6.826—Principles of Computer Systems 2002

17. Formal Concurrency

In this handout we take a more formal view of concurrency than in handout 14 on practical
concurrency. Our goal isto be able to prove that a general concurrent program implements a

Spec.

We begin with afairly precise account of the non-atomic semantics of Spec, though our
treatment is less formal than the one for atomic semanticsin handout 9. Next we explain the
general method for making large atomic actions out of small ones (easy concurrency) and prove
its correctness. We continue with a number of examples of concurrency, both easy and hard:
mutexes, condition variables, read-write locks, buffers, and non-atomic clocks. Finally, we give
fairly careful proofs of correctness for some of the examples.

Non-atomic semantics of Spec

We have already seen that a Spec module is away of defining an automaton, or state machine,
with transitions corresponding to the invocations of external atomic procedures. Thisview is
sufficient if we only have functions and atomic procedures, but when we consider concurrency
we need to extend it to include internal transitions. To properly model crashes, we introduced the
idea of atomic commands that may not be interrupted. We did thisinformally, however, and
since acrash “kills’ any active procedure, we did not have to describe the possible behaviors
when two or more procedures are invoked and running concurrently. This section describes the
concurrent semantics of Spec.

The most general way to describe a concurrent system is as a collection of independent atomic
actions that share a collection of variables. If theactionsare A1, ., An then the entire system
isjust the‘or’ of all theseactions: A1 [] [1 An.Ingeneral only some of the actionswill be
enabled, but for each transition the system non-deterministically chooses an action to execute
from all the enabled actions. Thus non-determinism encompasses concurrency.

Usually, however, wefind it convenient to carry over into the concurrent world as much of the
framework of sequential computing as possible. To this end, we model the computation as a set
of threads (also called ‘tasks' or ‘processes’), each of which executes a sequence of atomic
actions; we denote threads by variablesh, h' , etc. To define its sequence, each thread has a state
variable called its ‘ program counter’ $pc, and each of its actions hastheform (h. $pc = o) =>
¢, so that ¢ can only execute when h’s program counter equals .. Different actions have different
values for o, so that at most one action of athread is enabled at atime. Each action advances the
program counter with an assignment of theformh. $pc : = g, thus enabling the thread’ s next
action.

It'simportant to understand there is nothing truly fundamental about threads, that is, about
organizing the state transitions into sets such that at most one action is enabled in each set. We
do so because we can then carry forward much of what we know about sequential computing
into the concurrent world. In fact, we want to achieve our performance goals with aslittle
concurrency as possible, since concurrency is confusing and error-prone.

Handout 17. Formal Concurrency 1

6.826—Principles of Computer Systems

We now explain how to use this view to understand the non-atomic semantics of Spec.

Non-atomic commands and threads

Unlike an atomic command, a non-atomic command cannot be described simply as arelation
between states and outcomes, that is, an atomic transition. The simple example, given in handout
14, of anon-atomic assignment x : = x + 1 executed by two threads should make this clear: the
outcome can increase x by 1 or 2, depending on the interleaving of the transitions in the two
threads. Rather, a non-atomic command corresponds to a sequence of atomic transitions, which
may beinterleaved with the sequences of other commands executing concurrently. To describe
thisinterleaving, we use labels and program counters. We also need to distinguish the various
threads of concurrent computation.

Intuitively, threads represent sequential processes. Roughly speaking, each point in the program
between two atomic commands is assigned a label. Each thread’ s program counter $pc takesa
label asits value,! indicating where that thread is in the program, that is, what command it is
going to execute next.

Spec threads are created by top level THREAD declarations in amodule. They make al possible
concurrency explicit at the top level of each module. A thread is syntactically much like a
procedure, but instead of being invoked by aclient or by another procedure, it is automatically
invoked in paralld initially, for every possible value of its arguments.2 When it executes a RET
(or reaches the end of its body), a thread simply makes no more transitions. However, threads are
often written to loop indefinitely.

Spec does not have COBEG N or FORK constructs, as many programming languages do, these are
considerably more difficult to define precisely, since they are tangled up with the control
structure of the program. Also, because one Spec thread starts up for every possible argument of
the THREAD declaration, they tend to be more convenient for most of the specs and codein this
course. To keep the thread from doing anything until a certain point in the computation (or at
all), useaninitial guard for the entire body asin the Si eve example below.

A thread is named by the name in the declaration and the argument values. Thus, the threads
declared by THREAD Foo(bool) = ..., for example, would be named Foo(t rue) and

Foo(fal se) Thenames of local variables are qualified by both the name of the thread that isthe
root of the call stack, and by the name of the procedure invoked.3 In other words, each procedure
in each thread hasits own set of local variables. So for example, thelocal variablep inthe Si eve
example appearsin the state as Si eve(0) . p, Sieve(1).p,If therewereaPROCFoo
called by si eve with alocal variable baz, the state might be defined at Si eve(0) . Foo. baz,

Si eve(1). Foo. baz,Thepseudo-namess$a, $x, and $pc are qualified only by the thread.

1 The variables declared by a program are not allowed to have labels as their values, hence thereisno Label type.

2 This differs from the threadsin Java, in Modula 3, or in many C implementations. These languages start a
computation with one thread and allow it to create and destroy threads dynamically using f or k and j oi n
operations.

3 This works for non-recursive procedures. To accommodate recursive procedures, the state must involve something
equivalent to a stack. Probably the simplest solution is to augment the state space by tacking on the nesting depth of
the procedure to all the names and program counter val ues defined above. For example, h + ". P. v" becomesh +
".P.v" + d. enc, for every positive integer d. An invocation transition at depth d goesto depth d+1.

Handout 17. Formal Concurrency

2002

6.826—Principles of Computer Systems 2002

Each atomic command defines atransition, just as in the sequential semantics. However, now a
transition is enabled by the program counter value. That is, atransition can only occur if the
program counter of some thread equals the label before the command, and the transition sets the
program counter of that thread to the label after the command. If the command at the label in the
program counter fails (for example, because it has a guard that tests for a buffer to be non-empty,
and the buffer is empty in the current state), the thread is“ stuck” and does not make any
transitions. However, it may become unstuck later, because of the transitions of some other
threads. Thus, a command failing does not necessarily (or even usually) mean that the thread
fails.

We won't give the non-atomic semantics precisely here as we did for the atomic semanticsin
handout 9, sinceit involves a number of fussy details that don’t add much insight. Also, it's
somewhat arbitrary. Y ou can always get exactly the atomicity you want by adding local variables
and semicolons to increase the number of atomic transitions (see the examples below), or
<<...>> bracketsto decreaseit.

It'simportant, however, to understand the basic ideas.

e Each atomic command in athread or procedure defines a transition (atomic procedures and
functions are taken care of by the atomic semantics).

» The program counters enable transitions: atransition can only occur if the program counter
for some thread equals the label before the command, and the transition sets that program
counter to the label after the command.

Thus the state of the system is the global state plus the state of all the threads. The state of a
thread isits $pc, $a, and $x values, thelocal variables of the thread, and the local variables of
each procedure that has been called by the thread and has not yet returned.

Suppose the label before the command ¢ is o and the one after the command is g, and the
transition function defined by Mc(c) inhandout 9is(\ s, o | rel). Thenif c isinthreadh,
itstransition function is

(\'s, o s(h+".%$pc") = o /\ o(h+".$pc) = p /\ rel")
If c isin procedureP, that is, ¢ can execute for any thread whose program counter has reached a,
itstransition function is

(\ s, o| (EXISTS h: Thread |

s(h+".P.$pc") = o /\ o(h+".P.$pc) =B /\ rel'))

Hererel ' isrel with each referencetoalocal variablev changedtoh + ".v* orh + ".P.v".

Labelsin Spec

What are the atomic transitions in a Spec program? In other words, where do we put the labels?
The basic ideaisto build in aslittle atomicity as possible (since you can always put in what you
need with <<. . . >>). However, expression evaluation must be atomic, or reasoning about
expressions would be a mess. To use Spec to model code in which expression evaluation is not
atomic (C code, for example), you must add temporary variables. Thusx := a + b + ¢
becomes

VARt | <<t :=a>; <<t =t +b>>; <<x:=t +c >
For areal-life example of this, see Mit exI npl . acq below.

Handout 17. Formal Concurrency 3

6.826—Principles of Computer Systems 2002

The simple commands, SKI P, HAVOC, RET, and RAI SE, are atomic, asis any command in
atomicity brackets <<. . . >>.

For an invocation, thereis atransition to eval uate the argument and set the $a variable, and one
to send contral to the start of the body. The RET command'’ s transition sets $a and |eaves control
at the end of the body. The next transition leaves control after the invocation. So every procedure
invocation has at least four transitions: evaluate the argument and set $a, send control to the
body, do the RET and set $a, and return control from the body. The reason for these fussy details
isto ensure that the invocation of an external procedure has start and end transitions that do not
change any other state. These are the transitions that appear in the trace and therefore must be
identical in both the spec and the code that implementsit.

Minimizing atomicity means that an assignment is broken into separate transitions, one to
evaluate the right hand side and one to change the left hand variable. This also has the advantage
of consistency with the case where the right hand side is a non-atomic procedure invocation.
Each transition happens atomically, even if the variableis“big”. Thusx : = exp is

VARt | <<t (= exp >>; << x :=t >
andx := p(y) is

p(y); << x := $a >>

Sincethere are no additional labelsfor thec1 [] c¢2 command, theinitial transition of the
compound command is enabled exactly when theinitial transition of either of the subcommands
isenabled (or if they both are). Thus, the choice is made based only on the first transition. After
that, the thread may get stuck in one branch (though, of course, some other thread might unstick
it later). Thesameistruefor [*], except that the initial transitionfor c1 [*] c2 can only bethe
initial transition of c2 if theinitial transition of c1 is not enabled. And the sameis also true for
VAR. ThevaluechosenforidinVAR id | ¢ mustallow c to make at least one transition; after
that the thread might get stuck.

