
6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 1

Computer Security in the Real World

Butler W. Lampson1
Microsoft

1 blampson@microsoft.com, research.microsoft.com/lampson

Abstract
After thirty years of work on computer security, why

are almost all the systems in service today extremely vul-
nerable to attack? The main reason is that security is ex-
pensive to set up and a nuisance to run, so people judge
from experience how little of it they can get away with.
Since there’s been little damage, people decide that they
don’t need much security. In addition, setting it up is so
complicated that it’s hardly ever done right. While we
await a catastrophe, simpler setup is the most important
step toward better security.

In a distributed system with no central management
like the Internet, security requires a clear story about who
is trusted for each step in establishing it, and why. The
basic tool for telling this story is the “speaks for” relation
between principals that describes how authority is dele-
gated, that is, who trusts whom. The idea is simple, and it
explains what’s going on in any system I know. The many
different ways of encoding this relation often make it hard
to see the underlying order.

1 Introduction

People have been working on computer system secu-
rity for at least 30 years. During this time there have been
many intellectual successes. Notable among them are the
subject/object access matrix model [11], access control
lists [17], multilevel security using information flow [6,
13] and the star-property [3], public key cryptography
[14], and cryptographic protocols [1]. In spite of these
successes, it seems fair to say that in an absolute sense,
the security of the hundreds of millions of deployed com-
puter systems is terrible: a determined and competent
attacker could destroy most of the information on almost
any of these systems, or steal it from any system that is
connected to a network. Even worse, the attacker could do
this to millions of systems at once.

On the other hand, not much harm is actually being
done by attacks on these insecure systems. Once or twice
a year an email virus such as “I love you” infects a mil-

lion or two machines, and newspapers print extravagant
estimates of the damage it does, but these are minor an-
noyances. There is no accurate data about the cost of fail-
ures in computer security. On the one hand, most of them
are never made public for fear of embarrassment. On the
other, when a public incident does occur, the security ex-
perts and vendors of antivirus software that talk to the
media have every incentive to greatly exaggerate its costs.
But money talks. Many vendors of security have learned
to their regret that although people complain about inade-
quate security, they won’t spend much money, sacrifice
many features, or put up with much inconvenience in or-
der to improve it. This strongly suggests that bad security
is not really costing them much.

Of course, computer security is not just about com-
puter systems. Like any security, it is only as strong as its
weakest link, and the links include the people and the
physical security of the system. Very often the easiest
way to break into a system is to bribe an insider. This
short paper, however, is limited to computer systems.

What do we want from secure computer systems? Here
is a reasonable goal:

Computers are as secure as real world systems, and
people believe it.
Most real world systems are not very secure by the ab-

solute standard suggested above. It’s easy to break into
someone’s house. In fact, in many places people don’t
even bother to lock their houses, although in Manhattan
they may use two or three locks on the front door. It’s
fairly easy to steal something from a store. You need very
little technology to forge a credit card, and it’s quite safe
to use a forged card at least a few times.

Why do people live with such poor security in real
world systems? The reason is that security is not about
perfect defenses against determined attackers. Instead, it’s
about

value,
locks, and
punishment.

The bad guy balances the value of what he gains against
the risk of punishment, which is the cost of punishment
times the probability of getting punished. The main thing

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 2

that makes real world systems sufficiently secure is that
bad guys who do break in are caught and punished often
enough to make a life of crime unattractive. The purpose
of locks is not to provide absolute security, but to prevent
casual intrusion by raising the threshold for a break-in.

Well, what’s wrong with perfect defenses? The answer
is simple: they cost too much. There is a good way to pro-
tect personal belongings against determined attackers: put
them in a safe deposit box. After 100 years of experience,
banks have learned how to use steel and concrete, time
locks, alarms, and multiple keys to make these boxes
quite secure. But they are both expensive and inconven-
ient. As a result, people use them only for things that are
seldom needed and either expensive or hard to replace.

Practical security balances the cost of protection and
the risk of loss, which is the cost of recovering from a loss
times its probability. Usually the probability is fairly
small (because the risk of punishment is high enough),
and therefore the risk of loss is also small. When the risk
is less than the cost of recovering, it’s better to accept it as
a cost of doing business (or a cost of daily living) than to
pay for better security. People and credit card companies
make these decisions every day.

With computers, on the other hand, security is only a
matter of software, which is cheap to manufacture, never
wears out, and can’t be attacked with drills or explosives.
This makes it easy to drift into thinking that computer
security can be perfect, or nearly so. The fact that work on
computer security has been dominated by the needs of
national security has made this problem worse. In this
context the stakes are much higher and there are no police
or courts available to punish attackers, so it’s more impor-
tant not to make mistakes. Furthermore, computer secu-
rity has been regarded as an offshoot of communication
security, which is based on cryptography. Since cryptog-
raphy can be nearly perfect, it’s natural to think that com-
puter security can be as well.

What’s wrong with this reasoning? It ignores two criti-
cal facts:
• Secure systems are complicated, hence imperfect.
• Security gets in the way of other things you want.

Software is complicated, and it’s essentially impossi-
ble to make it perfect. Even worse, security has to be set
up by establishing user accounts and passwords, access
control lists on resources, and trust relationships between
organizations. In a world of legacy hardware and soft-
ware, networked computers, mobile code, and constantly
changing relationships between organizations, setup gets
complicated. And it’s easy to think up scenarios in which
you want precise control over who can do what. Features
put in to address such scenarios make setup even more
complicated.

Security gets in the way of other things you want. For
software developers, security interferes with features and
with time to market. This leads to such things as a widely
used protocol for secure TCP/IP connections that use the
same key for every session as long as the user’s password
stays the same [20], or an endless stream of buffer-
overrun errors in privileged programs, each one making it
possible for an attacker to take control of the system.

For users and administrators, security interferes with
getting work done conveniently, or in some cases at all.
This is more important, since there are lot more users than
developers. Security setup also takes time, and it contrib-
utes nothing to useful output. Furthermore, if the setup is
too permissive no one will notice unless there’s an audit
or an attack. This leads to such things as users whose
password is their first name, or a large company in which
more than half of the installed database servers have a
blank administrator password [9], or public access to da-
tabases of credit card numbers [22, 23], or e-mail clients
that run attachments containing arbitrary code with the
user’s privileges [4].

