Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.826 Principles of Computer Systems

PROBLEM SET 5
Issued: Thursday, March 7, 2002 Due: Thursday, March 14, 2002

There are three problems in this problem set. Please turn in each problem on a separate sheet of paper
and write your name on every sheet.

Problem 1. Dining Gourmands!

An interesting variant of the dining philosophers problem has recently been discovered. Six gourmands are
seated around a table with a large hunk of roast beef in the middle. Forks and knives are arranged as shown
in figure. Each gourmand obeys the following algorithm:

1. Grab the closest knife,
2. grab the closest fork, —£ =
3. carve and devour a piece of beef, @

4. replace the knife and fork.

Six feasting gourmands.

a) Write SPEC code that models this problem.

b) Can deadlock ever occur in this situation? If so, provide an example trace of your SPEC code that
results in deadlock. If not, argue that your code will never result in a deadlock.

Problem 2. FIFO Queues

Consider Buffer specification on on page 16 of Handout 17.

MODULE Buffer[T] EXPORT Produce, Consume =

VAR b : SEQ T := {}

APROC Produce(t) = << b + := {t} >>

APROC Consume() -> T = VAR t | << b # {} => t := b.head; b := b.tail; RET t >>
END Buffer

a) Write an implementation of Buffer so that buffer has finite length and is represented by the array b:

MODULE BufferImpl[T] EXPORT Produce, Consume =
CONST N := 1024

TYPE BI = 0 .. N-1

VAR b : BI > T

1From Ward, Computation Structures



Make sure that you properly synchronize Produce and Consume actions so that BufferImpl implements
Buffer. Also make sure that your implementation does not deadlock: if there are both Consume and
Produce requests pending then the system should always make progress.

b) Prove that your BufferImpl implements Buffer.

c) Prove that system always makes progress if there are calls to both Produce and Consume initiated.

Problem 3. Locks and Data Structures

The following code is an idealization of a linked data structure starting at the node first.

TYPE Nodes = Int
CONST null:Nodes := 0
VAR first: Nodes;
next: Nodes -> Nodes
m: Nodes -> Mutex

PROC advance(n) =
t = next(n); m(n).rel; m(t).acq; RET t
PROC traverse(n: Nodes,i: Int) =

m(n) .acq;
DO (" (n=null) /\ (i > 0)) =>
n := advance(n);
i=1i-1;
0D;
RET n
PROC deleteOne(i: Int) =
VAR n0 := traverse(first,i) | ~(nO=null) =>

nl := next(n0);
~“(n1=null) =>
m(nl) .acq;
next(n0) := next(nl);
m(nl) .rel;
m(n0) .rel;

a) Draw an initial graph with three nodes reachable from first such that subsequent concurrent executions
of deleteOne procedure can cause system to deadlock. Explain why the deadlock occurs.

b) Draw an initial graph with three nodes reachable from first which guarantees that that there can be
no deadlocks in subsequent concurrent executions of deleteOne. Explain why deadlocks cannot occur.

c) Write in Spec an invariant on first and next that guarantees that deadlocks cannot occur.

d) Assume that the invariant from c¢) holds. The intended semantics of deleteOne is to implement a
removal of one element from a set of nodes reachable from first. Does the following property (P) hold:

(P): When k instances of deleteOne procedure finish concurrent execution on a long list with ¢ arguments
of procedures less than half of the list length (such that all guards that test for null succeed) the result is
always removal of k£ elements from the list.

If (P) holds, argue informally why it holds. If (P) does not hold show an example why it does not
hold and show how to modify the code so that it holds. Check whether deadlocks can occur in the new
implementation.



