
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.826 Principles of Computer Systems

PROBLEM SET 3 SOLUTIONS

Problem 1. Turtle Robot

a)

MODULE TurtleImpl EXPORT Move, Position

TYPE Coord = [x: Int, y: Int]
Path = SEQ Coord

VAR pos: Coord := Coord(x:=0, y:=0)

APROC Move(dx: Int, dy: Int) =
<< pos.x := pos.x + dx;

pos.y := pos.y + dy; >>

FUNC Position() -> Cord = RET pos;

b) We prove that TurtleImpl implements Turtle using an abstraction relation AR. The relation relates
each concrete state to the set of abstract states.

FUNC sumdxAR(p) = + : (p * (\ coord | coord.x))
FUNC sumdyAR(p) = + : (p * (\ coord | coord.y))

FUNC AR(pos, p) -> Bool =
(pos = Coord(x:=sumdxAR(p), y:=sumdyAR(p)))

Base Case. For the initial state Coord(0,0) of TurtleImpl there exists an initial state of Turtle
such that AR(Coord(0,0),{ }) because the sum of empty sequence of elements is zero. (There are other
sequences related to Coord(0,0) but all we need to show that at least one of them is the initial state of
Turtle.)

Induction Step. Let pos=Coord(x,y) be any state in the implementation and let p be any sequence in
the specification such that AR(pos,p). This means that

Coord(x,y) = Coord(sumdxAR(p), sumdyAR(p))

A step in the implementation can be either Move(dx,dy) or Position()->Coord(x,y).
Consider Move(dx,dy). The resulting concrete state is pos’ = Coord(x+dx, y+dy). The same transition

Move(dx,dy) in the specification leads to the state p’ = p + Coord(dx,dy) , so we need to show that
AR(pos’, p’), i.e.

Coord(x+dx, y+dy) = Coord(sumdxAR(p + {Coord(dx,dy)}),
sumdyAR(p + {Coord(dx,dy)}))

The condition reduces to:

x+dx = sumdxAR(p + { Coord(dx,dy) })

and

1

y+dy = sumdyAR(p + { Coord(dx,dy) })

Consider the first condition (the second one is analogous). Unfolding the definition of sumdxAR yields:

x+dx = + : ((p + { Coord(dx,dy) }) * (\ coord | coord.x))

Next we use the property of sequences:

(s1 + s2) ∗ f = (s1 ∗ f) + (s2 ∗ f)

to reduce our problem to:

+ : ((p * (\ coord | coord.x) + { dx }))

which by folding of sumdxAR is

x+dx = sumdxAR(p) + dx

and is true by the hypothesis.
Next consider the step Position()->Coord(x,y). The step in the specification is

Position()->Coord(sumdx(),sumdy())

sumdx() is sumdxAR(p), and sumdxAR(p)=x by the abstraction relation. For the analogous reason we have
sumdyAR(p)=y. Hence the two Position actions return the same values. The state is unchanged in both
cases so the implementation and specification state still remain related via AR.

This completes the proof.

Problem 2. Lossy Memory

The basic idea of the solution is the following. To avoid expanding the set of traces, the implementation
must write back a dirty location on the first read to that location. This way we avoid traces like this one:

action: c(a1) um(a1)

Write(a1,v1) v1 *
[write-back(a1)] v1 v1
Write(a1,v2) v2 v1
Read(a1)->v2 v2 v1
Read(a2)->...
[evict(a1)] - v1

Read(a2)->v3
Read(a1)->...
[load(a1)] v1 v1

Read(a1)->v1

Such trace is not allowed by the specification (because it has two successive reads that return different
results without any writes between them). However, this trace could be generated if we implemented the
usual write-back cache on top of LMemory.

a)

MODULE LWBCache [A, V] EXPORT Read, Write =

TYPE C = A -> V % cache type
D = A -> Bool % dirty bit type
M = A -> V % memory type

2

CONST Csize: Int := 1024

VAR c := InitC() % cache
d := D{* -> true} % dirty bit
um:= InitM() % underlying memory

APROC InitC() -> C = << VAR c’ | c’.dom.size = Csize => RET c’ >>
APROC InitM() -> M = << VAR m’ | (ALL a | m’! a) => RET m’ >>

APROC Read(a) -> V = <<
IF c!a =>

IF d(a) =>
% Write and read it back
MemWrite(a, c(a));
c(a) := um(a);

