Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.826 Principles of Computer Systems

PROBLEM SET 1 SOLUTIONS

Problem 1: Matrix Multiplication

a) Each element $\mathrm{mc}(\mathrm{i}, \mathrm{j})$ of the matrix is equal to a sum of products. We calculate the sum by generating the sequence of the elements in the sum and then folding the elements of the sequence using the + : construct.

```
FUNC isMatMul(ma: Matrix, mb: Matrix, mc: Matrix) -> Bool =
<< RET (ALL i: Range | ALL j: Range |
    mc(i,j) = + : { k :IN 0 .. n-1 | | ma(i,k)*mb(k,j) }) >>
```

b) The following implementation corresponds to an implementation of matrix multiplication in a conventional imperative language.

```
APROC MatMul(ma: Matrix, mb: Matrix) -> Matrix =
<< VAR mc: Matrix |
    VAR i: Int := 0 |
    DO i < n =>
        VAR j: Int := 0 |
        DO j < n =>
            VAR sum: Int := 0 |
            VAR k: Int := 0 |
            DO k < n =>
                    sum := sum + ma(i,k)*mb(k,j);
                    k := k+1
            OD;
            mc(i,j) := sum;
            j := j + 1
        OD;
        i := i+1
    OD;
    RET mc
>>
```


Problem 2: Distribution of Prime Numbers

a) The following Spec function closely follows the mathematical definitions of prime numbers. (Operator // denotes the remainder in division of integers.)

```
FUNC isPrime(p: Int) -> Bool =
    (p > 1) /\
    {n:Int | n > 0 /\ p // n = 0 } = {1, p}
FUNC isPrimeBetween(p: Int, n: Int) -> Bool =
    isPrime(p) \ n < p ハ p< 2*n
```

b) This is a simple-minded implementation of the specification in the previous part. The atomic procedure primeBetween does a linear search for prime numbers from $n+1$ to $2 n-1$ and returns the least number that is prime. The primality test is implemented in the isPrimeImpl atomic procedure by a linear search that attempts to find the smallest factor k of p where $2<k \leq \sqrt{p}$.

```
APROC isPrimeImpl(p: Int) -> Bool =
<< VAR k: Int := 2 |
    DO (k*k <= p) =>
        IF (p // k = 0) => RET false [*] SKIP FI;
        k := k+1
    OD;
    RET true
>>
APROC primeBetween(n: Int) -> Int =
<< VAR x: Int := n+1 |
    DO x < 2*n =>
        IF isPrimeImpl(x) => RET x
        [*] x := x+1
        FI
    OD
>>
```

c) For example, let $n=7$ and $p=13$. Procedure primeBetween returns always 11, never 13 .

Problem 3. Shortest Path

a) The shortest path predicate considers the set of all paths from n_{1} to n_{2} and then ensures that path has the minimum length.

```
FUNC isPathFromTo(g: Graph[Node].G,
    n1: Node, n2: Node,
    path: SEQ Node) -> Bool =
    g.paths(path) /\
    path.head=n1 /\ path.last=n2
FUNC isShortestPath(g: Graph[Node].G,
    n1: Node, n2: Node,
    path: SEQ Node) -> Bool =
isPathFromTo(g,n1,n2,path) /\
path.size = { path2: SEQ Node | isPathFromTo(g,n1,n2,path2)
                            | path2.size }.min
```

b) The implementation performs a breadth-first search in the graph finding the shortest distance to every reachable node from the node n 1 . The breadth-first search is implemented using a queue represented as a list of nodes queue. After reaching the target node n2, the path is reconstructed using the atomic procedure recoverPath. The reconstruction traverses the path backwards using the fact that dist (path (i+1)) $=$ dist (path(i)) +1 on the shortest path.

```
APROC recoverPath(g : Graph[Node].G,
    dist : Node -> IN 0 .. n+1,
    n2 : Node) -> SEQ Node =
<< IF dist(n2)=0 => RET {n2}
    [*] VAR nd: Node := { nd2: Node |
        g(nd2,n2) /\ dist(n2)=dist(nd2)+1 }.min |
```

```
        RET recoverPath(g,dist,nd) + {nd}
    FI
>>
APROC shortestPath(g: Graph[Node].G,
                            n1: Node, n2: Node) -> SEQ Node =
<< VAR queue: SEQ Node := { n1 } |
    VAR dist: Node -> IN 0 .. n+1 := (\ nd:Node | n+1 ) |
    dist(n1) := 0;
    DO queue.size > 0 =>
        VAR first: Node := queue.head |
        IF first=n2 => RET recoverPath(g,dist,n2)
        [*] queue := queue.tail;
            VAR succ: SEQ Node :=
                { nd :IN 1 .. n | g(first,nd) /\ dist(nd) = n+1 } |
            queue := queue + succ;
            DO succ.size > 0 =>
                        dist(succ.head) := dist(first) + 1;
                succ := succ.tail;
            OD
        FI
    OD;
    % There is no path from n1 to n2. Procedure fails.
    false => SKIP
>>
```

c) One of the examples is the following. Let $n=4, \mathrm{n} 1=1, \mathrm{n} 2=4$, and let the graph g be

$$
\mathrm{g}=\{(1,2),(1,3),(2,4),(3,4)\}
$$

The path path $=[1,3,4]$ satisfies isShortestPath ($\mathrm{n} 1, \mathrm{n} 2$, path) but the result of shortestPath ($\mathrm{g}, \mathrm{n} 1, \mathrm{n} 2$) is always the path $[1,2,4]$.