DO has alabel, but oD does not introduce any additional |abels. The starting and ending program
counter valuefor c inDo ¢ abisthelabd on the Do. Thus, theinitia transition of ¢ is enabled
when the program counter isthe label on the Do, and the last transition sets the program counter
back to that label. When ¢ fails, the program counter is set to the label following the oD.

Tosumup, thereé salabel oneach: =, =>, ‘; ’, EXCEPT, and Dooutside of <<. .. >>. Thereis
never any labd inside atomicity brackets. It's convenient to write the labels in brackets after
these symbols.

There salso alabel at the start of a procedure, which we write on the = of the declaration, and a
label at the end. Thereis onelabel for a procedure invocation, after the argument is eval uated;
wewriteit just beforethe closing *)’. After the invocation is complete, the PC goesto the next
label after the invocation, which is the one on the: = if the invocation isin an assignment.

As aconsequence of thislabeling, as we said before, a procedure invocation has
one transition to evaluate the argument expression,
oneto set the program counter to the label immediately before the procedure body,
onefor every transition of the procedure body (using the labels of the body),
one for the RET command in the body, which sets the program counter after the body,
and afinal transition that setsit to the label immediately following the invocation.

Handout 17. Formal Concurrency 4

6.826—Principles of Computer Systems 2002

Hereisa meaningless sequential example, just to show where the labels go. They are numbered
in the order they are reached during execution.

PROC P() = [P;] VAR X, vy |
IFx >5=>[P)] x :=
[1 <<y =4 >>
Fls [Pl
VAR z | DO [Pg] << P() >> OD [Pg]

[Pd Qx + 1, 2 [Pg]); [Ps] y :=[Pg] 3

External actions

In sequential Spec a module has only external actions; each invocation of afunction or atomic
procedureis an external action. In concurrent Spec there are two differences:

There areinternal actions. These can be actions of an externally invoked PROC or actions of a
thread declared and executing in the module.

There are two external actionsin the external invocation of a (non-atomic) procedure: the call,
which sends control from after evaluation of the argument to the entry point of the procedure,
and the return, which sends control from after the RET command in the procedure to just after the
invocation in the caller. These external transitions do not affect the $a variable that
communicates the argument and result values. That variableis set by theinternal transitions that
compute the argument and do the RET command.

There' s another style of defining external interfaces in which every external action is an APROC.
If you want to get the effect of a non-atomic procedure, you have to bresk it into two APRCC's,
onethat delivers the arguments and sets the internal state so that internal actions will do the work
of the procedure body, and a second that retrieves the result. Thisstyleisused in 1/0O automata?,
but we will not useit.

Examples

Here are two Spec programs that search for prime numbers and collect the result in a set pri nes;
both omit the even numbers, initializing pr i mes to { 2} . Both are based on the sieve of
Eratosthenes, testing each prime less than n”? to see whether it divides n. Since the threads may
not be synchronized, we must ensure that all the numbers < n"? have been checked before we
check n.

Thefirst exampleis more like a spec, using an infinite number of threads, one for every odd

number.
CONST Odds = {i: Nat | i // 2=1/\Vi>1}
VAR prinmes : SET Nat := {2}
done : SET Nat := {} % numbers checked

I NVARI ANT (ALL n: Nat | one /\ IsPrime(n) ==>n IN prines

nINd
/\ n IN primes ==> |sPrinme(n))

4 Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996, Chapter 8.

Handout 17. Formal Concurrency 5

6.826—Principles of Computer Systems 2002

THREAD Si evel(n :IN Qdds) =

{i :INQdds | i <= Sqgrt(n)} <= done => % Wiait for possible factors
IF (ALL p :INprines | p <= Sqgrt(n) ==>n// p # 0) =>
<< primes \/ :={n} >>
[*] SKIP
Fl;
<< done \/ :={n} >> % No more transitions

FUNC Sgrt(n: Nat) ->1Int = RET { i: Nat | i*i <= n }.max

The second example, on the other hand, is closer to code, running ten parallel searches. Although
thereis onethread for every integer, only threads Si eve(0), Sieve(1), ..., Sieve(9) are
“active’, because of theinitial guard, Differences from si evel are boxed.

CONST nThreads := 10
VAR [pri nes . SET Int = {2}
next .= nThreads. seq
THREAD Sieve[(i: Int) = nextli =3
next(i) := 2*i + 3;
DO VAR n: Int := next(i) |
(ALL | :INnext.rng | j >= Sgrt(n)) =>
IF (ALL p :INprines | p <= Sqgrt(n) ==>n // p # 0) =>
<< primes \/ :={n} >>
[*] SKIP
Fl;
hext (i) 1= n + 2*nThreads]

Big atomic actions

Aswe saw earlier, we need atomic actions for practical, easy concurrency. Spec |ets you specify
any grain of atomicity in the program just by writing << ... >> brackets.5 It doesn’t tell you where
to write the brackets. If the environment in which the program has to run doesn’t impose any
constraints, it's usually best to make the atomic actions as big as possible, because big atomic
actions are easier to reason about. But big atomic actions are often too hard or too expensive to
code, or the reduction in concurrency hurts performance too much, so that we have to make do
with small ones. For example, in a shared-memory multiprocessor typically only the individual
instructions are atomic, and we can only write one disk block atomically. So we are faced with
the problem of showing that code with small atomic actions satisfies a spec with bigger ones.

Theidea

The standard way of doing thisis by some kind of ‘non-interference’ . Theideais based on the
following observation. Suppose we have a program with athread h that contains the sequence

A B)

5 Aswe have seen, Spec does treat expression eval uation as atomic. Recall that if you are dealing with an
environment in which an expression likex(i) + f(y) can't be evaluated atomically, you should model this by
WritingVAR t 1, t2 | t1 :=x(i); t2 :=f(y); ... t1 +t2....

Handout 17. Formal Concurrency 6

6.826—Principles of Computer Systems 2002

aswell asan arbitrary collection of other commands. We denote the program counter value

before A by a and at the semi-colon by . We are thinking of the program as
h.$pc = o => A[] h.$pc =B =>B[] C [] G []

where each command has an appropriate guard that enables it only when the program counter for

its thread has the right value. We have written the guards for A and B explicitly.

Suppose B denotes an arbitrary atomic command, and A denotes an atomic command that
commutes with every command in the program (other than B) that is enabled when h is at the
semicolon, that is, when h. $pc = B. (We give a precise meaning for ‘commutes’ below.) In
addition, both A and B have only interna actions. Then it’sintuitively clear that the program with
(1) simulates a program with the same commands except that instead of (1) it has

<< A, B >> 2
Informally thisis true because any C's that happen between A and B have the same effect on the
state that they would have if they happened before A, since they all commute with A. Note that
the C'sdon’t have to commute with B; commuting with A is enough to let us ‘push’ Cc before A. A
symmetric argument works if all the C's commute with B, even if they don’t commute with A.

Thus we have achieved the goal of making a bigger atomic command << A; B >> out of two
small ones A and B. We can call the big command D and repeat the process on E; D to get a still
bigger command<< E; A, B >>.

How do we ensure that only a command C that commutes with A can execute whileh. $pc = p?
The simplest way isto ensure that the variables that A touches (reads or writes) are digoint from
the variables that C writes, and vice versa; then they will surely commute. Two such commands
are called ‘non-interfering’. There are two easy ways to show that commands are non-interfering.
Oneisthat A touches only local variables of h. Only actions of h touch local variables of h, and
the only action of h that is enabled when h. $pc = B isB. So any sequence of commands that
touch only local variablesis atomic, and if it is preceded or followed by a single arbitrary atomic
command the whole thing is still atomic.6

The other easy caseisacritical section protected by a mutex. Recall that a critical section for v is
acommand with the property that if some thread’ s PCisin the command, then no other thread's
PC can bein any critical section for v. If the only commands that touch v arein critical sections
for v, then we know that only B and commands that don’t touch v can execute whileh. $pc = B.
So if every command in any critical section for v only touches v (and perhaps local variables),
then the program simulates another program in which every critical section isan atomic
command. A critical section is usually coded by acquiring alock or mutex and holding it for the
duration of the section. The property of alock isthat it's not possible to acquireit whenitis
already held, and this ensures the mutual exclusion property for critical sections.

It's not necessary to have exclusive locks; reader/writer locks are sufficient for non-interference,
because read operations all commute with each other. Indeed, any locking scheme will work in
which non-commuting operations hold mutually exclusive locks; thisisthe basis of rulesfor

6 See Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research Report 44, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, May 1989.
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-044.html

Handout 17. Formal Concurrency 7

6.826—Principles of Computer Systems 2002

‘lock conflicts'. See handout 14 on practical concurrency for more details on different kinds of
locks.

Another important case is mutex acquire and rel ease operations. These operations only touch the
mutex, so they commute with everything else. What about these operations on the same mutex in
different threads? If both can execute, they certainly don’t yield the same result in either order;
that is, they don’t commute. When can both operations execute? We have the following cases
(writing the executing thread as an explicit argument of each operation):

A C
m acq(h) m acq(
m acq(h) mrel (
mrel (h) m acq(
mrel (h) mrel (

Possible sequence?
h') No: cisblocked by h holding m
h') No: cwon't bereached because h' doesn’t hold m
h') OK
h') No: onethread doesn't hold m hencewon’t dor el
So m acq commutes with everything that’s enabled at g, since neither mutex operation is enabled
a B in aprogram that avoids havoc. But m rel (h) doesn’t commute withm acq(h'). The
reason isthat the A; C sequence can happen, but theC, A sequencem acq(h'); mrel (h)
cannot, because in this case h doesn’'t hold mand therefore can’'t be doing ar el . Henceit's not
possibleto flip every cinfront of m rel (h) inorder to make A; B atomic.

