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Problem Set 3

Instructions: There are five problems in this problem set; please turn in each problem on a
separate sheet of paper with your name at the top, or you will run the risk of your
solutions being lost. Also give the amount of time you spend on each problem.

Problem 1
The following is a specification for a database that provides the first and second order statistics

on a totally-ordered set.

MODULE OrderStatDB [ V WITH {‘‘<=’’: (V,V) -> V} ] % comparison operator

EXPORT {add, first, second} =

VAR db : SEQ V := {}

APROC add(v) = << db + := {v}; RET >>

APROC first() -> V = << VAR v | (ALL i | db!i ==> db(i) <= v) >>

APROC second() -> V = << VAR v | (EXISTS j | v <= db(j) /\

(ALL i | db!i /\ i # j ==> db(i) <= v)) >>

End OrderStatDB

(a) Write an optimized implementation of OrderStatDB, OrderStatDBImpl, that uses the min-
imum amount of state, and performs the minimum amount of comparison operations for
each of the three methods.

(b) Augment your implementation with a sufficient amount of history state (call the new
implementation OrderStatDBImplH so that you can write an abstraction function from
OrderStatDBImplH to OrderStatDB.

(c) Using the abstraction function you just defined, prove that OrderStatDBImplH implements
OrderStatDB.

(d) Now write an abstraction relation from the original OrderStatDBImpl to OrderStatDB.
You need not prove the implements property again. Comment on the relative difficulty of
the two approaches for this particular problem.

Problem 2

MODULE RestrictedSeq [V]

VAR arr : SEQ V := {}
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INT lower := 0;

APROC add(v) = << arr + := {v}; RET >>

APROC get(i) -> V = << i >= lower => RET v(i) >>

APROC restrict() = << lower + := 1 >>

END RestrictedSeq

(a) Write an optimized implementation of RestrictedSeq, RestrictedSeqImplH, that uses
the minimum amount of state possible.

(b) Augment your implementation with a sufficient amount of history state (call the new im-
plementation RestrictedSeqImplH so that you can write an abstraction function from
RestrictedSeqImplH to RestrictedSeq.

(c) Using the abstraction function you just defined, prove that RestrictedSeqImplH imple-
ments RestrictedSeq.

(d) Now write an abstraction relation from the original RestrictedSeqImpl to RestrictedSeq.
You need not prove the implements property again. Comment on the relative difficulty of
the two approaches for this particular problem.

Problem 3
Tired of Course VI, Louis Reasoner decides to seek a UROP in Course VIII investigating

quantum mechanics. For his first task, the professor gives Ben the following specification for
a quantum-mechanical experiment to measure the spin direction of an electron injected into a
magnetic field:

MODULE QE EXPORTS {inject, observe}

TYPE O = ENUM [up, down]

Q = SEQ O

VAR q

APROC inject() = << q + := {up} [] q + := {down} >>

APROC observe() -> O = << VAR o | o = q.head => q := q.tail; RET o >>

END QE

Louis blithely assumes that collapse of the wave function only occurs after an observation is
made. Following this assumption, he decides to implement his quantum-mechanical experiment
simulation as follows:

MODULE QEI EXPORTS {inject, observe}

TYPE O = ENUM [up, down]

VAR count: INT := 0

APROC inject() = << count + := 1 >>

APROC observe() = << count > 0 => count - := 1; RET up [] RET down >>

END LouisQE
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(a) Write a new module called QEP. QEP should augment the state of QEI to include the prophecy
variables necessary to prove that QEI implements QEP.

(b) Give appropriate abstraction functions from QEP to QE, and from QEP to QEI.

(c) Using one abstraction function you gave, prove that QEP implements QE.

(d) Finally, prove that QEI implements QEP. You should prove a lemma about the state space
and transitions of QEP.

Problem 4
Consider the following two specifications for reliable FIFO channels:

MODULE Channel [M, A] EXPORTS {put, get} = % M = message, A = address

TYPE Q = SEQ M

SR = [s: A, r: A]

VAR q := (SR -> Q){* -> {}}

APROC put(sr, m) = << q(sr) := q(sr) + {m} >>

APROC get(sr) -> M = << VAR m | m = q(sr).head =>

q(sr) := q(sr).tail; RET m >>

END Channel

MODULE BigChannelImpl [M, A] EXPORTS {put, get} = % M = message, A = address

TYPE Q = SEQ M

SR = [s: A, r: A]

VAR q1 := (SR -> Q) {* -> {}},

q2 := (SR -> Q) {* -> {}}

APROC put(sr, m) = << q2(sr) := q2(sr) + {m} >>

APROC get(sr, m) = << VAR m | m = q1(sr).head =>

q1(sr) := q1(sr).tail; RET m >>

THREAD xfer() = << DO VAR m | m = q2(sr).head =>

q2(sr) := q2(sr).tail; q1(sr) := q1(sr) + {m} OD >>

END BigChannelImpl

Give a rigorous proof that BigChannelImpl implements Channel, using history and/or prophecy
variables and abstraction functions as appropriate.

Problem 5
Given the following module:

MODULE DoNothing

END DoNothing
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(a) Argue that this module implements any specification.
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