
6.826—Principles of Computer Systems 2002

Handout 12. Naming 1

12. Naming

Any problem in computing can be solved by another level of indirection.
David Wheeler

Introduction

This handout is about orderly ways of naming complicated collections of objects in a computer
system. A basic technique for understanding a big system is to describe it as a collection of
simple parts. Being able to name these parts is a necessary aspect of such a description, and often
the most important aspect.

The basic idea can be expressed in two ways that are more or less equivalent:

Identify values by variable length names called path names that are sequences of simple
names that are strings. Think of all the names with the same prefix (for instance,
/udir/lampson and /udir/lynch) as being grouped together. This grouping induces a tree
structure on the names. Non-leaf nodes in the tree are directories.

Make a tree of nodes with simple names on the arcs. The leaf nodes are values and the
internal nodes are directories. A node is named by a path through the tree from the root; such
a name is called a path name.

Thus /udir/lampson/pocs/handouts/12 is a path name for a value (perhaps the text of this
handout), and /udir/lampson/pocs/handouts is a path name for a directory (other words for
directory are folder, context, closure, environment, binding, and dictionary). The collection of all
the path names that make sense in some situation is called a name space. Viewing a name space
as a tree gives us the standard terminology of parents, children, ancestors, and descendants.

Using path names to name values (or objects, if you prefer) is often called ‘hierarchical naming’
or ‘tree-structured naming’. There are a lot of other names for it that are used in special
situations: mounting, search paths, multiplexing, device addressing, network references. An
important reason for studying naming in general is that you don’t have to start from scratch in
understanding all those other things.

Path names are good because:

• The name space can grow indefinitely, and the growth can be managed in a decentralized
way. That is, the authority to create names in one part of the space can be delegated, and
thereafter there is no need for synchronization. Names that start /udir/lampson are
independent of names that start /udir/rinard.

• Many kinds of data can be encapsulated under this interface, with a common set of
operations. Arbitrary operations can be encoded as reads and writes of suitably chosen
names.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 2

As we have seen, a path name is a sequence of simple names. We use the types N = String for
a simple name and PN = SEQ N for a path name. It is often convenient to write a path name as a
string. The syntax of these strings is not important; it is just a convention for encoding the path
names. Here are some examples:

/udir/lampson/pocs/handouts/12 Unix path name
lampson@mediaone.net Internet mail address. The path name is
 {"net", "mediaone", "lampson"}
16.23.5.193 IP network address (fixed length)

We will normally write path names as Unix file names, rather than as the sequence constructors
that would be correct Spec. Thus a/b/c/1026 instead of PN{"a","b","c","1026"}.

People often try to distinguish a name (what something is) from an address (where it is) or a
route (how to find it). This is a matter of levels of abstraction and must not be taken as absolute.
At a given level of abstraction we tend to identify objects at that level by names, the lower-level
objects that code them by addresses, and paths at lower levels by routes. Examples:

microsoft.com -> 207.46.130.149 -> SEQ [router output port, LAN address]
a/b/c/1026 -> INode/1026 -> DA/2 -> [cylinder, head, sector, byte 2]

Sometimes people talk about “descriptive names”, which are queries in a database. We will see
that these are readily encompassed within the framework of path names. That is a formal
relationship, however. There is an important practical difference between a designator for a
single entity, such as lampson@mediaone.net, and a description or query such as “everyone at
MIT’s LCS whose research involves parallel computing”. The difference is illuminated by the
comparison between the name eecsfaculty@eecs.mit.edu and the query “the faculty members
in MIT’s EECS department”. The former name is probably maintained with some care; it’s
anyone’s guess how reliable the answer to the query is. When using a name, it is wise to consider
whether it is a designator or a description.

This is not to say that descriptions or queries are bad. On the contrary, they are very valuable, as
any one knows who has ever used a web search engine. However, they usually work well only
when a person examines the results with some care.

In the remainder of this handout we examine the specs for the two ways of describing a name
space that we introduced earlier: as a memory addressed by path names, and as a tree (or more
generally a graph) of directories. The two ways are closely related, but they give rise to
somewhat different specs. Then we study the recursive structure of name spaces and various
ways of inducing a name space on a collection of values. This leads to a more abstract analysis
of how the spec for a name space can vary, depending on the properties of the underlying values.
We conclude our general treatment by examining how to name a name space. Finally, we give a
large number of examples of name spaces; you might want to look at these first to get some more
context.

Name space as memory

We can view a name space as an example of the memory abstraction we studied earlier. Recall
that a memory is a partial map M = A -> V. Here we take A = PN and replace M with D (for

6.826—Principles of Computer Systems 2002

Handout 12. Naming 3

directory). This kind of memory differs from the byte-addressable physical memory of a
computer in several ways1:

• The map is partial.

• The domain is changing.

• The current value of the domain (that is, which names are defined) is interesting.

• PN’s with the same prefix are related (though not as much as in the second view of name
spaces).

Here are some examples of name spaces that can naturally be viewed as memories:

The Simple Network Management Protocol (SNMP) is used to manage components of the
Internet. It uses path names (rooted in IP addresses) to name values, and the basic
operations are to read and write a single named value.

Several file systems use a single large table to map the path name of a file to the extents
that represent it.

MODULE MemNames0[V] EXPORT Read, Write, Remove, Enum, Next, Rename =

TYPE N = String % Name
PN = SEQ N WITH {"<<=":=PNLE} % Path Name
D = PN -> V % Directory

VAR d := D{} % the state

FUNC PNLE(pn1, pn2) -> Bool = pn1.LexLE(pn2, N."<=") % pn1 <<= pn2

Here are the familiar Read and Write procedures; Read raises error if d is undefined at pn, for
consistency with later specs. In this basic spec none of the other procedures raises error; this
innocence will not persist when things get more complicated. It’s common to also have a Remove
procedure for making a PN undefined; note that unlike a file system, this Remove does not erase
the values of longer names that start with PN. This is because, unlike a file system, this spec does
not ensure that every prefix of a defined PN is defined.

FUNC Read(pn) -> V RAISES {error} = RET d(pn) [*] RAISE error

APROC Write(pn, v) = << d := d{pn -> v} >>

APROC Remove(pn) = << d := d{pn -> } >>

The body of Write is usually written d(pn) := v.

It’s important that the map is partial, and that the domain changes. This means that we need
operations to find out what the domain is. Simply returning the entire domain is not practical,
since it may be too big, and usually only part of it is of interest. There are two schools of thought

1 It differs much less from the virtual memory, in which the map may be partial and the domain may change as new
virtual memory is assigned or files are mapped. Actually these things can happen to physical memory as well,
especially in the part of it implemented by I/O devices.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 4

about what form these operations should take, represented by the functions Enum and Next; only
one of these is needed.

Enum returns all the simple names that can lead to a value starting from pn; another way of
saying this is that it returns all the names bound in the directory named pn. By recursively
applying Enum to pn + n for each simple name n that Enum returns, you can explore the
entire tree.

On the other hand, if you keep feeding Next its own output, starting with {}, it walks the tree
of defined names depth-first, returning in turn each PN that is bound to a V. It finishes with
{}.

Note that what Next does is not the same as returning the results of Enum one at a time, since
Next explores the entire tree, not just one directory. Thus Enum takes the organization of the
name space into directories more seriously than does Next.

FUNC Enum(pn) -> SET N = RET {pn1 | d!(pn + pn1) | pn1.head}

FUNC Next(pn) -> PN = VAR later := {pn' | d!pn' /\ pn <= pn'} |
RET later.fmin(PN."<<=") [*] RET {} % {} if later is empty

A separate issue is arranging to get a reasonable number of results from one of these procedures.
If the directory is large, Enum as defined here may return an inconveniently large set, and we may
have to call Next inconveniently many times. In real life we would make either routine return a
sequence of N’s or PN’s, usually called a ‘buffer’. This is a standard use of batching to reduce the
overhead of invoking an operation, without allowing the batches to get too large. We won’t add
this complication to our specs.

Finally, there is a Rename procedure that takes directories quite seriously. It reflects the idea that
all the names which start the same way are related, by changing all the names that start with
from so that they start with to. Because directories are not very real in the representation, this
procedure has to do a lot of work. It erases everything that starts with either argument, and then
copies everything in the original d that starts with from to the corresponding path name that
starts with to. Read x <= y as “x is a prefix of y”.

APROC Rename(from: PN, to: PN) RAISES {error} = << VAR d0 := d |
IF from <= to => RAISE error % can’t rename to a descendant
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD;
 DO VAR pn | d(to + pn) # d0(from + pn) => d(to + pn) := d0(from + pn) OD
FI >>

END MemNames0

Here is a different version of Rename that makes explicit the relation between the initial state d
and the final state d'. Read x >= y as “x is a suffix of y”.

APROC Rename(from: PN, to: PN) RAISES {error} = <<
IF VAR d' |
 (ALL x: PN, y: PN | (x >= from => ~ d'!x
 [*] x = to + y /\ d!(from + y) => d'(x) = d(from + y)
 [*] ~ x >= to /\ d!x => d'(x) = d(x)
 [*] ~ d'!x)

6.826—Principles of Computer Systems 2002

Handout 12. Naming 5

 => d := d'
[*] RAISE error FI >>

There is often a rule that a name can be bound to a directory or to a value, but not both. For this
we need a slightly different spec that marks a name as bound to a directory by giving it the
special value isD, with a separate procedure for making an empty directory. To enforce the new
rule every routine can now raise error, and Remove erases the whole sub-tree. As usual, boxes
mark the changes from MemNames0.

MODULE MemNames[V] EXPORT Read, Write, MakeD, Remove, Enum, Rename =

TYPE Dir = ENUM[isDir]
D = PN -> (V + Dir) SUCHTHAT (\d| d({}) IS Dir) % root a Dir

VAR d := D{{} -> isDir}

% INVARIANT (ALL pn, pn' | d!pn' /\ pn' > pn => d(pn) = isDir

FUNC Read(pn) -> V RAISES {error} = d(pn) IS V => RET d(pn) [*] RAISE error

FUNC Enum(pn) -> SET N RAISES {error} =
 d(pn) IS Dir => RET {pn1 | d!(pn + pn1) | pn1.head} [*] RAISE error

APROC Write(pn, v) RAISES {error} = << Set(pn, v) >>
APROC MakeDir(pn) RAISES {error} = << Set(pn, isDir) >>

APROC Remove(pn) = % Erase everything with pn prefix.
<< DO VAR pn' :IN d.dom | (pn <= pn') => d := d{pn' -> } OD >>

APROC Rename(from: PN, to: PN) RAISES {error} = << VAR d0 := d |
IF from <= to => RAISE error % can’t rename to a descendant
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD;

DO VAR pn | d(to + pn) # d0(from + pn) =>
d(to + pn) := d0(from + pn) OD

FI >>

APROC Set(pn, y: (V + D) RAISES {error} =
<< pn # {} /\ d(pn.reml) IS D => d(pn) := y [*] RAISE error >>

END MemNames

A file system usually forbids overwriting a file with a directory (for no obvious reason) or
overwriting a non-empty directory with anything (because a directory is precious and should not
be clobbered wantonly), but these rules are rather arbitrary, and we omit them here.

Exercise: write a version of Rename that makes explicit the relation between the initial state d and
the final state d', in the style of the second Rename of MemNames0.

