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12.  Naming 

Any problem in computing can be solved by another level of indirection.  
David Wheeler 

Introduction 

This handout is about orderly ways of naming complicated collections of objects in a computer 
system. A basic technique for understanding a big system is to describe it as a collection of 
simple parts. Being able to name these parts is a necessary aspect of such a description, and often 
the most important aspect.  

The basic idea can be expressed in two ways that are more or less equivalent: 

Identify values by variable length names called path names that are sequences of simple 
names that are strings. Think of all the names with the same prefix (for instance, 
/udir/lampson and /udir/lynch) as being grouped together. This grouping induces a tree 
structure on the names. Non-leaf nodes in the tree are directories. 

Make a tree of nodes with simple names on the arcs. The leaf nodes are values and the 
internal nodes are directories. A node is named by a path through the tree from the root; such 
a name is called a path name. 

Thus /udir/lampson/pocs/handouts/12 is a path name for a value (perhaps the text of this 
handout), and /udir/lampson/pocs/handouts is a path name for a directory (other words for 
directory are folder, context, closure, environment, binding, and dictionary). The collection of all 
the path names that make sense in some situation is called a name space. Viewing a name space 
as a tree gives us the standard terminology of parents, children, ancestors, and descendants. 

Using path names to name values (or objects, if you prefer) is often called ‘hierarchical naming’ 
or ‘tree-structured naming’. There are a lot of other names for it that are used in special 
situations: mounting, search paths, multiplexing, device addressing, network references. An 
important reason for studying naming in general is that you don’t have to start from scratch in 
understanding all those other things. 

Path names are good because: 

•  The name space can grow indefinitely, and the growth can be managed in a decentralized 
way. That is, the authority to create names in one part of the space can be delegated, and 
thereafter there is no need for synchronization. Names that start /udir/lampson are 
independent of names that start /udir/rinard. 

•  Many kinds of data can be encapsulated under this interface, with a common set of 
operations. Arbitrary operations can be encoded as reads and writes of suitably chosen 
names. 
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As we have seen, a path name is a sequence of simple names. We use the types N = String for 
a simple name and PN = SEQ N for a path name. It is often convenient to write a path name as a 
string. The syntax of these strings is not important; it is just a convention for encoding the path 
names. Here are some examples: 

/udir/lampson/pocs/handouts/12 Unix path name 
lampson@mediaone.net Internet mail address. The path name is 
 {"net", "mediaone", "lampson"} 
16.23.5.193 IP network address (fixed length) 

We will normally write path names as Unix file names, rather than as the sequence constructors 
that would be correct Spec. Thus a/b/c/1026 instead of PN{"a","b","c","1026"}. 

People often try to distinguish a name (what something is) from an address (where it is) or a 
route (how to find it). This is a matter of levels of abstraction and must not be taken as absolute. 
At a given level of abstraction we tend to identify objects at that level by names, the lower-level 
objects that code them by addresses, and paths at lower levels by routes. Examples: 

 
microsoft.com -> 207.46.130.149 -> SEQ [router output port, LAN address] 
a/b/c/1026 -> INode/1026 -> DA/2 -> [cylinder, head, sector, byte 2] 

Sometimes people talk about “descriptive names”, which are queries in a database. We will see 
that these are readily encompassed within the framework of path names. That is a formal 
relationship, however. There is an important practical difference between a designator for a 
single entity, such as lampson@mediaone.net, and a description or query such as “everyone at 
MIT’s LCS whose research involves parallel computing”. The difference is illuminated by the 
comparison between the name eecsfaculty@eecs.mit.edu and the query “the faculty members 
in MIT’s EECS department”. The former name is probably maintained with some care; it’s 
anyone’s guess how reliable the answer to the query is. When using a name, it is wise to consider 
whether it is a designator or a description. 

This is not to say that descriptions or queries are bad. On the contrary, they are very valuable, as 
any one knows who has ever used a web search engine. However, they usually work well only 
when a person examines the results with some care. 

In the remainder of this handout we examine the specs for the two ways of describing a name 
space that we introduced earlier: as a memory addressed by path names, and as a tree (or more 
generally a graph) of directories. The two ways are closely related, but they give rise to 
somewhat different specs. Then we study the recursive structure of name spaces and various 
ways of inducing a name space on a collection of values. This leads to a more abstract analysis 
of how the spec for a name space can vary, depending on the properties of the underlying values. 
We conclude our general treatment by examining how to name a name space. Finally, we give a 
large number of examples of name spaces; you might want to look at these first to get some more 
context. 

Name space as memory 

We can view a name space as an example of the memory abstraction we studied earlier. Recall 
that a memory is a partial map M = A -> V. Here we take A = PN and replace M with D (for 
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directory). This kind of memory differs from the byte-addressable physical memory of a 
computer in several ways1:  

•  The map is partial. 

•  The domain is changing. 

•  The current value of the domain (that is, which names are defined) is interesting.  

•  PN’s with the same prefix are related (though not as much as in the second view of name 
spaces).  

Here are some examples of name spaces that can naturally be viewed as memories: 

The Simple Network Management Protocol (SNMP) is used to manage components of the 
Internet. It uses path names (rooted in IP addresses) to name values, and the basic 
operations are to read and write a single named value. 

Several file systems use a single large table to map the path name of a file to the extents 
that represent it. 

MODULE MemNames0[V] EXPORT Read, Write, Remove, Enum, Next, Rename = 

TYPE N = String % Name 
PN = SEQ N WITH {"<<=":=PNLE} % Path Name 
D = PN -> V % Directory 

VAR d := D{} % the state 

FUNC PNLE(pn1, pn2) -> Bool = pn1.LexLE(pn2, N."<=") % pn1 <<= pn2 

Here are the familiar Read and Write procedures; Read raises error if d is undefined at pn, for 
consistency with later specs. In this basic spec none of the other procedures raises error; this 
innocence will not persist when things get more complicated. It’s common to also have a Remove 
procedure for making a PN undefined; note that unlike a file system, this Remove does not erase 
the values of longer names that start with PN. This is because, unlike a file system, this spec does 
not ensure that every prefix of a defined PN is defined. 

FUNC Read(pn) -> V RAISES {error} = RET d(pn) [*] RAISE error 

APROC Write(pn, v) = << d := d{pn -> v} >> 

APROC Remove(pn)   = << d := d{pn ->  } >> 

The body of Write is usually written d(pn) := v.  

It’s important that the map is partial, and that the domain changes. This means that we need 
operations to find out what the domain is. Simply returning the entire domain is not practical, 
since it may be too big, and usually only part of it is of interest. There are two schools of thought 

                                                 
1  It differs much less from the virtual memory, in which the map may be partial and the domain may change as new 
virtual memory is assigned or files are mapped. Actually these things can happen to physical memory as well, 
especially in the part of it implemented by I/O devices. 
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about what form these operations should take, represented by the functions Enum and Next; only 
one of these is needed. 

Enum returns all the simple names that can lead to a value starting from pn; another way of 
saying this is that it returns all the names bound in the directory named pn. By recursively 
applying Enum to pn + n for each simple name n that Enum returns, you can explore the 
entire tree. 

On the other hand, if you keep feeding Next its own output, starting with {}, it walks the tree 
of defined names depth-first, returning in turn each PN that is bound to a V. It finishes with 
{}.  

Note that what Next does is not the same as returning the results of Enum one at a time, since 
Next explores the entire tree, not just one directory. Thus Enum takes the organization of the 
name space into directories more seriously than does Next. 

FUNC Enum(pn) -> SET N = RET {pn1 | d!(pn + pn1) | pn1.head} 

FUNC Next(pn) -> PN    = VAR later := {pn' | d!pn' /\ pn <= pn'} | 
RET later.fmin(PN."<<=") [*] RET {} % {} if later is empty 

A separate issue is arranging to get a reasonable number of results from one of these procedures. 
If the directory is large, Enum as defined here may return an inconveniently large set, and we may 
have to call Next inconveniently many times. In real life we would make either routine return a 
sequence of N’s or PN’s, usually called a ‘buffer’. This is a standard use of batching to reduce the 
overhead of invoking an operation, without allowing the batches to get too large. We won’t add 
this complication to our specs. 

Finally, there is a Rename procedure that takes directories quite seriously. It reflects the idea that 
all the names which start the same way are related, by changing all the names that start with 
from so that they start with to. Because directories are not very real in the representation, this 
procedure has to do a lot of work. It erases everything that starts with either argument, and then 
copies everything in the original d that starts with from to the corresponding path name that 
starts with to. Read x <= y as “x is a prefix of y”. 

APROC Rename(from: PN, to: PN) RAISES {error} = << VAR d0 := d | 
IF from <= to => RAISE error % can’t rename to a descendant 
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD; 
 DO VAR pn | d(to + pn ) # d0(from + pn) => d(to + pn) := d0(from + pn) OD 
FI >> 

END MemNames0 

Here is a different version of Rename that makes explicit the relation between the initial state d 
and the final state d'. Read x >= y as “x is a suffix of y”. 

APROC Rename(from: PN, to: PN) RAISES {error} = <<  
IF VAR d' | 
 (ALL x: PN, y: PN | (    x >= from                  => ~ d'!x  
                      [*] x = to + y /\ d!(from + y) => d'(x) = d(from + y)
                      [*] ~ x >= to /\ d!x           => d'(x) = d(x)  
                      [*] ~ d'!x )  
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    => d := d' 
[*] RAISE error FI >> 

There is often a rule that a name can be bound to a directory or to a value, but not both. For this 
we need a slightly different spec that marks a name as bound to a directory by giving it the 
special value isD, with a separate procedure for making an empty directory. To enforce the new 
rule every routine can now raise error, and Remove erases the whole sub-tree. As usual, boxes 
mark the changes from MemNames0. 