What does this mean? Y ou can acquire more locks and still keep things atomic, but as soon as
you release one, you no longer have atomicity.”

A third important case of commuting operations, producer-consumer, is similar to the mutex
case. A producer and a consumer thread share no state except a buffer. The operations on the
buffer are put and get , and these operations commute with each other. Theinteresting caseis
when the buffer is empty. In this case get isblocked until aput occurs, just asin the mutex
example when h holds thelock m acq(h') isblocked until m rel (h) occurs. Thisiswhy
programming with buffers, or dataflow programming, is so easy.

Proofs

How can we make all this precise and prove that a program containing (1) implements the same
program with (2) replacing (1), using our trusty method of abstraction relations? For easy
reference, we repeat (1) and (2).

A [B] B @

<< A, B >> 2

Asusual, we call the complete program containing (2) the spec Sand the complete program
containing (1) the code T. We need an abstraction relation AR between the states of T and the
states of Sunder which every transition of T simulates a (possibly empty) trace of S. Note that
the state spaces of T and Sare the same, except that h. $pc can never bepin S Weusesand u
for states of Sand T, to avoid confusion with various other uses of t.

7 Actually, thisis not quite right. If you hold several locks, and touch data only when you hold its lock, you have
atomicity until you release al the locks.

Handout 17. Formal Concurrency 8

6.826—Principles of Computer Systems 2002

First we need a precise definition of “Cisenabled at g and commutes with A”. For any command
X, wewriteu X u' for M(X)(u, u'),thatis,if Xrelatesutou' . Theideaof ‘commutes’ isthat
<<A; C>isthesameas<<C, A>>, and the definition follows from the meaning of semicolon:
(ALL ul, u2 | (EXISTSuUu | ul Au /\ u Cu2/\ u("h.$pc") =B
==> (EXISTS u" | ul Cu" /\ u Au2))
This says that any result that you could get by doing A; Cyou could also get by doingC;, A.

It seems reasonable to do the proof by making A simulate the empty trace and B simulate
<<A; B>>, since we know more about A than about B; every other command simulates itself.

SKI P s << A B;>S|
s A } u B } s
u("spe’) = B

So we make AR the identity everywhere except at g, whereit relates any state u that can be
reached froms by Atos. This expresses the intention that at g we haven't yet done Ain S but we
have doneAin T. (Since A may take many statesto s, this can’t just be an abstraction function.)
Wewriteu ~ s for “ARrelatesu tos”. Precisely, wesay thatu ~ s if
u("h.$pc") 2B /\ s =u
\/ u("h.$pc") =B /\ s Au.

Why isthis an abstraction relation? It certainly relates aninitial stateto an initial state, and it
certainly works for any transitionu -> u' that stays away from g, that is, in which u(" h. $pc")
Bandu' ("h.$pc") # B, sincethe abstract and concrete states are the same. What about
transitions that do involve ?

* If h. $pc changesto B then we must have executed A. The pictureis

The abstract trace is empty, so the abstract state doesn’t change: s = s' . Also,s' = u
because only equal states arerelated when h. $pc # B. But we executed A, SOu A u', SO
s' ~ u' because of the equalities.

e If h. $pc startsat g then the command must be either B or some C that commutes with A. If the
command is B, then the pictureis

Handout 17. Formal Concurrency 9

6.826—Principles of Computer Systems

<<A; B>>

To show the top relation, we have to show that there exists an so such that s A s0 and
s0 B s', by the meaning of semicolon. But u has exactly this property, sinces' = u'.

¢ If thecommand isC, then the pictureis

ul s ;} s' u'

u;} u' u2

But thisfollows from the definition of ‘commutes': wearegivens, u, and u' related as
shown, and we need s' related as shown, which is just what the definition gives us, with
ul = s,u2 = u',andu’ = s'.

Examples of concurrency

This section contains a number of example specs and codes that illustrate various aspects of
concurrency. The specs have large atomic actions that keep them simple. The codes have smaller
atomic actions that reflect the realities of the machines on which they have to run. Some of the
examples of codeillustrate easy concurrency (that is, that use locks): RwLockl mpl and

Buf f er I npl . Othersillustrate hard concurrency: Spi nLock, Miut ex21 npl , C ockl npl ,

Mut ex! npl , and Condi ti onl npl .

Incrementing a register

The first example involves incrementing a register that has Read and W i t e operations. Hereis
the unsurprising spec of the register, which makes both operations atomic:

MODULE Regi st er EXPORT Read, Wite =
VAR X cInt :=0

APRCC Read() -> In

t << RET x >>
APRCC Wite(i: Int) =

<K X =1 >>

END Regi ster

To increment the register, we could use the following procedure:

Handout 17. Formal Concurrency

2002

10

6.826—Principles of Computer Systems 2002

PROCIncrenent() = VARt: Int | t := Register.Read(); t :=t + 1, Register.Wite(t)

Suppose that, starting from the initial state where x = 0, n threads execute | ncr enent in parallel.
Then, depending on the interleaving of the low-level steps, thefinal value of the register could be
anything from 1 to n. Thisis unlikely to be what was intended. Certainly this code doesn’t
implement the spec

PROC Increment() = << x := x + 1 >>

Exercise: Suppose that we weaken our atomicity assumptions to say that the value of aregister is
represented as a sequence of bits, and that the only atomic operations are reading and writing
individual bits. Now what are the possible final statesif n threads execute | ncr enent in parallel?

Alternatively, consider anew module RW nc that explicitly supportsi ncrement operationsin
addition to Read and Wi t e. This might add the following (exported) procedure to the Regi st er
module:

PROC Increnent() = x := x+1
Or, more explicitly:
PROC Increnent() = VARt: Int | <<t 1= X >> << Xx := t+l >>

Because of the fine grain of atomicity, it isstill truethat if n threads execute ncr ement in
paralld then, depending on theinterleaving of the low-level steps, the final value of the register
could be anything from 1 to n. Putting the procedure inside the Regi st er module doesn’t help.
Of course, making I ncr ement an APROC would certainly do the trick.

Mutexes

Hereisaspec of asimple vt ex module, which can be used to ensure mutually exclusive
execution of critical sections; it is copied from handout 14 on practical concurrency. The state of
amutex isni | if the mutex isfree, and otherwiseis the thread that holds the mutex.

CLASS Mut ex EXPORT acq, rel =

VAR m (Thread + Null) := nil
% Each mutex is either ni | or the thread holding the mutex.
% The variable SELF is defined to be the thread currently making a transition.

APRCC acq() = << m= nil => m:= SELF; RET >>
APROC rel () = << m= SELF => m:= nil ; RET [*] HAVOC >>
END Mut ex

If athread invokesacq whenm # ni |, then the body fails, This means that there’s no possible
transition for that thread, and the thread is blocked, waiting at this point until the guard becomes
true. If many threads are blocked at this point, then when mis set toni I, oneis schedul ed first,
and it setsmto itself atomically; the other threads are till blocked.

The spec says that if athread that doesn’t hold mdoes m r el , the result is HAVOC. As usual, this
means that the code is free to do anything when this happens. Aswe shall seein the Spi nLock
code below, one possible ‘anything’ isto free the mutex anyway.

Handout 17. Formal Concurrency 11

6.826—Principles of Computer Systems 2002

Hereisasimple use of a mutex mto makethel ncrement procedure atomic:

PRCC Increment() = VAR t: Int |
macqg; t := Register.Read(); t :=t + 1, Register. Wite(t); mrel

This keeps concurrent calls of I ncr ement from interfering with each other. If there are other
write accesses to the register, they must also use the mutex to avoid interfering with threads
executing I ncr enent .

Soin locks

A simpleway to code a mutex isto use a spin lock. The name is derived from the behavior of a
thread waiting to acquire the lock—it “ spins’, repeatedly attempting to acquire the lock until it is
finally successful.

Hereisincorrect code:

CLASS BadSpi nLock EXPORT acq, rel =

TYPE FH = ENUM free, held]
VAR fh := free
PRCC acq()
held => SKIP >> OD; % waitforfh = free

hel d >>
<< fh :=free >>

<< fh:
PRCC rel ()

DO << fh
= % and acquire it

END BadSpi nLock

Thisiswrong because two concurrent invocations of acq could bothfindfh = free and
subsequently both setfh : = hel d and return.

Hereis correct code. It uses a more complex atomic command in the acq procedure. This
command corresponds to the atomic “test-and-set” instruction provided by many real machines
to code locks. It records theinitial value of thelock, and then setsit to hel d. Then it teststhe
initial value; if it wasf r ee, then this thread was successful in atomically changing the state of
thelock fromf r ee to hel d. Otherwise some other thread must hold the lock, so we “spin”,
repeatedly trying to acquire it until we succeed. Theimportant differencein Spi nLock isthat the
guard now involves only thelocal variablet , instead of the global variablef h in BadSpi nLock.
A thread acquires the lock when it is the one that changesit fromf r ee to hel d, which it checks
by testing the value returned by the test-and-set.

CLASS Spi nLock EXPORT acq, rel =

TYPE FH = ENUM free, held]
VAR fh = free

PROC acq() = VAR t: FH |
DO<<t :=fh; fh := held >>; IFt = free => RET [*] SKIP FI OD

PROC rel () = << fh := free >>
END Spi nLock

Handout 17. Formal Concurrency 12

6.826—Principles of Computer Systems 2002

Of course this codeis not practical in general unless each thread has its own processor; it is used,
however, in the kernel's of most operating systems for computers with several processors. Later,
in Mt ex! npl , we give practical code that queues awaiting thread.

The Spi nLock code differs from the mut ex spec in another important way. It “forgets” which
thread owns the mutex. The following For get f ul Mut ex moduleis useful in understanding the
Spi nLock code—in For get f ul Mut ex, the threads get forgotten, but the atomicity is the same as
in Mt ex.