The MemNames spec is basically the same as the simple Memory spec. Complications arise because
the domain can change, and because of the distinction between directories and values. The specs
in the next section take this distinction much more seriously.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 6

Name space as graph of directory objects

These specs are reasonably simple, but they are clumsy for operations on directories such as
Rename. More fundamentally, they don’t handle aliasing, where the same object has more than
one name. The other (and more usual) way to look at a hierarchical name space is to think of
each directory as a function that maps a simple name (not a path name) to a value or another
directory, rather than thinking of the entire tree as a single PN -> V map. This tree (or general
graph) structure maps a PN by mapping each N in turn, traversing a path through the graph of
directories; hence the term ‘path name’. We continue to use the type D for a directory.

Our eventual goal is a spec for a name space as graph that is ‘object-oriented’ in the sense that
you can supply different code for each directory in the name space. We will begin, however,
with a simpler spec that is equivalent to MemNames, evolve this to a more general spec that allows
aliases, and finally add the object orientation.

The obvious thing to do is to make a D be a function N -> Z, where Z = (D + V) as before, and
have a state variable d which is the root of the tree. Unfortunately this completely functional
structure doesn’t work smoothly, because there’s no way to change the value of a/b/c/d without
changing the value of a/b/c so that it contains the new value of a/b/c/d, and similarly for a/b
and a as well.2

“…”
“…”
35
...

12
42
21
93
...

DD = N->Z

s: D->DD

0
12
42
93
. . .

lampson
lynch
rinard
jamieson
. . .

grades
stuff
files
. . .

We solve this problem in the usual way with another level of indirection, so that the value of a
directory name is not a N -> Z but some kind of reference or pointer to a N -> Z, as shown in
the figure. This reference is an ‘internal name’ for a directory. We use the name DD for the actual

2 The method of explicitly changing all the functions up to the root has some advantages. In particular, we can make
several changes to different parts of the name space appear atomically by waiting to rewrite the root until all the
changes are made. It is not very practical for a file system, though at least one has been built this way: H.E. Sturgis,
A Post-Mortem for a Time-sharing System, PhD thesis, University of California, Berkeley, and Report CSL 74-1,
Xerox Research Center, Palo Alto, Jan 1974. It has also been used in database systems to atomically change the
entire database state; in this context it is called ‘shadowing’. See Gray and Reuter, pp 728-732.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 7

function N -> Z and introduce a state variable s that holds all the DD values; its type is D->DD. A
D is just the internal name of a directory, that is, an index into s. We take D = Int for simplicity,
but any type with enough values would do; in Unix D = INo. You may find it helpful to think of
D as a pointer and s as a memory, or of D as an inode number and s as the inodes. Later sections
explore the meaning of a D in more detail, and in particular the meaning of root.

Once we have introduced this extra indirection the name space does not have to be a tree, since
two PN’s can have the same D value and hence refer to the same directory. In a Unix file system,
for example, every directory with the path name pn also has the path names pn/., pn/./., etc.,
and if pn/a is a subdirectory, then the parent also has the names pn/a/.., pn/a/../a/.., etc.
Thus the name space is not a tree or even a DAG, but a graph with cycles, though the cycles are
constrained to certain stylized forms involving ‘.’ and ‘..’. This means, of course, that there are
defined PN’s of unbounded length; in real life there is usually an arbitrary upper bound on the
length of a defined PN.

The spec below does not expose D’s to the client, but deals entirely in PN’s. Real systems often
do expose the D pointers, usually as some kind of capability (for instance in a file system that
allows you to open a directory and obtain a file descriptor for it), but sometimes just as a naked
pointer (for instance in many distributed name servers). The spec uses an internal function Get,
defined near the end, that looks up a PN in a directory; GetD is a variation that raises error if it
can’t return a D.

MODULE ObjNames0[V] EXPORT Read, Write, MakeD, Remove, Enum, Rename =

TYPE D = Int % just an internal name
Z = (V + D) % the value of a name
DD = N -> Z % a Directory

VAR root : D := 0
s := (D -> DD){}{root -> DD{}} % initially empty root

FUNC Read(pn) -> V RAISES {error} = VAR z := Get(root, pn) |
IF z IS V => RET z [*] RAISE error FI

FUNC Enum(pn) -> SET PN RAISES {error} = RET s(GetD(root, pn)).dom
% Raises error if pn isn’t a directory, like MemNames.

A write operation on the name a/b/c has to change the d component of the directory a/b; it does
this through the procedure SetPN, which gets its hands on that directory by invoking
GetD(root, pn.reml).

APROC Write(pn, v) RAISES {error} = << SetPN(pn, v) >>
APROC MakeD(pn) RAISES {error} = << VAR d := NewD() | SetPN(pn, d) >>

APROC Remove(pn) RAISES {error} =
<< VAR d := GetD(root, pn.reml) | >>

APROC Rename(from: PN, to: PN) RAISES {error} = <<
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant
[*] VAR fd := GetD(root, from.reml), % know from, to # {}
 td := GetD(root, to .reml) |

s(fd)!(from.last) =>

6.826—Principles of Computer Systems 2002

Handout 12. Naming 8

s(td) := s(td)(to .last -> s(fd)(from.last));
s(fd) := s(fd){from.last -> }

[*] RAISE error
FI >>

The remaining routines are internal. The main one is Get(d, pn), which returns the result of
starting at d and following the path pn. GetD raises error if it doesn’t get a directory. NewD
creates a new, empty directory.

FUNC Get(d, pn) -> Z RAISES {error} =
% Return the value of pn looked up starting at z.

IF pn = {} => RET d
[*] VAR z :=s(d)(pn.head) | z IS D => RET Get(z, pn.tail)
[*] RAISE error
FI

FUNC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) |
IF z IS D => RET z [*] RAISE error FI

APROC SetPN(pn, z) RAISES {error} =
<< VAR d := GetD(root, pn.reml) | s(d)(pn.last) := z >>

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := DD{}; RET d >>

END ObjNames0

As we did with the second version of MemNames0.Rename, we can give a definition of Get in
terms of a predicate. It says that there’s a sequence p of directories starting at d and ending at the
result of Get, such that the components of pn select the corresponding components of p; if
there’s no such sequence, raise error.

FUNC Child(z1, z2) -> Bool = z1 IS D /\ s!z1 /\ z2 IN s(z1).rng

FUNC Get(d, pn) -> Z RAISES {error} = <<
IF VAR p :IN Child.paths |

p.head = d /\ (ALL i :IN pn.dom | p(i+1) = s(p(i)(pn(i))) => RET p.last
[*] RAISE error
FI >>

ObjNames0 is equivalent to MemNames. The abstraction function from ObjNames0 to MemNames is

 MemNames.d = (\ pn | G(pn) IS V => G(pn) [*] G(pn) IS D => isD)

where we define a function G which is like Get on root except that it is undefined where Get
raises error:

FUNC G(pn) -> Z = RET Get(root, pn) EXCEPT error => IF false => SKIP FI

The EXCEPT turns the error exception from Get into an undefined result for G.

Exercise: What is the abstraction function from MemNames to ObjNames0.

Objects, aliases, and atomicity

This spec makes clear the basic idea of interpreting a path name as a path through a graph of
directories, but it is unrealistic in several ways:

6.826—Principles of Computer Systems 2002

Handout 12. Naming 9

The operations for changing the value of the DD functions in s may be very different from the
Write and MakeD operations of ObjNames0. This happens when we impose the naming
abstraction on a data structure that changes according to its own rules. SNMP is a good
example; the values of names changes because of the operation of the network. Later in this
handout we will explore a number of these variations.

There is often an ‘alias’ or ‘symbolic link’ mechanism which allows the value of a name n in
context d to be a link (d', pn). The meaning is that d(n) is a synonym for Get(d', pn).

The operations are specified as atomic, but this is often too strong.

Our next spec, ObjNames, reflects all these considerations. It is rather complicated, but the
complexity is the result of the many demands placed on it; ideas for simplifying it would be
gratefully received. ObjNames is a fairly realistic spec for a naming system that allows for both
symbolic links and extensible code for directories.

A ObjNames.D has get and set methods to allow for different code, though for now we don’t
take any advantage of this, but use the fixed code GetFromS and SetInS. In the section on
object-oriented directories below, we will see how to plug in other versions of D with different
get and set methods. The section on coherence below explains why get is a procedure rather
than a function. These methods map undefined values to nil because it’s tricky to program with
undefined in this general setting; this means that Z needs Null as an extra case.

Link is another case of Z (the internal value of a name), and there is code in Get to follow links;
the rules for doing this are somewhat arbitrary, but follow the Unix conventions. Because of the
complications introduced by links, we usually use GetDN instead of Get to follow paths; this
procedure converts a PN relative to root into a directory d and a name n in that directory. Then
the external procedures read or write the value of that name.

Because Get is no longer atomic, it’s no longer possible to define it in terms of a path through
the directories that exists at a single instant. The section on atomicity below discusses this point
in more detail.

MODULE ObjNames[V] EXPORT ... =

TYPE D = Int % Just an internal name
 WITH {get:=GetFromS, set:=SetInS} % get returns nil if undefined

Link = [d: (D + Null), pn] % d=nil for ‘relative’: the containing D
Z = (V + D + Link + Null) % nil means undefined
DD = N -> Z

CONST root : D := 0
VAR s := (D -> DD){}{root -> DD{}} % initially empty root

APROC GetFromS(d, n) -> Z = % d.get(n)
<< RET s(d)(n) [*] RET nil >>

APROC SetInS (d, n, z) = % d.set(n, z)
% If z = nil, SetInS leaves n undefined in s(d).

<< IF z # nil => s(d)(n) := z [*] s(d) := s(d){n -> } FI >>

6.826—Principles of Computer Systems 2002

Handout 12. Naming 10

PROC Read (pn) -> V RAISES {error} = VAR z := Get(root, pn) |
IF z IS V => RET z [*] RAISE error FI

PROC Enum (pn) -> SET N RAISES {error} =
% Can’t just write RET GetD(root, pn).get.dom as in ObjNames0, because get isn’t a function.
% The lack of atomicity is on purpose.

VAR d := GetD(root, pn), ns: SET N := {}, z |
DO VAR n | << z := d.get(n); ~ n IN ns /\ z # nil => ns + := {n} >> OD;
RET ns

PROC Write (pn, v) RAISES {error} = SetPN(pn,v, true

PROC MakeD(pn) RAISES {error} = VAR d := NewD() | SetPN(pn,d, false

PROC Rename(from: PN, to: PN) RAISES {error} = VAR d, n, d', n' |
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant
[*] (d, n) := GetDN(from, false); (d', n') := GetDN(to, false);

<< d.get!n => d'.set(n', d.get(n)); d.set(n, nil) >>
[*] RAISE error
FI

This version of Rename imposes a different restriction on renaming to a descendant than real file
systems, which usually have a notion of a distinguished parent for each directory and disallow
ParentPN(d) <= ParentPN(d'). They also usually require d and d' to be in the same ‘file
system’, a notion which we don’t have. Note that Rename does its two writes atomically, like
many real file systems.