MODULE MemNames[V] EXPORT Read, Write, MakeD, Remove, Enum, Rename = 

TYPE Dir = ENUM[isDir] 
D   = PN -> (V + Dir) SUCHTHAT (\d| d({}) IS Dir) % root a Dir 

VAR d  := D{{} -> isDir} 

% INVARIANT (ALL pn, pn' | d!pn' /\ pn' > pn => d(pn) = isDir 

FUNC Read(pn) -> V RAISES {error} = d(pn) IS V => RET d(pn) [*] RAISE error 

FUNC Enum(pn) -> SET N RAISES {error} =  
 d(pn) IS Dir => RET {pn1 | d!(pn + pn1) | pn1.head}   [*] RAISE error 

APROC Write(pn, v) RAISES {error}  = << Set(pn, v) >> 
APROC MakeDir(pn)  RAISES {error}  = << Set(pn, isDir) >> 

APROC Remove(pn) =  % Erase everything with pn prefix. 
<< DO VAR pn' :IN d.dom | (pn <= pn') => d := d{pn' -> } OD >> 

APROC Rename(from: PN, to: PN) RAISES {error} = << VAR d0 := d | 
IF from <= to => RAISE error   % can’t rename to a descendant 
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD; 

DO VAR pn | d(to + pn ) # d0(from + pn) =>  
d(to + pn) := d0(from + pn) OD  

FI >> 

APROC Set(pn, y: (V + D) RAISES {error} =  
<< pn # {} /\ d(pn.reml) IS D => d(pn) := y [*] RAISE error >> 

END MemNames 

A file system usually forbids overwriting a file with a directory (for no obvious reason) or 
overwriting a non-empty directory with anything (because a directory is precious and should not 
be clobbered wantonly), but these rules are rather arbitrary, and we omit them here. 

Exercise: write a version of Rename that makes explicit the relation between the initial state d and 
the final state d', in the style of the second Rename of MemNames0. 

The MemNames spec is basically the same as the simple Memory spec. Complications arise because 
the domain can change, and because of the distinction between directories and values. The specs 
in the next section take this distinction much more seriously. 
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Name space as graph of directory objects 

These specs are reasonably simple, but they are clumsy for operations on directories such as 
Rename. More fundamentally, they don’t handle aliasing, where the same object has more than 
one name. The other (and more usual) way to look at a hierarchical name space is to think of 
each directory as a function that maps a simple name (not a path name) to a value or another 
directory, rather than thinking of the entire tree as a single PN -> V map. This tree (or general 
graph) structure maps a PN by mapping each N in turn, traversing a path through the graph of 
directories; hence the term ‘path name’. We continue to use the type D for a directory. 

Our eventual goal is a spec for a name space as graph that is ‘object-oriented’ in the sense that 
you can supply different code for each directory in the name space. We will begin, however, 
with a simpler spec that is equivalent to MemNames, evolve this to a more general spec that allows 
aliases, and finally add the object orientation. 

The obvious thing to do is to make a D be a function N -> Z, where Z = (D + V) as before, and 
have a state variable d which is the root of the tree. Unfortunately this completely functional 
structure doesn’t work smoothly, because there’s no way to change the value of a/b/c/d without 
changing the value of a/b/c so that it contains the new value of a/b/c/d, and similarly for a/b 
and a as well.2 

 

“…” 
“…” 
35 
... 

12 
42 
21 
93 
...

DD = N->Z

s: D->DD  

0 
12 
42 
93 
. . .
 

lampson 
lynch 
rinard 
jamieson 
. . . 

grades 
stuff 
files 
. . . 

 

We solve this problem in the usual way with another level of indirection, so that the value of a 
directory name is not a N -> Z but some kind of reference or pointer to a N -> Z, as shown in 
the figure. This reference is an ‘internal name’ for a directory. We use the name DD for the actual 

                                                 
2 The method of explicitly changing all the functions up to the root has some advantages. In particular, we can make 
several changes to different parts of the name space appear atomically by waiting to rewrite the root until all the 
changes are made. It is not very practical for a file system, though at least one has been built this way: H.E. Sturgis, 
A Post-Mortem for a Time-sharing System, PhD thesis, University of California, Berkeley, and Report CSL 74-1, 
Xerox Research Center, Palo Alto, Jan 1974. It has also been used in database systems to atomically change the 
entire database state; in this context it is called ‘shadowing’. See Gray and Reuter, pp 728-732. 
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function N -> Z and introduce a state variable s that holds all the DD values; its type is D->DD. A 
D is just the internal name of a directory, that is, an index into s. We take D = Int for simplicity, 
but any type with enough values would do; in Unix D = INo. You may find it helpful to think of 
D as a pointer and s as a memory, or of D as an inode number and s as the inodes. Later sections 
explore the meaning of a D in more detail, and in particular the meaning of root.  

Once we have introduced this extra indirection the name space does not have to be a tree, since 
two PN’s can have the same D value and hence refer to the same directory. In a Unix file system, 
for example, every directory with the path name pn also has the path names pn/., pn/./., etc., 
and if pn/a is a subdirectory, then the parent also has the names pn/a/.., pn/a/../a/.., etc. 
Thus the name space is not a tree or even a DAG, but a graph with cycles, though the cycles are 
constrained to certain stylized forms involving ‘.’ and ‘..’. This means, of course, that there are 
defined PN’s of unbounded length; in real life there is usually an arbitrary upper bound on the 
length of a defined PN. 

The spec below does not expose D’s to the client, but deals entirely in PN’s. Real systems often 
do expose the D pointers, usually as some kind of capability (for instance in a file system that 
allows you to open a directory and obtain a file descriptor for it), but sometimes just as a naked 
pointer (for instance in many distributed name servers). The spec uses an internal function Get, 
defined near the end, that looks up a PN in a directory; GetD is a variation that raises error if it 
can’t return a D. 

MODULE ObjNames0[V] EXPORT Read, Write, MakeD, Remove, Enum, Rename = 

TYPE D = Int % just an internal name 
Z = (V + D) % the value of a name 
DD = N -> Z % a Directory 

VAR root : D := 0  
s := (D -> DD){}{root -> DD{}} % initially empty root 

FUNC Read(pn) -> V RAISES {error} = VAR z := Get(root, pn) | 
IF z IS V => RET z [*] RAISE error FI  

FUNC Enum(pn) -> SET PN RAISES {error} = RET s(GetD(root, pn)).dom 
% Raises error if pn isn’t a directory, like MemNames. 

A write operation on the name a/b/c has to change the d component of the directory a/b; it does 
this through the procedure SetPN, which gets its hands on that directory by invoking 
GetD(root, pn.reml). 

APROC Write(pn, v) RAISES {error} = << SetPN(pn, v) >> 
APROC MakeD(pn)  RAISES {error} = << VAR d := NewD() | SetPN(pn, d)  >> 

APROC Remove(pn)   RAISES {error} =  
<< VAR d := GetD(root, pn.reml) | >> 

APROC Rename(from: PN, to: PN) RAISES {error} = << 
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant 
[*] VAR fd := GetD(root, from.reml),  % know from, to # {} 
     td := GetD(root, to  .reml) | 

s(fd)!(from.last) =>  
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s(td) := s(td)(to  .last -> s(fd)(from.last));  
s(fd) := s(fd){from.last -> } 

[*] RAISE error 
FI >> 

The remaining routines are internal. The main one is Get(d, pn), which returns the result of 
starting at d and following the path pn. GetD raises error if it doesn’t get a directory. NewD 
creates a new, empty directory. 

FUNC Get(d, pn) -> Z RAISES {error} =  
% Return the value of pn looked up starting at z. 

IF pn = {} => RET d 
[*] VAR z :=s(d)(pn.head) | z IS D => RET Get(z, pn.tail) 
[*] RAISE error 
FI 

FUNC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) | 
IF z IS D => RET z [*] RAISE error FI 

APROC SetPN(pn, z) RAISES {error} =  
<< VAR d := GetD(root, pn.reml) | s(d)(pn.last) := z >> 

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := DD{}; RET d >> 

END ObjNames0 

As we did with the second version of MemNames0.Rename, we can give a definition of Get in 
terms of a predicate. It says that there’s a sequence p of directories starting at d and ending at the 
result of Get, such that the components of pn select the corresponding components of p; if 
there’s no such sequence, raise error. 

FUNC Child(z1, z2) -> Bool = z1 IS D /\ s!z1 /\ z2 IN s(z1).rng 

FUNC Get(d, pn) -> Z RAISES {error} = << 
IF VAR p :IN Child.paths |  

p.head = d /\ (ALL i :IN pn.dom | p(i+1) = s(p(i)(pn(i))) => RET p.last 
[*] RAISE error  
FI >> 

ObjNames0 is equivalent to MemNames. The abstraction function from ObjNames0 to MemNames is 

 MemNames.d = (\ pn | G(pn) IS V => G(pn) [*] G(pn) IS D => isD) 

where we define a function G which is like Get on root except that it is undefined where Get 
raises error: 

FUNC G(pn) -> Z = RET Get(root, pn) EXCEPT error => IF false => SKIP FI 

The EXCEPT turns the error exception from Get into an undefined result for G.  

Exercise: What is the abstraction function from MemNames to ObjNames0. 

Objects, aliases, and atomicity 

This spec makes clear the basic idea of interpreting a path name as a path through a graph of 
directories, but it is unrealistic in several ways: 
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The operations for changing the value of the DD functions in s may be very different from the 
Write and MakeD operations of ObjNames0. This happens when we impose the naming 
abstraction on a data structure that changes according to its own rules. SNMP is a good 
example; the values of names changes because of the operation of the network. Later in this 
handout we will explore a number of these variations. 

There is often an ‘alias’ or ‘symbolic link’ mechanism which allows the value of a name n in 
context d to be a link (d', pn). The meaning is that d(n) is a synonym for Get(d', pn).   

The operations are specified as atomic, but this is often too strong. 

Our next spec, ObjNames, reflects all these considerations. It is rather complicated, but the 
complexity is the result of the many demands placed on it; ideas for simplifying it would be 
gratefully received. ObjNames is a fairly realistic spec for a naming system that allows for both 
symbolic links and extensible code for directories. 

A ObjNames.D has get and set methods to allow for different code, though for now we don’t 
take any advantage of this, but use the fixed code GetFromS and SetInS. In the section on 
object-oriented directories below, we will see how to plug in other versions of D with different 
get and set methods. The section on coherence below explains why get is a procedure rather 
than a function. These methods map undefined values to nil because it’s tricky to program with 
undefined in this general setting; this means that Z needs Null as an extra case.  

