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Abstract 
After thirty years of work on computer security, why 

are almost all the systems in service today extremely vul-
nerable to attack? The main reason is that security is ex-
pensive to set up and a nuisance to run, so people judge 
from experience how little of it they can get away with. 
Since there’s been little damage, people decide that they 
don’t need much security. In addition, setting it up is so 
complicated that it’s hardly ever done right. While we 
await a catastrophe, simpler setup is the most important 
step toward better security. 

In a distributed system with no central management 
like the Internet, security requires a clear story about who 
is trusted for each step in establishing it, and why. The 
basic tool for telling this story is the “speaks for” relation 
between principals that describes how authority is dele-
gated, that is, who trusts whom. The idea is simple, and it 
explains what’s going on in any system I know. The many 
different ways of encoding this relation often make it hard 
to see the underlying order.  

 
 

1 Introduction 

People have been working on computer system secu-
rity for at least 30 years. During this time there have been 
many intellectual successes. Notable among them are the 
subject/object access matrix model [11], access control 
lists [17], multilevel security using information flow [6, 
13] and the star-property [3], public key cryptography 
[14], and cryptographic protocols [1]. In spite of these 
successes, it seems fair to say that in an absolute sense, 
the security of the hundreds of millions of deployed com-
puter systems is terrible: a determined and competent 
attacker could destroy most of the information on almost 
any of these systems, or steal it from any system that is 
connected to a network. Even worse, the attacker could do 
this to millions of systems at once. 

On the other hand, not much harm is actually being 
done by attacks on these insecure systems. Once or twice 
a year an email virus such as “I love you” infects a mil-

lion or two machines, and newspapers print extravagant 
estimates of the damage it does, but these are minor an-
noyances. There is no accurate data about the cost of fail-
ures in computer security. On the one hand, most of them 
are never made public for fear of embarrassment. On the 
other, when a public incident does occur, the security ex-
perts and vendors of antivirus software that talk to the 
media have every incentive to greatly exaggerate its costs. 
But money talks. Many vendors of security have learned 
to their regret that although people complain about inade-
quate security, they won’t spend much money, sacrifice 
many features, or put up with much inconvenience in or-
der to improve it. This strongly suggests that bad security 
is not really costing them much. 

Of course, computer security is not just about com-
puter systems. Like any security, it is only as strong as its 
weakest link, and the links include the people and the 
physical security of the system. Very often the easiest 
way to break into a system is to bribe an insider. This 
short paper, however, is limited to computer systems. 

What do we want from secure computer systems? Here 
is a reasonable goal:  

Computers are as secure as real world systems, and 
people believe it.  
Most real world systems are not very secure by the ab-

solute standard suggested above. It’s easy to break into 
someone’s house. In fact, in many places people don’t 
even bother to lock their houses, although in Manhattan 
they may use two or three locks on the front door. It’s 
fairly easy to steal something from a store. You need very 
little technology to forge a credit card, and it’s quite safe 
to use a forged card at least a few times. 

Why do people live with such poor security in real 
world systems? The reason is that security is not about 
perfect defenses against determined attackers. Instead, it’s 
about  

value,  
locks, and  
punishment.  

The bad guy balances the value of what he gains against 
the risk of punishment, which is the cost of punishment 
times the probability of getting punished. The main thing 
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that makes real world systems sufficiently secure is that 
bad guys who do break in are caught and punished often 
enough to make a life of crime unattractive. The purpose 
of locks is not to provide absolute security, but to prevent 
casual intrusion by raising the threshold for a break-in. 

Well, what’s wrong with perfect defenses? The answer 
is simple: they cost too much. There is a good way to pro-
tect personal belongings against determined attackers: put 
them in a safe deposit box. After 100 years of experience, 
banks have learned how to use steel and concrete, time 
locks, alarms, and multiple keys to make these boxes 
quite secure. But they are both expensive and inconven-
ient. As a result, people use them only for things that are 
seldom needed and either expensive or hard to replace.  

Practical security balances the cost of protection and 
the risk of loss, which is the cost of recovering from a loss 
times its probability. Usually the probability is fairly 
small (because the risk of punishment is high enough), 
and therefore the risk of loss is also small. When the risk 
is less than the cost of recovering, it’s better to accept it as 
a cost of doing business (or a cost of daily living) than to 
pay for better security. People and credit card companies 
make these decisions every day. 

With computers, on the other hand, security is only a 
matter of software, which is cheap to manufacture, never 
wears out, and can’t be attacked with drills or explosives. 
This makes it easy to drift into thinking that computer 
security can be perfect, or nearly so. The fact that work on 
computer security has been dominated by the needs of 
national security has made this problem worse. In this 
context the stakes are much higher and there are no police 
or courts available to punish attackers, so it’s more impor-
tant not to make mistakes. Furthermore, computer secu-
rity has been regarded as an offshoot of communication 
security, which is based on cryptography. Since cryptog-
raphy can be nearly perfect, it’s natural to think that com-
puter security can be as well. 

What’s wrong with this reasoning? It ignores two criti-
cal facts: 
• Secure systems are complicated, hence imperfect. 
• Security gets in the way of other things you want. 

Software is complicated, and it’s essentially impossi-
ble to make it perfect. Even worse, security has to be set 
up by establishing user accounts and passwords, access 
control lists on resources, and trust relationships between 
organizations. In a world of legacy hardware and soft-
ware, networked computers, mobile code, and constantly 
changing relationships between organizations, setup gets 
complicated. And it’s easy to think up scenarios in which 
you want precise control over who can do what. Features 
put in to address such scenarios make setup even more 
complicated. 

Security gets in the way of other things you want. For 
software developers, security interferes with features and 
with time to market. This leads to such things as a widely 
used protocol for secure TCP/IP connections that use the 
same key for every session as long as the user’s password 
stays the same [20], or an endless stream of buffer-
overrun errors in privileged programs, each one making it 
possible for an attacker to take control of the system. 