The remaining routines are internal. Get follows every link it sees; a link can appear at any point,
not just at the end of the path. GetDN would be just

IF pn = {} => RAISE error [*] RET (GetD(root, pn.reml), pn.last) FI

except for the question of what to do when the value of this (d, n) is a link. The
followLastLink parameter says whether to follow such a link or not. Because this can happen
more than once, the body of GetDN needs to be a loop.

PROC Get(d, pn) -> Z RAISES {error} = VAR z := d |
% Return the value of pn looked up starting at d.

DO << pn # {} => VAR n := pn.head, z' |
IF z IS D => % must have a value for n.

z' := z.get(n);
IF z' # nil =>

% If there's a link, follow it. Otherwise just look up n.
IF (z, pn') := FollowLink(z, n); pn := pn' + pn.tail
[*] z := z' ; pn := pn.tail
FI

[*] RAISE error
FI

[*] RAISE error
FI

>> OD; RET z

PROC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) |
IF z IS D => RET z AS D [*] RAISE error FI

6.826—Principles of Computer Systems 2002

Handout 12. Naming 11

PROC GetDN(pn, followLastLink: Bool) -> (D, N) RAISES {error} = VAR d := root |
% Convert pn into (d, n) such that d.get(n) is the item that pn refers to.

DO IF pn = {} => RAISE error
[*] VAR n := pn.last, z |

d := Get(d, pn.reml);
% If there's a link, follow it and loop. Otherwise return.
<< followLastLink => (d, pn) := FollowLink(d, n) [*] RET (d, n) >>

FI
OD

APROC FollowLink(d, n) -> (D, PN) = <<
% Fail if d.get(n) not Link. Use d as the context if the link lacks one.

VAR l := d.get(n) | l IS Link => RET ((l.d IS D => l.d [*] d), l.pn) >>

PROC SetPN(pn, z, followLastLink: Bool) RAISES {error} =
VAR d, n | (d, n) := GetDN(pn, followLastLink); d.set(n, z)

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := D{}; RET d >>

END ObjNames

Object-oriented directories

Although D in ObjNames has get and set methods, they are the same for all D’s. To encompass
the full range of applications of path names, we need to make a D into a full-fledged ‘object’, in
which different instances can have different get and set operations (yet another level of
indirection). This is the essential meaning of ‘object-oriented’: the type of an object is a record of
routine types which defines a single interface to all objects of that type, but every object has its
own values for the routines, and hence its own code.

To do this, we change the type to:

TYPE D = [get: APROC (n) -> Z, set: PROC (n, z) RAISES {error}]
DR = Int % what D used to be; R for reference

keeping the other types from ObjNames unchanged:
Z = (V + D + Link + Null) % nil means undefined
DD = N -> Z

We also need to change the state to:

CONST root := NewD()
s := (DR -> DD){root -> DD{}} % initially empty root

and to provide a new version of the NewD procedure for creating a new standard directory. The
routines that NewD assigns to get and set have the same bodies as the GetFromS and SetInS
routines.

A technical point: The reason for not writing get:=s(dr) in NewD is that this would capture the
value of s(dr) at the time NewD is invoked; we want the value at the time get is invoked, and
this is what we get because of the fact that Spec functions are functions on the global state, rather
than pure functions.

APROC NewD() -> D = << VAR dr | ~ s!dr =>
s(dr) := DD{};
RET D{ get := (\ n | s(dr)(n)),

6.826—Principles of Computer Systems 2002

Handout 12. Naming 12

 set := (PROC (n, z) = IF z # nil => s(dr)(n) := z
 [*] s(dr) := s(dr){n -> } FI) }

PROC SetErr(n, z) RAISES {error} = RAISE error
% For later use as a set proc if the directory is read-only

We don’t need to change anything else in ObjNames.

We will see many other examples of get and set routines. Note that it’s easy to define a D that
disallows updates, by making set be SetErr.

Views and recursive structure

In this section we examine ways of constructing name spaces, and in particular ways of building
up directories out of existing directories. We already have a basic recursive scheme that makes a
set of existing directories the children of a parent directory. The generalization of this idea is to
define a function on some state that returns a D, that is, a pair of get and set procedures. There
are various terms for this:

‘encapsulating’ the state,

‘embedding’ the state in a name space,

‘making the state compatible’ with a name space interface,

defining a ‘view’ on the state.

We will usually call it a view. The spec for a view defines how the result of get depends on the
state and how set affects the state.

All of these terms express the same idea: make the state behave like a D, that is, abstract it as a
pair of get and set procedures. Once packaged in this way, it can be used wherever a D can be
used. In particular, it can be an argument to one of the recursive views that make a D out of other
D’s: a parent directory, a link, or the others discussed below. It can also be the argument of tools
like the Unix commands that list, search, and manipulate directories.

The read operations are much the same for all views, but updates vary a great deal. The two
simplest cases are the one we have already seen, where you can set the value of a name just as
you write into a memory location, and the even simpler one that disallows updates entirely; the
latter is only interesting if get looks at global state that can change in other ways, as it does in
the Union and Filter operations below. Each time we introduce a view, we will discuss the spec
for updating it.

In the rest of this section we describe views that are based on directories: links, mounting,
unions, and filters. The final section of the handout gives many examples of views based on
other kinds of data.

Links and mounting

The idea behind links (called ‘symbolic links’ in Unix, ‘shortcuts’ in Windows, and ‘aliases’ in
the Macintosh) is that of an alias (another level of indirection): we can define the value of a name

6.826—Principles of Computer Systems 2002

Handout 12. Naming 13

in a directory by saying that it is the same as the value of some other name in some other
directory. If the value is a directory, another way of saying this is that we can represent a
directory d by the link (d', pn'), with d(pn) = d'(pn')(pn), or more graphically d/pn =
d'/pn'/pn. When put in this form it is usually called mounting the directory d'(pn') on pn0, if
pn0 is the name of d. In this language, pn0 is called a ‘mount point’. Another name for it is
‘junction’.

We have already seen code in ObjNames to handle links. You might wonder why this code was
needed. Why isn’t our wonderful object-oriented interface enough? The reason is that people
expect more from aliases than this interface can deliver: there can be an alias for a value, not
only for a directory, and there are complicated rules for when the alias should be followed
silently and when it should be an object in its own right that can be enumerated or changed

Links and mounting make it possible to give objects the names you want them to have, rather
than the ones they got because of defects in the system or other people’s bad taste. A very down-
to-earth example is the problems caused by the restriction in standard Unix that a file system
must fit on a single disk. This means that in an installation with 4 disks and 12 users, the name
space contains /disk1/john and /disk2/mary rather than the /udir/john and /udir/mary that
we want. By making /udir/john be a link to /disk1/john, and similarly for the other users, we
can hide this annoyance.

Since a link is not just a D, we need extra interface procedures to read the value of a link (without
following it automatically, as Read does), and to install a link. We call the install procedure
Mount to emphasize that a mount point and a symbolic link are essentially the same thing. The
Mount procedure is just like Write except for the second argument’s type and the fact that it
doesn’t follow a final link in pn.

PROC ReadLink(pn) -> Link RAISES {error} = VAR d, n |
(d, n) := GetDN(pn, false);
VAR z | z := d.get(n); IF z IS Link => RET z [*] RAISE error FI

PROC Mount(pn, link) -> DD = SetPN(pn, link, false)

The section on roots below discusses where we might get the D in the link argument of Mount.
In the common case of a link to someplace in the same name space, we have:

PROC MakeLink(pn, pn', local: Bool) =
Mount(pn, Link{d := (local => nil [*] root), pn := pn'})

Updating (with Write, for instance) makes sense when there are links, but there are two
possibilities. If every link is followed then a link never gets updated, since GetDN never returns a
reference to a link. If a final link is not followed then it can be replaced by something else.

What is the relation between these links and what Unix calls ‘hard links’? A Unix hard link is an
inode number, which you can think of as a direct pointer to a file; it corresponds to a D in
ObjNames. Several directory entries can have the same inode number. Another way to look at
this is that the inodes are just another kind of name of the form inodeRoot/2387754, so that a
hard link is just a link that happens to be an inode number rather than an ordinary path name.
There is no provision for making the value of an inode number be a link (or indeed anything
except a file), so that’s the end of the line.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 14

Unions

Since a directory is a function N -> Z, it is natural to combine two directories with the "+"
overlay operator on functions3. If we do this repeatedly, writing d1 + d2 + d3, we get the effect
of a ‘search path’ that looks at d3 first, then d2, and finally d1 (in that order because "+" gives
preference to its second argument, unlike a search path which gives preference to its first
argument). The difference is that this rule is part of the name space, while a search path must be
coded separately in each program that cares. It’s unclear whether an update of a union should
change the first argument, change the second argument, do something more complicated, or raise
an error. We take the last view for simplicity.

FUNC Union(d1, d2) -> D = RET D{get := d1.get + d2.get, set := SetErr}4

Another kind of union combines the name spaces at every level, not just at the top level, by
merging directories recursively. This is the most general way to combine two trees that have
evolved independently.

FUNC DeepUnion(d1, d2) -> D = RET D{
get := (\ n |
 (d1.get(n) IS D /\ d2.get(n) IS D => DeepUnion(d1.get(n), d2.get(n))
 [*] (d1.get + d2.get)(n))),
set := SetErr}

This is a spec, of course, not efficient code.

a b

g

a b

n m

c

h

a b

g n m

c

h

a b

g

c

h h

x

y

Union(x, y)

DeepUnion(x, y)

Filters and queries

Given a directory d, we can make a smaller one by selecting some of d’s children. We can use
any predicate for this purpose, so we get:

FUNC Filter(d, p: (D, N) -> Bool) -> D =
RET D{get := (\ n | (p(d, n) => d.get(n)) [*] nil), set := SetErr}

3 See section 9 of the Spec reference manual.
4 This is a bit oversimplified, since get is an APROC and hence doesn’t have "+"defined. But the idea should be
clear. Plan 9 (see the examples at the end) implements unions.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 15

Examples:

Pattern match in a directory: a/b/*.ps. The predicate is true if n matches *.ps.

Querying a table: payroll/salary>25000/name. The predicate is true if
Get(d, n/salary) > 25000. See the example of viewing a table in the final section of
examples.

Full text indexing: bwl/papers/word:naming. The predicate is true if d.get(n) is a text file
that contains the word naming. The code could just search all the text files, but a practical
one will probably involve an auxiliary index structure that maps words to the files that
contain them, and will probably not be perfectly coherent.

See the ‘semantic file system’ example below for more details and a reference.

Variations

It is useful to summarize the ways in which a spec for a name space might vary. The variations
almost all have to do with the exact semantics of updates:

What operations are updates, that is, can change the results of Read?

Are there aliases, so that an update to one object can affect the value of others?

Are the updates atomic, or it is possible for reads to see intermediate states? Can an update be
lost, or partly lost, if there is a crash?

Viewed as a memory, is the name space coherent? That is, does every read that follows an
update see the update, or is it possible for the old state to hang around for a while?

How much can the set of defined PN’s change? In other words, is it useful to think about a
schema for the name space that is separate from the current state?

Updates

If the directories are ‘real’, then there will be non-trivial Write, MakeD, and Rename operations. If
they are not, these operations will always raise error, there will be operations to update the
underlying data, and the view function will determine the effects of these updates on Read and
Enum. In many systems, Read and Write cannot be modeled as operations on memory because
Write(a, r) does not just change the value returned by Read(a). Instead they must be
understood as methods of (or messages sent to) some object.