Link is another case of Z (the internal value of a name), and there is code in Get to follow links; 
the rules for doing this are somewhat arbitrary, but follow the Unix conventions. Because of the 
complications introduced by links, we usually use GetDN instead of Get to follow paths; this 
procedure converts a PN relative to root into a directory d and a name n in that directory. Then 
the external procedures read or write the value of that name.  

Because Get is no longer atomic, it’s no longer possible to define it in terms of a path through 
the directories that exists at a single instant. The section on atomicity below discusses this point 
in more detail. 

MODULE ObjNames[V] EXPORT ... = 

TYPE D = Int % Just an internal name 
   WITH {get:=GetFromS, set:=SetInS} % get returns nil if undefined 

Link = [d: (D + Null), pn] % d=nil for ‘relative’: the containing D 
Z = (V + D + Link + Null) % nil means undefined 
DD = N -> Z 

CONST root : D := 0  
VAR s := (D -> DD){}{root -> DD{}} % initially empty root 

APROC GetFromS(d, n) -> Z =  % d.get(n) 
<< RET s(d)(n) [*] RET nil >>  

APROC SetInS  (d, n, z)   =  % d.set(n, z) 
% If z = nil, SetInS leaves n undefined in s(d). 

<< IF z # nil => s(d)(n) := z [*] s(d) := s(d){n -> } FI >> 
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PROC Read   (pn)     -> V     RAISES {error} = VAR z := Get(root, pn) | 
IF z IS V => RET z [*] RAISE error FI 

PROC Enum   (pn)     -> SET N RAISES {error} =  
% Can’t just write RET GetD(root, pn).get.dom as in ObjNames0, because get isn’t a function. 
% The lack of atomicity is on purpose. 

VAR d := GetD(root, pn), ns: SET N := {}, z | 
DO VAR n | << z := d.get(n); ~ n IN ns /\ z # nil => ns + := {n} >> OD; 
RET ns 

PROC Write  (pn, v)           RAISES {error} =                   SetPN(pn,v, true 

PROC MakeD(pn)                RAISES {error} = VAR d := NewD() | SetPN(pn,d, false

PROC Rename(from: PN, to: PN) RAISES {error} = VAR d, n, d', n' | 
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant  
[*] (d, n) := GetDN(from, false); (d', n') := GetDN(to, false); 

<< d.get!n => d'.set(n', d.get(n)); d.set(n, nil) >> 
[*] RAISE error 
FI  

This version of Rename imposes a different restriction on renaming to a descendant than real file 
systems, which usually have a notion of a distinguished parent for each directory and disallow 
ParentPN(d) <= ParentPN(d'). They also usually require d and d' to be in the same ‘file 
system’, a notion which we don’t have. Note that Rename does its two writes atomically, like 
many real file systems. 

The remaining routines are internal. Get follows every link it sees; a link can appear at any point, 
not just at the end of the path. GetDN would be just  

IF pn = {} => RAISE error [*] RET (GetD(root, pn.reml), pn.last) FI 

except for the question of what to do when the value of this (d, n) is a link. The 
followLastLink parameter says whether to follow such a link or not. Because this can happen 
more than once, the body of GetDN needs to be a loop. 

PROC Get(d, pn) -> Z RAISES {error} = VAR z := d | 
% Return the value of pn looked up starting at d. 

DO << pn # {} => VAR n := pn.head, z' |   
IF z IS D =>  % must have a value for n. 

z' := z.get(n);  
IF z' # nil =>  

% If there's a link, follow it. Otherwise just look up n. 
IF (z, pn') := FollowLink(z, n); pn := pn' + pn.tail  
[*] z        := z'              ; pn :=       pn.tail 
FI 

[*] RAISE error 
FI 

[*] RAISE error 
FI 

>> OD; RET z 

PROC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) | 
IF z IS D => RET z AS D [*] RAISE error FI 
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PROC GetDN(pn, followLastLink: Bool) -> (D, N) RAISES {error} = VAR d := root | 
% Convert pn into (d, n) such that d.get(n) is the item that pn refers to.  

DO IF  pn = {} => RAISE error 
[*] VAR n := pn.last, z | 

d := Get(d, pn.reml);  
% If there's a link, follow it and loop. Otherwise return. 
<< followLastLink => (d, pn) := FollowLink(d, n) [*] RET (d, n) >> 

FI 
OD 

APROC FollowLink(d, n) -> (D, PN) = <<  
% Fail if d.get(n) not Link.  Use d as the context if the link lacks one. 

VAR l := d.get(n) | l IS Link => RET ((l.d IS D => l.d [*] d), l.pn) >> 

PROC SetPN(pn, z, followLastLink: Bool) RAISES {error} =  
VAR d, n | (d, n) := GetDN(pn, followLastLink); d.set(n, z) 

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := D{}; RET d >> 

END ObjNames 

Object-oriented directories 

Although D in ObjNames has get and set methods, they are the same for all D’s. To encompass 
the full range of applications of path names, we need to make a D into a full-fledged ‘object’, in 
which different instances can have different get and set operations (yet another level of 
indirection). This is the essential meaning of ‘object-oriented’: the type of an object is a record of 
routine types which defines a single interface to all objects of that type, but every object has its 
own values for the routines, and hence its own code. 

To do this, we change the type to: 

TYPE D  = [get: APROC (n) -> Z, set: PROC (n, z) RAISES {error}] 
DR = Int % what D used to be; R for reference 

keeping the other types from ObjNames unchanged: 
Z = (V + D + Link + Null) % nil means undefined 
DD = N -> Z 

We also need to change the state to: 

CONST root := NewD()  
s := (DR -> DD){root -> DD{}} % initially empty root 

and to provide a new version of the NewD procedure for creating a new standard directory. The 
routines that NewD assigns to get and set have the same bodies as the GetFromS and SetInS 
routines.  

A technical point: The reason for not writing get:=s(dr) in NewD is that this would capture the 
value of s(dr) at the time NewD is invoked; we want the value at the time get is invoked, and 
this is what we get because of the fact that Spec functions are functions on the global state, rather 
than pure functions. 

APROC NewD() -> D = << VAR dr | ~ s!dr => 
s(dr) := DD{};  
RET D{ get := (\ n | s(dr)(n)),  
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       set := (PROC (n, z) = IF  z # nil => s(dr)(n) := z  
                             [*] s(dr) := s(dr){n -> } FI) }  
 

PROC SetErr(n, z) RAISES {error} = RAISE error  
% For later use as a set proc if the directory is read-only 

We don’t need to change anything else in ObjNames. 

We will see many other examples of get and set routines. Note that it’s easy to define a D that 
disallows updates, by making set be SetErr. 

Views and recursive structure  

In this section we examine ways of constructing name spaces, and in particular ways of building 
up directories out of existing directories. We already have a basic recursive scheme that makes a 
set of existing directories the children of a parent directory. The generalization of this idea is to 
define a function on some state that returns a D, that is, a pair of get and set procedures. There 
are various terms for this:  

‘encapsulating’ the state, 

‘embedding’ the state in a name space, 

‘making the state compatible’ with a name space interface, 

defining a ‘view’ on the state. 

We will usually call it a view. The spec for a view defines how the result of get depends on the 
state and how set affects the state. 

All of these terms express the same idea: make the state behave like a D, that is, abstract it as a 
pair of get and set procedures. Once packaged in this way, it can be used wherever a D can be 
used. In particular, it can be an argument to one of the recursive views that make a D out of other 
D’s: a parent directory, a link, or the others discussed below. It can also be the argument of tools 
like the Unix commands that list, search, and manipulate directories.  

The read operations are much the same for all views, but updates vary a great deal. The two 
simplest cases are the one we have already seen, where you can set the value of a name just as 
you write into a memory location, and the even simpler one that disallows updates entirely; the 
latter is only interesting if get looks at global state that can change in other ways, as it does in 
the Union and Filter operations below. Each time we introduce a view, we will discuss the spec 
for updating it. 

In the rest of this section we describe views that are based on directories: links, mounting, 
unions, and filters. The final section of the handout gives many examples of views based on 
other kinds of data. 

Links and mounting 

The idea behind links (called ‘symbolic links’ in Unix, ‘shortcuts’ in Windows, and ‘aliases’ in 
the Macintosh) is that of an alias (another level of indirection): we can define the value of a name 
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in a directory by saying that it is the same as the value of some other name in some other 
directory. If the value is a directory, another way of saying this is that we can represent a 
directory d by the link (d', pn'), with d(pn) = d'(pn')(pn), or more graphically d/pn = 
d'/pn'/pn. When put in this form it is usually called mounting the directory d'(pn') on pn0, if 
pn0 is the name of d. In this language, pn0 is called a ‘mount point’. Another name for it is 
‘junction’. 

We have already seen code in ObjNames to handle links. You might wonder why this code was 
needed. Why isn’t our wonderful object-oriented interface enough? The reason is that people 
expect more from aliases than this interface can deliver: there can be an alias for a value, not 
only for a directory, and there are complicated rules for when the alias should be followed 
silently and when it should be an object in its own right that can be enumerated or changed 

Links and mounting make it possible to give objects the names you want them to have, rather 
than the ones they got because of defects in the system or other people’s bad taste. A very down-
to-earth example is the problems caused by the restriction in standard Unix that a file system 
must fit on a single disk. This means that in an installation with 4 disks and 12 users, the name 
space contains /disk1/john and /disk2/mary rather than the /udir/john and /udir/mary that 
we want. By making /udir/john be a link to /disk1/john, and similarly for the other users, we 
can hide this annoyance. 

Since a link is not just a D, we need extra interface procedures to read the value of a link (without 
following it automatically, as Read does), and to install a link. We call the install procedure 
Mount to emphasize that a mount point and a symbolic link are essentially the same thing. The 
Mount procedure is just like Write except for the second argument’s type and the fact that it 
doesn’t follow a final link in pn. 

PROC ReadLink(pn) -> Link RAISES {error} = VAR d, n |  
(d, n) := GetDN(pn, false); 
VAR z | z := d.get(n); IF z IS Link => RET z [*] RAISE error FI 

PROC Mount(pn, link) -> DD = SetPN(pn, link, false) 

The section on roots below discusses where we might get the D in the link argument of Mount. 
In the common case of a link to someplace in the same name space, we have: 

PROC MakeLink(pn, pn', local: Bool) =  
Mount(pn, Link{d := (local => nil [*] root), pn := pn'}) 

Updating (with Write, for instance) makes sense when there are links, but there are two 
possibilities. If every link is followed then a link never gets updated, since GetDN never returns a 
reference to a link. If a final link is not followed then it can be replaced by something else.  