Furthermore, the Internet has made computer security
much more difficult than it used to be. In the good old
days, a computer system had a few dozen users at most,
all members of the same organization. It ran programs
written in-house or by a few vendors. Information was
moved from one computer to another by carrying tapes or
disks.

Today half a billion people all over the world are on
the Internet, including you. This poses a big new set of
problems.
• Attack from anywhere: Any one on the Internet can

take a poke at your system.
• Sharing with anyone: On the other hand, you may

want to communicate or share information with any
other Internet user.

• Automated infection: Your system, if compromised,
can spread the harm to many others in a few seconds.

• Hostile code: Code from many different sources runs
on your system, usually without your knowledge if it
comes from a Web page. The code might be hostile,
but you can’t just isolate it, because you want it to
work for you.

• Hostile environment: A mobile device like a laptop
may find itself in a hostile environment that attacks
its physical security.

• Hostile hosts: If you own information (music or mov-
ies, for example), it gets downloaded to your custom-
ers’ systems, which may be hostile and try to steal it.

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 3

1.1 Real security?

The end result should not be surprising. We don’t have
“real” security that guarantees to stop bad things from
happening, and the main reason is that people don’t buy
it. They don’t buy it because the danger is small, and be-
cause security is a pain.
• Since the danger is small, people prefer to buy fea-

tures. A secure system has fewer features because it
has to be implemented correctly. This means that it
takes more time to build, so naturally it lacks the lat-
est features.

• Security is a pain because it stops you from doing
things, and you have to do work to authenticate your-
self and to set it up.

A secondary reason we don’t have “real” security is
that systems are complicated, and therefore both the code
and the setup have bugs that an attacker can exploit. This
is the reason that gets all the attention, but it is not the
heart of the problem.

Will things get better? Certainly if there are some ma-
jor security catastrophes, buyers will change their priori-
ties and systems will become more secure. Short of that,
the best we can do is to drastically simplify the parts of
systems that have to do with security:
• Users need to have at most three categories for

authorization: me, my group or company, and the
world.

• Administrators need to write policies that control
security settings in a uniform way, since they can’t
deal effectively with lots of individual cases.

• Everyone needs a uniform way to do end-to-end au-
thentication and authorization across the entire Inter-
net.

Since people would rather have features than security,
most of these things are unlikely to happen.

 On the other hand, don’t forget that in the real world
security depends more on police than on locks, so detect-
ing attacks, recovering from them, and punishing the bad
guys are more important than prevention.

Section 2.3 discusses these points in more detail. For a
fuller account, see Bruce Schneier’s recent book [19].

1.2 Outline

The next section gives an overview of computer secu-
rity, highlighting matters that are important in practice.
Section 3 explains how to do Internet-wide end-to-end
authentication and authorization.

2 Overview of computer security

Like any computer system, a secure system can be
studied under three headings:

Specification: What is it supposed to do?
Implementation: How does it do it?
Correctness: Does it really work?

In security they are called policy, mechanism, and as-
surance, since it’s customary to give new names to famil-
iar concepts. Thus we have the correspondence:

Specification Policy
Implementation Mechanism
Correctness Assurance

Assurance is especially important for security because
the system must withstand malicious attacks, not just or-
dinary use. Deployed systems with many happy users
often have thousands of bugs. This happens because the
system enters very few of its possible states during ordi-
nary use. Attackers, of course, try to drive the system into
states that they can exploit, and since there are so many
bugs, this is usually quite easy.

This section briefly describes the standard ways of
thinking about policy and mechanism. It then discusses
assurance in more detail, since this is where security fail-
ures occur.

2.1 Policy: Specifying security

Organizations and people that use computers can de-
scribe their needs for information security under four ma-
jor headings [15]:
• Secrecy: controlling who gets to read information.
• Integrity: controlling how information changes or

resources are used.
• Availability: providing prompt access to information

and resources.
• Accountability: knowing who has had access to in-

formation or resources.
They are usually trying to protect some resource

against danger from an attacker. The resource is usually
either information or money. The most important dangers
are:

Vandalism or sabotage that
—damages information
—disrupts service

integrity
availability

Theft
—of money integrity
—of information secrecy
Loss of privacy secrecy

Each user of computers must decide what security means
to them. A description of the user’s needs for security is
called a security policy.

Most policies include elements from all four catego-
ries, but the emphasis varies widely. Policies for computer
systems are usually derived from policies for security of
systems that don’t involve computers. The military is
most concerned with secrecy, ordinary businesses with

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 4

integrity and accountability, telephone companies with
availability. Obviously integrity is also important for na-
tional security: an intruder should not be able to change
the sailing orders for a carrier, and certainly not to cause
the firing of a missile or the arming of a nuclear weapon.
And secrecy is important in commercial applications:
financial and personnel information must not be disclosed
to outsiders. Nonetheless, the difference in emphasis re-
mains [5].

A security policy has both a positive and negative as-
pect. It might say, “Company confidential information
should be accessible only to properly authorized employ-
ees”. This means two things: properly authorized employ-
ees should have access to the information, and other peo-
ple should not have access. When people talk about secu-
rity, the emphasis is usually on the negative aspect: keep-
ing out the bad guy. In practice, however, the positive
aspect gets more attention, since too little access keeps
people from getting their work done, which draws atten-
tion immediately, but too much access goes undetected
until there’s a security audit or an obvious attack,2 which
hardly ever happens. This distinction between talk and
practice is pervasive in security.

This paper deals mostly with integrity, treating secrecy
as a dual problem. It has little to say about availability,
which is a matter of keeping systems from crashing and
allocating resources both fairly and cheaply. Most attacks
on availability work by overloading systems that do too
much work in deciding whether to accept a request.

2.2 Mechanism: Implementing security

Of course, one man’s policy is another man’s mecha-
nism. The informal access policy in the previous para-
graph must be elaborated considerably before it can be
enforced by a computer system. Both the set of confiden-
tial information and the set of properly authorized em-
ployees must be described precisely. We can view these
descriptions as more detailed policy, or as implementation
of the informal policy.