[*] SKIP
FI

[*]
FlushOne();
c(a) := um(a);
d(a) := false

FI;
RET c(a); >>

APROC Write(a, v) = <<
IF ~c!a => FlushOne() [*] SKIP FI;
c(a) := v;
d(a) := true; >>

APROC FlushOne() = << VAR a | c!a => Evict(a) >>

APROC Evict(a) = <<
IF d(a) => MemWrite(a,c(a))
[*] SKIP
FI;
d(a) := false;
c(a) := undefined >>

APROC MemWrite(a,v) = <<
BEGIN um(a) := v [] SKIP END;
d(a) := false; % the rest of the code will enforce this is ok

>>

END LWBCache

This implementation is in principle a bit better than write-through because successive writes without inter-
vening reads need not go to memory.

b) This solution consists of three parts. The first part proves directly the trace set inclusion using an
ad-hoc technique. The second part uses the result of the first part to illustrate the notion of a canonical
automaton that shows that using first one forward and then one backward simulation relation is always
enough to show trace set inclusion. The third part is a completely independent solution to the problem;
it uses history variables to show trace inclusion with first backward simulation relation and then forward
simulation relation.

3

Proof 1. Direct Proof. This proof proceeds by direct reasoning about the traces generated by the
specification and traces generated by the implementation. For the specification LMemory we define the
function nextAction(t) which computes the set of actions of LMemory that can extend the trace t:

nextAction(t) = { a | (t + {a}) IN traces(LMemory) }

Next we describe how to compute nextAction. For every t, the set nextAction(t) consists of all possible
write operations and only some read operations. To see which read operations can extend a given trace
t, consider the sequence of all reads and writes to address a in t. Let the values written and read in this
sequence be:

. . . r->v1, w(v2), . . . , r->vk, w(vk1), . . . , w(wkn)

In other words, let the last read operation of location a read the value vk and let all operations after that
read be writes to a writing values vk1,. . . ,vkn. Then the result of a read operation is any element of the set

{vk, vk1, . . . , vkn}

This is because the value of location at the last read was vk, and it can change only due to writes to
that location. Conversely, for every value vki there exists an execution where write of vki succeeds and all
subsequent writes in this sequence fail.

We have in fact used the characterization of traces to rule out some inappropriate caching policies for
a) which would generate a larger set of traces. In this part we use the characterization to show that
the implementation in in a) implements the LMemory specification. We show that all traces generated by
LWBCache satisfy the characterization. This means that we need to show that a read of the address a returns
either the result of the last read of a or the value written to a by some write to a that follows the last read.
This invariant is affected by writes to the cache and memory, because they change the state of LWBCache,
and it is also affected by the completion of read and write actions, because this changes the trace of reads
and writes performed.

We need to show the following three invariants:

1. The value c(a) is either undefined or it is the result of the last read of a or the value written to a
by some write to a that follows the last read (or any value if there are no previous accesses to that
address)

2. The value m(a) is also either the result of last read of a or the value written to a by some write to a
that follows the last read (or any value if there are no previous accesses to that address)

3. If valid an entry in the cache has the dirty flag false, then it’s value is equal to the value of memory.
Formally, if m is the value of underlying memory,

c!a /\ d(a) ==> d(a)=m(a)

We show that the conjunction of these three invariants is satisfied using induction on the trace. The
conjunction is clearly satisfied in the initial state: all three invariants trivially hold. We show that the
invariants are preserved by both read and write actions.

Consider a write action. Write might execute FlushOne. FlushOne does not violate the first two invari-
ants, because the requirement for both c and m values is the same. It also does not violate the third invariant
because c!a becomes false. Statement c(a):=v does not violate the invariant because after the Write action
is performed v will be one of the permissible values to be stored in both cache and memory. Setting d(a) to
true clearly does not violate the third invariant.

Now consider a read action. Again FlushOne will not violate any invariant. Next, because of RET c(a)
the invariant for c(a) will be satisfied by definition. We just need to show that after the procedure executed
the content of the memory is equal to the content of the cache. In the branch executed after d(a) this is
clear because the value of cache is set to the result of the read of memory. In the case when d(a) does not
hold, the equality of cache and memory follows from the third invariant.