The earliest example of this kind of system is the DEC Unibus, the prototype for modern I/O
systems. Devices on such an I/O bus have ‘device registers’ that are named as locations in
memory. You can read and write them with ordinary load and store instructions. Each device,
however, is free to interpret these reads and writes as it sees fit. For example, a disk controller
may have a set of registers into which you can write a command which is interpreted as “read n
disk blocks starting at address da into memory starting at address a”. This might take three
writes, for the parameters n, da, and a, and the third write has the side effect of starting execution
of the command.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 16

The most recent well-known incarnation of this idea is the World Wide Web, in which read and
write actions (called Get and Post in the protocol) are treated as messages to servers that can
search databases, accept orders for pizza, or whatever.

Aliases

We have already discussed this topic at some length. Links and unions both introduce aliases.
There can also be ‘hard links’, which are several occurrences of the same D. In a Unix file
system, for example, it is possible to have several directory entries that point to the same file. A
hard link differs from a soft link because the connection it establishes between a name and a file
cannot be broken by changing the binding of some other name. And of course a view can
introduce arbitrarily complicated aliasing. For example, it’s fairly common for an I/O device that
has internal memory to make that memory addressable with two control registers a and v, and
the rule that a read or write of v refers to the internal memory location addressed by the current
contents of a.

Atomicity

The MemNames and ObjNames0 specs made all the update operations atomic. For code to satisfy
these specs, it must hold some kind of lock on every directory touched by GetDN, or at least on
the name looked up in each such directory. This can involve a lot of directories, and since the
name space is a graph it also introduces the danger of deadlock. It’s therefore common for
systems to satisfy only the weaker atomicity spec of ObjNames, which says that looking up a
simple name is atomic, but the entire lookup process is not.

This means that Read(/a/x) can return 3 even though there was never any instant at which the
path name /a/x had the value 3, or indeed was defined at all. To see how this can happen,
suppose:

initially /a is the directory d1 and /b is undefined;

initially x is undefined in d1;

concurrently with Read(/a/x) we do Rename(/a, /b); Write(/b/x, 3).

The following sequence of actions yields Read(/a/x) = 3:

In the Read , Get(root, a) = d1

Rename(/a, /b) makes /a undefined and d1 the value of /b

Write(/b/x, 3) makes 3 the value of x in d1

In the Read, RET d1.get(x) returns 3.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 17

a

root

Rename
(/a, /b)

Get(root, a) = d1

b

root

d1
Write
(/b/x, 3)

b

root

x

Get(d1, a) = 3

3

d1 d1

Obviously, whether this possibility is important or not depends on how clients are using the
name space.

Coherence

Other things being equal, everyone prefers a coherent or ‘sequentially consistent’ memory, in
which there is a single order of all the concurrent operations with the property that the result of
every read is the result that a simple memory would return after it has done all the preceding
writes in order. Maintaining coherence has costs, however, in the amount of synchronization that
is required if parts of the memory are cached, or in the amount of availability if the memory is
replicated. We will discuss the first issue in detail at the end of the course. Here we consider the
availability of a replicated memory.

Recall the majority register from the beginning of the course. It writes a majority of the replicas
and reads from a majority, thus ensuring that every read must see the most recent write.
However, this means that you can’t do either a read or a write unless you can talk to a majority.
There we used a general notion of majority in which the only requirement is that every two
majorities have a non-empty intersection. Applying this idea, we can define separate read and
write quorums, with the property that every read quorum intersects every write quorum. Then we
can make reads more available by making every replica a read quorum, at the price of having the
only write quorum be the set of all replicas, so that we have to do every write to all the replicas.

An alternative approach is to weaken the spec so that it’s possible for a read to see old values.
We have seen a version of this already in connection with crashes and write buffering, where it
was possible for the system to revert to an old state after a crash. Now we propose to make the
spec even more non-deterministic: you can read an old value at any time, and the only restriction
is that you won’t read a value older than the most recent Sync. In return, we can now have much
more availability in the code, since both a read and a write can be done to a single replica. This
means that if you do Write(/a, 3) and immediately read a, you may not get 3 because the Read
might use a different replica that hasn’t seen the Write yet. Only Sync requires communication
among the replicas.

We give the spec for this as a variation on ObjNames. We allow nil to be in dd(n), representing
the fact that n has been undefined in dd.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 18

TYPE DD = N -> SEQ Z % remember old values

APROC GetFromS(d, n) -> Z = << % we write d.get(n)
% The non-determinism wouldn’t be allowed if this were a function

VAR z | z IN s(d)(n) => RET z [*] RET nil >> % return any old value

PROC SetToS(d, n, z) = % we write d.set(n, z)
s(d)(n) := ((s(d)!n => s(d)(n) [*] {}) + {z} % add z to the state

PROC Sync(pn) RAISES {error} =
VAR d, n, z |

(d, n) := GetDN(pn, true); z := s(d)(n).last;
IF z # nil => s(d)(n) := {z} [*] s(d) := s(d){n -> } FI

This spec is common in the naming service for a distributed system, for instance in the Internet’s
DNS or Microsoft’s Active Directory. The name space changes slowly, it isn’t critical to see the
very latest value, and it is critical to have high availability. In particular, it’s critical to be able to
look up names even when network partitions make some working replicas unreachable.

Schemas

In the database world, a schema is the definition of what names are defined (and usually also of
the type of each name’s value).5 Network management calls this a ‘management information
base’ or MIB. Depending on the application there are very different rules about how the schema
is defined.

In a file system, for example, there is usually no official schema written down. Nonetheless, each
operating system has conventions that in practice have the force of law. A Unix system without
/bin and /etc will not get very far. But other parts of the name space, especially in users’
private directories, are completely variable.

By contrast, a database system takes the schema very seriously, and a management system takes
at least some parts of it seriously. The choice has mainly to do with whether it is people or
programs that are using the name space. Programs tend to be much less flexible; it’s a lot of
work to make them adapt to missing data or pay attention to unexpected additional data

Minor issues

We mention in passing some other, less fundamental, ways in which the specs for name spaces
differ.

Rules about overwriting. Some systems allow any name to be overwritten, others treat
directories, or non-empty directories, specially to reduce the consequences of careless
errors.

Access control. Many systems enforce rules about which users or programs are allowed to
read or write various parts of the name space.

5 Gray and Reuter, Transaction Processing, Morgan Kaufmann, 1993, pp 768-786.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 19

Resource control. Writes often consume resources that are expensive or in fixed supply,
such as disk blocks. This means that they can fail if the resources are exhausted, and there
may also be a quota system that limits the resource consumption of users or programs.

Roots
It’s not turtles all the way down.

Anonymous

So far we have ducked the question of how the root is represented, or the D in a link that plays a
similar role. In ObjNames0 we said D = Int, leaving its interpretation entirely to the s
component of the state. In ObjNames we said D is a pair of procedures, begging the question of
how the procedures are represented. The representation of a root depends entirely on the
implementation. In a file system, for instance, a root names a disk, a disk partition, a volume, a
file system exported from a server, or something like that. Thus there is another name space for
the roots (another level of indirection). It works in a wide variety of ways. For example:

In MS-DOS. you name a physically connected disk drive. If the drive has removable media
and you insert the wrong one, too bad.

On the Macintosh. you use the string name of a disk. If the system doesn’t know where to
find this disk, it asks the user. If you give the same name to two removable disks, too bad.

On Digital VMS. disks have unique identifiers that are used much like the string names on
the Macintosh.

For the NFS network file system, a root is named by a host name or IP address, plus a file
system name or handle on that host. If that name or address gets assigned to another
machine, too bad.

In a network directory a root is named by a unique identifier. There is also a set of servers
that might store replicas of that directory.

In the secure file system, a root is named by the hash of a public encryption key. There’s
also a network address to help you find the file system, but that’s only a hint.6

In general it is a good idea to have absolute names (unique identifiers) for directories. This at
least ensures that you won’t use the wrong directory if the information about where to find it
turns out to be wrong. A UID doesn’t give much help in locating a directory, however. The
possibilities are:

Store a set of places to look along with the UID. The problem is keeping this set up to date.

Keep another name space that maps UID’s to locations (yet another level of indirection).
The problem is keeping this name space up to date, and making it sufficiently available.
For the former, every location can register itself periodically. For the latter, replication is
good. We will talk about replication in detail later in the course.

Search some ad-hoc set of places in the hope of finding a copy. This search is often called a
‘broadcast’.

6 Mazières, Kaminsky, Kaashoek, and Witchel, Separating key management from file system security. Proc. 17th
ACM Symposium on Operating Systems Principles, Dec. 1999. www.pdos.lcs.mit.edu/papers/sfs:sosp99.pdf.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 20

We defined the interface routines to start from a fixed root. Some systems, such as Unix, have
provisions for changing the root; the chroot system call does this for a process. In addition, it is
common to have a more local context (called a ‘working directory’ for a file system), and to have
syntax to specify whether to start from the root or the working directory (presence or absence of
an initial ‘/’ for a Unix file system).

Examples

These are to expand your mind and to help you recognize a name space when you come across it
under some disguise.

File system
directory

Example: /udir/lampson/pocs/handouts/12-naming

Not a tree, because of . and .., hard links, and soft links.
Devices, named pipes, and other things can appear as well as files.
Links and mounting are important for assembling the name space you want.
Files may have attributes, which are a little directory attached to the file.
Sometimes resources, fonts, and other OS rigmarole are stored this way.

inodes There is a single inode directory, usually coded as a function rather than a table:
you compute the location of the inode on the disk from the number.
For system-wide inodes, prefix a system-wide file system or volume name.

Plan 97 This operating system puts all its objects into a single name space: files, devices,
pipes, processes, display servers, and search paths (as union directories).

Semantic
file system8

Not restricted to relational databases.

Free-text indexing: ~lampson/Mail/inbox/(word="compiler")

Program cross-reference: /project/sources/(calls="DeleteFile")

Table
(relational
data base)

Example: ID no (key) Name Salary Married?
 1432 Smith 21,000 Yes

 44563 Jones 35,000 No

 8456 Brown 17,000 Yes

We can view this as a naming tree in several ways:
#44563/Name = Jones key’s value is a D that defines Name, Salary, etc.
Name/#44563 = Jones key’s value is the Name field of its row

The second way, cat Name/* yields
Smith Jones Brown

7 Pike et al., The use of name spaces in Plan 9, ACM Operating Systems Review 27, 2, Apr. 1993, pp 72-76.
8 Gifford et al., Semantic file systems, Proc. 13th ACM Symposium on Operating System Principles, Oct. 1991, pp
16-25 (handout 13).

6.826—Principles of Computer Systems 2002

Handout 12. Naming 21

Network
naming9

Example: theory.lcs.mit.edu

Distributed code. Can share responsibility for following the path between client
and server in many ways.
A directory handle is a machine address (interpreted by some communication
network), plus some id for the directory on that machine.
Attractive as top levels of complete naming hierarchy.

E-mail
addresses

Example: rinard@lcs.mit.edu

This syntax patches together the network name space and the user name space of a
single host. Often there are links (called forwarding) and directories full of links
(called distribution lists).

SNMP10 Example: Router with circuits, packets in circuits, headers in packets, etc.