In fact, the implementation of security has two parts:
the code and the setup or configuration. The code is the
programs in the trusted computing base. The setup is all
the data that controls the operations of these programs:
access control lists, group memberships, user passwords
or encryption keys, etc.

The job of a security implementation is to defend
against vulnerabilities. These take three main forms:
1) Bad (buggy or hostile) programs.

2 The modifier “obvious” is important; an undetected attack is much
more dangerous, since the attacker can repeat it. Even worse, the victims
won’t know that they should take steps to recover, such as changing
compromised plans or calling the police.

2) Bad (careless or hostile) agents, either programs or
people, giving bad instructions to good but gullible
programs.

3) Bad agents tapping or spoofing communications.
Case (2) can be cascaded through several levels of gulli-
ble agents. Clearly agents that might get instructions from
bad agents must be prudent, or even paranoid, rather than
gullible.

Broadly speaking, there are four defensive strategies:
1) Keep everybody out. This is complete isolation. It

provides the best security, but it keeps you from us-
ing information or services from others, and from
providing them to others. This is impractical for all
but a few applications.

2) Keep the bad guys out. It’s all right for programs
inside this defense to be gullible. Code signing and
firewalls do this.

3) Let the bad guys in, but keep them from doing dam-
age. Sandboxing does this, whether the traditional
kind provided by an operating system process, or the
modern kind in a Java virtual machine. Sandboxing
typically involves access control on resources to de-
fine the holes in the sandbox. Programs accessible
from the sandbox must be paranoid; it’s hard to get
this right.

4) Catch the bad guys and prosecute them. Auditing and
police do this.

The well-known access control model provides the
framework for these strategies. In this model, a guard3
controls the access of requests for service to valued re-
sources, which are usually encapsulated in objects.

 Reference
monitor

Object Do operation

Resource

Principal

Guard

Authentication

Source

Authorization

Request

The guard’s job is to decide whether the source of the
request, called a principal, is allowed to do the operation
on the object. To decide, it uses two kinds of information:
authentication information from the left, which identifies
the principal who made the request, and authorization
information from the right, which says who is allowed to
do what to the object. As we shall see in section 3, there
are many ways to make this division.

The reason for separating the guard from the object is
to keep it simple. If security is mixed up with the rest of
the object’s implementation, it’s much harder to be confi-
dent that it’s right. The price paid for this is that in gen-
eral the decisions must be made based only on the princi-
pal, the method of the object, and perhaps the parameters.

3 a “reference monitor” in the jargon

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 5

For instance, if you want a file system to enforce quotas
only for novice users, there are only two ways to do it
within this model:
1) Have separate methods for writing with quotas and

without, and don’t authorize novice users to write
without quotas.

2) Have a separate quota object that the file system calls
on the user’s behalf.

Of course security still depends on the object to im-
plement its methods correctly. For instance, if a file’s
read method changes its data, or the write method fails
to debit the quota, or either one touches data in other files,
the system is insecure in spite of the guard.

Another model is sometimes used when secrecy in the
face of bad programs is a primary concern: the informa-
tion flow control model [6, 13]. This is roughly a dual of
the access control model, in which the guard decides
whether information can flow to a principal.

 Reference
monitor

Principal

Sink

Information

Guard Source

In either model, there are three basic mechanisms for
implementing security. Together, they form the gold stan-
dard for security:
• Authenticating principals, answering the question

“Who said that?” or “Who is getting that informa-
tion?”. Usually principals are people, but they may
also be groups, machines, or programs.

• Authorizing access, answering the question “Who
can do which operations on this object?”.

• Auditing the decisions of the guard, so that later it’s
possible to figure out what happened and why.

2.3 Assurance: Making security work

The unavoidable price of reliability is simplicity.
 (Hoare)

What does it mean to make security work? The answer
is based on the idea of a trusted computing base (TCB),
the collection of hardware, software, and setup informa-
tion on which the security of a system depends. Some
examples may help to clarify this idea.
• If the security policy for the machines on a LAN is

just that they can access the Web but no other Inter-
net services, and no inward access is allowed, then
the TCB is just the firewall (hardware, software, and
setup) that allows outgoing port 80 TCP connections,
but no other traffic.4 If the policy also says that no
software downloaded from the Internet should run,

4 This assumes that there are no connections to the Internet except
through the firewall.

then the TCB adds the browser code and setup that
disables Java and other software downloads.5

• If the security policy for a Unix system is that users
can read system directories, and read and write their
home directories, then the TCB is roughly the hard-
ware, the Unix kernel, and any program that can
write a system directory (including any that runs as
superuser). This is quite a lot of software. It also in-
cludes /etc/passwd and the permissions on system
and home directories.

The idea of a TCB is closely related to the end-to-end
principle [18]—just as reliability depends only on the
ends, security depends only on the TCB. In both cases,
performance and availability isn’t guaranteed.

In general, it’s not easy to figure out what is in the
TCB for a given security policy. Even writing the specs
for the components is hard, as the examples may suggest.

For security to work perfectly, the specs for all the
TCB components must be strong enough to enforce the
policy, and each component has to satisfy its spec. This
level of assurance has seldom been attempted. Essentially
always, people settle for something much weaker and
accept that both the specs and the implementation will be
flawed. Either way, it should be clear that a smaller TCB
is better.

A good way to make defects in the TCB less harmful
is to use defense in depth, redundant mechanisms for se-
curity. For example, a system might include:
• Network level security, using a firewall.
• Operating system security, using sandboxing to iso-

late programs. This can be done by a base OS like
Windows 2000 or Unix, or by a higher-level OS like
a Java VM.

• Application level security that checks authorization
directly.

The idea is that it will be hard for an attacker to simulta-
neously exploit flaws in all the levels. Defense in depth
offers no guarantees, but it does seem to help in practice.

Most discussions of assurance focus on the software
(and occasionally the hardware), as I have done so far.
But the other important component of the TCB is all the
setup or configuration information, the knobs and
switches that tell the software what to do. In most systems
deployed today there is a lot of this information, as any-
one who has run one will know. It includes:
1) What software is installed with system privileges,

and perhaps what software is installed that will run
with the user’s privileges. “Software” includes not

5 This assumes that the LAN machines don’t have any other software
that might do downloads from the Internet. Enforcing this would greatly
expand the TCB in any standard operating system known to me.