For users and administrators, security interferes with 
getting work done conveniently, or in some cases at all. 
This is more important, since there are lot more users than 
developers. Security setup also takes time, and it contrib-
utes nothing to useful output. Furthermore, if the setup is 
too permissive no one will notice unless there’s an audit 
or an attack. This leads to such things as users whose 
password is their first name, or a large company in which 
more than half of the installed database servers have a 
blank administrator password [9], or public access to da-
tabases of credit card numbers  [22, 23], or e-mail clients 
that run attachments containing arbitrary code with the 
user’s privileges [4].  

Furthermore, the Internet has made computer security 
much more difficult than it used to be. In the good old 
days, a computer system had a few dozen users at most, 
all members of the same organization. It ran programs 
written in-house or by a few vendors. Information was 
moved from one computer to another by carrying tapes or 
disks. 

Today half a billion people all over the world are on 
the Internet, including you. This poses a big new set of 
problems. 
• Attack from anywhere: Any one on the Internet can 

take a poke at your system. 
• Sharing with anyone: On the other hand, you may 

want to communicate or share information with any 
other Internet user.  

• Automated infection: Your system, if compromised, 
can spread the harm to many others in a few seconds.  

• Hostile code: Code from many different sources runs 
on your system, usually without your knowledge if it 
comes from a Web page. The code might be hostile, 
but you can’t just isolate it, because you want it to 
work for you.  

• Hostile environment: A mobile device like a laptop 
may find itself in a hostile environment that attacks 
its physical security.  

• Hostile hosts: If you own information (music or mov-
ies, for example), it gets downloaded to your custom-
ers’ systems, which may be hostile and try to steal it. 



6.826—Principles of Computer Systems  2002 
 

Handout 31.  Computer Security in the Real World 3 

1.1 Real security? 

The end result should not be surprising. We don’t have 
“real” security that guarantees to stop bad things from 
happening, and the main reason is that people don’t buy 
it. They don’t buy it because the danger is small, and be-
cause security is a pain.  
• Since the danger is small, people prefer to buy fea-

tures. A secure system has fewer features because it 
has to be implemented correctly. This means that it 
takes more time to build, so naturally it lacks the lat-
est features.  

• Security is a pain because it stops you from doing 
things, and you have to do work to authenticate your-
self and to set it up.  

A secondary reason we don’t have “real” security is 
that systems are complicated, and therefore both the code 
and the setup have bugs that an attacker can exploit. This 
is the reason that gets all the attention, but it is not the 
heart of the problem. 

Will things get better? Certainly if there are some ma-
jor security catastrophes, buyers will change their priori-
ties and systems will become more secure. Short of that, 
the best we can do is to drastically simplify the parts of 
systems that have to do with security: 
• Users need to have at most three categories for 

authorization: me, my group or company, and the 
world.  

• Administrators need to write policies that control 
security settings in a uniform way, since they can’t 
deal effectively with lots of individual cases. 

• Everyone needs a uniform way to do end-to-end au-
thentication and authorization across the entire Inter-
net. 

Since people would rather have features than security, 
most of these things are unlikely to happen. 

 On the other hand, don’t forget that in the real world 
security depends more on police than on locks, so detect-
ing attacks, recovering from them, and punishing the bad 
guys are more important than prevention. 

Section 2.3 discusses these points in more detail. For a 
fuller account, see Bruce Schneier’s recent book [19]. 

1.2 Outline 

The next section gives an overview of computer secu-
rity, highlighting matters that are important in practice. 
Section 3 explains how to do Internet-wide end-to-end 
authentication and authorization.  

2 Overview of computer security 

Like any computer system, a secure system can be 
studied under three headings:  

Specification:  What is it supposed to do? 
Implementation: How does it do it? 
Correctness:  Does it really work? 

In security they are called policy, mechanism, and as-
surance, since it’s customary to give new names to famil-
iar concepts. Thus we have the correspondence: 

Specification Policy 
Implementation Mechanism 
Correctness Assurance 

Assurance is especially important for security because 
the system must withstand malicious attacks, not just or-
dinary use. Deployed systems with many happy users 
often have thousands of bugs. This happens because the 
system enters very few of its possible states during ordi-
nary use. Attackers, of course, try to drive the system into 
states that they can exploit, and since there are so many 
bugs, this is usually quite easy. 

This section briefly describes the standard ways of 
thinking about policy and mechanism. It then discusses 
assurance in more detail, since this is where security fail-
ures occur. 

2.1 Policy: Specifying security 

Organizations and people that use computers can de-
scribe their needs for information security under four ma-
jor headings [15]: 
• Secrecy: controlling who gets to read information. 
• Integrity: controlling how information changes or 

resources are used. 
• Availability: providing prompt access to information 

and resources. 
• Accountability: knowing who has had access to in-

formation or resources. 
They are usually trying to protect some resource 

against danger from an attacker. The resource is usually 
either information or money. The most important dangers 
are: 

Vandalism or sabotage that  
—damages information 
—disrupts service 

integrity 
availability 

Theft  
—of money integrity 
—of information secrecy 
Loss of privacy secrecy 

Each user of computers must decide what security means 
to them. A description of the user’s needs for security is 
called a security policy. 

Most policies include elements from all four catego-
ries, but the emphasis varies widely. Policies for computer 
systems are usually derived from policies for security of 
systems that don’t involve computers. The military is 
most concerned with secrecy, ordinary businesses with 
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integrity and accountability, telephone companies with 
availability. Obviously integrity is also important for na-
tional security: an intruder should not be able to change 
the sailing orders for a carrier, and certainly not to cause 
the firing of a missile or the arming of a nuclear weapon. 
And secrecy is important in commercial applications: 
financial and personnel information must not be disclosed 
to outsiders. Nonetheless, the difference in emphasis re-
mains [5]. 

