) accept done) Jone/[ done) [erase last]
to send - repeatedly
send  (lasts, m) G, m) | (iy, m) arrives, Figure 7. The flow of information in H
repeatedly - to ack . L .
(iy, done) arrives, Figure 7 shows the state, the flow of identifiers from the receiver to the sender at the top, and
to idle the flow of done information back to the receiver at the bottom so that it can clean up. These are
(lasty, a ) arrives, | (i, a) (last,, OK) ack sgndwiched between the standard exchange of message and ack, which is the same as in G (see
to idle - repeatedly4 Figure 4) .
idle (i, done) when (i, done) | (last,, done) arrives, Intuitively, the reason there are five packets is that:
(i, a) arrives - to idle *  One round-trip (two packets) is needed for the sender to get from the receiver an / (namely
needl (i, done) when i) that both know has not been used.
or ( # Js» ) or (i, OK) arrives, *  One round-trip (two packets) is then needed to send and ack the message.
send  to force receiver to idle

* Afinal done packet from the sender informs the receiver that the sender has gotten the ack.
The receiver needs this information in order to stop retransmitting the ack and discard its
state. If the receiver discards its “I got the message” state before it knows that the sender
got the ack, then if the channel loses the ack the sender won’t be able to find out that the
message was actually received, even though there was no crash. This is contrary to the
spec S. The done packet itself needs no ack, because the sender will also send it when idle

Table 6. Exchange of messages in H

3 (i, lost) is a negative acknowledgement; it means that one of two things has happened:

— The receiver has forgotten about i because it has learned that the sender has gotten a positive ack for 7, but then ?‘nd hence can become idle as soon as it sees the ack.
the receiver has gotten a duplicate (i, m), to which it responds with the negative ack, which the sender will We introduce a new type:
ignore.

. N . J, an infinite set of identifiers that can be compared for equality.
— The receiver has crashed since it assigned 7, and i’s message may have been delivered to gef or may have been P quality.
lost.

4 (i, OK) is a positive acknowledgement; it means i’s message was delivered to ger.
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The sender and receiver send packets to each other. An 7 or J in the first component is there to
identify the packet for the destination. Some packets also have an 7 or J as the second
component, but it does not identify anything; rather it is being communicated to the destination
for later use. The (i, @) and (i, done) packets are both often called *close’ packets in the literature.

The H protocol has the same progress and efficiency properties as G, and in addition, although
the protocol as given does assume an infinite supply of /s, it does not assume anything about
clocks.

It’s necessary for a busy agent to send something repeatedly, because the other end might be
idle and therefore not sending anything that would get the busy agent back to idle. An agent also
has a set of expected packets, and it wants to receive one of these in order to advance normally to
the next mode. To ensure that the protocol is self-stabilizing after a crash, both ends respond to
an unexpected packet containing the identifier i by sending an acknowledgement: (i, lost) or (i,
done). Whenever the receiver gets done for its current /, it becomes idle. Once the receiver is
idle, the sender advances normally until it too becomes idle.

Table 7 gives the state and actions of H. The conjunct — recg has been omitted from the guards
of all the sender actions except recover, and likewise for — rec, and the receiver actions.

8.1 Invariants

Recall that ids(c) is {i | (i, *) O ¢}. We also define jds(c) = {j | (j, *) O c or (*,j) O c}.

Most of H’s invariants are boring facts about the progress of I’s and J’s from used sets through
i/ s/ 10 last/.. We need the history variables used and seen to express some of them. (H6) says
that there’s at most one J (from a needl packet) that gets assigned a given /. (H8) says that as
long as the sender is still in mode needl, nothing involving #,- has made it into the channels.

J-used U {j, j,} — {nil} O jds(sr) O jds(rs) (H1)
used, O {iy, last,} — {nil} O used; O {i | (*, i) Ors} O ids(sr) O ids(rs) (H2)
useds O {lastg, last,} — {nil} O ids(sr) O ids(rs) (H3)
If (i, done) O srthen i # lastg (H4)
If i, # nil then (j,, i) U seen (H5)
If (j, i) O seen and (5, i) U seenthenj =’ (H6)
If (j, i) O rs then (j, i) U seen (H7)
If jy =, # nil then (i, *) O sr and (i, done) O rs (H8)

8.2 Progress

We consider first what happens without failures, and then how the protocol recovers from
failures.