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 6

just binaries, but anything executable, such as shell
scripts or macros.

2) The database of users, passwords (or other authenti-
cation data), privileges, and group memberships. Of-
ten services like SQL servers have their own user
database.

3) Network information such as lists of trusted ma-
chines.

4) The access controls on all the system resources: files,
services (especially those that respond to requests
from the network), devices, etc.

5) Doubtless many other things that I haven’t thought
of.

Although setup is much simpler than code, it is still
complicated, it is usually done by less skilled people, and
while code is written once, setup is different for every
installation. So we should expect that it’s usually wrong,
and many studies confirm this expectation. The problem
is made worse by the fact that setup must be based on the
documentation for the software, which is usually volumi-
nous, obscure, and incomplete at best.6 See [2] for an eye-
opening description of these effects in the context of fi-
nancial cryptosystems, [16] for an account of them in the
military, and [19] for many other examples.

The only solution to this problem is to make security
setup much simpler, both for administrators and for users.
It’s not practical to do this by changing the base operating
system, both because changes there are hard to carry out,
and because some customers will insist on the fine-
grained control it provides. Instead, take advantage of this
fine-grained control by using it as a “machine language”.
Define a simple model for security with a small number
of settings, and then compile these into the innumerable
knobs and switches of the base system.

What form should this model take?
Users need a very simple story, with about three levels

of security: me, my group or company, and the world,
with progressively less authority. Browsers classify the
network in this way today. The corresponding private,
shared, and public data should be in three parts of the file
system: my documents, shared documents, and public
documents. This combines the security of data with where
it is stored, just as the physical world does with its public
bulletin boards, private houses, locked file cabinets, and
safe deposit boxes. It’s familiar, there’s less to set up, and
it’s obvious what the security of each item is.

Everything else should be handled by security policies
that vendors or administrators provide. In particular, poli-
cies should classify all programs as trusted or untrusted
based on how they are signed, unless the user overrides

6 Of course code is also based on documentation for the programming
language and libraries invoked, but this is usually much better done.

them explicitly. Untrusted programs can be rejected or
sandboxed; if they are sandboxed, they need to run in a
completely separate world, with separate global state such
as user and temporary folders, history, web caches, etc.
There should be no communication with the trusted world
except when the user explicitly copies something by hand.
This is a bit inconvenient, but anything else is bound to be
unsafe.

Administrators still need a fairly simple story, but
they need even more the ability to handle many users and
systems in a uniform way, since they can’t deal effec-
tively with lots of individual cases. The way to do this is
to let them define so-called security policies7, rules for
security settings that are applied automatically to groups
of machines. These should say things like:
• Each user has read/write access to their home folder

on a server, and no one else has this access.
• A user is normally a member of one workgroup,

which has access to group home folders on all its
members’ machines and on the server.

• System folders must contain sets of files that form a
vendor-approved release.

• All executable programs must be signed by a trusted
authority.

 These policies should usually be small variations on
templates provided and tested by vendors, since it’s too
hard for most administrators to invent them from scratch.
It should be easy to turn off backward compatibility with
old applications and network nodes, since administrators
can’t deal with the security issues it causes.

Some customers will insist on special cases. This
means that useful exception reporting is essential. It
should be easy to report all the variations from standard
practice in a system, especially variations in the software
on a machine, and all changes from a previous set of ex-
ceptions. The reports should be concise, since long ones
are sure to be ignored.

To make the policies manageable, administrators need
to define groups of users (sometimes called “roles”) and
of resources, and then state the policies concisely in terms
of these groups. Ideally, groups of resources follow the
file system structure, but there need to be other ways to
define them to take account of the baroque conventions in
existing networks, OS’s and applications.

The implementation of policies is usually by compiling
them into existing security settings. This means that exist-
ing resource managers don’t have to change, and it also
allows for both powerful high-level policies and efficient

7 This is a lower-level example of a security specification, one that a
machine can understand, by contrast with the informal, high-level exam-
ples that we saw earlier.

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 7

enforcement, just as compilers allow both powerful pro-
gramming languages and efficient execution.

Developers need a type-safe language like Java; this
will eliminate a lot of bugs. Unfortunately, most of the
bugs that hurt security are in system software that talks to
the network, and it will be a while before system code is
written that way.

They also need a development process that takes secu-
rity seriously, valuing designs that make assurance easier,
getting them reviewed by security professionals, and re-
fusing to ship code with serious security flaws.

3 End-to-end access control

Any problem in computer science can be solved with
another level of indirection. (Wheeler)

Secure distributed systems need a way to handle au-
thentication and authorization uniformly throughout the
Internet. In this section we first explain how security is
done locally today, and then describe the principles that
underlie a uniform end-to-end scheme.

3.1 Local access control

Most existing systems do authentication and authoriza-
tion locally. They have a local database for user authenti-
cation (usually by passwords) and group membership, and
a local database of authorization information, usually in
the form of an access control list (ACL) on each resource.

In these systems access control works like this:
• It’s assumed that the channel on which the user

communicates with the system is secure, that is, only
the user and the system can send or receive messages
on that channel.

• The system has a local database of user names and
passwords (or hashes of passwords). This also re-
cords which users are members of which groups.
Usually it stores an internal security identifier (SID)
for each user and group as well.

• The user authenticates the channel by sending a pass-
word response (some function of the password and a
challenge) to the system. This is called “logging in”.
After verifying the response from the local database,
the system creates a process for the user, attaches it to
the channel, and assigns the user and group SIDs to it
as its identity. If this process creates others, they get
the same SIDs, or perhaps a subset.

• An executable file (program image) can also have an
identity (called setuid in Unix). This means that if a
process is started up running this program, it gets the
program’s identity as well as the caller’s, and it can
switch between the two identities. This switching is
sometimes called “impersonation”.

• Each resource object has an ACL that is a list of SIDs
along with the access each one is permitted. When a
process calls a method of the object, a guard (usually
the OS kernel) checks that one of the SIDs in the
process’ identity is on the ACL with the right access
permission. An object can read its caller’s identity
and do its own access checking if it wants to.