What is the relation between these links and what Unix calls ‘hard links’? A Unix hard link is an 
inode number, which you can think of as a direct pointer to a file; it corresponds to a D in 
ObjNames. Several directory entries can have the same inode number. Another way to look at 
this is that the inodes are just another kind of name of the form inodeRoot/2387754, so that a 
hard link is just a link that happens to be an inode number rather than an ordinary path name. 
There is no provision for making the value of an inode number be a link (or indeed anything 
except a file), so that’s the end of the line. 
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Unions 

Since a directory is a function N -> Z, it is natural to combine two directories with the "+" 
overlay operator on functions3. If we do this repeatedly, writing d1 + d2 + d3, we get the effect 
of a ‘search path’ that looks at d3 first, then d2, and finally d1 (in that order because "+" gives 
preference to its second argument, unlike a search path which gives preference to its first 
argument). The difference is that this rule is part of the name space, while a search path must be 
coded separately in each program that cares. It’s unclear whether an update of a union should 
change the first argument, change the second argument, do something more complicated, or raise 
an error. We take the last view for simplicity. 

FUNC Union(d1, d2) -> D = RET D{get := d1.get + d2.get, set := SetErr}4 

Another kind of union combines the name spaces at every level, not just at the top level, by 
merging directories recursively. This is the most general way to combine two trees that have 
evolved independently. 

FUNC DeepUnion(d1, d2) -> D = RET D{ 
get := (\ n |  
      (    d1.get(n) IS D /\ d2.get(n) IS D => DeepUnion(d1.get(n), d2.get(n))
       [*] (d1.get + d2.get)(n) )), 
set := SetErr} 

This is a spec, of course, not efficient code.  
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Filters and queries 

Given a directory d, we can make a smaller one by selecting some of d’s children. We can use 
any predicate for this purpose, so we get: 

FUNC Filter(d, p: (D, N) -> Bool) -> D = 
RET D{get := ( \ n | (p(d, n) => d.get(n)) [*] nil ), set := SetErr} 

                                                 
3 See section 9 of the Spec reference manual. 
4 This is a bit oversimplified, since get is an APROC and hence doesn’t have "+"defined. But the idea should be 
clear. Plan 9 (see the examples at the end) implements unions. 
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Examples: 

Pattern match in a directory: a/b/*.ps. The predicate is true if n matches *.ps. 

Querying a table: payroll/salary>25000/name. The predicate is true if 
Get(d, n/salary) > 25000. See the example of viewing a table in the final section of 
examples. 

Full text indexing: bwl/papers/word:naming. The predicate is true if d.get(n) is a text file 
that contains the word naming. The code could just search all the text files, but a practical 
one will probably involve an auxiliary index structure that maps words to the files that 
contain them, and will probably not be perfectly coherent. 

See the ‘semantic file system’ example below for more details and a reference. 

Variations 

It is useful to summarize the ways in which a spec for a name space might vary. The variations 
almost all have to do with the exact semantics of updates: 

What operations are updates, that is, can change the results of Read?  

Are there aliases, so that an update to one object can affect the value of others? 

Are the updates atomic, or it is possible for reads to see intermediate states? Can an update be 
lost, or partly lost, if there is a crash? 

Viewed as a memory, is the name space coherent? That is, does every read that follows an 
update see the update, or is it possible for the old state to hang around for a while?  

How much can the set of defined PN’s change? In other words, is it useful to think about a 
schema for the name space that is separate from the current state? 

Updates 

If the directories are ‘real’, then there will be non-trivial Write, MakeD, and Rename operations. If 
they are not, these operations will always raise error, there will be operations to update the 
underlying data, and the view function will determine the effects of these updates on Read and 
Enum. In many systems, Read and Write cannot be modeled as operations on memory because 
Write(a, r) does not just change the value returned by Read(a). Instead they must be 
understood as methods of (or messages sent to) some object.  

The earliest example of this kind of system is the DEC Unibus, the prototype for modern I/O 
systems. Devices on such an I/O bus have ‘device registers’ that are named as locations in 
memory. You can read and write them with ordinary load and store instructions. Each device, 
however, is free to interpret these reads and writes as it sees fit. For example, a disk controller 
may have a set of registers into which you can write a command which is interpreted as “read n 
disk blocks starting at address da into memory starting at address a”. This might take three 
writes, for the parameters n, da, and a, and the third write has the side effect of starting execution 
of the command. 
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The most recent well-known incarnation of this idea is the World Wide Web, in which read and 
write actions (called Get and Post in the protocol) are treated as messages to servers that can 
search databases, accept orders for pizza, or whatever. 

Aliases  

We have already discussed this topic at some length. Links and unions both introduce aliases. 
There can also be ‘hard links’, which are several occurrences of the same D. In a Unix file 
system, for example, it is possible to have several directory entries that point to the same file. A 
hard link differs from a soft link because the connection it establishes between a name and a file 
cannot be broken by changing the binding of some other name. And of course a view can 
introduce arbitrarily complicated aliasing. For example, it’s fairly common for an I/O device that 
has internal memory to make that memory addressable with two control registers a and v, and 
the rule that a read or write of v refers to the internal memory location addressed by the current 
contents of a. 

Atomicity 

The MemNames and ObjNames0 specs made all the update operations atomic. For code to satisfy 
these specs, it must hold some kind of lock on every directory touched by GetDN, or at least on 
the name looked up in each such directory. This can involve a lot of directories, and since the 
name space is a graph it also introduces the danger of deadlock. It’s therefore common for 
systems to satisfy only the weaker atomicity spec of ObjNames, which says that looking up a 
simple name is atomic, but the entire lookup process is not. 

This means that Read(/a/x) can return 3 even though there was never any instant at which the 
path name /a/x had the value 3, or indeed was defined at all. To see how this can happen, 
suppose:  

initially /a is the directory d1 and /b is undefined; 

initially x is undefined in d1; 

concurrently with Read(/a/x) we do Rename(/a, /b); Write(/b/x, 3).  

The following sequence of actions yields Read(/a/x) = 3: 

In the Read , Get(root, a) = d1  

Rename(/a, /b) makes /a undefined and d1 the value of /b  

Write(/b/x, 3) makes 3 the value of x in d1  

In the Read, RET d1.get(x) returns 3. 
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Obviously, whether this possibility is important or not depends on how clients are using the 
name space. 

Coherence 

Other things being equal, everyone prefers a coherent or ‘sequentially consistent’ memory, in 
which there is a single order of all the concurrent operations with the property that the result of 
every read is the result that a simple memory would return after it has done all the preceding 
writes in order. Maintaining coherence has costs, however, in the amount of synchronization that 
is required if parts of the memory are cached, or in the amount of availability if the memory is 
replicated. We will discuss the first issue in detail at the end of the course. Here we consider the 
availability of a replicated memory. 

Recall the majority register from the beginning of the course. It writes a majority of the replicas 
and reads from a majority, thus ensuring that every read must see the most recent write. 
However, this means that you can’t do either a read or a write unless you can talk to a majority. 
There we used a general notion of majority in which the only requirement is that every two 
majorities have a non-empty intersection. Applying this idea, we can define separate read and 
write quorums, with the property that every read quorum intersects every write quorum. Then we 
can make reads more available by making every replica a read quorum, at the price of having the 
only write quorum be the set of all replicas, so that we have to do every write to all the replicas. 

An alternative approach is to weaken the spec so that it’s possible for a read to see old values. 
We have seen a version of this already in connection with crashes and write buffering, where it 
was possible for the system to revert to an old state after a crash. Now we propose to make the 
spec even more non-deterministic: you can read an old value at any time, and the only restriction 
is that you won’t read a value older than the most recent Sync. In return, we can now have much 
more availability in the code, since both a read and a write can be done to a single replica. This 
means that if you do Write(/a, 3) and immediately read a, you may not get 3 because the Read 
might use a different replica that hasn’t seen the Write yet. Only Sync requires communication 
among the replicas. 

We give the spec for this as a variation on ObjNames. We allow nil to be in dd(n), representing 
the fact that n has been undefined in dd. 
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TYPE DD = N -> SEQ Z % remember old values 

APROC GetFromS(d, n) -> Z = << % we write d.get(n) 
% The non-determinism wouldn’t be allowed if this were a function 

VAR z | z IN s(d)(n) => RET z [*] RET nil >> % return any old value 

PROC  SetToS(d, n, z) =  % we write d.set(n, z) 
s(d)(n) := ((s(d)!n => s(d)(n) [*] {}) + {z} % add z to the state  

PROC Sync(pn) RAISES {error} =  
VAR d, n, z |  

(d, n) := GetDN(pn, true); z := s(d)(n).last;  
IF z # nil => s(d)(n) := {z} [*] s(d) := s(d){n -> } FI 

This spec is common in the naming service for a distributed system, for instance in the Internet’s 
DNS or Microsoft’s Active Directory. The name space changes slowly, it isn’t critical to see the 
very latest value, and it is critical to have high availability. In particular, it’s critical to be able to 
look up names even when network partitions make some working replicas unreachable. 

Schemas 

In the database world, a schema is the definition of what names are defined (and usually also of 
the type of each name’s value).5 Network management calls this a ‘management information 
base’ or MIB. Depending on the application there are very different rules about how the schema 
is defined. 

In a file system, for example, there is usually no official schema written down. Nonetheless, each 
operating system has conventions that in practice have the force of law. A Unix system without 
/bin and /etc will not get very far. But other parts of the name space, especially in users’ 
private directories, are completely variable.  

By contrast, a database system takes the schema very seriously, and a management system takes 
at least some parts of it seriously. The choice has mainly to do with whether it is people or 
programs that are using the name space. Programs tend to be much less flexible; it’s a lot of 
work to make them adapt to missing data or pay attention to unexpected additional data 

Minor issues 

We mention in passing some other, less fundamental, ways in which the specs for name spaces 
differ. 