If neither partner fails, then both advance in sync through the cycle of modes. The only thing
that derails progress is for some party to change mode without advancing through the full cycle
of modes that transmits a message. This can only happen when the receiver is in accept mode
and gets (i,,, done), as you can see from Table 6. This can only happen if the sender got a packet
containing i,. But if the receiver is in accept, the sender must be in need! or send, and the only
thing that’s been sent with i,. is (5 i.). The sender goes to or stays in send and doesn’t make done
when it gets (j, i) in either of these modes, so the cycling through the modes is never disrupted
as long as there’s no crash.
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Name Guard Effect Name Guard Effect
**put(m)  msg = nil, msg =m,
existsj such  js =7,
thatj O j-used j-used += {j}
request]  jg Z nil, sendg(needl, j) assignl(j i) revg(needl, j), j,=j, i, =1,
lastg = nil i, = last,= nil, used,+=1i,
i O used, seen +={(j, i)}
choose(i) lasts = nil, Js =nil, lasty =i, | sendl Jr# nil send,s(jy, i)
7cVys(fgs 1) usedg += [0
send lastg # nil send,(last,, msg) *get(m)  exists i such Jr == nil,
that revg, (i, m), last,. =1,
i=i send,.s(i, OK)
sendAck last, # nil send,(last,, OK)
*getAck(a) revyg(lastg, a)  if a = OK then bounce  exists i such send,(i, lost )
sendg,(lasty, done) that revg, (i, *),
msg = last, = nil i # i, 1% last,
bounce reves(j, i),  sendg,(i, done) cleanup(i) rcvg (i, done),  j, =i, =nil,
@, 1) J#£Jjs, i % last, i=i,.ori=last, last, = nil
or rev,.4(i, OK)
**crashg recg = true **crash, rec, = true
*recoverg recg msg = nil, *recover, rec, Jr =i, =nil,
Js =lasty = nil, last, = nil,
recg = false rec, = false
grow- j-used +={j} grow- used, +:= {i}
J-used(y) used(i)
used :sequence[/] = (history) used, : set[l] :={ } (stable)
J-used : set[J] ={} (stable) seen :set[(J, )] ={} (history)
Js :Jor nil = nil Jr :Jornil  =nil
msg :M or nil =nil i 1 or nil =nil
last 1 or nil = nil last, :1or nil = nil
recy : Boolean =false rec, :Boolean = false
Table 7. State and actions of H. Heavy black lines outline additions to G
If either partner fails and then recovers, the other becomes idle rather than getting stuck; in
other words, the protocol is self-stabilizing. Why? When the receiver isn’t idle it always sends
something, and if that isn’t what the sender wants, the sender responds done, which forces the
receiver to become idle. When the sender isn’t idle it’s either in needl, in which case it will
eventually get what it wants, or it’s in send and will get a negative ack and become idle. In more
detail:
The receiver bails out when the sender crashes because
* the sender forgets ig and j; when it crashes,
 ifthe receiver isn’t idle, it keeps sending (j,, i,) or (last,, OK),
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* the sender responds with (i,/last,, done) when it sees either of these, and
* the receiver ends up in idle whenever it receives this.
The sender bails out or makes progress when the receiver crashes because
» If the sender is in needl, either
—it gets (fs, i Z i,) from the pre-crash receiver, advances to send, and bails out as below, or
—it gets (f, i,) from the post-crash receiver and proceeds normally.
» If'the sender is in send it keeps sending (last,, msg),
—the receiver has last, = nil # last, so it responds (lasts, lost), and
—when the sender gets this it becomes idle.
An idle receiver might see an old (needl, ) with j Z# j; and go into accept with j,. Z j, but the
sender will respond to the resulting (j,, #,,) packets with (i,, done), which will force the receiver

back to idle. Eventually all the old needl packets will drain out. This is the reason that it’s
necessary to prevent a channel from delivering an unbounded number of copies of a packet.

9  Finite identifiers

So far we have assumed that the identifier sets / and J are infinite. Practical protocols use sets
that are finite and often quite small. We can easily extend G to use finite sets by adding a new
action recycle(i) that removes an identifier from used and used, so that it can be added to g,
again. As we saw in Section 1, when we add a new action the only change we need in the proof
is to show that it maintains the invariants and simulates something in the spec. The latter is sim-
ple: recycle simulates no change in the spec. The former is also simple: we put a strong enough
guard on recycle to ensure that all the invariants still hold. To find out what this guard is we need
only find all the invariants that mention used; or used,., since those are the only variables that
recycle changes. Intuitively, the result is that an identifier can be recycled if it doesn’t appear
anywhere else in the variables or channels.

Similar observations apply to H, with some minor complications to keep the history variable
seen up to date, and a similar recycle-j action. Table 8 gives the recycle actions for G and H.

Name Guard Effect
recycle(i) |iOg, Og, O {last,, last,} usedg —= {i},
for G O ids(sr) O ids(rs) used, —= {i}
recycle(i) |i O {lasty, i,, last,} useds —= {i},
for H O {i| (% ) Ors} Oids(sr) O ids(rs) used, —= {i},
seen —={j | (j,1i) O seen | (j, i)}
recycle-j() [ 8 {js.jr} O jds(sr) O jds(rs) | used-j —= {j},

for H seen —={i| (j,i) O seen | (j, i)}
Table 8. Actions to recycle identifiers
How can we implement the guards on the recycle actions? The tricky part is ensuring that 7 is

not still in a channel, since standard methods can ensure that it isn’t in a variable at the other end.
There are three schemes that are used in practice:
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» Use a FIFO channel. Then a simple convention ensures that if you don’t send any i1’s after
you send iy, then when you get back the ack for i, there aren't any i1’s left in either
channel.