CLASS Forget ful Mut ex EXPORT acq, rel =

TYPE FH = ENUM free, held]

VAR fh 1= free

PROC acq() = << fh = free => fh := held >>
PROC rel () = << fh := free >>

END For get f ul Mut ex

Notethat For get f ul Mut ex releases a mutex regardless of which thread acquired it, and it does a
SKI P if the mutex is already free. Thisis one of the behaviors permitted by the Mut ex spec,
which allows anything under these conditions.

Later we will show that Spi nLock implements For get f ul Mut ex and that For get f ul Mit ex
implements Mt ex, from which it follows that Spi nLock implements mut ex. We don't give the
abstraction function here because it involves the details of program counters.

Read/write locks

Hereisaspec of amodule that provides locks with two modes, read and write, rather than the
single mode of a mutex. Several threads can hold alock in read mode, but only one thread can
hold alock in write mode, and no thread can hold alock in read mode if some thread holdsit in
write mode. In other words, read locks can be shared, but write locks are exclusive; hence the
locks are also known as ‘shared’ and ‘exclusive'.

CLASS RW.ock EXPORT rAcq, rRel, wAcq, wRel =

TYPE ST = SET Thread
VAR r ST = {}
w ST = {}
APRCC rAcq() = % Acquiresr if no current write locks

<< SELF IN (r \/ w) => HAVCC [*] w ={} = r \/ := {SELF} >

APRCC wAcq() = % Acquireswif no current locks
<< SELF IN (r \/ w) => HAVCC [*] (r \/ w) ={} =>w 1= {SELF} >>

APRCC rRel () = % Releasesr if the thread hasit
<< ~ (SELF INT) => HAVOC [*] r - := {SELF} >>
APROC wRel () =
<< ~ (SELF IN w) => HAVOC [*] w c= {} >>

Handout 17. Formal Concurrency 13

6.826—Principles of Computer Systems 2002

END RW.ock

The following simple codeis similar to For get f ul Mut ex. It has the same atomicity as Rw.ock,
but uses a different data structure to represent possession of the lock. Specificaly, it usesasingle
integer variabler wto keep track of the number of readers (positive) or the existence of awriter

(-2).
CLASS Forget ful RAL EXPORT rAcq, rRel, wAcq, wRel =

VAR rw =0

% >0 gives number of readers, 0 means free, - 1 means one writer
APROC rAcq() = <<rw>=0=>rw+:= 1 >
APROC WACq() = <<rw =0 =>rw = -1 >
APROC rRel () = << rw- =1 >>

APRCC wRel () = << rw =0 >

END For get f ul RAL

Wewill seelater how to code For get f ul RAL using a mutex.

Condition variables

Mutexes are used to protect shared variables. Often athread h cannot proceed until some
condition is true of the shared variables, a condition produced by some other thread. Since the
variables are protected by alock, and can be changed only by the thread holding the lock, h has
to releasethelock. It is not efficient to repeatedly release the lock and then re-acquire it to check
the condition. Instead, it's better for h to wait on a condition variable, as we saw in handout 14.
Whenever any thread changes the shared variables in such away that the condition might
become true, it signals the threads waiting on that variable. Sometimes we say that the waiting
threads ‘wake up’ when they are signaled. Depending on the application, athread may signal one
or several of the waiting threads.

Hereisthe spec for condition variables, copied from handout 14 on practical concurrency.

CLASS Conditi on EXPORT wait, signal, broadcast =

TYPEM = Mit ex

VAR c : SET Thread := {}
% Each condition variable is the set of waiting threads.
PROC wait(m =
<< c \/ :={SELF}; mrel >>; % m r el =HAVOC unlessSELF | Nm

<< ~ (SELF IN ¢) => macq >>

APRCC signal () = <<
% Remove at |east one thread from c. In practice, usualy just one.
IF VAR t: SET Thread | t <=c /\ t # {} =>c - :=t [*] SKIP FI >>

APRCC broadcast() = << ¢ := {} >>
END Condi tion

Handout 17. Formal Concurrency 14

6.826—Principles of Computer Systems 2002

Aswe saw in handout 14, it's not necessary to have a single condition for each set of shared
variables. We want enough condition variables so that we don’t wake up too many threads whose
conditions are not yet satisfied, but not so many that the cost of doing all the si gnal sis
excessive.

Coding read/write lock using condition variables

This example shows how to use easy concurrency to make more complex locks and scheduling
out of basic mutexes and conditions. We use a single mutex and condition for all the read-write
locks here, but we could have separate ones for each read-write lock, or we could partition the
locks into groups that share a mutex and condition. The choice depends on the amount of
contention for the mutex.

Compare the code with For get f ul RAL; the differences are highlighted with boxes. The<<. .. >>
in For get f ul RAL have becomem acq ... mrel ; thisprovides atomicity because shared
variables are only touched while the lock is held. The other changeis that each guard that could
block (in this example, al of them) is replaced by aloop that tests the guard and doesc. wai t if
it doesn’'t hold. The release operations do the corresponding signal or broadcast operations.

CLASS RWL.ockl nmpl EXPORT rAcq, rRel, wAcq, wRel = % implementsFor get f ul RAL

VAR rw Int :=0

m = mnew)

c = c.new()
% ABSTRACTI ON FUNCTI ON Forgetful R\L. rw = rw
PROC rAcq(l) =|macq, DO~ rw>= 0[=> c.wait(m OO rw+ := 1;
PROC wACq(l) = macq;| DO~ Jw = 0[=>c.wait(m OO rw =-1; mrel
PROC rRel (1) =

[macq;] rw- :=1; [Frw=0 =>c.signal [*] SKIP FI; mrel]
PROC wRel (1) =

rw:= 0; [c. broadcast; mrel]

END RW.ockl npl

Thisisthe prototypical example for scheduling resources. There are mutexes (just min this case)
to protect the scheduling data structures, conditions (just ¢ in this case) on which to delay threads
that are waiting for aresource, and logic that figures out when it's al right to all ocate a resource
(theread or writelock in this case) to athread.

Note that this code may starve awriter: if readers come and go but there's always at |east one of
them, awaiting writer will never acquire the lock. How could you fix this?

An unbounded FIFO buffer

In this section, we give a spec and code for a simple unbounded buffer that could be used as a
communication channel between two threads. This s the prototypical example of a producer-
consumer relation between threads. Other popular names for Pr oduce and Consune are Put and
Get .

Handout 17. Formal Concurrency 15

6.826—Principles of Computer Systems

MODULE Buffer[T] EXPORT Produce, Consune =
VAR b SEQT := {}

{t}y >
| <<b#{} =>1t

APRCC Produce(t) = << b + :

APRCC Consune() -> T = VAR t = b.head; b := b.tail; RET t >>

END Buf fer
The code is another example of easy concurrency.

MODULE Bufferlnpl [T] EXPORT Produce, Consume =

VAR b SEQT : = {}
m = mnew)
c = c.new)

% ABSTRACTI ON FUNCTI ON Buffer.b = b
PROC Produce(t) = macq; IF b ={} =>c.signal [*] SKIPFI; b+ :={t}; mrel

PROC Consume() -> T = VAR t |
macqg; DOb = {} =>c.wait(nm) OO, t := b.head; b := b.tail; mrel; RET t

END Bufferl npl

Coding Mut ex with memory

The usual way to code Mut ex isto use an atomic test-and-set operation; we saw thisin the

Mut exI npl module above. If such an operation is not available, however, it's possible to code
Mut ex using only atomic read and write operations on memory. This requires an amount of
storage linear in the number of threads, however. We give afair algorithm due to Petersong for
two threads; if thread h is competing for the mutex, we write h* for its competitor.

CLASS Mut ex2l npl EXPORT acq, rel =

VAR req Thread -> Bool := {* -> fal se}
| ast Req o Int

PRCC acq() =
[a] req(SELF) := true;

[a] lastReq := SELF;

DO [ay] (req(SELF*) /\ lastReq = SELF) => SKIP QD [as]
PRCC rel () = req(SELF) := fal se
END Mit ex2I npl
Thisis hard concurrency, and it’ s tricky to show that it works. To see theidea, consider first a
simpler version of acq that ensures mutual exclusion but can deadl ock:

PRCC acqO() =

[a] req(SELF) := true;

8 G. Peterson, A new solution to Lamport’s concurrent programming problem using small shared variables. ACM
Trans. Programming Languages and Systems 5, 1 (Jan. 1983), pp 56-65.

Handout 17. Formal Concurrency

2002

16

6.826—Principles of Computer Systems 2002

DO [ay] req(SELF*) => SKIP OD [a] % busy wait

We get mutual exclusion because oncer eq(h) istrue, h* can't get from a, to ag. Thusr eq(h)
acts as alock that keepsthe predicate h*. $pc = a, true once it becomes true. Only one of the
threads can get to a; and acquire the lock. We might call the algorithm ‘ polite’ because each
thread defers to the other one at a,.

Of course, acqo is no good because it can deadlock—if both threads get to a, then neither can
progress. acq avoids this problem by making it alittle easier for athread to progress: even if
req(h*), h cantake (a, ag) if 1 ast Req # h. Intuitively this maintains mutual exclusion because:

If both threads are at a,, only the one # I ast Req, Say h, can progress to a; and acquire the
lock. Sincel ast Req won't change, h* will remain at a, until h releases the lock.

Once h has acquired the lock with h* not at a,, h* can only reach a, by setting
| ast Req : = h*, and again h* will remain at a, until h releases the lock.

It ensures progress because the Dois the only place to get stuck, and whichever thread isnot in
| ast Req Will get past it. It ensures fairness because the first thread to get to a, is the one that will
get thelock first.

Abstractly, h hasthemutex if req(h) /\ h.$pc # a,, and thetransition from a, to a; sSimulates
the body of Mut ex. acq. Precisdly, the abstraction function is

Mutex. m = (Hol ds0O.set = {} => nil [*] Hol dsO. set. choose)
We sketch the proof that Mt ex21 mpl implements Mt ex later.