Now that we have shown the invariants, the condition that Read returns one of the values {vk, vk1, . . . , vkn}
follows from the first invariant and the fact that Read always the value c(a) from the cache.

Note. The proof does not rely on the code

4

IF d(a) => MemWrite(a,c(a))
[*] SKIP
FI;

in FlushOne. Indeed, we could omit this part and retain the same set of traces, but the implementation
would be less useful because it would be even more lossy than the original memory (the set of traces would
be the same, but the statistical distribution of traces would be worse). Similarly, one could write back more
frequently, but that is likely to degrade the performance of the system.

Proof 2. Simulation Relations via Canonical Automaton. Observe that nextAction com-
pletely characterizes the set of traces of LMemory. We could use nextAction to build a state machine
LMemoryCanonical whose state is the trace of previous execution, and which makes all choices by invoking
nextAction on its state and picking one of the transitions that are permitted by nextAction.

MODULE LWBCache [A, V] EXPORT Read, Write =

TYPE ReadA = [a: A, res:V]
WriteA = [a: A, v: V]
Action = ReadA \/ WriteA
Trace = SEQ Action

VAR t: Trace;

FUNC nextAction(t: Trace) -> SET Action = % see the text

APROC Read(a) -> V = <<
VAR act: ReadA, v: V | (act = ReadA(a,v) /\

act IN nextAction(t)) =>
t := t + { act };
RET v >>

APROC Write(a, v) = <<
WriteA(a,v) IN nextAction(t) =>
t := t + { WriteA(a,v) }

>>

END LWBCache

The LMemoryCanonical has several nice properties:

1. Its set of traces is exactly the set of traces of the original LMemory, this is simply a part of the definition
of nextAction.

2. It is deterministic, because given a trace t and an action a it has transition only to the state t + a.

3. Its state is just the history i.e. the trace so far. This means that every possible implementation Impl
of LMemoryCanonical can be shown to implement LMemoryCanonical by a forward simulation relation
which assigns to every state of Impl the set of all traces that can lead to Impl. Intuitive explanation
why we can always use forward simulation relation is that LMemoryCanonical never makes choices
before showing these choices to the environment.

4. Again because the state of the state of LMemoryCanonical is just the trace, the condition for backward
simulation relation can be used to show that LMemoryCanonical implements LMemory, and this will
work in fairly general case.

It is clear that the construction just described is by no means specific to LMemory. In principle, we can
construct a canonical machine for every specification. LMemory also shows that the description of such

5

canonical machine may be more complicated than the original specification. We can say that LMemory uses
the current values of its locations as a prophecy for the results of future read operations, and we see that
making a prophecy can result in a simpler description.

The reason why computing LMemoryCanonical makes sense in our example is that we were able to find
relatively succinct description of nextAction that refers only to some actions in the trace. In the worst
case, the LMemoryCanonical machine might have nothing better to do than to run the original specification
machine on the entire trace. Given the definition of a generic forward simulation relation to the canonical
machine, this would be no better than proving that traces of Impl are included in the traces of LMemory by
induction on the trace length.

As a completeness result we argued that both forward and backward simulation relations are needed
in general. In our case the backward simulation relation is hidden as part of reasoning when computing
nextAction. When computing nextAction we need to show that all actions in nextAction(t) can be
generated by the LMemory. This cannot be done using forward simulation. So when reasoning about read
actions of LMemory we had to argue that for every choice of the values returned in a read action of nextAction,
it was possible to find an execution of LMemory that has the same read action, and in fact we had to refer
to the choices that LMemory had to make in earlier steps. The crucial property that prevents the use of
forward simulation relation is that for different read actions of LMemoryCanonical from the same state, we
must have different states of LMemory that generate those actions.

From theses remarks it should follow how to make the proof using a forward simulation relation from
LWBCache to LMemoryCanonical and a backward simulation relation from LMemoryCanonical to LMemory.

Proof 3. Prophecy Variables. In previous part we argued that the proof can be performed using
forward and then backward simulation relation with the canonical automaton as the intermediate automaton
and we relied on characterization of sets of traces of the specification and direct reasoning about the traces.
Such characterizations might be hard to obtain in general. In this part we show a proof that uses prophecy
variables to construct the intermediate automaton.

We extend LWBCache with a prophecy variable p which is used to determine if the write back to the
memory should succeed or not.