Operating systems like Unix and Windows 2000 do
security this way; they either rely on physical security or
luck to secure the channel to the user, or use an encrypted
channel protocol like PPTP. The databases for both au-
thentication (user names, passwords, SIDs, and groups)
and authorization (ACLs) are strictly local.

You might think that security on the web is more
global or distributed, but in fact web servers work the
same way. They usually use SSL to secure the user chan-
nel; this also authenticates the server’s DNS name, but
users hardly ever pay any attention. Authorization is
primitive, since usually the only protected resources are
the entire service and the private data that it keeps for
each user. Each server farm has a separate local user da-
tabase.

There is a slight extension of this strictly local scheme,
in which each system belongs to a “domain” and the au-
thentication database is stored centrally on a domain con-
troller. The basic idea is very simple; the following de-
scription omits many details about how the bits are routed
and how the secure messages are formatted.

Each system in the domain has a secure channel to the
controller, implemented by a shared key that encrypts
messages between the two; this key is set up when the
system joins the domain. To log in a user the login sys-
tem, instead of doing the work itself, does an RPC to the
controller, passing in the user’s password response. The
controller does exactly what the login system did by itself
in the earlier scheme, and returns the user’s identity. It
also returns a token that the login system can use later to
reauthenticate the user to the controller. SIDs are no
longer local to the individual system but span the domain.

Kerberos, Windows NT, and Passport all work this
way. In Kerberos the reauthentication token is confus-
ingly called a “ticket-granting ticket”.

To authenticate the user to another system in the do-
main, the login system can ask the controller to forward
the authentication to the target system (or it can forward
the password response, an old and deprecated method). In
Kerberos the domain controller does this by sending a
message called a “ticket” to the target on the secure chan-
nel between them.8

8 This means that the controller encrypts the ticket with the key that it
shares with the target. It actually sends the ticket to the login system,
which passes it on to the target, but the way the bits are transmitted
doesn’t affect the security. The ticket also enables a secure channel

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 8

Authentication to another domain works the same way,
except that there is another level of indirection through
the target domain’s controller. A shared key between the
two domains secures this channel. The secure communi-
cation is thus login system to login controller to target
controller to target. A further extension organizes the do-
mains in a tree and uses this scheme repeatedly, once for
each domain on the path through the common ancestor.

Unless the domains trust each other completely, each
one should have its own space of SIDs and should only be
trusted to assign its own SIDs to a user. Otherwise any
domain can assign any SID to any user, so that the Micro-
soft subsidiary in Russia can authenticate someone as Bill
Gates. Unfortunately Windows 2000 inter-domain se-
curity today omits this precaution. See section 3.5 for
more on this point.

3.2 Distributed access control

A distributed system may involve systems (and peo-
ple) that belong to different organizations and are man-
aged differently. To do access control cleanly in such a
system (as opposed to the strictly local systems of the last
section) we need a way to treat uniformly all the items of
information that contribute to the decision to grant or
deny access. Consider the following example:

Alice at Intel is part of a team working on a joint Intel-
Microsoft project called Atom. She logs in, using a smart
card to authenticate herself, and connects using SSL to a
project web page called Spectra at Microsoft. The web
page grants her access because:
1) The request comes over an SSL connection secured

with a session key KSSL.
2) To authenticate the SSL connection, Alice’s smart

card uses her key KAlice to sign a response to a chal-
lenge from the Microsoft server.9

3) Intel certifies that KAlice is the key for Alice@Intel.
com.

4) Microsoft’s group database says that Alice@Intel.
com is in the Atom group.

5) The ACL on the Spectra page says that Atom has
read/write access.

For brevity, we drop the .com from now on.
To avoid the need for the smart card to re-authenticate

Alice to Microsoft, the card can authenticate a temporary
key Ktemp on her login system, and that key can authenti-
cate the login connection. (2) is then replaced by:

between the target and the login system, by including a new key shared
between them.
9 Saying that the card signs with the public key KAlice means that it en-
crypts with the corresponding private key.

2a) Alice’s smart card uses her key KAlice to sign a certifi-
cate for the temporary key Ktemp owned by the login
system.

2b) Alice’s login system authenticates the SSL connec-
tion by using Ktemp to sign a response to a challenge
from the Microsoft server.

From this example we can see that many different
kinds of information contribute to the access control deci-
sion:

Authenticated session keys
User passwords or public keys
Delegations from one system to another
Group memberships
ACL entries.

We want to do a number of things with this information:
• Keep track of how secure channels are authenticated,

whether by passwords, smart cards, or systems.
• Make it secure for Microsoft to accept Intel’s authen-

tication of Alice.
• Handle delegation of authority to a system, for exam-

ple, Alice’s login system.
• Handle authorization via ACLs like the one on the

Spectra page.
• Record the reasons for an access control decision so

that it can be audited later.

3.3 Chains of responsibility

What is the common element in all the steps of the ex-
ample and all the different kinds of information? From the
example we can see that there is a chain of responsibility
running from the request at one end to the Spectra re-
source at the other. A link of this chain has the form

“Principal P speaks for principal Q about subjects T.”
For example, KSSL speaks for KAlice about everything, and
Atom@Microsoft speaks for Spectra about read and
write.

The idea of “speaks for” is that if P says something
about T, then Q says it too. Put another way, Q takes re-
sponsibility for anything that P says about T. A third way,
P is a more powerful principal than Q (at least with re-
spect to T) since P’s statements are taken at least as seri-
ously as Q’s, and perhaps more seriously.

The notion of principal is very general, encompassing
any entity that we can imagine making statements. In the
example, secure channels, people, systems, groups, and
resource objects are all principals. We can think of a prin-
cipal as in some sense equivalent to the set of statements
that it ever makes. A stronger principal makes more
statements.

The idea of “about subjects T” is that T is some way of
describing a set of things that P (and therefore Q) might
say. You can think of T as a pattern or predicate that char-

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 9

acterizes this set of statements. In the example, T is “all
subjects” except for step (5), where it is “read and write
requests”. It’s up to the guard of the object that gets the
request to figure out whether the request is in T, so the
interpretation of T’s encoding can be local to the object.
SPKI [8] develops this idea in some detail.