Rules about overwriting. Some systems allow any name to be overwritten, others treat 
directories, or non-empty directories, specially to reduce the consequences of careless 
errors. 

Access control. Many systems enforce rules about which users or programs are allowed to 
read or write various parts of the name space. 

                                                 
5 Gray and Reuter, Transaction Processing, Morgan Kaufmann, 1993, pp 768-786. 
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Resource control. Writes often consume resources that are expensive or in fixed supply, 
such as disk blocks. This means that they can fail if the resources are exhausted, and there 
may also be a quota system that limits the resource consumption of users or programs. 

Roots 
It’s not turtles all the way down. 

Anonymous 

So far we have ducked the question of how the root is represented, or the D in a link that plays a 
similar role. In ObjNames0 we said D = Int, leaving its interpretation entirely to the s 
component of the state. In ObjNames we said D is a pair of procedures, begging the question of 
how the procedures are represented. The representation of a root depends entirely on the 
implementation. In a file system, for instance, a root names a disk, a disk partition, a volume, a 
file system exported from a server, or something like that. Thus there is another name space for 
the roots (another level of indirection). It works in a wide variety of ways. For example: 

In MS-DOS. you name a physically connected disk drive. If the drive has removable media 
and you insert the wrong one, too bad. 

On the Macintosh. you use the string name of a disk. If the system doesn’t know where to 
find this disk, it asks the user. If you give the same name to two removable disks, too bad. 

On Digital VMS. disks have unique identifiers that are used much like the string names on 
the Macintosh. 

For the NFS network file system, a root is named by a host name or IP address, plus a file 
system name or handle on that host. If that name or address gets assigned to another 
machine, too bad. 

In a network directory a root is named by a unique identifier. There is also a set of servers 
that might store replicas of that directory. 

In the secure file system, a root is named by the hash of a public encryption key. There’s 
also a network address to help you find the file system, but that’s only a hint.6 

In general it is a good idea to have absolute names (unique identifiers) for directories. This at 
least ensures that you won’t use the wrong directory if the information about where to find it 
turns out to be wrong. A UID doesn’t give much help in locating a directory, however. The 
possibilities are: 

Store a set of places to look along with the UID. The problem is keeping this set up to date. 

Keep another name space that maps UID’s to locations (yet another level of indirection). 
The problem is keeping this name space up to date, and making it sufficiently available. 
For the former, every location can register itself periodically. For the latter, replication is 
good. We will talk about replication in detail later in the course. 

Search some ad-hoc set of places in the hope of finding a copy. This search is often called a 
‘broadcast’. 

                                                 
6 Mazières, Kaminsky,  Kaashoek, and Witchel, Separating key management from file system security.  Proc. 17th 
ACM Symposium on Operating Systems Principles, Dec. 1999. www.pdos.lcs.mit.edu/papers/sfs:sosp99.pdf. 
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We defined the interface routines to start from a fixed root. Some systems, such as Unix, have 
provisions for changing the root; the chroot system call does this for a process. In addition, it is 
common to have a more local context (called a ‘working directory’ for a file system), and to have 
syntax to specify whether to start from the root or the working directory (presence or absence of 
an initial ‘/’ for a Unix file system). 

Examples 

These are to expand your mind and to help you recognize a name space when you come across it 
under some disguise. 

File system 
directory  

Example: /udir/lampson/pocs/handouts/12-naming 

Not a tree, because of . and .., hard links, and soft links. 
Devices, named pipes, and other things can appear as well as files. 
Links and mounting are important for assembling the name space you want. 
Files may have attributes, which are a little directory attached to the file.  
Sometimes resources, fonts, and other OS rigmarole are stored this way. 

inodes   There is a single inode directory, usually coded as a function rather than a table: 
you compute the location of the inode on the disk from the number. 
For system-wide inodes, prefix a system-wide file system or volume name. 

Plan 97 This operating system puts all its objects into a single name space: files, devices, 
pipes, processes, display servers, and search paths (as union directories). 

Semantic 
file system8 

Not restricted to relational databases.  

Free-text indexing: ~lampson/Mail/inbox/(word="compiler") 

Program cross-reference: /project/sources/(calls="DeleteFile") 

Table 
(relational 
data base) 

Example: ID no (key) Name Salary  Married? 
 1432 Smith 21,000 Yes 

 44563 Jones 35,000 No 

 8456 Brown 17,000 Yes 

We can view this as a naming tree in several ways: 
#44563/Name = Jones key’s value is a D that defines Name, Salary, etc. 
Name/#44563 = Jones key’s value is the Name field of its row  

The second way, cat Name/*  yields  
Smith Jones Brown 

                                                 
7 Pike et al., The use of name spaces in Plan 9, ACM Operating Systems Review 27, 2, Apr. 1993, pp 72-76. 
8 Gifford et al., Semantic file systems, Proc. 13th ACM Symposium on Operating System Principles, Oct. 1991, pp 
16-25 (handout 13). 
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Network 
naming9 

Example: theory.lcs.mit.edu 

Distributed code. Can share responsibility for following the path between client 
and server in many ways. 
A directory handle is a machine address (interpreted by some communication 
network), plus some id for the directory on that machine. 
Attractive as top levels of complete naming hierarchy. 

E-mail 
addresses 

Example: rinard@lcs.mit.edu 

This syntax patches together the network name space and the user name space of a 
single host. Often there are links (called forwarding) and directories full of links 
(called distribution lists).  

SNMP10 Example: Router with circuits, packets in circuits, headers in packets, etc. 

Internet Simple Network Management Protocol 
Roughly, view the state of the managed entity as a table, treating it as a name 
space the way we did earlier. You can read or write table entries. 
The Next action allows a client to explore the name space, whose structure is 
read-only. Ad hoc Write actions are sometimes used to modify the structure, for 
instance by adding a row to a table. 

Page tables Divide up the virtual address, using the first chunk to index a first level page table, 
later chunks for lower level tables, and the last chunk for the byte in the page. 

I/O device 
addressing 

Example: Memory bus. 
  SCSI controller, by device register addresses. 
  SCSI device, by device number 0..7 on SCSI bus. 
  Disk sector, by disk address on unit. 
Usually there is a pure read/write interface to the part of the I/O system that is 
named by memory addresses (the device registers in the example), and a message 
interface to the rest (the disk in the example). 

Multiplexing 
a channel 

Examples: Node-node network channel →  n process-process channels. 
  Process-kernel channel → n inter-process channels. 
  ATM virtual path → n virtual circuits. 

Given a channel, you can multiplex it to get sub-channels. 
Sub-channels are identified by addresses in messages on the main channel. 
This idea can be applied recursively, as in all good name spaces. 

LAN 
addresses 

48-bit ethernet address. This is flat: the address is just a UID. 

                                                 
9 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed 
Computing, Minaki, Ontario, 1986, pp 1-10. RFC 1034/5 for DNS. 
10 M. Rose, The Simple Book, Prentice-Hall, 1990. 
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Hierarchical 
network 
addresses11 

Example: 16.24.116.42 (an IP address). 

An address in a big network is hierarchical. 
A router knows its parents and children, like a file directory, and also its siblings 
(because the parent might be missing) 
To route, traverse up the name space to least common ancestor of current place 
and destination, then down to destination. 

Network 
reference12 

Example: 6.24.116.42/11234/1223:44 9 Jan 1995/item 21 

Network address + port or process id + incarnation + more multiplexing + address 
or export index.  
Some applications are remote procedure binding, network pointer, network object 

Abbrevia-
tions 

A, talking to B, wants to pass a big value V, say a font or security credentials. 
A makes up a short name N for V (sometimes called a ‘cookie’, though it’s not the 
same as a Web cookie) and passes that. 
If B doesn’t know N’s value V, it calls back to A to get it, and caches the result. 
Sometimes A tells V to B when it chooses N, and B is expected to remember it. 
This is not as good because B might run out of space or fail and restart. 

World 
Wide Web 

Example: http://ds.internic.net/ds/rfc-index.html 

This is the URL (Uniform Resource Locator) for Internet RFCs. 
The Web has a read/write interface. 

Spec names  Example: ObjNames.Enum 

Telephone 
numbers 

Example: 1-617-253-6182 

Postal 
addresses 

Example: Prof. Butler Lampson 
 Room 43-535 
 MIT 
 Cambridge, MA 02139 

                                                 
11 R. Perlman, Connections, Prentice-Hall, 1993. 
12 Andrew Birrell et al., Network objects, Proc. 14th ACM Symposium on Operating Systems Principles, Asheville, 
NC, Dec. 1993 (handout 25). 
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Semantic File Systems
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Abstract

A semantic �le system is an information storage system that

provides 
exible associative access to the system's contents

by automatically extracting attributes from �les with �le

type speci�c transducers. Associative access is provided by a
conservative extension to existing tree-structured �le system

protocols, and by protocols that are designed speci�cally for

content based access. Compatiblity with existing �le sys-

tem protocols is provided by introducing the concept of a

virtual directory. Virtual directory names are interpreted as

queries, and thus provide 
exible associative access to �les

and directories in a manner compatible with existing soft-

ware. Rapid attribute-based access to �le system contents

is implemented by automatic extraction and indexing of key

properties of �le system objects. The automatic indexing of

�les and directories is called \semantic" because user pro-

grammable transducers use information about the semantics

of updated �le system objects to extract the properties for

indexing. Experimental results from a semantic �le system

implementation support the thesis that semantic �le systems

present a more e�ective storage abstraction than do tradi-

tional tree structured �le systems for information sharing

and command level programming.

1 Introduction

We would like to develop an approach for information stor-

age that both permits users to share information more ef-

fectively, and provides reductions in programming e�ort and

program complexity. To be e�ective this new approach must

be used, and thus an approach that provides a transition

path from existing �le systems is desirable.

In this paper we explore the thesis that semantic �le
systems present a more e�ective storage abstraction than

do traditional tree structured �le systems for information

sharing and command level programming. A semantic �le

system is an information storage system that provides 
exi-

This research was funded by the Defense Advanced Research
Projects Agency of the U.S. Department of Defense and was mon-
itored by the O�ce of Naval Research under grant number N00014-

89-J-1988.
1 Also with CRI, Ecole des Mines de Paris, France.

ble associative access to the system's contents by automat-

ically extracting attributes from �les with �le type speci�c

transducers. Associative access is provided by a conservative

extension to existing tree-structured �le system protocols,

and by protocols that are designed speci�cally for content

based access. Automatic indexing is performed when �les

or directories are created or updated.