Internet Simple Network Management Protocol
Roughly, view the state of the managed entity as a table, treating it as a name
space the way we did earlier. You can read or write table entries.
The Next action allows a client to explore the name space, whose structure is
read-only. Ad hoc Write actions are sometimes used to modify the structure, for
instance by adding a row to a table.

Page tables Divide up the virtual address, using the first chunk to index a first level page table,
later chunks for lower level tables, and the last chunk for the byte in the page.

I/O device
addressing

Example: Memory bus.
 SCSI controller, by device register addresses.
 SCSI device, by device number 0..7 on SCSI bus.
 Disk sector, by disk address on unit.
Usually there is a pure read/write interface to the part of the I/O system that is
named by memory addresses (the device registers in the example), and a message
interface to the rest (the disk in the example).

Multiplexing
a channel

Examples: Node-node network channel → n process-process channels.
 Process-kernel channel → n inter-process channels.
 ATM virtual path → n virtual circuits.

Given a channel, you can multiplex it to get sub-channels.
Sub-channels are identified by addresses in messages on the main channel.
This idea can be applied recursively, as in all good name spaces.

LAN
addresses

48-bit ethernet address. This is flat: the address is just a UID.

9 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed
Computing, Minaki, Ontario, 1986, pp 1-10. RFC 1034/5 for DNS.
10 M. Rose, The Simple Book, Prentice-Hall, 1990.

6.826—Principles of Computer Systems 2002

Handout 12. Naming 22

Hierarchical
network
addresses11

Example: 16.24.116.42 (an IP address).

An address in a big network is hierarchical.
A router knows its parents and children, like a file directory, and also its siblings
(because the parent might be missing)
To route, traverse up the name space to least common ancestor of current place
and destination, then down to destination.

Network
reference12

Example: 6.24.116.42/11234/1223:44 9 Jan 1995/item 21

Network address + port or process id + incarnation + more multiplexing + address
or export index.
Some applications are remote procedure binding, network pointer, network object

Abbrevia-
tions

A, talking to B, wants to pass a big value V, say a font or security credentials.
A makes up a short name N for V (sometimes called a ‘cookie’, though it’s not the
same as a Web cookie) and passes that.
If B doesn’t know N’s value V, it calls back to A to get it, and caches the result.
Sometimes A tells V to B when it chooses N, and B is expected to remember it.
This is not as good because B might run out of space or fail and restart.

World
Wide Web

Example: http://ds.internic.net/ds/rfc-index.html

This is the URL (Uniform Resource Locator) for Internet RFCs.
The Web has a read/write interface.

Spec names Example: ObjNames.Enum

Telephone
numbers

Example: 1-617-253-6182

Postal
addresses

Example: Prof. Butler Lampson
 Room 43-535
 MIT
 Cambridge, MA 02139

11 R. Perlman, Connections, Prentice-Hall, 1993.
12 Andrew Birrell et al., Network objects, Proc. 14th ACM Symposium on Operating Systems Principles, Asheville,
NC, Dec. 1993 (handout 25).

6.826— Principles of Computer Systems 2002

Handout 13. Paper: Semantic File Systems 1

13. Paper: Semantic File Systems

The attached paper by David Gifford, Pierre Jouvelot, Mark Sheldon, and James O’Toole was
presented at the 13th ACM Symposium on Operating Systems Principles, 1991, and appeared in
its proceedings, ACM Operating Systems Review, Oct. 1991, pp 16-25.

Read it as an adjunct to the lecture on naming

Semantic File Systems

David K. Gi�ord, Pierre Jouvelot1,

Mark A. Sheldon, James W. O'Toole, Jr.

Programming Systems Research Group

MIT Laboratory for Computer Science

Abstract

A semantic �le system is an information storage system that

provides
exible associative access to the system's contents

by automatically extracting attributes from �les with �le

type speci�c transducers. Associative access is provided by a
conservative extension to existing tree-structured �le system

protocols, and by protocols that are designed speci�cally for

content based access. Compatiblity with existing �le sys-

tem protocols is provided by introducing the concept of a

virtual directory. Virtual directory names are interpreted as

queries, and thus provide
exible associative access to �les

and directories in a manner compatible with existing soft-

ware. Rapid attribute-based access to �le system contents

is implemented by automatic extraction and indexing of key

properties of �le system objects. The automatic indexing of

�les and directories is called \semantic" because user pro-

grammable transducers use information about the semantics

of updated �le system objects to extract the properties for

indexing. Experimental results from a semantic �le system

implementation support the thesis that semantic �le systems

present a more e�ective storage abstraction than do tradi-

tional tree structured �le systems for information sharing

and command level programming.

1 Introduction

We would like to develop an approach for information stor-

age that both permits users to share information more ef-

fectively, and provides reductions in programming e�ort and

program complexity. To be e�ective this new approach must

be used, and thus an approach that provides a transition

path from existing �le systems is desirable.

In this paper we explore the thesis that semantic �le
systems present a more e�ective storage abstraction than

do traditional tree structured �le systems for information

sharing and command level programming. A semantic �le

system is an information storage system that provides
exi-

This research was funded by the Defense Advanced Research
Projects Agency of the U.S. Department of Defense and was mon-
itored by the O�ce of Naval Research under grant number N00014-

89-J-1988.
1 Also with CRI, Ecole des Mines de Paris, France.

ble associative access to the system's contents by automat-

ically extracting attributes from �les with �le type speci�c

transducers. Associative access is provided by a conservative

extension to existing tree-structured �le system protocols,

and by protocols that are designed speci�cally for content

based access. Automatic indexing is performed when �les

or directories are created or updated.

The automatic indexing of �les and directories is called

\semantic" because user programmable transducers use in-

formation about the semantics of updated �le system ob-

jects to extract the properties for indexing. Through the

use of specialized transducers, a semantic �le system \un-

derstands" the documents, programs, object code, mail, im-

ages, name service databases, bibliographies, and other �les

contained by the system. For example, the transducer for a

C program could extract the names of the procedures that

the program exports or imports, procedure types, and the

�les included by the program. A semantic �le system can be

extended easily by users through the addition of specialized

transducers.

Associative access is designed to make it easier for users

to share information by helping them discover and locate

programs, documents, and other relevant objects. For ex-

ample, �les can be located based upon transducer generated

attributes such as author, exported or imported procedures,

words contained, type, and title.

A semantic �le system provides both a user interface

and an application programming interface to its associa-

tive access facilities. User interfaces based upon browsers

[Inf90, Ver90] have proven to be e�ective for query based

access to information, and we expect browsers to be o�ered

by most semantic �le system implementations. Application

programming interfaces that permit remote access include

specialized protocols for information retrieval [NIS91], and

remote procedure call based interfaces [GCS87].

It is also possible to export the facilities of a semantic

�le system without introducing any new interfaces. This

can be accomplished by extending the naming semantics of

�les and directories to support associative access. A bene�t

of this approach is that all existing applications, including

user interfaces, immediately inherit the bene�ts of associa-

tive access.

A semantic �le system integrates associative access into

a tree structured �le system through the concept of a virtual
directory. Virtual directory names are interpreted as queries

and thus provide
exible associative access to �les and di-

rectories in a manner compatible with existing software.

For example, in the following session with a semantic

�le system we �rst locate within a library all of the �les

that export the procedure lookup fault, and then further

restrict this set of �les to those that have the extension c:

% cd /sfs/exports:/lookup_fault

% ls -F

virtdir_query.c@ virtdir_query.o@

% cd ext:/c

% ls -F

virtdir_query.c@

%

Semantic �le systems can provide associative access to

a group of �le servers in a distributed system. This dis-

tributed search capability provides a simpli�ed mechanism

for locating information in large nationwide �le systems.

Semantic �le systems should be of use to both individu-

als and groups. Individuals can use the query facility of a

semantic �le system to locate �les and to provide alternative

views of data. Groups of users should �nd semantic �le sys-

tems an e�ective way to learn about shared �les and to keep

themselves up to date about the status of group projects. As

workgroups increasingly use �le servers as shared library re-

sources we expect that semantic �le system technology will

become even more useful.

Because semantic �le systems are compatible with exist-

ing tree structured �le systems, implementations of semantic

�le systems can be fully compatible with existing network

�le system protocols such as NFS [SGK
+
85, Sun88] and AFS

[Kaz88]. NFS compatibility permits existing client machines

to use the indexing and associative access features of a se-

mantic �le system without modi�cation. Files stored in a

semantic �le system via NFS will be automatically indexed,

and query result sets will appear as virtual directories in

the NFS name space. This approach directly addresses the

\dusty data" problem of existing UNIX �le systems by al-

lowing existing UNIX �le servers to be converted transpar-

ently to semantic �le systems.

We have built a prototype semantic �le system and run

a series of experiments to test our thesis that semantic �le

systems present a more e�ective storage abstraction than do

traditional tree structured �le systems for information shar-

ing and command level programming. We tried to locate

various documents and programs in the �le system using

unmodi�ed NFS clients. The results of these experiments

suggest that semantic �le systems can be used to �nd in-

formation more quickly than is possible using ordinary �le

systems, and add expressive power to command level pro-

gramming languages.

In the remainder of the paper we discuss previous re-

search (Section 2), introduce the interface and a semantics

for a semantic �le system (Section 3), review the design

and implementation of a semantic �le system (Section 4),

present our experimental results (Section 5) and conclude

with observations on other applications of virtual directo-

ries (Section 6).

2 Previous Work

Associative access to on-line information was pioneered in

early bibliographic retrieval systems where it was found to

be of great value in locating information in large databases

[Sal83]. The utility of associative access motivated its sub-

sequent application to �le and document management. The

previous research we build upon includes work on personal

computer indexing systems, information retrieval systems,

distributed �le systems, new naming models for �le systems,

and wide-area naming systems:

� Personal computer indexing systems such as On Loca-

tion [Tec90], Magellan [Cor], and the Digital Librar-

ian [NC89b, NC89a] provide window-based �le system

browsers that permit word-based associative access to

�le system contents. Magellan and the Digital Librar-

ian permit searches based upon boolean combinations

of words, while On Location is limited to conjunctions

of words. All three systems rank matching �les using a

relevance score. These systems all create indexes to re-

duce search time. On Location automatically indexes

�les in the background, while Magellan and the Digi-

tal Librarian require users to explicitly create indexes.

Both On Location and the Digital Librarian permit

users to add appropriate keyword generation programs

[Cla90, NC89b] to index new types of �les. However,

Magellan, On Location, and the Digital Librarian are

limited to a list of words for �le description.

� Information retrieval systems such as Basis [Inf90],

Verity [Ver90], and Boss DMS [Log91] extend the se-

mantics of personal computer indexing systems by

adding �eld speci�c queries. Fields that can be queried

include document category, author, type, title, identi-

�er, status, date, and text contents. Many of these

document relationships and attributes can be stored

in relational database systems that provide a general

query language and support application program ac-

cess. The WAIS system permits information at remote

sites to be queried, but relies upon the user to choose

an appropriate remote host from a directory of services

[KM91, Ste91]. Distributed information retrieval sys-

tems [GCS87, DANO91] perform query routing based

upon database content labels to ensure that all rele-

vant hosts are contacted in response to a query.