We can write this P T⇒ Q for short, or P ⇒ Q if T is
“all subjects”. With this notation the chain for the exam-
ple is:

KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒
Atom@Microsoft r/w⇒ Spectra

The picture below shows how the chain of responsibility
is related to the various principals. Note that the “speaks
for” arrows are quite independent of the flow of bytes.

says

Spectra
ACL

KSSL

says

says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp KAlice

Alice@Intel Atom@Microsoft

Microsoft Intel

The remainder of this section explains some of the de-
tails of establishing the chain of responsibility. Things can
get a bit complicated; don’t lose sight of the simple idea.
For more details see [12, 21, 8, 10].

3.4 Evidence for the links

How do we establish a link in the chain, that is, a fact
P ⇒ Q? Someone, either the object’s guard or a later
auditor, needs to see evidence for the link; we call this
entity the “verifier”. The evidence has the form “principal
says delegation”, where a delegation is a statement of the
form P T⇒ Q.10 The principal is taking responsibility for
the delegation. So we need to answer three questions:

Why do we trust the principal for this delegation?
How do we know who says the delegation?
Why is the principal willing to say it?

Why trust? The answer to the first question is always
the same: We trust Q for P ⇒ Q, that is, we believe it if Q
says it. When Q says P T⇒ Q, Q is delegating its authority
for T to P, because on the strength of this statement any-
thing that P says about T will be taken as something that
Q says. We believe the delegation on the grounds that Q,

10 In [12, 21] this kind of delegation is called “handoff”, and the word
“delegate” is used in a narrower sense.

as a responsible adult or the computer equivalent, should
be allowed to delegate its authority.

There are also some delegations that we trust uncondi-
tionally, because they are instances of general rules called
“axioms”. There are no axioms for delegation from basic
principals like encryption keys. We discuss compound
principals like Alice@Intel later.

Who says? The second question is: How do we know
that Q says P T⇒ Q? The answer depends on how Q is
doing the saying.
• If Q is a key, then “Q says X” means that Q crypto-

graphically signs X, and this is something that a pro-
gram can easily verify. This case applies for Ktemp ⇒
KAlice. If KAlice signs it, the verifier believes that KAlice
says it, and therefore trusts it by the delegation rule
above.

• If Q is the verifier itself, then P T⇒ Q is probably just
an entry in a local database; this case applies for an
ACL entry like Atom ⇒ Spectra. The verifier be-
lieves its own local data.

These are the only ways that the verifier can directly
know who said something: receive it on a secure channel
or store it locally.

To verify that any other principal says something, the
verifier needs some reasoning about “speaks for”. For a
key binding like KAlice ⇒ Alice@Intel, the verifier
needs a secure channel to some principal that can speak
for Alice@Intel. As we shall see later, Intel delegate⇒
Alice@Intel. So it’s enough for the verifier to see KAlice
⇒ Alice@Intel on a secure channel from Intel.
Where does this channel come from?

The simplest way is for the verifier to simply know
KIntel ⇒ Intel, that is, to have it wired in. Then encryp-
tion by KIntel forms the secure channel. Recall that in our
example the verifier is a Microsoft web server. If Micro-
soft and Intel establish a direct relationship, Microsoft
will know Intel’s public key KIntel, that is, know KIntel ⇒
Intel.

Of course, we don’t want to install KIntel ⇒ Intel ex-
plicitly on every Microsoft server. Instead, we install it in
some Microsoft-wide directory. All the other servers have
secure channels to the directory (for instance, they know
the directory’s public key KMSDir) and trust it uncondition-
ally to authenticate principals outside Microsoft. Only
KMSDir and the delegation

“KMSDir ⇒ * except *.Microsoft.com”
need to be installed in each server.

The remaining case in the example is the group mem-
bership Alice@Intel ⇒ Atom@Microsoft. Just as In-
tel delegate⇒ Alice@Intel, so Microsoft delegate⇒ Atom@
Microsoft. Therefore it’s Microsoft that should make
this delegation.

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 10

Why willing? The third question is: Why should a
principal make a delegation? The answer varies greatly.
Some facts are installed manually, like KIntel ⇒ Intel at
Microsoft when the companies establish a direct relation-
ship, or the ACL entry Atom r/w⇒ Spectra. Others follow
from the properties of some algorithm. For instance, if I
run a Diffie-Hellman key exchange protocol that yields a
fresh shared key KDH, then as long as I don’t disclose KDH,
I should be willing to say

“KDH ⇒ me, provided you are the other end of a Dif-
fie-Hellman run that yielded KDH, you don’t disclose
KDH to anyone else, and you don’t use KDH to send
any messages yourself.”

In practice I do this simply by signing KDH ⇒ Kme; the
qualifiers are implicit in running the Diffie-Hellman pro-
tocol.11

For a very different example, consider a server S start-
ing a process from an executable file SQLServer71
.exe. If S sets up a secure channel C from this process, it
can safely assert C ⇒ SQLServer71. Of course, only
someone who trusts S to run SQLServer71 (that is, be-
lieves S ⇒ SQLServer71) will believe S’s statement.
Normally administrators set up such delegations.

To be conservative, S might compute a cryptographic
hash HSQL7.1 of the file and require a statement from Mi-
crosoft saying “HSQL71 ⇒ SQLServer71” before authen-
ticating C. There are three principals here: the executable
file, the hash, and the running SQL server. Of course only
the last actually generates requests.

3.5 Names

In the last section we said without explanation that In-
tel delegate⇒ Alice@Intel. Why is this a good convention
to adopt? Well, someone has to speak for Alice@Intel,
or else we have to install facts about it manually. Who
should it be? The obvious answer is that the parent of a
name should speak for it, at least for the purpose of dele-
gating its authority. Formally, we have the axiom P delegate⇒
P/N12 for any principal P and simple name N. Using this
repeatedly, P can delegate from any path name that starts
with P. This is the whole point of hierarchical naming:
parents have authority over children.