Thereislots more to say about coding Mut ex efficiently, especially in the context of shared-
memory multiprocessors.® Even on a uniprocessor you still need an implementation that can
handle pre-emption; often the most efficient implementation gets the necessary atomicity by
modifying the code for pre-emption to detect when athread is pre-empted in the middle of the
mutex code and either compl ete the operation or back up the state.

Multi-word clock

Often it’s possible to get better performance by avoiding locking. Algorithms that do this are
caled ‘wait-free'; we gave a brief discussion in handout 14. Here we present await-free
algorithm due to Lamport1© for reading and incrementing a clock, even if clock values do not fit
into a single memory location that can be read and written atomically.

We begin with the spec. It says that a Read returns some value that the clock had between the
beginning and the end of the Read. Aswe saw in handout 8 on generalized abstraction functions,

9 J, Mellor-Crummey and M. Scott, Algorithms for scalable synchronization of shared-memory multiprocessors.
ACM Transactions on Computer Systems 9, 1 (Feb. 1991), pp 21-65. A. Karlin et al., Empirical studies of
competitive spinning for a shared-memory multiprocessor. ACM Operating Systems Review 25, 5 (Oct. 1991), pp

41-55.
10|, Lamport, Concurrent reading and writing of clocks. ACM Transactions on Computer Systems 8, 4 (Nov. 1990),
pp 305-310.

Handout 17. Formal Concurrency 17

6.826—Principles of Computer Systems 2002

wherethisspeciscalled Lat ed ock, it takes a prophecy variable to show that this specis
equivalent to the simpler spec that just reads the clock value.

MODULE Cl ock EXPORT Read =

VAR t o Int :=0 % the current time

THREAD Tick() = DO<<t +:=1 > D % demon thread advancest

PROC Read() -> Int = VAR t1l: Int |
<< tl:=t > << VARt2 | tl<=1t2/\ t2 <=t => RET t2 >>

END Cl ock

The code below is based on the idea of doing reads and writes of the same multi-word datain
opposite orders. Ti ck writeshi 2, then| o, then hi 1. Read readshi 1, then | o, then hi 2; if it sees
different valuesin hi 1 and hi 2, there must have been at least one carry during the read, sot
must have taken on the value hi 2 * base. Thefunction T expressesthisidea. The atomicity
brackets in the code are the largest ones that are justified by big atomic actions.

MODULE O ockl npl EXPORT Read =

CONST base 1= 2%*32
TYPE Wor d = Int SUCHTHAT (\ i: Int | i IN base.seq)
VAR | o : Wrd :=0

hi 1 : Wrd :=0

hi 2 : Wrd =0

% ABSTRACTI ON FUNCTION d ock.t = T(lo, hil, hi2), Cock.Read.tl1 = Read.t1H st,
C ock.Read.t2 = T(Read.tLo, Read.tHl, read.tH2)

THREAD Ti ck() = DO VAR newLo: Word, newHi: Word |

<< newo :=1lo + 1 // base; newH := hil + 1 >>;
IF << newo # 0 =>1lo := newLo >>
[*] << hi2 := newH >> << lo := newo >> << hil := newH >>
FI QD
PROC Read() -> Int = VAR tLo: Word, tHl: Word, tH2: Word |
<< tHL := hl >>;
<< tLo :=1lo0 >>;
<< tH2 := h2; RET T(tLo, tHL, tH2) >>

FUNC T(l: Int, hl: Int, h2: Int) ->1Int = h2 * base + (hl = h2 =>1 [*] 0)
END C ockl npl

Given this code for reading atwo-word clock atomically starting with atomic reads of the low
and high parts, it's obvious how to apply it recursively n—1 times to read an n word clock.

User and kernel mutexes and condition variables

This section presents code for mutexes and condition variables based on the Taos operating
system from DEC SRC. Instead of spinning like Spi nLock, it explicitly queues threads waiting
for locks or conditions. The code for mutexes has afast path that stays out of the kernel inacq

Handout 17. Formal Concurrency 18

6.826—Principles of Computer Systems 2002

when the mutex isfree, and inr el when no other thread is waiting for the mutex. Thereisaso a
fast path for si gnal , for the common case that there' s nobody waiting on the condition. There's
no fast path for wai t , since that always requires the kernel to run in order to reschedule the
processor (unlessasi gnal sneaks in before the kernel gets around to the rescheduling).

Notes on the code for mutexes:

1. Mmutexl npl maintains aqueue of waiting threads, blocks awaiting thread using Deschedul e,
and uses Schedul e to hand aready thread over to the scheduler to run.

2. spinLock and Rel easeSpi nLock acquire and release a global lock used in the kernel to
protect thread queues. Thisis OK because code running in the kernel can’t be pre-empted.

3. Theloop in acq serves much the same purpose as aloop that waits on a condition variable. If
the mutex is already held, the loop calls Ker nel Queue to wait until it becomes free, and then
triesagain. rel calsker nel Rel ease if there’' s anyone waiting, and Ker nel Rel ease alows
just onethread to run. That thread returns from its call of Ker nel Queue, and it will acquire
the mutex unless another thread has called acq and slipped in since the mutex was rel eased

(roughly).

4. Thereisclumsy codein Ker nel Queue that puts the thread on the queue and then takes it off
if the mutex turns out to be free. Thisis not a mistake; it avoids aracewithrel , which calls
Ker nel Rel ease to take athread off the queue only if it sees that the queue is not empty.
Ker nel Queue changesq and looks at s; rel usesthe opposite order to change s and look at
qg.

This opposite-order access pattern often works in hard concurrency, that is, when there's not
enough locking to do the job in a straightforward way. We saw another version of itin

Mt ex2I npl , which setsreq(h) beforereadingreq(h*) . Inthiscasereq(h) actslikealock to
keep h*. $pc = a, from changing from true to false. We also saw it in d ockl npl , where the
reader and the writer of the clock touch its pieces in the opposite order.

The boxes show how the state, acq, andr el differ from the versionsin Spi nLock.
CLASS Mut exI npl

EXPORT acq, rel = % implements For get f ul Mut ex

TYPE FH = Mitex.FH
VAR fh 1= free
[a . SEQ Thread := {}]
PROC acq() = VAR t: FH |
DO <<t :=fh; fh := held >>; |IF t#held => RET [*] SKIP FI; [Kernel Queue()| OD

PROC rel () =fh :=free; [F q # {} => Kernel Release() [*] SKIP FI]

% Ker nel Queue and Ker nel Rel ease runin the kernel so they can hold the spin lock and call the scheduler.

PROC Ker nel Queue() =

% Thisisjust adelay until there’s a chance to acquire the lock. When it returnsacq will retry.
% Queuing SELF before testing f h ensuresthat thetestinr el doesn’t missus.

% The spin lock keeps Ker nel Rel ease from getting ahead of us.

Spi nLock(); % indented code holds the lock

Handout 17. Formal Concurrency 19

6.826—Principles of Computer Systems 2002

q + := {SELF};
IF fh =free =>q := q.renl
[*] Deschedul e(SELF)
Fl;
Rel easeSpi nLock()

% undo previous line; will retry at acq
% wait, then retry at acq

PRCC Ker nel Rel ease() =
Spi nLock();
IF q # {} => Schedul e(q. head); q
Rel easeSpi nLock()
% The newly scheduled thread competes with others to acquire the mutex.

% indented code holds the lock

c= q.tail [*] SKIP FI;

END Mut ex! npl
Now for conditions. Note that:

The ‘event count’ ecSi g deals with the standard ‘ wakeup-waiting’ race condition: the si gnal
arrives after them rel but before the thread is queued. Note the use of the global spin lock as
part of this. It looks as though si gnal always schedules exactly onethread if the queueis not
empty, but other threads that arein wai t but have not yet acquired the spin lock may keep
running; in terms of the spec they are awakened by si gnal aswell.

si gnal and br oadcast test for any waiting threads without holding any locks, in order to avoid
calling the kerndl in this common case. The other event count ecwai t ensures that this test
doesn't missathread that isin Ker nel Wai t but hasn’t yet blocked.

CLASS Condi tionl npl EXPORT wait, signal, broadcast = % implements Condi ti on
TYPEM = Mitex
VAR ecSig o Int :=0
ecWi t o Int :=0
q : SEQ Thread : = {}
PROC wait(m = VARi :=ecSig | mrel; KernelVait(i); macq
PRCC si gnal () VAR ecVait |

i =
1, IFqg# 0\/ i # ec\ait => Kernel Sig

ecSig + :
PRCC broadcast() = VAR := ecVait |
ecSig+:=1; IFq#0\/ i # ecWait => Kernel Broadcast

PROC Kernel Vi t (i:
Spi nLock();
ecWait + :=1;
% if ecSi g changed, there must have been aSi gnal , so return, else queue
IFi = ecSig =>q + := {SELF}; Deschedul e(SELF) [*]
Rel easeSpi nLock()

Int) = % internal kernel procedure

% indented code holds the lock

SKIP FI;

PRCC Kernel Sig() =
Spi nLock();
IF q # {} => Schedul e(q. head); q
Rel easeSpi nLock()

% internal kernel procedure
% indented code holds the lock

iz qg.tail [*] SKIP FI;

PRCC Ker nel Broadcast () =

Spi nLock(); % indented code holds the lock

Handout 17. Formal Concurrency

20

6.826—Principles of Computer Systems 2002

DO q # {} => Schedul e(q.head); q := qg.tail OD
Rel easeSpi nLock()

END Condi ti onl npl

The code for mutexes and conditions are quite similar; in fact, both are cases of a general
semaphore.

Proving concurrent modules correct

This section explains how to prove the correctness of concurrent program modules. It reviews
the simulation method that we have already studied, which worksjust as well for concurrent as
for sequential modules. Then several examplesillustrate how the method works in practice.
Things are more complicated in the concurrent case because there are many more atomic
transitions, and because the program counters of the threads are part of the state.