A security policy has both a positive and negative as-
pect. It might say, “Company confidential information 
should be accessible only to properly authorized employ-
ees”. This means two things: properly authorized employ-
ees should have access to the information, and other peo-
ple should not have access. When people talk about secu-
rity, the emphasis is usually on the negative aspect: keep-
ing out the bad guy. In practice, however, the positive 
aspect gets more attention, since too little access keeps 
people from getting their work done, which draws atten-
tion immediately, but too much access goes undetected 
until there’s a security audit or an obvious attack,2 which 
hardly ever happens. This distinction between talk and 
practice is pervasive in security. 

This paper deals mostly with integrity, treating secrecy 
as a dual problem. It has little to say about availability, 
which is a matter of keeping systems from crashing and 
allocating resources both fairly and cheaply. Most attacks 
on availability work by overloading systems that do too 
much work in deciding whether to accept a request. 

2.2 Mechanism: Implementing security 

Of course, one man’s policy is another man’s mecha-
nism. The informal access policy in the previous para-
graph must be elaborated considerably before it can be 
enforced by a computer system. Both the set of confiden-
tial information and the set of properly authorized em-
ployees must be described precisely. We can view these 
descriptions as more detailed policy, or as implementation 
of the informal policy. 

In fact, the implementation of security has two parts: 
the code and the setup or configuration. The code is the 
programs in the trusted computing base. The setup is all 
the data that controls the operations of these programs: 
access control lists, group memberships, user passwords 
or encryption keys, etc. 

The job of a security implementation is to defend 
against vulnerabilities. These take three main forms: 
1) Bad (buggy or hostile) programs. 

                                                           
2 The modifier “obvious” is important; an undetected attack is much 
more dangerous, since the attacker can repeat it. Even worse, the victims 
won’t know that they should take steps to recover, such as changing 
compromised plans or calling the police. 

2) Bad (careless or hostile) agents, either programs or 
people, giving bad instructions to good but gullible 
programs. 

3) Bad agents tapping or spoofing communications. 
Case (2) can be cascaded through several levels of gulli-
ble agents. Clearly agents that might get instructions from 
bad agents must be prudent, or even paranoid, rather than 
gullible. 

Broadly speaking, there are four defensive strategies: 
1) Keep everybody out. This is complete isolation. It 

provides the best security, but it keeps you from us-
ing information or services from others, and from 
providing them to others. This is impractical for all 
but a few applications. 

2) Keep the bad guys out. It’s all right for programs 
inside this defense to be gullible. Code signing and 
firewalls do this. 

3) Let the bad guys in, but keep them from doing dam-
age. Sandboxing does this, whether the traditional 
kind provided by an operating system process, or the 
modern kind in a Java virtual machine. Sandboxing 
typically involves access control on resources to de-
fine the holes in the sandbox. Programs accessible 
from the sandbox must be paranoid; it’s hard to get 
this right. 

4) Catch the bad guys and prosecute them. Auditing and 
police do this. 

The well-known access control model provides the 
framework for these strategies. In this model, a guard3 
controls the access of requests for service to valued re-
sources, which are usually encapsulated in objects.  

 Reference 
monitor  

Object Do operation

Resource 

Principal 

Guard 

Authentication 

Source 

Authorization 

Request

 

The guard’s job is to decide whether the source of the 
request, called a principal, is allowed to do the operation 
on the object. To decide, it uses two kinds of information: 
authentication information from the left, which identifies 
the principal who made the request, and authorization 
information from the right, which says who is allowed to 
do what to the object. As we shall see in section 3, there 
are many ways to make this division. 

The reason for separating the guard from the object is 
to keep it simple. If security is mixed up with the rest of 
the object’s implementation, it’s much harder to be confi-
dent that it’s right. The price paid for this is that in gen-
eral the decisions must be made based only on the princi-
pal, the method of the object, and perhaps the parameters. 
                                                           
3 a “reference monitor” in the jargon 
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For instance, if you want a file system to enforce quotas 
only for novice users, there are only two ways to do it 
within this model: 
1) Have separate methods for writing with quotas and 

without, and don’t authorize novice users to write 
without quotas. 

2) Have a separate quota object that the file system calls 
on the user’s behalf. 

Of course security still depends on the object to im-
plement its methods correctly. For instance, if a file’s 
read method changes its data, or the write method fails 
to debit the quota, or either one touches data in other files, 
the system is insecure in spite of the guard. 

Another model is sometimes used when secrecy in the 
face of bad programs is a primary concern: the informa-
tion flow control model [6, 13]. This is roughly a dual of 
the access control model, in which the guard decides 
whether information can flow to a principal. 

 Reference 
monitor  

Principal

Sink 

Information

Guard Source  

In either model, there are three basic mechanisms for 
implementing security. Together, they form the gold stan-
dard for security: 
• Authenticating principals, answering the question 

“Who said that?” or “Who is getting that informa-
tion?”. Usually principals are people, but they may 
also be groups, machines, or programs. 

• Authorizing access, answering the question “Who 
can do which operations on this object?”. 

• Auditing the decisions of the guard, so that later it’s 
possible to figure out what happened and why. 

2.3 Assurance: Making security work 

The unavoidable price of reliability is simplicity.
 (Hoare) 

What does it mean to make security work? The answer 
is based on the idea of a trusted computing base (TCB), 
the collection of hardware, software, and setup informa-
tion on which the security of a system depends. Some 
examples may help to clarify this idea. 
• If the security policy for the machines on a LAN is 

just that they can access the Web but no other Inter-
net services, and no inward access is allowed, then 
the TCB is just the firewall (hardware, software, and 
setup) that allows outgoing port 80 TCP connections, 
but no other traffic.4 If the policy also says that no 
software downloaded from the Internet should run, 

                                                           
4 This assumes that there are no connections to the Internet except 
through the firewall. 

then the TCB adds the browser code and setup that 
disables Java and other software downloads.5 

• If the security policy for a Unix system is that users 
can read system directories, and read and write their 
home directories, then the TCB is roughly the hard-
ware, the Unix kernel, and any program that can 
write a system directory (including any that runs as 
superuser). This is quite a lot of software. It also in-
cludes /etc/passwd and the permissions on system 
and home directories. 