The automatic indexing of �les and directories is called

\semantic" because user programmable transducers use in-

formation about the semantics of updated �le system ob-

jects to extract the properties for indexing. Through the

use of specialized transducers, a semantic �le system \un-

derstands" the documents, programs, object code, mail, im-

ages, name service databases, bibliographies, and other �les

contained by the system. For example, the transducer for a

C program could extract the names of the procedures that

the program exports or imports, procedure types, and the

�les included by the program. A semantic �le system can be

extended easily by users through the addition of specialized

transducers.

Associative access is designed to make it easier for users

to share information by helping them discover and locate

programs, documents, and other relevant objects. For ex-

ample, �les can be located based upon transducer generated

attributes such as author, exported or imported procedures,

words contained, type, and title.

A semantic �le system provides both a user interface

and an application programming interface to its associa-

tive access facilities. User interfaces based upon browsers

[Inf90, Ver90] have proven to be e�ective for query based

access to information, and we expect browsers to be o�ered

by most semantic �le system implementations. Application

programming interfaces that permit remote access include

specialized protocols for information retrieval [NIS91], and

remote procedure call based interfaces [GCS87].

It is also possible to export the facilities of a semantic

�le system without introducing any new interfaces. This

can be accomplished by extending the naming semantics of

�les and directories to support associative access. A bene�t

of this approach is that all existing applications, including

user interfaces, immediately inherit the bene�ts of associa-

tive access.

A semantic �le system integrates associative access into

a tree structured �le system through the concept of a virtual
directory. Virtual directory names are interpreted as queries

and thus provide 
exible associative access to �les and di-

rectories in a manner compatible with existing software.

For example, in the following session with a semantic



�le system we �rst locate within a library all of the �les

that export the procedure lookup fault, and then further

restrict this set of �les to those that have the extension c:

% cd /sfs/exports:/lookup_fault

% ls -F

virtdir_query.c@ virtdir_query.o@

% cd ext:/c

% ls -F

virtdir_query.c@

%

Semantic �le systems can provide associative access to

a group of �le servers in a distributed system. This dis-

tributed search capability provides a simpli�ed mechanism

for locating information in large nationwide �le systems.

Semantic �le systems should be of use to both individu-

als and groups. Individuals can use the query facility of a

semantic �le system to locate �les and to provide alternative

views of data. Groups of users should �nd semantic �le sys-

tems an e�ective way to learn about shared �les and to keep

themselves up to date about the status of group projects. As

workgroups increasingly use �le servers as shared library re-

sources we expect that semantic �le system technology will

become even more useful.

Because semantic �le systems are compatible with exist-

ing tree structured �le systems, implementations of semantic

�le systems can be fully compatible with existing network

�le system protocols such as NFS [SGK
+
85, Sun88] and AFS

[Kaz88]. NFS compatibility permits existing client machines

to use the indexing and associative access features of a se-

mantic �le system without modi�cation. Files stored in a

semantic �le system via NFS will be automatically indexed,

and query result sets will appear as virtual directories in

the NFS name space. This approach directly addresses the

\dusty data" problem of existing UNIX �le systems by al-

lowing existing UNIX �le servers to be converted transpar-

ently to semantic �le systems.

We have built a prototype semantic �le system and run

a series of experiments to test our thesis that semantic �le

systems present a more e�ective storage abstraction than do

traditional tree structured �le systems for information shar-

ing and command level programming. We tried to locate

various documents and programs in the �le system using

unmodi�ed NFS clients. The results of these experiments

suggest that semantic �le systems can be used to �nd in-

formation more quickly than is possible using ordinary �le

systems, and add expressive power to command level pro-

gramming languages.

In the remainder of the paper we discuss previous re-

search (Section 2), introduce the interface and a semantics

for a semantic �le system (Section 3), review the design

and implementation of a semantic �le system (Section 4),

present our experimental results (Section 5) and conclude

with observations on other applications of virtual directo-

ries (Section 6).

2 Previous Work

Associative access to on-line information was pioneered in

early bibliographic retrieval systems where it was found to

be of great value in locating information in large databases

[Sal83]. The utility of associative access motivated its sub-

sequent application to �le and document management. The

previous research we build upon includes work on personal

computer indexing systems, information retrieval systems,

distributed �le systems, new naming models for �le systems,

and wide-area naming systems:

� Personal computer indexing systems such as On Loca-

tion [Tec90], Magellan [Cor], and the Digital Librar-

ian [NC89b, NC89a] provide window-based �le system

browsers that permit word-based associative access to

�le system contents. Magellan and the Digital Librar-

ian permit searches based upon boolean combinations

of words, while On Location is limited to conjunctions

of words. All three systems rank matching �les using a

relevance score. These systems all create indexes to re-

duce search time. On Location automatically indexes

�les in the background, while Magellan and the Digi-

tal Librarian require users to explicitly create indexes.

Both On Location and the Digital Librarian permit

users to add appropriate keyword generation programs

[Cla90, NC89b] to index new types of �les. However,

Magellan, On Location, and the Digital Librarian are

limited to a list of words for �le description.

� Information retrieval systems such as Basis [Inf90],

Verity [Ver90], and Boss DMS [Log91] extend the se-

mantics of personal computer indexing systems by

adding �eld speci�c queries. Fields that can be queried

include document category, author, type, title, identi-

�er, status, date, and text contents. Many of these

document relationships and attributes can be stored

in relational database systems that provide a general

query language and support application program ac-

cess. The WAIS system permits information at remote

sites to be queried, but relies upon the user to choose

an appropriate remote host from a directory of services

[KM91, Ste91]. Distributed information retrieval sys-

tems [GCS87, DANO91] perform query routing based

upon database content labels to ensure that all rele-

vant hosts are contacted in response to a query.

� Distributed �le systems [Sun89, Kaz88] provide remote

access to �les with tree structured names. These sys-

tems have enabled �le sharing among groups of people

and over wide geographic areas. Existing UNIX tools

such as grep and find [Gro86] are often used to per-

form associative searches in distributed �le systems.

� New naming models for �le systems include the Portable

Common Tool Environment (PCTE) [GMT86], the

Property List DIRectory system (PLDIR) [Mog86],

Virtual Systems [Neu90] and Sun's Network Software

Environment (NSE) [SC88]. PCTE provides an entity-

relationship database that models the attributes of

objects including �les. PCTE has been implemented

as a compatible extension to UNIX. However, PCTE

users must use specialized tools to query the PCTE

database, and thus do not receive the bene�ts of asso-

ciative access via a �le system interface. The Property

List DIRectory system implements a �le system model

designed around �le properties and o�ers a Unix front-

end user interface. Similarly, Virtual Systems permit

users to hand-craft customized views of services, �les,

and directories. However, neither system provides au-

tomatic attribute extraction (although [Mog86] alludes

to it as a possible extension) or attribute-based access

to their contents. NSE is a network transparent soft-

ware development tool that allows di�erent views of



a �le system hierarchy called environments to be de-

�ned. Unlike virtual directories, these views must be

explicitly created before being accessed.

� Wide-area naming systems such as X.500 [CCI88], Pro-

�le [Pet88], and the Networked Resource Discovery

Project [Sch89] provide attribute-based access to a wide

variety of objects, but they are not integrated into a

�le system nor do they provide automatic attribute-

based access to the contents of a �le system.

Key advances o�ered by the present work include:

� Virtual directories integrate associative access into ex-

isting tree structured �le systems in a manner that is

compatible with existing applications.

� Virtual directories permit unmodi�ed remote hosts to

access the facilities of a semantic �le system with ex-

isting network �le system protocols.

� Transducers can be programmed by users to perform

arbitrary interpretation of �le and directory contents

in order to produce a desired set of �eld-value pairs for

later retrieval. The use of �elds allows transducers to

describe many aspects of a �le, and thus permits sub-

sequent sophisticated associative access to computed

properties. In addition, transducers can identify en-

tities within �les as independent objects for retrieval.

For example, individual mail messages within a mail

�le can be treated as independent entities.

Previous research supports our view that overloading �le

system semantics can improve system uniformity and utility

when compared with the alternative of creating a new inter-

face that is incompatible with existing applications. Exam-

ples of this approach include:

� Devices in UNIX appear as special �les [RT74] in the

/dev directory, enabling them to be used as ordinary

�les from UNIX applications.

� UNIX System III named pipes [Roc85, p. 159f] appear

as special �les, enabling programs to rendezvous using

�le system operations.

� File systems appear as special directories in Automount

daemon directories [CL89, Pen90, PW90], enabling the

binding of a name to a �le system to be computed at

the time of reference.

� Processes appear as special directories in Killian's pro-

cess �le system [Kil84], enabling process observation

and control via �le operations.

� Services appear as special directories in Plan 9

[PPTT90], enabling service access in a distributed sys-

tem through �le system operations in the service's

name space.

� Arbitrary semantics can be associated with �les and

directories using Watchdogs [BP88], Pseudo Devices

[WO88], and Filters [Neu90], enabling �le system ex-

tensions such as terminal drivers, network protocols, X

servers, �le access control, �le compression, mail no-

ti�cation, user speci�c directory views, heterogeneous

�le access, and service access.

� The ATTIC system [CG91] uses a modi�ed NFS server

to provide transparent access to automatically com-

pressed �les.

author: smith
exports: init_xdr_rcv
exports: move_xdr_rep
imports: malloc

from: smith
to: jones
subject: meeting
text: fine

author: smith
section: introduction
text: beginning
text: distributed

Document
Transducer

Mail
Transducer

Object
Transducermove_xdr.o

prop.tex

mail.txt

Figure 1: Sample Transducer Output

3 Semantic File System Semantics

Semantic �le systems can implement a wide variety of se-

mantics. In this section we present one such semantics that

we have implemented. Section 6 describes some other pos-

sibilities.