Before using this method in its full generality, you should first apply the theorem on big atomic
actions as much as possible, in order to reduce the number of transitions that your proofs need to
consider. If you are programming with easy concurrency, that is, if your code uses a standard
locking discipline, thiswill get rid of nearly all the work. If you are doing hard concurrency,
therewill still belots of transitions, and in doing the proof you will probably find bugs in your
program.

The formal method

We use the same simulation technique that we used for sequential modules, as described in
handouts 6 and 8 on abstraction functions. In particular, we use the most general version of this
method, presented near the end of handout 8. This version does not require the transitions of the
code to correspond one-for-one with the transitions of the spec. Only the external behavior
(invocations and responses) must be the same—there can be any number of internal steps. The
method proves that every trace (external behavior sequence) produced by the code can also be
produced by the spec.

Of course, the utility of this method depends on an assumption that the external behavior of a
moduleisall that is of interest to callers of the module. In other words, we are assuming here, as
everywherein this course, that the only interaction between the module and the rest of the
program is through calls to the external routines provided by the module.

We need to show that each transition of the code simulates a sequence of transitions of the spec.
An external transition must simulate a sequence that contains exactly one instance of the same
external transition and no other external transitions; it can aso contain any number of internal
transitions. Aninternal transition must simulate a sequence that contains only internal transitions.

Here, once again, are the definitions:

Suppose T and Sare modul es with same external interface. An abstraction function F isa
function from states(T) to states(S) such that:

Sart: If uisany initial state of T then F(u) isan initial state of S.

Handout 17. Formal Concurrency 21

6.826—Principles of Computer Systems 2002

Sep: If uand F(u) are reachable states of T and Srespectively, and (u, Tt U') isastep of T,
then there is an execution fragment of Sfrom F(u) to F(u’), having the same trace.

Thus, if Ttis an invocation or response, the fragment consists of a single 1tstep, with any number
of internal steps before and/or after. If Ttisinternal, the fragment consists of any number
(possibly 0) of internal steps.

Aswe saw in handout 8, we may have to add history variablesto T in order to find an abstraction
function to S (and perhaps prophecy variables too). The values of history variables are calculated
in terms of the actual variables, but they are not allowed to affect the real steps.

An aternative to adding history variablesis to define an abstraction relation instead of an
abstraction function. An abstraction relation AR is arelation between states(T) and states(S) such
that:

Sart: If uisany initial state of T then there exists an initial state s of Ssuch that (u, s) 0 AR.

Sep: If uand sarereachable states of T and Srespectively, (u,) 0 AR, and (u, Tt, U') isa step
of T, then thereis an execution fragment of Sfrom sto some s having the same trace, and
such that (u', s) O AR.

Theorem: If there exists an abstraction function or relation from T to Sthen T implements S that
is, every trace of Tisatraceof S

Proof: By induction.

The strategy

The forma method suggests the following strategy for doing hard concurrency proofs.

1

Start with a spec, which has an abstract state.

. Choose a concrete state for the code.
. Choose an abstraction function, perhaps with history variables, or an abstraction relation.

2
3
4,
5

Write code, identifying the critical actions that change the abstract state.

. While (checking the smulation fails) do

Add an invariant, checking that all actions of the code preserveit, or

Change the abstraction function (step 3), the code (step 4), theinvariant (step 5), or more
than one, or

Change the spec (step 1).

This approach always works. Thefirst four steps require creativity; step 5 is quite mechanical
except when you find an error. It is somewhat laborious, but experience shows that if you are
doing hard concurrency and you omit any of these steps, your program won't work. Be warned.

Handout 17. Formal Concurrency 22

6.826—Principles of Computer Systems 2002

Owicki-Gries proofs

Owicki and Gries invented a special case of this general method that is well known and
sometimes useful .11 Their ideaisto do an ordinary sequential proof of correctness for each
thread h, annotating each atomic command in the usual style with an assertion that istrue at that
point if h isthe only thread running. This proof shows that the code of h establishes each
assertion. Then you show that each of these assertions remains true after any command that any
other thread can execute whileh is at that point. This condition is called ‘ non-interference’;
meaning not that other threads don’t interfere with access to shared variables, but rather that they
don’t interfere with the proof.

The Owicki-Gries method amounts to defining an invariant of the form
h.$pc = o ==> A, /\ h.$pc = p ==> Ag /\ ...

and showing that it's an invariant in two steps: first, that every step of h maintainsit, and then
that every step of any other thread maintainsit. The hopeis that this decomposition will pay
because the most complicated parts of the invariant have to do with private variables of h that
aren't affected by other threads.

Prospectus for proofs

The remainder of this handout contains example proofs of correctness for several of the
examples above: the RiLock! npl code for aread/write lock, the Buf f er I npl code for aFIFO
buffer, the Spi nLock code for a mutex (given in two versions), the Mit ex21 npl code for a mutex
used by two threads, and the d ockl! npl code for a multi-word clock.

The amount of detail in these proofs is uneven. The proof of the FIFO buffer code and the
second proof of the Spi nl ock code are the most detailed. The others give the abstraction
functions and key invariants, but do not discuss each simulation step.

Read/write locks

We sketch how to prove directly that the module RwLockl! npl implements For get f ul RWL. This
could be done by big atomic actions, since the code uses easy concurrency, but as an easy
introduction discuss how to do it directly. The two modules are based on the same data, the
variabler w. The differenceisthat Rntockl npl uses a condition variable to prevent threadsin
acq from busy-waiting when they don’t see the condition they require. It also uses a mutex to
restrict accesses to r w, so that a series of accessesto r w can be done atomically.

An abstraction function maps RWLockl! npl to For get f ul RWL. Theinteresting part of the state of
For get f ul RW isther wvariable. We define that by the identity mapping from RALock! npl .

The mapping for steps is mostly determined by the r widentity mapping: the steps that assign to
rwin RW.ockl npl arethe ones that correspond to the procedure bodiesin For get f ul RAL Then
the checking of the state and step correspondencesiis pretty routine.

11's, Owicki and D. Gries, An axiomatic proof technique for parallel programs. Acta Informatica 6, 1976, pp 319-
340.

Handout 17. Formal Concurrency 23

6.826—Principles of Computer Systems

Thereis one subtlety. It would be bad if a series of r wsteps done atomically in For get f ul RAL
were interleaved in R\LockI npl . Of course, we know they aren’t, because they are aways done
by athread holding the mutex. But how does this fact show up in the proof?

The answer is that we need some invariants for R\Lock! npl . Thefirst, a“ dominant thread
invariant”, saysthat only athread whose nameisin m(a‘dominant thread’) can bein certain
portions of its code (those guarded by the mutex). The dominant thread invariant isin turn used
to prove other invariants called “ data protection invariants”.

For example, one data protection invariant says that if athread (in RaLock! npl) isin middle of
the assignment statement rw + : = 1, thenin fact rw> O (that is, the test is still true). We need
this data protection invariant to show that the corresponding abstract step (the body of r Acq in

For get f ul RiLock) is enabled.

Buf f er | npl implementsBuf f er

The FIFO buffer is another example of easy concurrency, so again we don’'t need to do a
transition-by-transition proof for it. Instead, it sufficesto show that a thread holds the lock m
whenever it touches the shared variable b. Then we can treat the whole critical section during
which thelock is held as a big atomic action, and the proof is easy. We will work out the
important details of alow-level proof, however, in order to get some practicein asituation that is
slightly more complicated but still straightforward, and in order to convince you that the theorem
about big atomic actions can save you alot of work.

First, we give the abstraction function; then we use it to show that the code simulates the spec.
Weuse adlightly simplified version of Pr oduce that always signals, and we introduce a local
variablet enp to make explicit the atomicity of assignment to the shared variableb.

Abstraction function

The abstraction function on the state must explain how to interpret a state of the code as a state
of the spec. Remember that to prove a concurrent program correct, we need to consider the entire
state of a module, including the program counters and local variables of threads. For sequential
programs, we can avoid this by treating each external operation as a single atomic action.

To describe the abstraction function, we thus need to explain how to construct a state of the spec
from a state of the code. So what is a state of the Buf f er module above? It consists of:

¢ A seguence of itemsb (the buffer itself);
« for each thread that is active in the module, a program counter; and
« for each thread that is active in the module, values for local variables.

A state of the code is similar, except that it includes the state of the Mut ex and Condi ti on
modules.

To define the mapping, we need to enumerate the possible program counters. For the spec, they
are;

Handout 17. Formal Concurrency

2002

24

6.826—Principles of Computer Systems

P, — before the body of Pr oduce
p, — dfter the body of Produce
C, — before the body of Consune
C, — after the body of Consune

or as annotations to the code:
PROC Produce(t) = [P;] << b + := {t} >> [P,]

PROC Consume() -> T =
[C] << b #{} =>VARt :=Db.head | b := b.tail;

For the code, they are:
e For athread in Produce:

p, — beforem acq

inm acq—either before or after the action

p, — beforetenp := b + {t}

p; — beforeb : = tenp

p, — beforec. si gnal

inc. si gnal —either before or after the action
ps — beforem rel

inm r el —either before or after the action
ps— atermrel

¢ For athread in Consune:

¢, — beforem acq

inm acq—either before or after action
c, — beforethetestb # {}

c;— beforec. wai t

inc. wai t —at beginning, in middle, or at end
c,— beforet := b. head

c; — beforetenp : = b. tail

ce— beforeb : = tenp
c;—beforemrel

inm r el —either before or after action
cg— beforeRET t

cy — after RET t

or as annotations to the code:

PROC Produce(t) = VAR tenp |
[p] macq;

[p,] temp = b + {t};
[ps] b := tenp;

[p4] c.signal;

[ps] mrel [pgl

PROC Consune() -> T = VAR t, tenp |

Handout 17. Formal Concurrency

RET t >> [Cy

2002

25

6.826—Principles of Computer Systems 2002
[c;] macq;

DO [c,] b # {} =>[c3] c.wait OO

[cy] t = Db.head;

[cg] tenp := b.tail; [c] b := tenp;

[c;] mrel;

[cg] RET t [col

Notice that we have broken the assignment statements into their constituent atomic actions,
introducing atemporary variablet enp to hold the result of evaluating the right hand side. Also,
the PC’sin the Mut ex and Condi t i on operations are taken from the specs of those modul es (not
the code; we prove their correctness separately). Here for referenceis the relevant code.