The idea of a TCB is closely related to the end-to-end 
principle [18]—just as reliability depends only on the 
ends, security depends only on the TCB. In both cases, 
performance and availability isn’t guaranteed. 

In general, it’s not easy to figure out what is in the 
TCB for a given security policy. Even writing the specs 
for the components is hard, as the examples may suggest. 

For security to work perfectly, the specs for all the 
TCB components must be strong enough to enforce the 
policy, and each component has to satisfy its spec. This 
level of assurance has seldom been attempted. Essentially 
always, people settle for something much weaker and 
accept that both the specs and the implementation will be 
flawed. Either way, it should be clear that a smaller TCB 
is better. 

A good way to make defects in the TCB less harmful 
is to use defense in depth, redundant mechanisms for se-
curity. For example, a system might include: 
• Network level security, using a firewall. 
• Operating system security, using sandboxing to iso-

late programs. This can be done by a base OS like 
Windows 2000 or Unix, or by a higher-level OS like 
a Java VM. 

• Application level security that checks authorization 
directly. 

The idea is that it will be hard for an attacker to simulta-
neously exploit flaws in all the levels. Defense in depth 
offers no guarantees, but it does seem to help in practice. 

Most discussions of assurance focus on the software 
(and occasionally the hardware), as I have done so far. 
But the other important component of the TCB is all the 
setup or configuration information, the knobs and 
switches that tell the software what to do. In most systems 
deployed today there is a lot of this information, as any-
one who has run one will know. It includes: 
1) What software is installed with system privileges, 

and perhaps what software is installed that will run 
with the user’s privileges. “Software” includes not 

                                                           
5 This assumes that the LAN machines don’t have any other software 
that might do downloads from the Internet. Enforcing this would greatly 
expand the TCB in any standard operating system known to me. 
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just binaries, but anything executable, such as shell 
scripts or macros. 

2) The database of users, passwords (or other authenti-
cation data), privileges, and group memberships. Of-
ten services like SQL servers have their own user 
database. 

3) Network information such as lists of trusted ma-
chines. 

4) The access controls on all the system resources: files, 
services (especially those that respond to requests 
from the network), devices, etc. 

5) Doubtless many other things that I haven’t thought 
of. 

Although setup is much simpler than code, it is still 
complicated, it is usually done by less skilled people, and 
while code is written once, setup is different for every 
installation. So we should expect that it’s usually wrong, 
and many studies confirm this expectation. The problem 
is made worse by the fact that setup must be based on the 
documentation for the software, which is usually volumi-
nous, obscure, and incomplete at best.6 See [2] for an eye-
opening description of these effects in the context of fi-
nancial cryptosystems, [16] for an account of them in the 
military, and [19] for many other examples. 

The only solution to this problem is to make security 
setup much simpler, both for administrators and for users. 
It’s not practical to do this by changing the base operating 
system, both because changes there are hard to carry out, 
and because some customers will insist on the fine-
grained control it provides. Instead, take advantage of this 
fine-grained control by using it as a “machine language”. 
Define a simple model for security with a small number 
of settings, and then compile these into the innumerable 
knobs and switches of the base system. 

What form should this model take?  
Users need a very simple story, with about three levels 

of security: me, my group or company, and the world, 
with progressively less authority. Browsers classify the 
network in this way today. The corresponding private, 
shared, and public data should be in three parts of the file 
system: my documents, shared documents, and public 
documents. This combines the security of data with where 
it is stored, just as the physical world does with its public 
bulletin boards, private houses, locked file cabinets, and 
safe deposit boxes. It’s familiar, there’s less to set up, and 
it’s obvious what the security of each item is.  

Everything else should be handled by security policies 
that vendors or administrators provide. In particular, poli-
cies should classify all programs as trusted or untrusted 
based on how they are signed, unless the user overrides 

                                                           
6 Of course code is also based on documentation for the programming 
language and libraries invoked, but this is usually much better done. 

them explicitly. Untrusted programs can be rejected or 
sandboxed; if they are sandboxed, they need to run in a 
completely separate world, with separate global state such 
as user and temporary folders, history, web caches, etc. 
There should be no communication with the trusted world 
except when the user explicitly copies something by hand. 
This is a bit inconvenient, but anything else is bound to be 
unsafe. 

Administrators still need a fairly simple story, but 
they need even more the ability to handle many users and 
systems in a uniform way, since they can’t deal effec-
tively with lots of individual cases. The way to do this is 
to let them define so-called security policies7, rules for 
security settings that are applied automatically to groups 
of machines. These should say things like: 
• Each user has read/write access to their home folder 

on a server, and no one else has this access. 
• A user is normally a member of one workgroup, 

which has access to group home folders on all its 
members’ machines and on the server. 

• System folders must contain sets of files that form a 
vendor-approved release. 

• All executable programs must be signed by a trusted 
authority. 

 These policies should usually be small variations on 
templates provided and tested by vendors, since it’s too 
hard for most administrators to invent them from scratch. 
It should be easy to turn off backward compatibility with 
old applications and network nodes, since administrators 
can’t deal with the security issues it causes. 

Some customers will insist on special cases. This 
means that useful exception reporting is essential. It 
should be easy to report all the variations from standard 
practice in a system, especially variations in the software 
on a machine, and all changes from a previous set of ex-
ceptions. The reports should be concise, since long ones 
are sure to be ignored.  

To make the policies manageable, administrators need 
to define groups of users (sometimes called “roles”) and 
of resources, and then state the policies concisely in terms 
of these groups. Ideally, groups of resources follow the 
file system structure, but there need to be other ways to 
define them to take account of the baroque conventions in 
existing networks, OS’s and applications. 

The implementation of policies is usually by compiling 
them into existing security settings. This means that exist-
ing resource managers don’t have to change, and it also 
allows for both powerful high-level policies and efficient 

                                                           
7 This is a lower-level example of a security specification, one that a 
machine can understand, by contrast with the informal, high-level exam-
ples that we saw earlier. 
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enforcement, just as compilers allow both powerful pro-
gramming languages and efficient execution. 