Files stored in a semantic �le system are interpreted by

�le type speci�c transducers to produce a set of descriptive

attributes that enable later retrieval of the �les. An attribute
is a �eld-valuepair, where a �eld describes a property of a �le
(such as its author, or the words in its text), and a value is
a string or an integer. A given �le can have many attributes

that have the same �eld name. For example, a text �le would

have as many text: attributes as it has unique words. By

convention, �eld names end with a colon.

A user extensible transducer table is used to determine

the transducer that should be used to interpret a given �le

type. One way of implementing a transducer table is to

permit users to store subtree speci�c transducers in the

subtree's parent directory, and to look for an appropriate

transducer at indexing time by searching up the directory

hierarchy.

To accommodate �les (such as mail �les) that contain

multiple objects we have generalized the unit of associative

access beyond whole �les. We call the unit of associative

access an entity. An entity can consist of an entire �le, an

object within a �le, or a directory. Directories are assigned

attributes by directory transducers.

A transducer is a �lter that takes as input the contents of

a �le, and outputs the �le's entities and their corresponding

attributes. A simple transducer could treat an input �le as

a single entity, and use the �le's unique words as attributes.

A complex transducer might perform type reconstruction

on an input �le, identify each procedure as an independent

entity and use attributes to record their reconstructed types.

Figure 1 shows examples of an object �le transducer, a mail

�le transducer, and a TEX �le transducer.

The semantics of a semantic �le system can be readily

extended because users can write new transducers. Trans-

ducers are free to use new �eld names to describe special

attributes. For example, a CAD �le transducer could intro-

duce a drawing: �eld to describe a drawing identi�er.

The associative access interface to a semantic �le sys-

tem is based upon queries that describe desired attributes

of entities. A query is a description of desired attributes

that permits a high degree of selectivity in locating entities

of interest. The result of a query is a set of �les and/or

directories that contain the entities described. Queries are



boolean combinations of attributes, where each attribute de-

scribes the desired value of a �eld. It is also possible to ask

for all of the values of a given �eld in a query result set.

The values of a �eld can be useful when narrowing a query

to eliminate entities that are not of interest.

A semantic �le system is query consistent when it guar-

antees query results that correspond to its current contents.

If updates cease to the contents of a semantic �le system it

will eventually be query consistent. This property is known

as convergent consistency. The rate at which a given imple-

mentation converges is administratively determined by bal-

ancing the user bene�ts of fast convergence when compared

with the higher processing cost of indexing rapidly changing

entities multiple times. It is of course possible to guarantee

that a semantic �le system is always query consistent with

appropriate use of atomic actions.

In the remainder of this section we will explore how con-

junctive queries can be mapped into tree-structured path

names. As we mentioned earlier, this is only one of the pos-

sible interfaces to the query capabilities of a semantic �le

system. It is also possible to map disjunction and negation

into tree-structured names, but they have not been imple-

mented in our prototype and we will not discuss them.

Queries are performed in a semantic �le system through

use of virtual directories to describe a desired view of �le

system contents. A virtual directory is computed on de-

mand by a semantic �le system. From the point of view of a

client program, a virtual directory is indistinguishable from

an ordinary directory. However, unlike ordinary directories,

virtual directories do not have to be explicitly created to be

accessed.

The query facilities of a semantic �le system appear as

virtual directories at each level of the directory tree. A

�eld virtual directory is named by a �eld, and has one entry

for each possible value of its corresponding �eld. Thus in

/sfs, the virtual directory /sfs/owner: corresponds to the

owner: �eld. The �eld virtual directory /sfs/owner: would

have one entry for each owner that has written a �le in /sfs.

For example:

% ls -F /sfs/owner:

jones/ root/ smith/

%

The entries in a �eld virtual directory are value virtual

directories. A value virtual directory has one entry for each

entity described by a �eld-value pair. Thus the value vir-

tual directory /sfs/owner:/smith contains entries for �les

in /sfs that are owned by Smith. Each entry is a symbolic

link to the �le. For example:

% ls -F /sfs/owner:/smith

bio.txt@ paper.tex@ prop.tex@

%

When an entity is smaller than an entire �le, a view of

the �le can be presented by extending �le naming semantics

to include view speci�cations. To permit the conjunction of

attributes in a query, value virtual directories contain �eld

virtual directories. For example:

% ls -F /sfs/owner:/smith/text:/resume

bio.txt@

%

A pleasant property of virtual directories is their syn-

ergistic interaction with existing �le system facilities. For

example, when a symbolic link names a virtual directory

the link describes a computed view of a �le system. It is

also possible to use �le save programs, such as tar, on vir-

tual directories to save a computed subset of a �le system.

It would be possible also to generalize virtual directories to

present views of �le systems with respect to a certain time

in the past.

A semantic �le system can be overlaid on top of an or-

dinary �le system, allowing all �le system operations to go

through the SFS server. The overlaid approach has the ad-

vantage that it provides the power of a semantic �le system

to a user at all times without the need to refer to a distin-

guished directory for query processing. It also allows the

server to do indexing in response to �le system mutation

operations. Alternatively, a semantic �le system may cre-

ate virtual directories that contain links to the �les in the

underlying �le system. This means that subsequent client

operations bypass the semantic �le system server.

When an overlaid approach is used �eld virtual directo-

ries must be invisible to preserve the proper operation of

tree traversal applications. A directory is invisible when it

is not returned by directory enumeration requests, but can

be accessed via explicit lookup. If �eld virtual directories

were visible, the set of trees under /sfs in our above ex-

ample would be in�nite. Unfortunately making directories

invisible causes the UNIX command pwd to fail when the

current path includes an invisible directory. It is possible to

�x this through inclusion of unusual .. entries in invisible

directories.

The distinguished field: virtual directory makes �eld

virtual directories visible. This permits users to enumerate

possible search �elds. The field: directory is itself invisi-

ble. For example:

% ls -F /sfs/field:

author:/ exports:/ owner:/ text:/

category:/ ext:/ priority:/ title:/

date:/ imports:/ subject:/ type:/

dir:/ name:/

% ls -F /sfs/field:/text:/semantic/owner:/jones

mail.txt@ paper.tex@ prop.tex@

%

The syntax of semantic �le system path names is:

<sfs-path> ::= /<pn> | <pn>

<pn> ::= <name> | <attribute>

<field-name> | <name>/<pn>

<attribute>/<pn>

<attribute> ::= field: | <field-name>/<value>

<field-name> ::= <string>:

<value> ::= <string>

<name> ::= <string>

The semantics of semantic �le system path names is:

� The universe of entities is de�ned by the path name

pre�x before the �rst virtual directory name.

� The contents of a �eld virtual directory is a set of

value virtual directories, one for each value that the

�eld describes in the universe.
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� The contents of a value virtual directory is a set of

entries, one for each entity in the the universe that

has the attribute described by the name of the value

virtual directory and its parent �eld virtual directory.

The contents of a value virtual directory de�nes the

universe of entities for its subdirectories. In the ab-

sence of name con
icts, the name of an entry in a

value virtual directory is its original entry name. Entry

name con
icts are resolved by assigning nonce names

to entries.

� The contents of a field: virtual directory is the set

of �elds in use.

4 Semantic File System Implementation

We have built a semantic �le system that implements the

NFS [SGK
+
85, Sun89] protocol as its external interface. To

use the search facilities of our semantic �le system, an Inter-

net client can simply mount our �le system at a desired point

and begin using virtual directory names. Our NFS server

computes the contents of virtual directories as necessary in

response to NFS lookup and readdir requests.

A block diagram of our implementation is shown in Fig-

ure 2. The dashed lines in the �gure describe process bound-

aries. The major processes are:

� The client process is responsible for generating �le sys-
tem requests using normal NFS style path names.

� The �le server process is responsible for creating vir-

tual directories in response to path name based queries.

The SFS Server module implements a user level NFS

server and is responsible for implementing the NFS in-

terface to the system. The SFS Server uses directory
faults to request computation of needed entries by the

Virtual Directory module. A faulting mechanism is

used because the SFS Server caches virtual directory

results, and will only fault when needed information

is requested the �rst time or is no longer cached. The

Virtual Directory module in turn calls the Query Pro-

cessing module to actually compute the contents of a

virtual directory.

The �le server process records �le system modi�ca-

tion events in a write-behind log. The modi�cation

log eliminates duplicate modi�cation events.

� The indexing process is responsible for keeping the in-

dex of �le system contents up-to-date. The Index Mas-

ter module examines the modi�cation log generated by

the �le server process every two minutes. The index-

ing process responds to a �le system modi�cation event

by choosing an appropriate transducer for the modi-

�ed object. An appropriate transducer is selected by

determination of the type of the object (e.g. C source

�le, object �le, directory). If no special transducer is

found a default transducer is used. The output of the

transducer is fed to the Indexer module that inserts the

computed attributes into the index. Indexing and re-

trieval are based upon Peter Weinberger's BTree pack-

age [Wei] and an adapted version of the refer [Les]

software to maintain the mappings between attributes

and objects.

� The mount daemon is contacted to determine the root

�le handle of the underlying UNIX �le system. The

�le server process exports its NFS service using the

same root �le handle on a distinct port number.

� The kernel implements a standard �le system that is

used to store the shared index. The �le server process

could be integrated into the kernel by a VFS based

implementation [Kle86] of an semantic �le system. We

chose to implement our prototype using a user level

NFS server to simplify development.

Instead of computing all of the virtual directories that are

present in a path name, our implementation only computes

a virtual directory if it is enumerated by a client readdir

request or a lookup is performed on one of its entries. This

optimization allows the SFS Server to postpone query pro-

cessing in the hope that further attribute speci�cations will

reduce the amount of work necessary for computation of the

result set. This optimization is implemented as follows:

� The SFS Server responds to a lookup request on a

virtual directory with a lookup not found fault to the

Virtual Directory module. The Virtual Directory mod-

ule checks to make sure that the virtual directory name

is syntactically well formed according to the grammar

in Section 3. If the name is well formed, the directory

fault is immediately satis�ed by calling the create dir

procedure in the SFS Server. This procedure creates a

placeholder directory that is used to satisfy the client's

original lookup request.

� The SFS Server responds to a readdir request on a

virtual directory or a lookup on one of its entries with

a fill directory fault to the Virtual Directory mod-

ule. The Virtual Directory module collects all of the

attribute speci�cations in the virtual directory path



name and passes them to the Query Processing mod-

ule. The Query Processing module uses simple heuris-

tics to reorder the processing of attributes to optimize

query performance. The matching entries are then ma-

terialized in the placeholder directory by the Virtual

Directory module that calls the create link proce-

dure in the SFS Server for each matching �le or direc-

tory.