The simplest form of this is K delegate⇒ K/N, where K is a
key. This means that every key is the root of a name
space. This is simple because you don’t need to install
anything to use it. If K is a public key, it says P ⇒ K/N by
signing a certificate with this contents. The certificate is

11 Another way, used by SSL, is to send my password on the KDH chan-
nel. This is all right if I know from the other scheme that the intended
server is at the other end of the channel. Otherwise I might be giving
away my password.
12 Alice@Intel.com is just a variant syntax for com/Intel/Alice.

public, and anyone can verify the signature and should
then believe P ⇒ K/N.

Unfortunately, keys don’t have any meaning to people.
Usually we will want to know KIntel ⇒ Intel, or some-
thing like that, so that from KIntel says “KAlice ⇒ Al-
ice@Intel” we can believe it. How do we establish this?
One way, as always, is to install KIntel ⇒ Intel manually;
we saw in the previous section that Microsoft might do
this if it establishes a direct relationship with Intel. The
other is to use hierarchical naming at the next level up and
believe KIntel ⇒ Intel.com because Kcom says it and we
know Kcom ⇒com. Taking one more step, we get to the
root of the DNS hierarchy; secure DNS lets us take these
steps [7].

This is fine for everyday use. Indeed, it’s exactly what
browsers do when they rely on Verisign to authenticate
the DNS names of web servers, since they trust Verisign
for any DNS name. It puts a lot of trust in Verisign or the
DNS root, however, and if tight security is needed, people
will prefer to establish direct relationships like the Intel-
Microsoft one.

Why not always have direct relationships? They are a
nuisance to manage, since each one requires exchanging a
key in some manual way, and making some provisions for
changing the key in case it’s compromised.

Naming is a form of multiplexing, in which a principal
P is extended to a whole family of sub-principals P/N1,
P/N2, etc.; such a family is usually called a “name space”.
Other kinds of multiplexing, like running several TCP
connections over a host-to-host connection secured by
IPSec, can use the same “parent delegates to child”
scheme. The quoting principals of [10, 12] are another
example of multiplexing. SPKI [8] is the most highly de-
veloped form of this view of secure naming.

3.6 Variations

There are many variations in the details of setting up a
chain of responsibility:

How secure channels are implemented.
How bytes are stored and moved around.
Who collects the evidence.
Whether evidence is summarized.
How big objects are and how expressive T is.
What compound principals exist other than names.

We pass over the complicated details of how to use
encryption to implement secure channels. They don’t
affect the overall system design much, and problems in
this area are usually caused by overoptimization or
sloppiness [1]. We touch briefly on the other points; each
could fill a paper.

Handling bytes. The details of how to store and send
around the bytes that represent messages are not directly

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 11

relevant to security as long as the bytes are properly en-
crypted, but they make a big difference to the system de-
sign and performance. In analyzing security, it’s impor-
tant to separate the secure channels (usually recognizable
by encryption at one end and decryption at the other) from
the ordinary channels. Since the latter don’t affect secu-
rity, the flow and storage of encrypted bytes can be cho-
sen to optimize simplicity, performance, or availability.

The most important point here is the difference be-
tween public and shared key encryption. Public key al-
lows a secure off-line broadcast channel. You can write a
certificate on a tightly secured offline system and then
store it in an untrusted system; any number of readers can
fetch and verify it. To do broadcast with shared keys, you
need a trusted on-line relay system. There’s nothing
wrong with this in principle, but it may be hard to make it
both secure and highly available.

Contrary to popular belief, there’s nothing magic about
such certificates. The best way to think of them is as se-
cure answers to pre-determined queries (for example,
“What is Alice’s key?”). You can get the same effect by
querying an on-line database that maps users to keys, as
long as the database server is secure and you have a se-
cure channel to it.

Caching is another aspect of where information is
stored. It can greatly improve performance, and it doesn’t
affect security or availability as long as there’s always a
way to reload the cache if gets cleared or invalidated.

Collecting evidence. The verifier (the guard that’s
granting access to an object) needs to see the evidence
from each link in the chain of responsibility. There are
two basic approaches to collecting this information:

Push: The client gathers the evidence and hands it to
the object.
Pull: The object queries the client and other data-
bases to collect the evidence it needs.

Most systems use push for authentication, the evidence
for the identity of the client, and pull for authorization, the
evidence for who can do what to the object. Security to-
kens in Windows 2000 are an example of push, and ACLs
an example of pull. Push may require the object to tell the
client what evidence it needs; see [8, 10] for details.

If the client is feeble, or if some authentication infor-
mation such as group memberships is stored near the ob-
ject, more pull may be good. Cross-domain authentication
in Windows is a partial example: the target domain con-
troller, rather than the login controller, discovers member-
ship in groups that are local to the target domain.

Summarizing evidence. It’s possible to replace sev-
eral links of a chain like P ⇒ Q ⇒ R with a single link P
⇒ R signed by someone who speaks for R. In the limit a
link signed by the object summarizes the whole chain;
this is usually called a capability. The advantages are sav-

ings in space and time to verify, which are especially im-
portant for feeble objects such as computers embedded in
small devices. The drawbacks are that it’s harder to do
setup and to revoke access.

Expressing sets of statements. Traditionally an object
groups its methods into a few sets (for example, files have
read, write, and execute methods), permissions for these
sets of requests appear on ACLs, and there’s no way to
restrict the set of statements in other delegations. SPKI [8]
uses “tags” to define sets of statements and can express
unions and intersections of sets in any delegation, so you
can say things like “Alice ⇒ Atom for reads of files
named *.doc and purchase orders less than $5000”. This
example illustrates the tradeoff between the size of ob-
jects and the expressiveness of T: instead of separate per-
missions for each .doc file, there’s a single one for all of
them.

Compound principals. We discussed named or multi-
plexed principals in section 3.5. Here are some other ex-
amples of compound principals:
• Conjunctions: Alice and Bob. Both must make a

statement for the conjunction to make it. This is very
important for commercial security, where it’s called
“separation of duty” and is intended to make insider
fraud harder by forcing two insiders to collude. SPKI
has a generalization to threshold principals or “k out
of n” [8].

• Disjunctions: Alice or FlakyProgram. An object
must grant access to both for this principal to get it.
In Windows 2000 this is a “restricted token” that
makes it safer for Alice to run a flaky program, since
a process with this identity can only touch objects
that explicitly grant access to FlakyProgram, not all
the objects that Alice can access.