Developers need a type-safe language like Java; this 
will eliminate a lot of bugs. Unfortunately, most of the 
bugs that hurt security are in system software that talks to 
the network, and it will be a while before system code is 
written that way. 

They also need a development process that takes secu-
rity seriously, valuing designs that make assurance easier, 
getting them reviewed by security professionals, and re-
fusing to ship code with serious security flaws. 

3 End-to-end access control 

Any problem in computer science can be solved with 
another level of indirection. (Wheeler) 

Secure distributed systems need a way to handle au-
thentication and authorization uniformly throughout the 
Internet. In this section we first explain how security is 
done locally today, and then describe the principles that 
underlie a uniform end-to-end scheme. 

3.1 Local access control 

Most existing systems do authentication and authoriza-
tion locally. They have a local database for user authenti-
cation (usually by passwords) and group membership, and 
a local database of authorization information, usually in 
the form of an access control list (ACL) on each resource.  

In these systems access control works like this: 
• It’s assumed that the channel on which the user 

communicates with the system is secure, that is, only 
the user and the system can send or receive messages 
on that channel. 

• The system has a local database of user names and 
passwords (or hashes of passwords). This also re-
cords which users are members of which groups. 
Usually it stores an internal security identifier (SID) 
for each user and group as well. 

• The user authenticates the channel by sending a pass-
word response (some function of the password and a 
challenge) to the system. This is called “logging in”. 
After verifying the response from the local database, 
the system creates a process for the user, attaches it to 
the channel, and assigns the user and group SIDs to it 
as its identity. If this process creates others, they get 
the same SIDs, or perhaps a subset. 

• An executable file (program image) can also have an 
identity (called setuid in Unix). This means that if a 
process is started up running this program, it gets the 
program’s identity as well as the caller’s, and it can 
switch between the two identities. This switching is 
sometimes called “impersonation”. 

• Each resource object has an ACL that is a list of SIDs 
along with the access each one is permitted. When a 
process calls a method of the object, a guard (usually 
the OS kernel) checks that one of the SIDs in the 
process’ identity is on the ACL with the right access 
permission. An object can read its caller’s identity 
and do its own access checking if it wants to. 

Operating systems like Unix and Windows 2000 do 
security this way; they either rely on physical security or 
luck to secure the channel to the user, or use an encrypted 
channel protocol like PPTP. The databases for both au-
thentication (user names, passwords, SIDs, and groups) 
and authorization (ACLs) are strictly local. 

You might think that security on the web is more 
global or distributed, but in fact web servers work the 
same way. They usually use SSL to secure the user chan-
nel; this also authenticates the server’s DNS name, but 
users hardly ever pay any attention. Authorization is 
primitive, since usually the only protected resources are 
the entire service and the private data that it keeps for 
each user. Each server farm has a separate local user da-
tabase. 

There is a slight extension of this strictly local scheme, 
in which each system belongs to a “domain” and the au-
thentication database is stored centrally on a domain con-
troller. The basic idea is very simple; the following de-
scription omits many details about how the bits are routed 
and how the secure messages are formatted.  

Each system in the domain has a secure channel to the 
controller, implemented by a shared key that encrypts 
messages between the two; this key is set up when the 
system joins the domain. To log in a user the login sys-
tem, instead of doing the work itself, does an RPC to the 
controller, passing in the user’s password response. The 
controller does exactly what the login system did by itself 
in the earlier scheme, and returns the user’s identity. It 
also returns a token that the login system can use later to 
reauthenticate the user to the controller. SIDs are no 
longer local to the individual system but span the domain.  

Kerberos, Windows NT, and Passport all work this 
way. In Kerberos the reauthentication token is confus-
ingly called a “ticket-granting ticket”. 

To authenticate the user to another system in the do-
main, the login system can ask the controller to forward 
the authentication to the target system (or it can forward 
the password response, an old and deprecated method). In 
Kerberos the domain controller does this by sending a 
message called a “ticket” to the target on the secure chan-
nel between them.8 
                                                           
8 This means that the controller encrypts the ticket with the key that it 
shares with the target. It actually sends the ticket to the login system, 
which passes it on to the target, but the way the bits are transmitted 
doesn’t affect the security. The ticket also enables a secure channel 
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Authentication to another domain works the same way, 
except that there is another level of indirection through 
the target domain’s controller. A shared key between the 
two domains secures this channel. The secure communi-
cation is thus login system to login controller to target 
controller to target. A further extension organizes the do-
mains in a tree and uses this scheme repeatedly, once for 
each domain on the path through the common ancestor.  

Unless the domains trust each other completely, each 
one should have its own space of SIDs and should only be 
trusted to assign its own SIDs to a user. Otherwise any 
domain can assign any SID to any user, so that the Micro-
soft subsidiary in Russia can authenticate someone as Bill 
Gates. Unfortunately Windows 2000 inter-domain se-
curity today omits this precaution. See section 3.5 for 
more on this point. 

3.2 Distributed access control 

A distributed system may involve systems (and peo-
ple) that belong to different organizations and are man-
aged differently. To do access control cleanly in such a 
system (as opposed to the strictly local systems of the last 
section) we need a way to treat uniformly all the items of 
information that contribute to the decision to grant or 
deny access. Consider the following example: 

Alice at Intel is part of a team working on a joint Intel-
Microsoft project called Atom. She logs in, using a smart 
card to authenticate herself, and connects using SSL to a 
project web page called Spectra at Microsoft.  The web 
page grants her access because: 
1) The request comes over an SSL connection secured 

with a session key KSSL. 
2) To authenticate the SSL connection, Alice’s smart 

card uses her key KAlice to sign a response to a chal-
lenge from the Microsoft server.9 

3) Intel certifies that KAlice is the key for Alice@Intel. 
com. 

4) Microsoft’s group database says that Alice@Intel. 
com is in the Atom group. 