*  Assume that packets in the channel have a maximum lifetime once they have been sent,
and wait longer than that time after you stop sending packets containing i.

»  Encrypt packets on the channel, and change the encryption key. Once the receiver
acknowledges the change it will no longer accept packets encrypted with the old key, so
these packets are in effect no longer in the channel.

For C we can recycle identifiers by using time modulo some period as the identifier, rather
than unadorned time. Similar ideas apply; we omit the details.

10 Conclusions

We have given a precise specification S of reliable at-most-once message delivery with
acknowledgements. We have also presented precise descriptions of two practical protocols (C
and H) that implement S, and the essential elements of proofs that they do so; the handshake
protocol H is used for connection establishment in most computer networking. Our proofs are
organized into three levels: we refine S first into another specification D that delays some of the
decisions of S and then into a generic implementation G, and finally we show that C and H both
implement G. Most of the work is in the proof that G implements D.

In addition to complete expositions of the protocols and their correctness, we have also given
an extended example of how to use abstraction functions and invariants to understand and verify
subtle distributed algorithms of some practical importance. The example shows that the proofs
are not too difficult and that the invariants, and especially the abstraction functions, give a great
deal of insight into how the implementations work and why they satisfy the specifications. It also
illustrates how to divide a complicated problem into parts that make sense individually and can
be attacked one at a time.
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Appendix
For reference we give the complete protocol for G, with every action as atomic as it should be.
This requires separating the getting and putting of messages, the sending and receiving of
packets, the sending and receiving of acks, and the getting of acks. As a result, we have to add
buffer queues bufy/ for messages at both ends, a buffer variable ack for the ack at the sender, and
a send-ack flag for positive acks and a buffer nack-buf for negative acks at the receiver.
The state of the full G is:
used : sequence[/] = [{(stable) used,- : set[]] ={ } (stable)
g osell] =1} g :set]] =1}
lasty 1 or nil = nil last, .1 or nil = nil
bufy :sequence[M] =00 buf, : sequence[M] =00
msg M or nil =nil mark ctor# =+
ack A4 = lost send-ack : Boolean = false
nack-buf : sequence[/] =00
recs : Boolean = false recy : Boolean = false
The abstraction function to D is:
q the elements of buf, paired with +
+ old-q + cur-q
+ the elements of buf; paired with +
status ?,+) if buf # empty
else (?, mark) ifcur-q#{} (a)
2, +) ifmode, = send, last; = last,, buf, Z { } (b)
(OK, +) if mode, = send, last; = last,, buf, = { } ()
(OK, #) ifmodes = send and last, U inflight,. (d)
(lost, +) ifmode; = send (e)
and last, O (g, O {last,} O inflight,)
(ack, +) ifmode, = idle ®
reCs/r  recgy
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Name Guard Effect Name Guard Effect
**put(m) append m to buf;
prepare(m) msg = nil, bufy=tail (bufs),
m first on bufs, msg :=m,
|g; Og,or rec,ﬁl Imark = +|
choose(i)  msg # nil, gs—={lj<i},
last = nil, lasty =1,
iOge used += [0
sendg, (i, m) i= lasty # nil revg (i, m)  ifi O g, then append m to buf,.,
m=msg sendAck = false,
gr—={ |j<i}, last, =1,
else if i O g, O {last,} then
optionally nack-buf += [
else if i = last, then sendAck =true
*get(m)  m first on buf, if buf, = [lthen
sendAck = true,
buf, =tail (buf,)
reves(i, a) if i = lastg then send,.g i = last,, sendAck optionally
ack =a, (i, OK) sendAck = false
msg = nil, last; = nil send, i first on nack-buf nack-buf =
(i, lost) tail (nack-buf)
*getAck(a) msg = nil, ack = lost
bufs = empty,
ack=a
**crashg recg = true **crash, rec, = true
*recovery recg lastg = nil, *recover, recp, last, == nil,
msg = nil, bufy =[] used, [ mark =#, buf,.=)
ack = lost, recg = falsd g¢ O usedy | nack-buf=0rec,=false

shrink (i) gs—={i}
grows(i) i O used, gs +=1{i}

i g, orrec
grow- i Oused Ogs, used+={i}
useds(i)

shrinky (i) gr—= i}

growy(i)
cleanup

unmark

or mark = #

i O used, g, +={i},
used += {i}

last, % lastg last, = nil

gs U g, lastg O mark =+

g, O {last,, nil}

Table 9. G with honest atomic actions
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