� Distributed �le systems [Sun89, Kaz88] provide remote

access to �les with tree structured names. These sys-

tems have enabled �le sharing among groups of people

and over wide geographic areas. Existing UNIX tools

such as grep and find [Gro86] are often used to per-

form associative searches in distributed �le systems.

� New naming models for �le systems include the Portable

Common Tool Environment (PCTE) [GMT86], the

Property List DIRectory system (PLDIR) [Mog86],

Virtual Systems [Neu90] and Sun's Network Software

Environment (NSE) [SC88]. PCTE provides an entity-

relationship database that models the attributes of

objects including �les. PCTE has been implemented

as a compatible extension to UNIX. However, PCTE

users must use specialized tools to query the PCTE

database, and thus do not receive the bene�ts of asso-

ciative access via a �le system interface. The Property

List DIRectory system implements a �le system model

designed around �le properties and o�ers a Unix front-

end user interface. Similarly, Virtual Systems permit

users to hand-craft customized views of services, �les,

and directories. However, neither system provides au-

tomatic attribute extraction (although [Mog86] alludes

to it as a possible extension) or attribute-based access

to their contents. NSE is a network transparent soft-

ware development tool that allows di�erent views of

a �le system hierarchy called environments to be de-

�ned. Unlike virtual directories, these views must be

explicitly created before being accessed.

� Wide-area naming systems such as X.500 [CCI88], Pro-

�le [Pet88], and the Networked Resource Discovery

Project [Sch89] provide attribute-based access to a wide

variety of objects, but they are not integrated into a

�le system nor do they provide automatic attribute-

based access to the contents of a �le system.

Key advances o�ered by the present work include:

� Virtual directories integrate associative access into ex-

isting tree structured �le systems in a manner that is

compatible with existing applications.

� Virtual directories permit unmodi�ed remote hosts to

access the facilities of a semantic �le system with ex-

isting network �le system protocols.

� Transducers can be programmed by users to perform

arbitrary interpretation of �le and directory contents

in order to produce a desired set of �eld-value pairs for

later retrieval. The use of �elds allows transducers to

describe many aspects of a �le, and thus permits sub-

sequent sophisticated associative access to computed

properties. In addition, transducers can identify en-

tities within �les as independent objects for retrieval.

For example, individual mail messages within a mail

�le can be treated as independent entities.

Previous research supports our view that overloading �le

system semantics can improve system uniformity and utility

when compared with the alternative of creating a new inter-

face that is incompatible with existing applications. Exam-

ples of this approach include:

� Devices in UNIX appear as special �les [RT74] in the

/dev directory, enabling them to be used as ordinary

�les from UNIX applications.

� UNIX System III named pipes [Roc85, p. 159f] appear

as special �les, enabling programs to rendezvous using

�le system operations.

� File systems appear as special directories in Automount

daemon directories [CL89, Pen90, PW90], enabling the

binding of a name to a �le system to be computed at

the time of reference.

� Processes appear as special directories in Killian's pro-

cess �le system [Kil84], enabling process observation

and control via �le operations.

� Services appear as special directories in Plan 9

[PPTT90], enabling service access in a distributed sys-

tem through �le system operations in the service's

name space.

� Arbitrary semantics can be associated with �les and

directories using Watchdogs [BP88], Pseudo Devices

[WO88], and Filters [Neu90], enabling �le system ex-

tensions such as terminal drivers, network protocols, X

servers, �le access control, �le compression, mail no-

ti�cation, user speci�c directory views, heterogeneous

�le access, and service access.

� The ATTIC system [CG91] uses a modi�ed NFS server

to provide transparent access to automatically com-

pressed �les.

author: smith
exports: init_xdr_rcv
exports: move_xdr_rep
imports: malloc

from: smith
to: jones
subject: meeting
text: fine

author: smith
section: introduction
text: beginning
text: distributed

Document
Transducer

Mail
Transducer

Object
Transducermove_xdr.o

prop.tex

mail.txt

Figure 1: Sample Transducer Output

3 Semantic File System Semantics

Semantic �le systems can implement a wide variety of se-

mantics. In this section we present one such semantics that

we have implemented. Section 6 describes some other pos-

sibilities.

Files stored in a semantic �le system are interpreted by

�le type speci�c transducers to produce a set of descriptive

attributes that enable later retrieval of the �les. An attribute
is a �eld-valuepair, where a �eld describes a property of a �le
(such as its author, or the words in its text), and a value is
a string or an integer. A given �le can have many attributes

that have the same �eld name. For example, a text �le would

have as many text: attributes as it has unique words. By

convention, �eld names end with a colon.

A user extensible transducer table is used to determine

the transducer that should be used to interpret a given �le

type. One way of implementing a transducer table is to

permit users to store subtree speci�c transducers in the

subtree's parent directory, and to look for an appropriate

transducer at indexing time by searching up the directory

hierarchy.

To accommodate �les (such as mail �les) that contain

multiple objects we have generalized the unit of associative

access beyond whole �les. We call the unit of associative

access an entity. An entity can consist of an entire �le, an

object within a �le, or a directory. Directories are assigned

attributes by directory transducers.

A transducer is a �lter that takes as input the contents of

a �le, and outputs the �le's entities and their corresponding

attributes. A simple transducer could treat an input �le as

a single entity, and use the �le's unique words as attributes.

A complex transducer might perform type reconstruction

on an input �le, identify each procedure as an independent

entity and use attributes to record their reconstructed types.

Figure 1 shows examples of an object �le transducer, a mail

�le transducer, and a TEX �le transducer.

The semantics of a semantic �le system can be readily

extended because users can write new transducers. Trans-

ducers are free to use new �eld names to describe special

attributes. For example, a CAD �le transducer could intro-

duce a drawing: �eld to describe a drawing identi�er.

The associative access interface to a semantic �le sys-

tem is based upon queries that describe desired attributes

of entities. A query is a description of desired attributes

that permits a high degree of selectivity in locating entities

of interest. The result of a query is a set of �les and/or

directories that contain the entities described. Queries are

boolean combinations of attributes, where each attribute de-

scribes the desired value of a �eld. It is also possible to ask

for all of the values of a given �eld in a query result set.

The values of a �eld can be useful when narrowing a query

to eliminate entities that are not of interest.

A semantic �le system is query consistent when it guar-

antees query results that correspond to its current contents.

If updates cease to the contents of a semantic �le system it

will eventually be query consistent. This property is known

as convergent consistency. The rate at which a given imple-

mentation converges is administratively determined by bal-

ancing the user bene�ts of fast convergence when compared

with the higher processing cost of indexing rapidly changing

entities multiple times. It is of course possible to guarantee

that a semantic �le system is always query consistent with

appropriate use of atomic actions.

In the remainder of this section we will explore how con-

junctive queries can be mapped into tree-structured path

names. As we mentioned earlier, this is only one of the pos-

sible interfaces to the query capabilities of a semantic �le

system. It is also possible to map disjunction and negation

into tree-structured names, but they have not been imple-

mented in our prototype and we will not discuss them.

Queries are performed in a semantic �le system through

use of virtual directories to describe a desired view of �le

system contents. A virtual directory is computed on de-

mand by a semantic �le system. From the point of view of a

client program, a virtual directory is indistinguishable from

an ordinary directory. However, unlike ordinary directories,

virtual directories do not have to be explicitly created to be

accessed.

The query facilities of a semantic �le system appear as

virtual directories at each level of the directory tree. A

�eld virtual directory is named by a �eld, and has one entry

for each possible value of its corresponding �eld. Thus in

/sfs, the virtual directory /sfs/owner: corresponds to the

owner: �eld. The �eld virtual directory /sfs/owner: would

have one entry for each owner that has written a �le in /sfs.

For example:

% ls -F /sfs/owner:

jones/ root/ smith/

%

The entries in a �eld virtual directory are value virtual

directories. A value virtual directory has one entry for each

entity described by a �eld-value pair. Thus the value vir-

tual directory /sfs/owner:/smith contains entries for �les

in /sfs that are owned by Smith. Each entry is a symbolic

link to the �le. For example:

% ls -F /sfs/owner:/smith

bio.txt@ paper.tex@ prop.tex@

%

When an entity is smaller than an entire �le, a view of

the �le can be presented by extending �le naming semantics

to include view speci�cations. To permit the conjunction of

attributes in a query, value virtual directories contain �eld

virtual directories. For example:

% ls -F /sfs/owner:/smith/text:/resume

bio.txt@

%

A pleasant property of virtual directories is their syn-

ergistic interaction with existing �le system facilities. For

example, when a symbolic link names a virtual directory

the link describes a computed view of a �le system. It is

also possible to use �le save programs, such as tar, on vir-

tual directories to save a computed subset of a �le system.

It would be possible also to generalize virtual directories to

present views of �le systems with respect to a certain time

in the past.

A semantic �le system can be overlaid on top of an or-

dinary �le system, allowing all �le system operations to go

through the SFS server. The overlaid approach has the ad-

vantage that it provides the power of a semantic �le system

to a user at all times without the need to refer to a distin-

guished directory for query processing. It also allows the

server to do indexing in response to �le system mutation

operations. Alternatively, a semantic �le system may cre-

ate virtual directories that contain links to the �les in the

underlying �le system. This means that subsequent client

operations bypass the semantic �le system server.

When an overlaid approach is used �eld virtual directo-

ries must be invisible to preserve the proper operation of

tree traversal applications. A directory is invisible when it

is not returned by directory enumeration requests, but can

be accessed via explicit lookup. If �eld virtual directories

were visible, the set of trees under /sfs in our above ex-

ample would be in�nite. Unfortunately making directories

invisible causes the UNIX command pwd to fail when the

current path includes an invisible directory. It is possible to

�x this through inclusion of unusual .. entries in invisible

directories.

The distinguished field: virtual directory makes �eld

virtual directories visible. This permits users to enumerate

possible search �elds. The field: directory is itself invisi-

ble. For example:

% ls -F /sfs/field:

author:/ exports:/ owner:/ text:/

category:/ ext:/ priority:/ title:/

date:/ imports:/ subject:/ type:/

dir:/ name:/

% ls -F /sfs/field:/text:/semantic/owner:/jones

mail.txt@ paper.tex@ prop.tex@

%

The syntax of semantic �le system path names is:

<sfs-path> ::= /<pn> | <pn>

<pn> ::= <name> | <attribute>

<field-name> | <name>/<pn>

<attribute>/<pn>

<attribute> ::= field: | <field-name>/<value>

<field-name> ::= <string>:

<value> ::= <string>

<name> ::= <string>

The semantics of semantic �le system path names is:

� The universe of entities is de�ned by the path name

pre�x before the �rst virtual directory name.

� The contents of a �eld virtual directory is a set of

value virtual directories, one for each value that the

�eld describes in the universe.

Pathname
Interface

Indexing
Process

File
Server
Process

Mount
Daemon

Virtual
Directory

Query
Processing

SFS Server

Indexer

Transducer

Index
Master

Event
Queue

Shared
Index and
UNIX
File
System File

Figure 2: SFS Block Diagram

� The contents of a value virtual directory is a set of

entries, one for each entity in the the universe that

has the attribute described by the name of the value

virtual directory and its parent �eld virtual directory.

The contents of a value virtual directory de�nes the

universe of entities for its subdirectories. In the ab-

sence of name con
icts, the name of an entry in a

value virtual directory is its original entry name. Entry

name con
icts are resolved by assigning nonce names

to entries.