5) The ACL on the Spectra page says that Atom has 
read/write access. 

For brevity, we drop the .com from now on. 
To avoid the need for the smart card to re-authenticate 

Alice to Microsoft, the card can authenticate a temporary 
key Ktemp on her login system, and that key can authenti-
cate the login connection. (2) is then replaced by: 

                                                                                              
between the target and the login system, by including a new key shared 
between them. 
9 Saying that the card signs with the public key KAlice means that it en-
crypts with the corresponding private key. 

2a) Alice’s smart card uses her key KAlice to sign a certifi-
cate for the temporary key Ktemp owned by the login 
system. 

2b) Alice’s login system authenticates the SSL connec-
tion by using Ktemp to sign a response to a challenge 
from the Microsoft server. 

From this example we can see that many different 
kinds of information contribute to the access control deci-
sion: 

Authenticated session keys 
User passwords or public keys 
Delegations from one system to another 
Group memberships 
ACL entries. 

We want to do a number of things with this information: 
• Keep track of how secure channels are authenticated, 

whether by passwords, smart cards, or systems. 
• Make it secure for Microsoft to accept Intel’s authen-

tication of Alice. 
• Handle delegation of authority to a system, for exam-

ple, Alice’s login system. 
• Handle authorization via ACLs like the one on the 

Spectra page. 
• Record the reasons for an access control decision so 

that it can be audited later. 

3.3 Chains of responsibility 

What is the common element in all the steps of the ex-
ample and all the different kinds of information? From the 
example we can see that there is a chain of responsibility 
running from the request at one end to the Spectra re-
source at the other. A link of this chain has the form 

“Principal P speaks for principal Q about subjects T.” 
For example, KSSL speaks for KAlice about everything, and 
Atom@Microsoft speaks for Spectra about read and 
write. 

The idea of “speaks for” is that if P says something 
about T, then Q says it too. Put another way, Q takes re-
sponsibility for anything that P says about T. A third way, 
P is a more powerful principal than Q (at least with re-
spect to T) since P’s statements are taken at least as seri-
ously as Q’s, and perhaps more seriously. 

The notion of principal is very general, encompassing 
any entity that we can imagine making statements. In the 
example, secure channels, people, systems, groups, and 
resource objects are all principals. We can think of a prin-
cipal as in some sense equivalent to the set of statements 
that it ever makes. A stronger principal makes more 
statements. 

The idea of “about subjects T” is that T is some way of 
describing a set of things that P (and therefore Q) might 
say. You can think of T as a pattern or predicate that char-
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acterizes this set of statements. In the example, T is “all 
subjects” except for step (5), where it is “read and write 
requests”. It’s up to the guard of the object that gets the 
request to figure out whether the request is in T, so the 
interpretation of T’s encoding can be local to the object. 
SPKI [8] develops this idea in some detail. 

We can write this P T⇒ Q for short, or P ⇒ Q if T is 
“all subjects”. With this notation the chain for the exam-
ple is: 

KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ 
Atom@Microsoft r/w⇒ Spectra 

The picture below shows how the chain of responsibility 
is related to the various principals. Note that the “speaks 
for” arrows are quite independent of the flow of bytes.  

 

says 

Spectra
ACL 

KSSL 

says

says 

Alice’s 
smart card 

Alice’s login 
system 

Spectra
web page

Ktemp KAlice 

Alice@Intel Atom@Microsoft

Microsoft Intel 

 

The remainder of this section explains some of the de-
tails of establishing the chain of responsibility. Things can 
get a bit complicated; don’t lose sight of the simple idea. 
For more details see [12, 21, 8, 10]. 

3.4 Evidence for the links 

How do we establish a link in the chain, that is, a fact 
P ⇒ Q? Someone, either the object’s guard or a later 
auditor, needs to see evidence for the link; we call this 
entity the “verifier”. The evidence has the form “principal 
says delegation”, where a delegation is a statement of the 
form P T⇒ Q.10 The principal is taking responsibility for 
the delegation. So we need to answer three questions: 

Why do we trust the principal for this delegation? 
How do we know who says the delegation? 
Why is the principal willing to say it? 

Why trust? The answer to the first question is always 
the same: We trust Q for P ⇒ Q, that is, we believe it if Q 
says it. When Q says P T⇒ Q, Q is delegating its authority 
for T to P, because on the strength of this statement any-
thing that P says about T will be taken as something that 
Q says. We believe the delegation on the grounds that Q, 

                                                           
10 In [12, 21] this kind of delegation is called “handoff”, and the word 
“delegate” is used in a narrower sense. 

as a responsible adult or the computer equivalent, should 
be allowed to delegate its authority.  

There are also some delegations that we trust uncondi-
tionally, because they are instances of general rules called 
“axioms”. There are no axioms for delegation from basic 
principals like encryption keys. We discuss compound 
principals like Alice@Intel later. 

Who says? The second question is: How do we know 
that Q says P T⇒ Q? The answer depends on how Q is 
doing the saying.  
• If Q is a key, then “Q says X” means that Q crypto-

graphically signs X, and this is something that a pro-
gram can easily verify. This case applies for Ktemp ⇒ 
KAlice. If KAlice signs it, the verifier believes that KAlice 
says it, and therefore trusts it by the delegation rule 
above. 

• If Q is the verifier itself, then P T⇒ Q is probably just 
an entry in a local database; this case applies for an 
ACL entry like Atom ⇒ Spectra. The verifier be-
lieves its own local data. 

These are the only ways that the verifier can directly 
know who said something: receive it on a secure channel 
or store it locally. 

To verify that any other principal says something, the 
verifier needs some reasoning about “speaks for”. For a 
key binding like KAlice ⇒ Alice@Intel, the verifier 
needs a secure channel to some principal that can speak 
for Alice@Intel. As we shall see later, Intel delegate⇒  
Alice@Intel. So it’s enough for the verifier to see KAlice 
⇒ Alice@Intel on a secure channel from Intel. 
Where does this channel come from? 