Each kind of compound principal has axioms that de-
fine who can speak for it. See [12] for other examples.

3.7 Auditing

As is typical for computer security, we have focused
on how end-to-end access control works and the wonder-
ful things you can do with it. An equally important prop-
erty, though, is that the chain of responsibility collects in
one place, and in an explicit form, all the evidence and
rules that govern an access control decision. Think of this
as a proof for the decision. If the guard records the proof
in a reasonably tamper-resistant log, an auditor can re-
view it later to establish accountability or to figure out
whether some unintended access was granted, and why.

Since detection and punishment is the primary instru-
ment of practical security, this is extremely important.

6.826—Principles of Computer Systems 2002

Handout 31. Computer Security in the Real World 12

4 Conclusion

We have outlined the basic ideas of computer security:
secrecy, integrity, and availability, implemented by access
control based on the gold standard of authentication, au-
thorization, and auditing. We discussed the reasons why it
doesn’t work very well in practice:
• Reliance on prevention rather than detection and pun-

ishment.
• Complexity in the code and especially in the setup of

security, which overwhelms users and administrators.
We gave some ways to reduce this complexity.

Then we explained how to do access control end-to-
end in a system with no central management, by building
a chain of responsibility based on the “speaks for” rela-
tion between principals. Each link in the chain is a delega-
tion of the form “Alice@Intel speaks for Atom.Mi-
crosoft about reads and writes of files named *.doc”.
The right principal (Microsoft for this example) has to
assert each link, using a secure channel. Every kind of
authentication and authorization information fits into this
framework: encrypted channels, user passwords, groups,
setuid programs, and ACL entries. The chain of respon-
sibility is a sound basis for logging and auditing access
control decisions.

Principals with hierarchical names are especially im-
portant. A parent can delegate for all of its children. Root-
ing name spaces in keys means no globally trusted root.

There are many ways to vary the basic scheme: how to
store and transmit bytes, how to collect and summarize
evidence for links, how to express sets of statements, and
what is the structure of compound principals.

References

1. Abadi and Needham, Prudent engineering practice for cryp-
tographic protocols. IEEE Trans. Software Engineering 22,
1 (Jan 1996), 2-15, dlib.computer.org/ts/books/ts1996/pdf/
e0006.pdf or gatekeeper.dec.com/pub/DEC/SRC/research-
reports/abstracts/src-rr-25.html

2. Anderson, Why cryptosystems fail. Comm. ACM 37, 11
(Nov. 1994), 32-40, www.acm.org/pubs/citations/ proceed-
ings/commsec/168588/p215-anderson

3. Bell and LaPadula, Secure computer systems. ESD-TR-73-
278 (Vol. I-III) (also Mitre TR-2547), Mitre Corporation,
Bedford, MA, April 1974

4. CERT Coordination Center, CERT advisory CA-2000-04
Love Letter Worm, www.cert.org/advisories/CA-2000-
04.html

5. Clark and Wilson, A comparison of commercial and mili-
tary computer security policies. IEEE Symp. Security and
Privacy (April 1987), 184-194

6. Denning, A lattice model of secure information flow.
Comm. ACM 19, 5 (May 1976), 236-243

7. Eastlake and Kaufman, Domain Name System Security
Extensions, Jan. 1997, Internet RFC 2065, www.faqs.org/
rfcs/rfc2065.html

8. Ellison et al., SPKI Certificate Theory, Oct. 1999, Internet
RFC 2693, www.faqs.org/rfcs/rfc2693.html

9. Gray, J., personal communication
10. Howell and Kotz, End-to-end authorization, 4th Usenix

Symp. Operating Systems Design and Implementation, San
Diego, Oct. 2000, www.usenix.org/publications/library/
proceedings/osdi00/howell.html

11. Lampson, Protection. ACM Operating Systems Rev. 8, 1
(Jan. 1974), 18-24, research.microsoft.com/lampson/09-
Protection/Abstract.html

12. Lampson et al, Authentication in distributed systems: The-
ory and practice. ACM Trans. Computer Systems 10, 4
(Nov. 1992), pp 265-310, www.acm.org/pubs/citations/
journals/tocs/1992-10-4/p265-lampson

13. Myers and Liskov, A decentralized model for information
flow control, Proc. 16th ACM Symp. Operating Systems
Principles, Saint-Malo, Oct. 1997, 129-142, www.acm.org/
pubs/citations/proceedings/ops/268998/p129-myers

14. Rivest, Shamir, and Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Comm. ACM
21, 2 (Feb., 1978), 120-126, theory.lcs.mit.edu/~rivest/
rsapaper.ps

15. National Research Council, Computers at Risk: Safe Com-
puting in the Information Age. National Academy Press,
Washington D.C., 1991, books.nap.edu/catalog/1581.html

16. National Research Council, Realizing the Potential of C4I:
Fundamental Challenges. National Academy Press, Wash-
ington D.C., 1999, books.nap.edu/catalog/6457.html

17. Saltzer, Protection and the control of information sharing in
Multics. Comm. ACM 17, 7 (July 1974), 388-402

18. Saltzer et al., End-to-end arguments in system design. ACM
Trans. Computer Systems 2, 4 (Nov. 1984), 277-288, web.
mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

19. Schneier, Secrets and Lies: Digital Security in a Networked
World, Wiley, 2000.

20. Schneier and Mudge, Cryptanalysis of Microsoft’s point-
to-point tunneling protocol. 5th ACM Conf. Computer and
Communications Security, San Francisco, 1998, 132-141,
www.acm.org/pubs/citations/proceedings/commsec/
288090/p132-schneier

21. Wobber et al., Authentication in the Taos operating system.
ACM Trans. Computer Systems 12, 1 (Feb. 1994), pp 3-32,
www.acm.org/pubs/citations/journals/tocs/1994-12-1/p3-
wobber

22. ZDNet, Stealing credit cards from babies. ZDNet News, 12
Jan. 2000, www.zdnet.com/zdnn/stories/news/0,4586,
2421377,00.html

23. ZDNet, Major online credit card theft exposed. ZDNet
News, 17 Mar. 2000, www.zdnet.com/zdnn/stories/news/0,
4586,2469820,00.html