� The contents of a field: virtual directory is the set

of �elds in use.

4 Semantic File System Implementation

We have built a semantic �le system that implements the

NFS [SGK
+
85, Sun89] protocol as its external interface. To

use the search facilities of our semantic �le system, an Inter-

net client can simply mount our �le system at a desired point

and begin using virtual directory names. Our NFS server

computes the contents of virtual directories as necessary in

response to NFS lookup and readdir requests.

A block diagram of our implementation is shown in Fig-

ure 2. The dashed lines in the �gure describe process bound-

aries. The major processes are:

� The client process is responsible for generating �le sys-
tem requests using normal NFS style path names.

� The �le server process is responsible for creating vir-

tual directories in response to path name based queries.

The SFS Server module implements a user level NFS

server and is responsible for implementing the NFS in-

terface to the system. The SFS Server uses directory
faults to request computation of needed entries by the

Virtual Directory module. A faulting mechanism is

used because the SFS Server caches virtual directory

results, and will only fault when needed information

is requested the �rst time or is no longer cached. The

Virtual Directory module in turn calls the Query Pro-

cessing module to actually compute the contents of a

virtual directory.

The �le server process records �le system modi�ca-

tion events in a write-behind log. The modi�cation

log eliminates duplicate modi�cation events.

� The indexing process is responsible for keeping the in-

dex of �le system contents up-to-date. The Index Mas-

ter module examines the modi�cation log generated by

the �le server process every two minutes. The index-

ing process responds to a �le system modi�cation event

by choosing an appropriate transducer for the modi-

�ed object. An appropriate transducer is selected by

determination of the type of the object (e.g. C source

�le, object �le, directory). If no special transducer is

found a default transducer is used. The output of the

transducer is fed to the Indexer module that inserts the

computed attributes into the index. Indexing and re-

trieval are based upon Peter Weinberger's BTree pack-

age [Wei] and an adapted version of the refer [Les]

software to maintain the mappings between attributes

and objects.

� The mount daemon is contacted to determine the root

�le handle of the underlying UNIX �le system. The

�le server process exports its NFS service using the

same root �le handle on a distinct port number.

� The kernel implements a standard �le system that is

used to store the shared index. The �le server process

could be integrated into the kernel by a VFS based

implementation [Kle86] of an semantic �le system. We

chose to implement our prototype using a user level

NFS server to simplify development.

Instead of computing all of the virtual directories that are

present in a path name, our implementation only computes

a virtual directory if it is enumerated by a client readdir

request or a lookup is performed on one of its entries. This

optimization allows the SFS Server to postpone query pro-

cessing in the hope that further attribute speci�cations will

reduce the amount of work necessary for computation of the

result set. This optimization is implemented as follows:

� The SFS Server responds to a lookup request on a

virtual directory with a lookup not found fault to the

Virtual Directory module. The Virtual Directory mod-

ule checks to make sure that the virtual directory name

is syntactically well formed according to the grammar

in Section 3. If the name is well formed, the directory

fault is immediately satis�ed by calling the create dir

procedure in the SFS Server. This procedure creates a

placeholder directory that is used to satisfy the client's

original lookup request.

� The SFS Server responds to a readdir request on a

virtual directory or a lookup on one of its entries with

a fill directory fault to the Virtual Directory mod-

ule. The Virtual Directory module collects all of the

attribute speci�cations in the virtual directory path

name and passes them to the Query Processing mod-

ule. The Query Processing module uses simple heuris-

tics to reorder the processing of attributes to optimize

query performance. The matching entries are then ma-

terialized in the placeholder directory by the Virtual

Directory module that calls the create link proce-

dure in the SFS Server for each matching �le or direc-

tory.

The transducers that are presently supported by our se-

mantic �le system implementation include:

� A transducer that describes New York Times articles

with type:, priority:, date:, category:, subject:,

title:, author:, and text: attributes.

� A transducer that describes object �les with exports:

and imports: attributes for procedures and global

variables.

� A transducer that describes C, Pascal, and Scheme

source �les with exports: and imports: attributes

for procedures.

� A transducer that describes mail �les with from:, to:,

subject:, and text: attributes.

� A transducer that describes text �les with text: at-

tributes. The text �le transducer is the default trans-

ducer for ASCII �les.

In addition to the specialized attributes listed above, all

�les and directories are further described by owner, group,

dir, name, and ext attributes.

At present, we only index publicly readable �les. We are

investigating indexing protected �les as well, and limiting

query results to entities that can be read by the requester.

We are in the process of making a number of improvements

to our prototype implementation. These enhancements in-

clude 1) full support for multi-host queries using query rout-

ing, 2) an enhanced query language, 3) better support for

�le deletion and renaming, and 4) integration of views for

entities smaller than �les. Our present implementation deals

with deletions by keeping a table of deleted entities and re-

moving them from the results of query processing. Enti-

ties are permanently removed from the database when a full

reindexing of the system is performed. We are investigating

performing �le and directory renames without reindexing

the underlying �les.

5 Results

We ran a series of experiments using our semantic �le system

implementation to test our thesis that semantic �le systems

present a more e�ective storage abstraction than do tradi-

tional tree structured �le systems for information sharing

and command level programming. All of the experimental

data we report are from our research group's �le server using

a semantic �le system. The server is a Microvax-3 running

UNIX version 4.3bsd. The server indexes all of its publicly

readable �les and directories.

To compact the indexes our prototype system recon-

structs a full index of the �le system contents every week.

On 23 July 1991, full indexing of our user �le system pro-

cessed 68 MBytes in 7,771 �les (Table 5).
1

Indexing the

1The 162 MBytes in publicly readable �les that were not pro-
cessed were in �les for which transducers have not yet been written:
executable �les, PostScript �les, DVI �les, tar �les, image data, etc.

Total �le system size 326 MBytes

Amount publicly readable 230 MBytes

Amount with known transducer 68 MBytes

Number of distinct attributes 173,075

Number of attributes indexed 1,042,832

Type Number of Files KBytes

Object 871 8,503

Source 2,755 17,991

Text 1,871 20,638

Other 2,274 21,187

Total 7,771 68,319

Table 1: User File System Statistics for 23 July 1991

Part of index Size in KBytes

Index Tables 6,621

Index Trees 3,398

Total 10,019

Phase Time (hh:mm)

Directory Enumeration 0:07

Determine File Types 0:01

Transduce Directory 0:01

Transduce Object 0:08

Transduce Source 0:23

Transduce Text 0:23

Transduce Other 0:24

Build Index Tables
2

1:22

Build Index Trees 0:06

Total 1:36

Table 2: User FS Indexing Statistics on 23 July 1991

resulting 1 million attributes took 1 hour and 36 minutes

(Table 2). This works out to an indexing rate of 712

KBytes/minute.

File system mutation operations trigger incremental in-

dexing. In update tests simulating typical user editing and

compiling, incremental indexing is normally completed in

less than 5 minutes. In these tests, only 2 megabytes of

modi�ed �le data were reindexed. Incremental indexing is

slower than full indexing in the prototype system because

the incremental indexer does not make good use of real mem-

ory for caching. The full indexer uses 10 megabytes of real

memory for caching; the incremental indexer uses less than

1 megabyte.

The indexing operations of our prototype are I/O bound.

The CPU is 60% idle during indexing. Our measurements

show that transducers generate approximately 30 disk trans-

fers per second, thereby saturating the disk. Indexing the

resulting attributes also saturates the disk. Although the

transducers and the indexer use di�erent disk drives, the

transducer-indexer pipeline does not allow I/O operations

to proceed in parallel on the two disks. Thus, we feel that

we could double the throughput by improving the pipeline's

2 in parallel with Transduce

structure.

We expect our indexing strategy to scale to larger �le sys-

tems because indexing is limited by the update rate to a �le

system rather than its total storage capacity. Incremental

processing of updates will require additional read bandwidth

approximately equal to the write tra�c that actually occurs.

Past studies of Unix �le system activity [OCH
+
85] indicate

that update rates are low, and that most new data is deleted

or overwritten quickly; thus, delaying slightly the processing

of updates might reduce the additional bandwidth required

by indexing.

To determine the increased latency of overlaid NFS op-

erations introduced by interposing our SFS server between

the client and the native �le system, we used the nhfsstone

benchmark [Leg89] at low loads. The delays observed from

an unmodi�ed client machine were smaller than the varia-

tion in latencies of the native NFS operations. Preliminary

measurements show that lookup operations are delayed by

2 ms on average, and operations that generate update noti-

�cations incur a larger delay.

The following anecdotal evidence supports our thesis that

a semantic �le system is more e�ective than traditional �le

systems for information sharing:

� The typical response time for the �rst ls command on

a virtual directory is approximately 2 seconds. This

response time re
ects a substantial time savings over

linear search through our entire �le system with ex-

isting tools. In addition, subsequent ls commands re-

spond immediately with cached results.

We ran a series of experiments to test how the number

of attributes in a virtual directory name altered the

observed performance of the ls command on a virtual

directory. Attributes were added one at a time to ar-

rive at the �nal path name:

/sfs/text:/virtual/

text:/directory/

text:/semantic/

ext:/tex/

owner:/gifford

The two properties of a query that a�ect its response

time are the number of attributes in the query and

the number of objects in the result set. The e�ect of

an increase in either of these factors is additional disk

accesses. Figure 3 illustrates the interplay of these

factors. Each point on the response time graph is the

average of three experiments. In a separate experiment

we measured an average response time of 5.4 seconds

when the result set grew to 545 entities.

� We began to use the semantic �le system as soon as

it was operable to help coordinate the production of

this paper and for a variety of other everyday tasks.

We have found the virtual directory interface to be

easy to use. (We were immediately able to use the

GNU Emacs directory editor DIRED [Sta87] to submit

queries and browse the results. No code modi�cation

was required.) At least two users in our group reex-

amined their �le protections in view of the ease with

which other users could locate interesting �les in the

system.

R
es

p
o

n
se

 T
im

e

 (
se

co
n

d
s)

R
es

u
lt

 C
o

u
n

t

Number of Attributes

200

150

100

50

0

0 1 2 3 4 5 6

0

1

2

3
Response Time
Result Count

Figure 3: Plot of Number of Attributes vs. Response Time

and Number of Results

� Users outside our research group have successfully used

the query interface to locate information, including

newspaper articles, in our �le system.

� Users outside our research group have failed to �nd

�les for which no transducer had yet been installed.

We are developing new transducers in response to these

failed queries.

The following anecdotal evidence supports our thesis that

a semantic �le system is more e�ective than traditional �le

systems for command level programming:

� The UNIX shell pathname expansion facilities inte-

grate well with virtual directories. For example, it is

possible to query the �le system for all dvi �les owned

by a particular user, and to print those whose names

begin with a certain sequence of characters.

� Symbolic links have proven to be an e�ective way to

describe �le system views. The result of using such a

symbolic link as a directory is a dynamically computed

set of �les.

6 Conclusions

We have described how a semantic �le system can provide

associative attribute-based access to the contents of an in-

formation storage system with the help of �le type speci�c

transducers. We have also discussed how this access can be

integrated into the �le system itself with virtual directories.

Virtual directories are directories that are computed upon

demand.