The transducers that are presently supported by our se-

mantic �le system implementation include:

� A transducer that describes New York Times articles

with type:, priority:, date:, category:, subject:,

title:, author:, and text: attributes.

� A transducer that describes object �les with exports:

and imports: attributes for procedures and global

variables.

� A transducer that describes C, Pascal, and Scheme

source �les with exports: and imports: attributes

for procedures.

� A transducer that describes mail �les with from:, to:,

subject:, and text: attributes.

� A transducer that describes text �les with text: at-

tributes. The text �le transducer is the default trans-

ducer for ASCII �les.

In addition to the specialized attributes listed above, all

�les and directories are further described by owner, group,

dir, name, and ext attributes.

At present, we only index publicly readable �les. We are

investigating indexing protected �les as well, and limiting

query results to entities that can be read by the requester.

We are in the process of making a number of improvements

to our prototype implementation. These enhancements in-

clude 1) full support for multi-host queries using query rout-

ing, 2) an enhanced query language, 3) better support for

�le deletion and renaming, and 4) integration of views for

entities smaller than �les. Our present implementation deals

with deletions by keeping a table of deleted entities and re-

moving them from the results of query processing. Enti-

ties are permanently removed from the database when a full

reindexing of the system is performed. We are investigating

performing �le and directory renames without reindexing

the underlying �les.

5 Results

We ran a series of experiments using our semantic �le system

implementation to test our thesis that semantic �le systems

present a more e�ective storage abstraction than do tradi-

tional tree structured �le systems for information sharing

and command level programming. All of the experimental

data we report are from our research group's �le server using

a semantic �le system. The server is a Microvax-3 running

UNIX version 4.3bsd. The server indexes all of its publicly

readable �les and directories.

To compact the indexes our prototype system recon-

structs a full index of the �le system contents every week.

On 23 July 1991, full indexing of our user �le system pro-

cessed 68 MBytes in 7,771 �les (Table 5).
1

Indexing the

1The 162 MBytes in publicly readable �les that were not pro-
cessed were in �les for which transducers have not yet been written:
executable �les, PostScript �les, DVI �les, tar �les, image data, etc.

Total �le system size 326 MBytes

Amount publicly readable 230 MBytes

Amount with known transducer 68 MBytes

Number of distinct attributes 173,075

Number of attributes indexed 1,042,832

Type Number of Files KBytes

Object 871 8,503

Source 2,755 17,991

Text 1,871 20,638

Other 2,274 21,187

Total 7,771 68,319

Table 1: User File System Statistics for 23 July 1991

Part of index Size in KBytes

Index Tables 6,621

Index Trees 3,398

Total 10,019

Phase Time (hh:mm)

Directory Enumeration 0:07

Determine File Types 0:01

Transduce Directory 0:01

Transduce Object 0:08

Transduce Source 0:23

Transduce Text 0:23

Transduce Other 0:24

Build Index Tables
2

1:22

Build Index Trees 0:06

Total 1:36

Table 2: User FS Indexing Statistics on 23 July 1991

resulting 1 million attributes took 1 hour and 36 minutes

(Table 2). This works out to an indexing rate of 712

KBytes/minute.

File system mutation operations trigger incremental in-

dexing. In update tests simulating typical user editing and

compiling, incremental indexing is normally completed in

less than 5 minutes. In these tests, only 2 megabytes of

modi�ed �le data were reindexed. Incremental indexing is

slower than full indexing in the prototype system because

the incremental indexer does not make good use of real mem-

ory for caching. The full indexer uses 10 megabytes of real

memory for caching; the incremental indexer uses less than

1 megabyte.

The indexing operations of our prototype are I/O bound.

The CPU is 60% idle during indexing. Our measurements

show that transducers generate approximately 30 disk trans-

fers per second, thereby saturating the disk. Indexing the

resulting attributes also saturates the disk. Although the

transducers and the indexer use di�erent disk drives, the

transducer-indexer pipeline does not allow I/O operations

to proceed in parallel on the two disks. Thus, we feel that

we could double the throughput by improving the pipeline's

2 in parallel with Transduce



structure.

We expect our indexing strategy to scale to larger �le sys-

tems because indexing is limited by the update rate to a �le

system rather than its total storage capacity. Incremental

processing of updates will require additional read bandwidth

approximately equal to the write tra�c that actually occurs.

Past studies of Unix �le system activity [OCH
+
85] indicate

that update rates are low, and that most new data is deleted

or overwritten quickly; thus, delaying slightly the processing

of updates might reduce the additional bandwidth required

by indexing.

To determine the increased latency of overlaid NFS op-

erations introduced by interposing our SFS server between

the client and the native �le system, we used the nhfsstone

benchmark [Leg89] at low loads. The delays observed from

an unmodi�ed client machine were smaller than the varia-

tion in latencies of the native NFS operations. Preliminary

measurements show that lookup operations are delayed by

2 ms on average, and operations that generate update noti-

�cations incur a larger delay.

The following anecdotal evidence supports our thesis that

a semantic �le system is more e�ective than traditional �le

systems for information sharing:

� The typical response time for the �rst ls command on

a virtual directory is approximately 2 seconds. This

response time re
ects a substantial time savings over

linear search through our entire �le system with ex-

isting tools. In addition, subsequent ls commands re-

spond immediately with cached results.

We ran a series of experiments to test how the number

of attributes in a virtual directory name altered the

observed performance of the ls command on a virtual

directory. Attributes were added one at a time to ar-

rive at the �nal path name:

/sfs/text:/virtual/

text:/directory/

text:/semantic/

ext:/tex/

owner:/gifford

The two properties of a query that a�ect its response

time are the number of attributes in the query and

the number of objects in the result set. The e�ect of

an increase in either of these factors is additional disk

accesses. Figure 3 illustrates the interplay of these

factors. Each point on the response time graph is the

average of three experiments. In a separate experiment

we measured an average response time of 5.4 seconds

when the result set grew to 545 entities.

� We began to use the semantic �le system as soon as

it was operable to help coordinate the production of

this paper and for a variety of other everyday tasks.

We have found the virtual directory interface to be

easy to use. (We were immediately able to use the

GNU Emacs directory editor DIRED [Sta87] to submit

queries and browse the results. No code modi�cation

was required.) At least two users in our group reex-

amined their �le protections in view of the ease with

which other users could locate interesting �les in the

system.
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Figure 3: Plot of Number of Attributes vs. Response Time

and Number of Results

� Users outside our research group have successfully used

the query interface to locate information, including

newspaper articles, in our �le system.

� Users outside our research group have failed to �nd

�les for which no transducer had yet been installed.

We are developing new transducers in response to these

failed queries.

The following anecdotal evidence supports our thesis that

a semantic �le system is more e�ective than traditional �le

systems for command level programming:

� The UNIX shell pathname expansion facilities inte-

grate well with virtual directories. For example, it is

possible to query the �le system for all dvi �les owned

by a particular user, and to print those whose names

begin with a certain sequence of characters.

� Symbolic links have proven to be an e�ective way to

describe �le system views. The result of using such a

symbolic link as a directory is a dynamically computed

set of �les.

6 Conclusions

We have described how a semantic �le system can provide

associative attribute-based access to the contents of an in-

formation storage system with the help of �le type speci�c

transducers. We have also discussed how this access can be

integrated into the �le system itself with virtual directories.

Virtual directories are directories that are computed upon

demand.

The results to date are consistent with our thesis that

semantic �le systems present a more e�ective storage ab-

straction than do traditional tree structured �le systems for

information sharing and command level programming. We

plan to conduct further experiments to explore this thesis

in further detail. We plan also to examine how virtual di-

rectories can directly bene�t application programmers.



Our experimental system has tested one semantics for

virtual directories, but there are many other possibilities.

For example:

� The virtual directory syntax can be extended to sup-

port a richer query language. Disjunctive queries would

permit users to use \or" in their queries, and would

also o�er the ability to search on multiple network se-

mantic �le systems concurrently.

� Users could assign attributes to �le system entities in

addition to the attributes that are automatically as-

signed by transducers.

� Transducers could be created for audio and video �les.

In principle this would permit access by time, frame

number, or content [Nee91].

� The data model underlying a semantic �le system could

be enhanced. For example, an entity-relationship model

[Cat83] would provide more expressive power than sim-

ple attribute based retrieval.

� The entities indexed by a semantic �le system could

include a wide variety of object types, including I/O

devices and �le servers. Wide-area naming systems

such as X.500 [CCI88] could be presented in terms of

virtual directories.

� A confederation of semantic �le systems, possibly num-

bering in the thousands, can be organized into an se-
mantic library system. A semantic library system ex-

ports the same interface as an individual semantic �le

system, and thus a semantic library system permits

associative access to the contents of its constituent

servers with existing �le system protocols as well as

with protocols that are designed speci�cally for con-

tent based access. A semantic library system is im-

plemented by servers that use content based routing

[GLB85] to direct a single user request to one or more

relevant semantic �le systems.

We have already completed the implementation of an

NFS compatible query processing system that forwards

requests to multiple hosts and combines the results.

� Virtual directories can be used as an interface to other

systems, such as information retrieval systems and pro-

gramming environment support systems, such as PCTE.

We are exploring also how existing applications could

access object repositories via a virtual directory inter-

face. It is possible to extend the semantics of a seman-

tic �le system to include access to individual entities

in a manner suitable for an object repository [GO91].

� Relevance feedback and query results could be added

by introducing new virtual directories.

The implementation of real-time indexing may require a

substantial amount of computing power at a semantic �le

server. We are investigating how to optimize the task of

real-time indexing in order to minimize this load. Another

area of research is exploring how massive parallelism [SK86]

might replace indexing.

An interesting limiting case of our design is a system that

makes an underlying tree structured naming system super-


uous. In such a system all directories would be computed

upon demand, including directories that correspond to tra-

ditional tree structured �le names. Such a system might help

us share information more e�ectively by encouraging query

based access that would lead to the discovery of unexpected

but useful information.
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