APRCC acq()
APRCC rel ()

<<m=nil =>m:
<< m= SELF => m:

SELF; RET >>
nil ; RET [*] HAVOC >>

APRCC signal () = << VAR hs: SET Thread |
IF hs <=c/\ hs # {} =>c - := hs [*] SKIP FI >>

Now we can define the mapping on program counters:

e If athread h isnot in Produce or Consune in the code, then it isnot in either procedurein the
Spec.

« |f athread h isin Produce in the code, then:

If h. $pc isin{p;, p,, pg} Orisinm acq, thenin the spec h. $pc = P;.

If h. $pc isin{py, ps, pg} Orisinmrel orc. si gnal theninthespech. $pc = P,.
« |f athread h isin Consune in the code, then:

If h. $pc O{cy, ..., cg} Orisinm acq or c. wai t then in the spec h. $pc = C,.

If h. $pc isin{cy, cg co} Orisinmrel theninthespech. $pc = C,.

The general strategy hereisto pick, for each atomic transition in the spec, some atomic transition
in the code to simulate it. Here, we have chosen the modification of b in the code to simulate the

corresponding operation in the spec. Thus, program counters before that point in the code map to
program counters before the body in the spec, and similarly for program counters after that point

in the code.

This choice of the abstraction function for program counters determines how each transition of
the code simulates transitions of the spec as follows:

e If misan external transition, Ttsimulates the singleton sequence containing just Tt

e |If mtakesathread from a PC of p; to a PC of p,, Ttsimulates the singleton sequence
containing just the body of Produce.

e If mtakesathread from a PC of ¢4 to aPC of c,, Ttsimulates the singleton sequence
containing just the body of Consure.

« All other transitions 1tsimulate the empty sequence.

Handout 17. Formal Concurrency 26

6.826—Principles of Computer Systems 2002

This exampleillustrates atypical situation: we usually find that a transition in the code simulates
a sequence of either zero or one transitions in the spec. Transitions that have no effect on the
abstract state simulate the empty sequence, while transitions that change the abstract state
simulate asingle transition in the spec. The proof technique used here works fineif atransition
simulates a sequence with more than one transition in it, but this doesn’t show up in most
examples.

In addition to defining the abstract program counters for threads that are active in the module, we
also need to define the values of their local variables. For this example, the only local variables
aret enp and theitemt . For threads active in either Pr oduce or Consune, the abstraction
function ont enp andt istheidentity; that is, it defines the values of t enp and t in a state of the
spec to be the value of the identically named variable in the corresponding operation of the code.

Finally, we need to describe how to construct the state of the buffer b from the state of the code.
Given the choices above, thisis simple: the abstraction function is the identity on b.

Proof sketch

To prove the code correct, we need to prove some invariants on the state. Here are some obvious
ones; the others we need will become clear as we work through the rest of the proof.

First, define athread h to be dominant if h. $pc isin Produce and h. $pc iSin {p,, ps, P4, Ps} OF iS
at theend of m acq, inc. si gnal , or a the beginning of m rel , or if h. $pc isin Consune and

h. $pc isin{c,, c;, ¢4, Cs, g C;} OF isat theend of m acq, at the beginning or end of c. wai t (but
not in the middle), or at the beginningof mrel .

Now, we claim that the following property isinvariant: athread h is dominant if and only if

Mut ex. m= h. Thissimply saysthat h holds the mutex if and only if its PC is at an appropriate
point. Thisis the basic mutual exclusion property. Amazingly enough, given this property we
can easily show that operations are mutually exclusive: for @l threadsh, h* suchthat h #h' , if h
isdominant then h* is not dominant. In other words, at most one thread can be in the middle of
one of the operations in the code at any time.

Now let’s consider what needs to be shown to prove the code correct. First, we need to show that
the claimed invariants actually are invariants. We do this using the standard inductive proof
technique: Show that each initial state of the code satisfies the invariants, and then show that
each atomic action in the code preserves the invariants. Thisis eft as an exercise.

Next, we need to show that the abstraction function defines a simulation of the spec by the code.
Again, thisis an inductive proof. Thefirst step isto show that an initial state of the codeis
mapped by the abstraction function to an initial state of the spec. This should be straightforward,
and is |eft as an exercise. The second step isto show that the effects of each transition are
preserved by the abstraction function. Let’s consider a couple of examples.

* Consider atransition Ttfromr to r' in which an invocation of an operation occurs for thread
h. Then in stater, h was not active in the module, and inr', its PC is at the beginning of the
operation. Thistransition simulates the identical transition in the spec, which has the effect of
moving the PC of thisthread to the beginning of the operation. So AF(r) istaken to AF(r') by
the transition.

Handout 17. Formal Concurrency 27

6.826—Principles of Computer Systems 2002

e Consider atransition in which athread h movesfrom h. $pc = p;toh. $pc = p,, Setting b to
the value stored in temp. The corresponding abstract transition setsb tob + {t}. To show
that this transition does the right thing, we need an additional invariant:

If h. $pc = pg, thentenp = b + {t}.

To provethis, we use thefact that if h. $pc = pg, then no other thread is dominant, so no other
transition can change b. We also have to show that any transition that putsh. $pc at this point
establishes the consequent of the implication — but there is only one transition that does this
(the one that assignstot enp), and it clearly establishes the desired property.

Thetransition in Consune that assignsto b relies on asimilar invariant. The rest of the transitions
involve straightforward case analyses. For the external transitions, it is clear that they correspond
directly. For the other internal transitions, we must show that they have no abstract effect, i.e., if
they taker tor', then AF(r) = AF(r'). Thisisleft asan exercise.

Spi nLock implements Mt ex, first version

The proof isdonein two layers. First, we show that For get f ul Mut ex implements Mt ex.
Second, we show that Spi nLock implements For get f ul Mut ex. For convenience, we repeat the
definitions of the two modules.

CLASS Mut ex EXPORT acq, rel =

VAR m : (Thread + Null) := nil

PRCC acq() = << m=nil => m:= SELF, RET >>

PROC rel () = << m= SELF => m:= nil ; RET [*] HAVCC >>
END Mut ex

CLASS Forget ful Mut ex EXPORT acq, rel =

TYPEM = ENUM free, held]

VAR m := free

PROC acq() = << m= free => m:= held; RET >>
PROC rel () = << m:= free; RET >>

END For get f ul Mut ex

Proof that For get f ul Mut ex implements Mut ex

These two modules have the same atomicity. The differenceisthat For get f ul Mit ex forgets
which thread owns the mutex, and so it can’t check that the “right” thread releasesit. We use an
abstraction relation AR. It needs to be multi-valued in order to put back the information that is
forgotten in the code. Instead of using arelation, we could use a function and history variablesto
keep track of the owner and havoc. The single-level proof given later on that Spi nl ock
implements Mut ex uses history variables.

The main interesting relationship that AR must expressis:

Handout 17. Formal Concurrency 28

6.826—Principles of Computer Systems 2002

smisnon-ni | if and only if um=hel d.

In addition, AR must include less interesting relationships. For example, it has to relate the $pc
values for the various threads. In each module, each thread is either not there at al, before the
body, or after the body. Thus, AR a so includes the condition:

The $pc valuefor each thread is the same in both modul es.

Finally, thereis the technicality of the special $havoc = true state that occursin mut ex. We
handle this by allowing AR to relate all states of For get f ul Mut ex to any state with $havoc =
true.

Having defined AR, wejust show that the two conditions of the abstraction relation definition are
satisfied.
The start condition is obvious. In the unique start states of both modules, no thread isin the

module. Also, if uisthe state of For get f ul Mut ex and sisthe state of Mut ex, then we have u.m =
freeandsm = nil. Itfollowsthat (u, s) O AR, as needed.

Now we turn to the step condition. Let u and s be reachabl e states of For get f ul Mut ex and

Mut ex, respectively, and suppose that (u, Tt U') isastep of For get f ul Mut ex and that (u,) 0 AR.
If s.$havoc, then it is easy to show the existence of a corresponding execution fragment of

Mut ex, because any transition is possible. So we suppose that s.$havoc = fal se. Invocation and
response steps are straightforward; the interesting cases are the internal steps.

So suppose that 1tis an internal action of For get f ul Mut ex. We argue that the given step
corresponds to asingle step of Mt ex, with “the same” action. There are two cases:

1. misthebody of an acq, by somethread h. Sinceacq is enabled in For get f ul Mit ex, we have
u.m = free, andh. $pc isright before the acq body in u. Since (u, s) 0 AR, we have sm =
ni |, and alsoh. $pc isjust beforetheacq body in s. Therefore, the acq body for thread h is
also enabled in Miut ex. Let S be the resulting state of Mt ex.

By the code, u'.m = hel d and S.m = h, which correspond correctly according to AR. Also,
since the same thread h gets the mutex in both steps, the PC’ s are changed in the sasme way in
both steps. So (U, s) O AR.

2. misthebody of arel , by somethread h. If u.m = fr ee then For get f ul Mut ex does
something sensible, as indicated by its code. But since (u, S) 0 AR, sm = ni | and Mit ex
does HAVOC. Since $havoc in Mut ex is defined to correspond to everything in
For get f ul Mut ex, we have (U, s) 0 ARin this case.