The results to date are consistent with our thesis that

semantic �le systems present a more e�ective storage ab-

straction than do traditional tree structured �le systems for

information sharing and command level programming. We

plan to conduct further experiments to explore this thesis

in further detail. We plan also to examine how virtual di-

rectories can directly bene�t application programmers.

Our experimental system has tested one semantics for

virtual directories, but there are many other possibilities.

For example:

� The virtual directory syntax can be extended to sup-

port a richer query language. Disjunctive queries would

permit users to use \or" in their queries, and would

also o�er the ability to search on multiple network se-

mantic �le systems concurrently.

� Users could assign attributes to �le system entities in

addition to the attributes that are automatically as-

signed by transducers.

� Transducers could be created for audio and video �les.

In principle this would permit access by time, frame

number, or content [Nee91].

� The data model underlying a semantic �le system could

be enhanced. For example, an entity-relationship model

[Cat83] would provide more expressive power than sim-

ple attribute based retrieval.

� The entities indexed by a semantic �le system could

include a wide variety of object types, including I/O

devices and �le servers. Wide-area naming systems

such as X.500 [CCI88] could be presented in terms of

virtual directories.

� A confederation of semantic �le systems, possibly num-

bering in the thousands, can be organized into an se-
mantic library system. A semantic library system ex-

ports the same interface as an individual semantic �le

system, and thus a semantic library system permits

associative access to the contents of its constituent

servers with existing �le system protocols as well as

with protocols that are designed speci�cally for con-

tent based access. A semantic library system is im-

plemented by servers that use content based routing

[GLB85] to direct a single user request to one or more

relevant semantic �le systems.

We have already completed the implementation of an

NFS compatible query processing system that forwards

requests to multiple hosts and combines the results.

� Virtual directories can be used as an interface to other

systems, such as information retrieval systems and pro-

gramming environment support systems, such as PCTE.

We are exploring also how existing applications could

access object repositories via a virtual directory inter-

face. It is possible to extend the semantics of a seman-

tic �le system to include access to individual entities

in a manner suitable for an object repository [GO91].

� Relevance feedback and query results could be added

by introducing new virtual directories.

The implementation of real-time indexing may require a

substantial amount of computing power at a semantic �le

server. We are investigating how to optimize the task of

real-time indexing in order to minimize this load. Another

area of research is exploring how massive parallelism [SK86]

might replace indexing.

An interesting limiting case of our design is a system that

makes an underlying tree structured naming system super-

uous. In such a system all directories would be computed

upon demand, including directories that correspond to tra-

ditional tree structured �le names. Such a system might help

us share information more e�ectively by encouraging query

based access that would lead to the discovery of unexpected

but useful information.

Acknowledgments

We would like to thank Doug Grundman, Andrew Myers,

and Raymie Stata, for their various contributions to the pa-

per and the implementation. The referees provided valuable

feedback and concrete suggestions that we have endeavored

to incorporate into the paper. In particular, we very much

appreciate the useful and detailed comments provided by

Mike Burrows.

References

[BP88] Brian N. Bershad and C. Brian Pinkerton.

Watchdogs: Extending the UNIX �le system.

In USENIX Association 1988 Winter Confer-
ence Proceedings, pages 267{275, Dallas, Texas,
February 1988.

[Cat83] R. G. G. Cattell. Design and implementation of

a relationship-entity-datum data model. Techni-

cal Report CSL-83-4, Xerox PARC, Palo Alto,

California, May 1983.

[CCI88] CCITT. The Directory - Overview of Concepts,

Models and Services. Recommendation X.500,

1988.

[CG91] Vincent Cate and Thomas Gross. Combining the

concepts of compression and caching for a two-

level �lesystem. In Fourth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, pages 200{

211, Santa Clara, California, April 1991. ACM.

[CL89] Brent Callaghan and Tom Lyon. The auto-

mounter. In USENIX Association 1989 Winter
Conference Proceedings, 1989.

[Cla90] Claris Corporation, Santa Clara, California,

January 1990. News Release.

[Cor] Lotus Corporation. Lotus Magellan: Quick

Launch. Product tutorial, Lotus Corporation,

Cambridge, Massachusetts. Part number 35115.

[DANO91] Peter B. Danzig, Jongsuk Ahn, John Noll, and

Katia Obraczka. Distributed indexing: A scal-

able mechanism for distributed information re-

trieval. Technical Report USC-TR 91-06, Uni-

versity of Southern California, Computer Sci-

ence Department, 1991.

[GCS87] David K. Gi�ord, Robert G. Cote, and David A.

Segal. Walter user's manual. Technical Report

MIT/LCS/TR-399, M.I.T. Laboratory for Com-

puter Science, September 1987.

[GLB85] David K. Gi�ord, John M. Lucassen, and

Stephen T. Berlin. An architecture for large

scale information systems. In 10th Symposium
on Operating System Principles, pages 161{170.
ACM, December 1985.

[GMT86] Ferdinando Gallo, Regis Minot, and Ian

Thomas. The object management system

of PCTE as a software engineering database

management system. In Second ACM SIG-
SOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Envi-
ronments, pages 12{15. ACM, December 1986.

[GO91] David K. Gi�ord and James W. O'Toole.

Intelligent �le systems for object reposito-

ries. In Operating Systems of the 90s and
Beyond, Saarbr�ucken, Germany, July 1991.

Internationales Begegnales- und Forschungs-

zentrum f�ur Informatik, Schloss Dagstuhl-

Gesch�aftsstelle. To be published by Springer-

Verlag.

[Gro86] Computer Systems Research Group. UNIX

User's Reference Manual. 4.3 Berkeley Software

Distribution, Berkeley, California, April 1986.

Virtual VAX-11 Version.

[Inf90] Information Dimensions, Inc. BASISplus. The

Key To Managing The World Of Information.

Information Dimensions, Inc., Dublin, Ohio,

1990. Product description.

[Kaz88] Michael Leon Kazar. Synchronization and

caching issues in the Andrew File System. In

USENIX Association 1988 Winter Conference
Proceedings, pages 31{43, 1988.

[Kil84] T. J. Killian. Processes as �les. In USENIX As-
sociation 1984 Summer Conference Proceedings,
Salt Lake City, Utah, 1984.

[Kle86] S. R. Kleiman. Vnodes: An architecture for

multiple �le system types in Sun UNIX. In

USENIX Association 1986 Winter Conference
Proceedings, pages 238{247, 1986.

[KM91] Brewster Kahle and Art Medlar. An informa-

tion system for corporate users: Wide area in-

formation servers. Technical Report TMC-199,

Thinking Machines, Inc., April 1991. Version 3.

[Leg89] Legato Systems, Inc. Nhfsstone. Software pack-

age. Legato Systems, Inc., Palo Alto, California,

1989.

[Les] M. E. Lesk. Some applications of inverted in-

dexes on the UNIX system. UNIX Supplemen-

tary Document, Section 30.

[Log91] Boss Logic, Inc. Boss DMS development speci-

�cation. Technical documentation, Boss Logic,

Inc., Fair�eld, IA, February 1991.

[Mog86] Je�rey C. Mogul. Representing information

about �les. Technical Report 86-1103, Stanford

Univ. Department of CS, March 1986. Ph.D.

Thesis.

[NC89a] NeXT Corporation. 1.0 release notes: Indexing.

NeXT Corporation, Palo Alto, California, 1989.

[NC89b] NeXT Corporation. Text indexing facilities on

the NeXT computer. NeXT Corporation, Palo

Alto, California, 1989. from 1.0 Release Notes.

[Nee91] Roger Needham, 1991. Personal communication.

[Neu90] B. Cli�ord Neuman. The virtual system model:

A scalable approach to organizing large systems.

Technical Report 90-05-01, Univ. of Washington

CS Department, May 1990. Thesis Proposal.

[NIS91] Ansi z39.50 version 2. National Information

Standards Organization, Bethesda, Maryland,

January 1991. Second Draft.

[OCH
+
85] John K. Ousterhout, Herv�e Da Costa, David

Harrison, John A. Kunze, Mike Kupfer, and

James G. Thompson. A trace-driven analysis

of the unix 4.2bsd �le system. In Symposium
on Operating System Principles, pages 15{24.

ACM, December 1985.

[Pen90] Jan-Simon Pendry. Amd | an automounter.

Department of Computing, Imperial College,

London, May 1990.

[Pet88] Larry Peterson. The Pro�le Naming Ser-

vice. ACM Transactions on Computer Systems,
6(4):341{364, November 1988.

[PPTT90] Rob Pike, Dave Presotto, Ken Thompson, and

Howard Trickey. Plan 9 from Bell Labs. UK

UUG proceedings, 1990.

[PW90] Jan-Simon Pendry and Nick Williams. Amd:

The 4.4 BSD automounter reference manual, De-

cember 1990. Documentation for software revi-

sion 5.3 Alpha.

[Roc85] Marc J. Rochkind. Advanced UNIX Program-
ming. Prentice-Hall, Inc., Englewood Cli�s, New
Jersey, 1985.

[RT74] D. M. Ritchie and K. Thompson. The UNIX

Time-Sharing System. Comm. ACM, 17(7):365{

375, July 1974.

[Sal83] Gerard Salton. Introduction to Modern Informa-
tion Retrieval. McGraw-Hill, New York, 1983.

[SC88] Sun Corporation. The Network Software Envi-

ronment. Technical report, Sun Computer Cor-

poration, Mountain View, California, 1988.

[Sch89] Michael F. Schwartz. The Networked Resource

Discovery Project. In Proceedings of the IFIP XI
World Congress, pages 827{832. IFIP, August

1989.

[SGK
+
85] R. Sandberg, D. Goldberg, S. Kleiman,

D. Walsh, and B. Lyon. Design and implementa-

tion of the Sun Network Filesystem. In USENIX
Association 1985 Summer Conference Proceed-
ings, pages 119{130, 1985.

[SK86] C. Stan�ll and B. Kahle. Parallel Free-Text

Search on the Connection Machine System.

Comm. ACM, pages 1229{1239, December 1986.

[Sta87] Richard Stallman. GNU Emacs Manual. Free

Software Foundation, Cambridge, MA, March

1987. Sixth Edition, Version 18.

[Ste91] Richard Marlon Stein. Browsing through ter-

abytes: Wide-area information servers open a

new frontier in personal and corporate informa-

tion services. Byte, pages 157{164, May 1991.

[Sun88] Sun Microsystems, Sunnyvale, California. Net-
work Programming, May 1988. Part Number

800-1779-10.

[Sun89] NFS: Network �le system protocol speci�cation.

Sun Microsystems, Network Working Group,

Request for Comments (RFC 1094), March 1989.

Version 2.

[Tec90] ON Technology. ON Technology, Inc. announces

On Location for the Apple Macintosh computer.

News Release ON Technology, Inc., Cambridge,

Massachusetts, January 1990.

[Ver90] Verity. Topic. Product description, Verity,

Mountain View, California, 1990.

[Wei] Peter Weinberger. CBT Program documenta-

tion. Bell Laboratories.

[WO88] Brent B.Welch and John K. Ousterhout. Pseudo

devices: User-level extensions to the Sprite �le

system. In USENIX Association 1988 Summer
Conference Proceedings, pages 37{49, San Fran-

cisco, California, June 1988.