The simplest way is for the verifier to simply know 
KIntel ⇒ Intel, that is, to have it wired in. Then encryp-
tion by KIntel forms the secure channel. Recall that in our 
example the verifier is a Microsoft web server. If Micro-
soft and Intel establish a direct relationship, Microsoft 
will know Intel’s public key KIntel, that is, know KIntel ⇒ 
Intel. 

Of course, we don’t want to install KIntel ⇒ Intel ex-
plicitly on every Microsoft server. Instead, we install it in 
some Microsoft-wide directory. All the other servers have 
secure channels to the directory (for instance, they know 
the directory’s public key KMSDir) and trust it uncondition-
ally to authenticate principals outside Microsoft. Only 
KMSDir and the delegation  

“KMSDir ⇒ * except *.Microsoft.com”  
need to be installed in each server. 

The remaining case in the example is the group mem-
bership Alice@Intel ⇒ Atom@Microsoft. Just as In-
tel delegate⇒  Alice@Intel, so Microsoft delegate⇒  Atom@ 
Microsoft. Therefore it’s Microsoft that should make 
this delegation. 
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Why willing? The third question is: Why should a 
principal make a delegation? The answer varies greatly. 
Some facts are installed manually, like KIntel ⇒ Intel at 
Microsoft when the companies establish a direct relation-
ship, or the ACL entry Atom r/w⇒ Spectra. Others follow 
from the properties of some algorithm. For instance, if I 
run a Diffie-Hellman key exchange protocol that yields a 
fresh shared key KDH, then as long as I don’t disclose KDH, 
I should be willing to say  

“KDH ⇒ me, provided you are the other end of a Dif-
fie-Hellman run that yielded KDH, you don’t disclose 
KDH to anyone else, and you don’t use KDH to send 
any messages yourself.”  

In practice I do this simply by signing KDH ⇒ Kme; the 
qualifiers are implicit in running the Diffie-Hellman pro-
tocol.11 

For a very different example, consider a server S start-
ing a process from an executable file SQLServer71 
.exe. If S sets up a secure channel C from this process, it 
can safely assert C ⇒ SQLServer71. Of course, only 
someone who trusts S to run SQLServer71 (that is, be-
lieves S ⇒ SQLServer71) will believe S’s statement. 
Normally administrators set up such delegations. 

To be conservative, S might compute a cryptographic 
hash HSQL7.1 of the file and require a statement from Mi-
crosoft saying “HSQL71 ⇒ SQLServer71” before authen-
ticating C. There are three principals here: the executable 
file, the hash, and the running SQL server. Of course only 
the last actually generates requests. 

3.5 Names 

In the last section we said without explanation that In-
tel delegate⇒  Alice@Intel. Why is this a good convention 
to adopt? Well, someone has to speak for Alice@Intel, 
or else we have to install facts about it manually. Who 
should it be? The obvious answer is that the parent of a 
name should speak for it, at least for the purpose of dele-
gating its authority. Formally, we have the axiom P delegate⇒  
P/N12 for any principal P and simple name N. Using this 
repeatedly, P can delegate from any path name that starts 
with P. This is the whole point of hierarchical naming: 
parents have authority over children. 

The simplest form of this is K delegate⇒  K/N, where K is a 
key. This means that every key is the root of a name 
space. This is simple because you don’t need to install 
anything to use it. If K is a public key, it says P ⇒ K/N by 
signing a certificate with this contents. The certificate is 

                                                           
11 Another way, used by SSL, is to send my password on the KDH chan-
nel. This is all right if I know from the other scheme that the intended 
server is at the other end of the channel. Otherwise I might be giving 
away my password. 
12 Alice@Intel.com  is just a variant syntax for com/Intel/Alice. 

public, and anyone can verify the signature and should 
then believe P ⇒ K/N. 

Unfortunately, keys don’t have any meaning to people. 
Usually we will want to know KIntel ⇒ Intel, or some-
thing like that, so that from KIntel says “KAlice ⇒ Al-
ice@Intel” we can believe it. How do we establish this? 
One way, as always, is to install KIntel ⇒ Intel manually; 
we saw in the previous section that Microsoft might do 
this if it establishes a direct relationship with Intel. The 
other is to use hierarchical naming at the next level up and 
believe KIntel ⇒ Intel.com because Kcom says it and we 
know Kcom ⇒com. Taking one more step, we get to the 
root of the DNS hierarchy; secure DNS lets us take these 
steps [7].  

This is fine for everyday use. Indeed, it’s exactly what 
browsers do when they rely on Verisign to authenticate 
the DNS names of web servers, since they trust Verisign 
for any DNS name. It puts a lot of trust in Verisign or the 
DNS root, however, and if tight security is needed, people 
will prefer to establish direct relationships like the Intel-
Microsoft one.  

Why not always have direct relationships? They are a 
nuisance to manage, since each one requires exchanging a 
key in some manual way, and making some provisions for 
changing the key in case it’s compromised. 

Naming is a form of multiplexing, in which a principal 
P is extended to a whole family of sub-principals P/N1, 
P/N2, etc.; such a family is usually called a “name space”. 
Other kinds of multiplexing, like running several TCP 
connections over a host-to-host connection secured by 
IPSec, can use the same “parent delegates to child” 
scheme. The quoting principals of [10, 12] are another 
example of multiplexing. SPKI [8] is the most highly de-
veloped form of this view of secure naming. 

3.6 Variations 

There are many variations in the details of setting up a 
chain of responsibility:  

How secure channels are implemented.  
How bytes are stored and moved around.  
Who collects the evidence.  
Whether evidence is summarized.  
How big objects are and how expressive T is. 
What compound principals exist other than names. 

We pass over the complicated details of how to use 
encryption to implement secure channels. They don’t 
affect the overall system design much, and problems in 
this area are usually caused by overoptimization or 
sloppiness [1]. We touch briefly on the other points; each 
could fill a paper. 