MODULE LWBCacheP [A, V] EXPORT Read, Write =

TYPE C = A -> V % cache type
D = A -> Bool % dirty bit type
M = A -> V % memory type
P = A -> Bool % PROPHECY type

CONST Csize: Int := 1024

VAR c := InitC() % cache
d := D{* -> true} % dirty bit
um:= InitM() % underlying memory
p := InitP() % PROPHECY variable

APROC InitC() -> C = << VAR c’ | c’.dom.size = Csize => RET c’ >>
APROC InitM() -> M = << VAR m’ | (ALL a | m’! a) => RET m’ >>
APROC InitP() -> P = << VAR p’ | (ALL a | p’! a) => RET p’ >>

APROC Read(a) -> V = <<
IF c!a =>

IF d(a) =>
% Write and read it back
MemWrite(a, c(a));
c(a) := um(a);

[*] SKIP
FI

6

[*]
FlushOne();
c(a) := um(a);
d(a) := false;
p(a) := false;

FI;
RET c(a); >>

APROC Write(a, v) = <<
IF ~c!a => FlushOne() [*] SKIP FI;
IF ~p(a) => % fails if condition false
c(a) := v;
d(a) := true;
BEGIN p(a) := true [] p(a) := false END; % set PROPHECY

FI
>>

APROC FlushOne() = << VAR a | c!a => Evict(a) >>

APROC Evict(a) = <<
IF d(a) => MemWrite(a,c(a))
[*] SKIP
FI;
d(a) := false;
p(a) := false;
c(a) := undefined >>

APROC MemWrite(a,v) = <<
BEGIN p(a) => um(a) := v [*] SKIP END;
d(a) := false; % the rest of the code will enforce this is ok
p(a) := false; % destroy prophecy info

>>

END LWBCacheP

We immediately observe that, like LWBCache, module LWBCacheP correctly maintains the dirty bit. For-
mally, it preserves the invariant:

INVARIANT DirtyOK(c,um,d) -> Bool =
ALL a | ~d(a) /\ c!a ==> c(a)=um(a)

The invariant DirtyOK holds in the initial states because all dirty bits are initially true. To see that it is
preserved in every step it is sufficient to check cases when d(a) is changed to false and cases when c(a)
and um(a) are changed to they might become different. The first change occurs in the body of Read, but
is always accompanied by setting cache to the value of memory. It also occurs when calling Evict(a) but
there it is accompanied by making c!a false. The second change occurs only in Write and is accompanied
by setting d(a) to false. This shows that invariant is maintained in every step.

Next we show that traces(LWBCache) is a subset of traces(LWBCacheP) using a backward simulation
relation from LWBCache to LWBCacheP. We use a special kind of backward simulation relation that is suitable
for use with history variables. It assigns a state t of LWBCache with a state (t, p) of LWBCacheP.

We define the abstraction relation by stating the condition between t = (c, um, d) and p such that t is
related to (t, p) iff BR(t, p) holds.

BACKWARD RELATION BR(c,um,d,p) -> Bool =
ALL a | ~d(a) => ~p(a)

7

The abstraction relation assigns p(a)=false to a clean location a and assigns both true and false to a
dirty location.

The first condition for a backward relation is that for each state of LWBCache there exists at least one
related state of LWBCacheP. This holds because to every state we can at least assign state which has the
prophecy for all locations set to false.

The next condition is that for every initial state of LWBCache, states related to it are initial states of
LWBCacheP. This holds because the function InitP initializes prophecy variables with all possible values.

Finally we need to show the inductive step: for every state t of LWBCache, for every step t′ π t of LWBCache,
and for every state (t, p) such that BR(t, p), there exists a state s′ and a step s′ π s. We need to show this
for steps generated by Read and Write actions.

There are three cases for the Read action depending on the preconditions satisfied. If c!a /\ ~d(a),
the state is unchanged and these steps are clearly present in both LWBCache and LWBCacheP so we need not
worry about them.

Next consider Read steps taking branch with condition c!a and then d(a). Let the transition in LWBCache
be t′ π t. Then t has d(a)=false so it is mapped by BR to the states (t, p) which have p(a)=false. Take
any such state (t, p). If the transition was generated with MemWrite succeeding in writing the value, then in
LWBCacheP there exists a corresponding transition with p(a)=false initially. If the transition was generated
with MemWrite failing, the corresponding transition in LWBCacheP has p(a)=true initially. Both states (t′, p′)
that are the source of these transitions are related to t′ because d(a)=true in t′, so BR relates t′ to both of
them.