Handling bytes. The details of how to store and send 
around the bytes that represent messages are not directly 
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relevant to security as long as the bytes are properly en-
crypted, but they make a big difference to the system de-
sign and performance. In analyzing security, it’s impor-
tant to separate the secure channels (usually recognizable 
by encryption at one end and decryption at the other) from 
the ordinary channels. Since the latter don’t affect secu-
rity, the flow and storage of encrypted bytes can be cho-
sen to optimize simplicity, performance, or availability. 

The most important point here is the difference be-
tween public and shared key encryption. Public key al-
lows a secure off-line broadcast channel. You can write a 
certificate on a tightly secured offline system and then 
store it in an untrusted system; any number of readers can 
fetch and verify it. To do broadcast with shared keys, you 
need a trusted on-line relay system. There’s nothing 
wrong with this in principle, but it may be hard to make it 
both secure and highly available. 

Contrary to popular belief, there’s nothing magic about 
such certificates. The best way to think of them is as se-
cure answers to pre-determined queries (for example, 
“What is Alice’s key?”). You can get the same effect by 
querying an on-line database that maps users to keys, as 
long as the database server is secure and you have a se-
cure channel to it. 

Caching is another aspect of where information is 
stored. It can greatly improve performance, and it doesn’t 
affect security or availability as long as there’s always a 
way to reload the cache if gets cleared or invalidated. 

Collecting evidence. The verifier (the guard that’s 
granting access to an object) needs to see the evidence 
from each link in the chain of responsibility. There are 
two basic approaches to collecting this information: 

Push: The client gathers the evidence and hands it to 
the object. 
Pull: The object queries the client and other data-
bases to collect the evidence it needs. 

Most systems use push for authentication, the evidence 
for the identity of the client, and pull for authorization, the 
evidence for who can do what to the object. Security to-
kens in Windows 2000 are an example of push, and ACLs 
an example of pull. Push may require the object to tell the 
client what evidence it needs; see [8, 10] for details. 

If the client is feeble, or if some authentication infor-
mation such as group memberships is stored near the ob-
ject, more pull may be good. Cross-domain authentication 
in Windows is a partial example: the target domain con-
troller, rather than the login controller, discovers member-
ship in groups that are local to the target domain. 

Summarizing evidence. It’s possible to replace sev-
eral links of a chain like P ⇒ Q ⇒ R with a single link P 
⇒ R signed by someone who speaks for R. In the limit a 
link signed by the object summarizes the whole chain; 
this is usually called a capability. The advantages are sav-

ings in space and time to verify, which are especially im-
portant for feeble objects such as computers embedded in 
small devices. The drawbacks are that it’s harder to do 
setup and to revoke access. 

Expressing sets of statements. Traditionally an object 
groups its methods into a few sets (for example, files have 
read, write, and execute methods), permissions for these 
sets of requests appear on ACLs, and there’s no way to 
restrict the set of statements in other delegations. SPKI [8] 
uses “tags” to define sets of statements and can express 
unions and intersections of sets in any delegation, so you 
can say things like “Alice ⇒ Atom for reads of files 
named *.doc and purchase orders less than $5000”. This 
example illustrates the tradeoff between the size of ob-
jects and the expressiveness of T: instead of separate per-
missions for each .doc file, there’s a single one for all of 
them. 

Compound principals. We discussed named or multi-
plexed principals in section 3.5. Here are some other ex-
amples of compound principals:  
• Conjunctions: Alice and Bob. Both must make a 

statement for the conjunction to make it. This is very 
important for commercial security, where it’s called 
“separation of duty” and is intended to make insider 
fraud harder by forcing two insiders to collude. SPKI 
has a generalization to threshold principals or “k out 
of n” [8]. 

• Disjunctions: Alice or FlakyProgram. An object 
must grant access to both for this principal to get it. 
In Windows 2000 this is a “restricted token” that 
makes it safer for Alice to run a flaky program, since 
a process with this identity can only touch objects 
that explicitly grant access to FlakyProgram, not all 
the objects that Alice can access. 

Each kind of compound principal has axioms that de-
fine who can speak for it. See [12] for other examples. 

3.7 Auditing 

As is typical for computer security, we have focused 
on how end-to-end access control works and the wonder-
ful things you can do with it. An equally important prop-
erty, though, is that the chain of responsibility collects in 
one place, and in an explicit form, all the evidence and 
rules that govern an access control decision. Think of this 
as a proof for the decision. If the guard records the proof 
in a reasonably tamper-resistant log, an auditor can re-
view it later to establish accountability or to figure out 
whether some unintended access was granted, and why. 

Since detection and punishment is the primary instru-
ment of practical security, this is extremely important. 
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4 Conclusion 

We have outlined the basic ideas of computer security: 
secrecy, integrity, and availability, implemented by access 
control based on the gold standard of authentication, au-
thorization, and auditing. We discussed the reasons why it 
doesn’t work very well in practice: 
• Reliance on prevention rather than detection and pun-

ishment. 
• Complexity in the code and especially in the setup of 

security, which overwhelms users and administrators. 
We gave some ways to reduce this complexity. 

Then we explained how to do access control end-to-
end in a system with no central management, by building 
a chain of responsibility based on the “speaks for” rela-
tion between principals. Each link in the chain is a delega-
tion of the form “Alice@Intel speaks for Atom.Mi-
crosoft about reads and writes of files named *.doc”. 
The right principal (Microsoft for this example) has to 
assert each link, using a secure channel. Every kind of 
authentication and authorization information fits into this 
framework: encrypted channels, user passwords, groups, 
setuid programs, and ACL entries. The chain of respon-
sibility is a sound basis for logging and auditing access 
control decisions.  

Principals with hierarchical names are especially im-
portant. A parent can delegate for all of its children. Root-
ing name spaces in keys means no globally trusted root. 

There are many ways to vary the basic scheme: how to 
store and transmit bytes, how to collect and summarize 
evidence for links, how to express sets of statements, and 
what is the structure of compound principals. 
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