As the last possibility for Read consider the steps t′ π t where ~c!a in t′. These steps act the same on a
location in both automata, but invoke Evict(a’) on some location a’ different from a. Evict(a’) in turn
invokes MemWrite. Similarly to the previous case, we observe that d(a’)=false in t, so p(a’)=false in
(t, p). Two possible branches in MemWrite correspond to two possible states, one with p(a’)=true and one
with p(a’)=false. Again both of these are related to t′ because d(a)=true whenever MemWrite is executed.

It remains to consider the Write actions t′ π t. Each Write invokes FlushOne(). For this part of the
transition the proof is the same as for the last case of Read, because the precondition and postcondition for
location evicted are exactly the same as in the Read case. It remains to handle the fact that Write(a,v) in
LWBCacheP executes only when p(a)=false. Because d(a)=true in t, there are two states (t, p1) and (t, p2)
related to t, with p1(a) = true and p2(a) = false. But we can always pick a corresponding state (t, p′)
where p′(a) = false which will be related to t′ regardless of the value of d(a) in t′. From this state the write
step is enabled and goes into both (t, p1) and (t, p2) so both (t, p1) and (t, p2) have a write in LWBCacheP
corresponding to the write in LWBCache.

This completes the proof that BR is a backward simulation relation from LWBCache to LWBCacheP, which
implies that traces of LWBCache are a subset of traces of LWBCache.

In the last phase we prove that there exists an abstraction function from LWBCacheP to LMemory. We
define the abstraction function as follows.

ABSTRACTION FUNCTION AF(c,um,d,p) -> M =
RET (\ a | c!a /\ p(a) => RET c(a)

[*] RET um(a))

We call the result of the abstraction function “abstract memory”, this is just the memory in the LMemory
module. We use the term underlying memory to refer to um used in the implementation of LWBCacheP.

An image of every initial state of LWBCacheP is an initial state of LMemory because all states are initial
in LMemory.

Observe first that Evict(a) corresponds to no change of the abstract state under the abstraction function.
Clearly locations other than a are unchanged by Evict(a). The abstract memory after Evict(a) is equal to
um(a) because c(a)=undefined, so we need to show that AF would return um(a) before Evict(a) as well.
If d(a) is false, then c(a)=um(a) before Evict so regardless of the case that applies abstract memory has
value equal to um(a). If p(a) was false initially, then abstraction function initially had the value of um(a)
as well. If p(a) was true initially, then since Evict(a) is called only when c!a, the first case applied, so
abstract memory was equal to the cache in the state before. But if p(a) then the content of the cache was
copied to the memory, so um(a) is equal to the content of the cache before Evict(a).

8

Next we show that Read and Write in LWBCacheP correspond to Read and Write in LMemory.
There are two cases in the first branch of Read (when c!a). If p(a) was true, then at the end the

underlying memory gets the value of the cache, and the abstract memory was initially defined in terms of
cache, so abstract memory before and after are equal. If p(a) was false, then write back failed, so both cache
and the underlying memory get the value of the underlying memory. But in this case the abstract memory
before Read was defined in terms of the underlying memory, so it is still unchanged. In both cases Read
returns the result in the cache, and in both cases the result corresponds to the value of abstract memory. In
the second branch of Read when ~c!a, abstract memory is defined in terms of the underlying memory, the
value in cache is copied from the underlying memory and the value of underlying memory is thus returned
as a result. FlushOne is called but, as argued before, it does not change the abstract memory. We conclude
that in all cases steps generated by LWBCacheP.Read correspond to steps generated by LMemory.Read.

Next consider Write. Again, calling FlushOne does not change the abstract memory. Due to the ~p(a)
guard, whenever Write completes we know that the abstract memory was defined in terms of the underlying
memory before Write. Given the definition of LMemory.Write, the resulting value of abstract memory must
be either previous value of underlying memory or v. Because the value of cache is set to v, this is indeed the
case.

From this it follows that traces of LWBCacheP are subset of the traces of LMemory. Previously we have
shown that traces of LWBCache are a subset of traces of traces of LWBCacheP so LWBCache implements LMemory.

9