On the other hand, if u.m = hel d then For get f ul Mut ex setsu'.m : = free. Since (u, s) O
AR, we have s.m# ni | . Now there are two cases: If sm= h, then corresponding changes
occur in both modules, which allows us to conclude (u', s) O AR. Otherwise, Mut ex goes to
$havoc = true. But asbefore, thisis OK because $havoc = true correspondsto
everything in For get f ul Mit ex.

Handout 17. Formal Concurrency 29

6.826—Principles of Computer Systems 2002

The conclusion isthat every trace of For get f ul Mut ex is aso atrace of Mut ex. Note that this
proof does not imply anything about liveness, though in fact the two modul es have the same
liveness properties.

Proof that Spi nLock implements For get f ul Mut ex
We repeat the definition of Spi nLock.

CLASS Spi nLock EXPORT acq, rel =

TYPEM = ENUM free, held]
VAR m = free

PRCC acq() = VAR t: FH |
DO<<t :=m m:=held >>; IFt # held => RET [*] SKIP FI OD
PROC rel () = << m:= free >>

END Spi nLock

These two modules use the same basic data. The difference s their atomicity. Because they use
the same data, an abstraction function AF will work. Indeed, the point of introducing
For get f ul Mut ex was to take care of the need for history variables or abstraction relations there.

The key to defining AF is to identify the exact moment in an execution of Spi nLock when we
want to say the abstract acq body occurs. There aretwo logical choices: the moment when a
thread converts u.mfromf r ee to hel d, or the later moment when the thread discoversthat it has
donethis. Either will work, but to be definite we consider the earlier of these two possibilities.

Then AF isdefined asfollows. If uisany state of Spi nLock then AF(u) is the unique state s of
For get f ul Miut ex such that:

¢ Sm=um and
e ThePC values of al threads* correspond”.

We must define the sense in which the PC values correspond. The correspondenceis
straightforward for threads that aren’t there, or are engaged in ar el operation. For athread h
engaged in an acq operation, we say that

e h.$pcinForgetful Mt ex, Sh. $pc, isjust before the body of acq if and only if u.h. $pc is
in Spi nLock either (a) at the DO, and before the test-and-set ,or (b) after the test-and-set with
h’slocal variablet equal to hel d.

e h.$pc inForgetful Mt ex, Sh. $pc, isjust after the body of acq if and only if u.h. $pc is
either (a) after the test-and-set with h’slocal variablet equal tofree or (b) after the
t # hel d test.

The proof that thisis an abstraction function is interesting. The start condition is easy. For the
step condition, the invocation and response cases are easy, so consider theinternal steps. Ther el
body corresponds exactly in both modules, so the interesting steps to consider are those that are
part of theacq. acq in Spi nLock has two kinds of internal steps: the atomic test-and-set and the
testfort # hel d. We consider these two cases separately:

Handout 17. Formal Concurrency 30

6.826—Principles of Computer Systems 2002

1) The atomic test-and-set, (u, test-and-set, U'). Say thisis done by thread h. In this case, the
value of mmight change. It depends on whether the step of Spi nLock changes mfromfree to
hel d. If it does, then we map the step to the acq body. If not, then we map it to the empty
sequence of steps. We consider the two cases separately:

a) Thestep changesm Then in Spi nLock, h. $pc moves after the test-and-set with h’slocal
variable t = free. Weclaimfirst that theacq body in For get f ul Mut ex isenabled in
state AF(u). Thisistrue becauseit requires only that sm = free, and thisfollows from
the abstraction function sinceu.m = fr ee. Then we claim that the new statesin the two
modules arerelated by AF. To seethis, notethat m = hel d in both cases. And the new
PC’s correspond: in For get f ul Miut ex, h. $pc moves to right after the acq body, which
corresponds to the position of h. $pc in Spi nLock, by the definition of the abstraction
function.

b) The step does not change m Then h. $pc in Spi nLock movesto thetest, witht = hel d.
Thus, thereis no change in the abstract value of h. $pc.

2) Thetestfort # held, (u, test, u’). Say thisis done by thread h. We always map thisto the
empty sequence of stepsin For get f ul Mut ex. We must argue that this step does not change
anything in the abstract state, i.e., that AF(U) = AF(u). There are two cases:

a) Ift = hel d, thenthe step of Spi nLock moves h. $pc to after the DO. But this does not
change the abstract value of h. $pc, according to the abstraction function, because both
before and after the step, the abstract h. $pc valueis before the body of acg.

b) Ontheother hand, ift = free, then the step of Spi nLock movesh. $pc to after the =>.
Again, this does not change the abstract value of h. $pc because both before and after the
step, the abstract h. $pc valueis after the body of acq.

Spi nLock implements Mt ex, second version

Now we show again that Spi nLock implements Mit ex, thistimewith adirect proof that
combines the work donein both levels of the proof in the previous section. For contrast, we use
history variablesinstead of an abstraction relation.

Abstraction function

Asusual, we need to be precise about what constitutes a state of the code and what constitutes a
state of the spec. A state of the spec consists of:

* A vauefor m(either athread or ni I); and

» for each thread that is active in the modul e, a program counter.
There areno local variables for threads in the spec.

A state of the codeis similar; it consists of:

* A vauefor m(either free or hel d);

Handout 17. Formal Concurrency 31

6.826—Principles of Computer Systems 2002

« for each thread that is active in the module, a program counter; and
« for each thread that isactivein acq, avaluefor thelocal variablet .

Now we have a problem: there is no way to define an abstraction function from a code state to a
spec state. The problem hereis that the code does not record which thread holds the mutex, yet
the spec keeps track of thisinformation. To solve this problem, we have to introduce a history
variable or use an abstraction relation. We choose the history variable, and add it as follows:

* Weaugment the state of the code with two additional variables:

ms: (Thread + Null) := nil
hs: Bool := false

% min the Spec
% $havoc inthe Spec

* Wedefinethe effect of each atomic action in the code on the history variable; written in
Spec, thisresultsin the following modified code:

PROC acq() = VAR t: FH |
DO<<t :=m m:= held>>; IFt # held => [<k<ns := SELF>>;| RET [*] SKIP FI OD

PROC rel () = << m:=free; |hs := hs \/ (ns # SELF); ns := nil] >>

Y ou can easily check that these additions to the code satisfy the constraints required for adding
history variables.

This treatment of ns is the obvious way to keep track of the spec’sm Unfortunately, it turns out
to require arather complicated proof, which we now proceed to give. At the end of this section
we will seealess obvious s that allows a much simpler proof; skip to thereif you get worn out.

Now we can proceed to define the abstraction function. First, we enumerate the program
counters. For the spec, they are:

A, — before the body of acq
A, — after the body of acq
R, — before the body of r el
R, — after the body of r el

For the code, they are:
e Forathreadinacq:

a, — beforethe VAR t

a, — after the VAR t and before the Do loop

a; — before the test-and-set in the body of the boloop
a, — after the test-and-set in the body of the boloop
a; — before the assignment to ns

ag — after the assignment to ns

e Forathreadinrel :

r, — before the body
r, — after the body

Handout 17. Formal Concurrency 32

6.826—Principles of Computer Systems 2002

Thetransitionsin acq may be alittle confusing: there’ satransition from a, to a;, aswell as
transitions from a, to as.

Here aretheroutinesin Mt ex annotated with the PC values:

APRCC acq() = [A;] << m=nil => m:= SELF >> [A)]

APRCC rel () = [Ry] << m# SELF => HAVOC [*] m:= nil >> [Ry]
Here are theroutinesin Spi nLock annotated with the PC values:

PRCC acq() = [a] VARt := FH |

[a] DO[ag] <<t :=m m:= held >>;

[a] IFt # held => [ag] << ms := SELF >>; [ag] RET [*] SKIP FI QD
PROC rel () = [ry] << m:=free; hs := hs \/ (ms # SELF); nms := nil >> [r)]
Now we can define the mappings on program counters:

» |Ifathreadisnotinacq or rel inthecode, thenitisnot in either in the spec.
o {ay, a, ag, ay, a5} MaPsto A,, a; Mapsto A,
* r, MapstoRr;, r, MaPStoRr,

The part of the abstraction function dealing with the global variables of the module simply
defines min the spec to have the value of ns in the code, and $havoc in the spec to have the value
of hs inthe code. Asin handout 8, wejust throw away al but the spec part of the state.

Sincethere are no local variables in the spec, the mapping on program counters and the mapping
on the global variables are enough to define how to construct a state of the spec from a state of
the code.

Once again, the abstraction function on program counters determines how transitions in the code
simulate sequences of transitions in the spec:

» If misan externa transition, Ttsimulates the singleton sequence containing just Tt

» |If ttakes athread from a; to a4, TtSimulates the singleton sequence containing just the
transition from A, to A,.

o |If mtakes athread fromr, tor,, T simulates the singleton sequence containing just the
transition from R, tO R,.

» All other transitions simulate the empty sequence.

Proof sketch

Asin the previous example, we will need someinvariants to do the proof. Rather than trying to
write them down first, we will see what we need as we do the proof.

First, we show that initial states of the code map to initial states of the spec. Thisis easy; dl the
thread states correspond, and theinitial state of ms in the codeisni I .

Handout 17. Formal Concurrency 33

6.826—Principles of Computer Systems 2002

Next, we show that transitions in the code and the spec correspond. All transitions from outside
the moduleto just before aroutine' s body are straightforward, as are transitions from the end a
routine's body to outside the module (i.e., when aroutine returns). The transition in the body of
rel isaso straightforward. The hard cases are in the body of acq.

Consider all thetransitionsin acq before the one from as to a;. These al simulate the null
transition, so they should leave the abstract state unchanged. And they do, because none of them
changes ns.

Thetransition from ag to ag Simulates the transition from A, to A,. There are two cases: when
ms = nil,andwhenns # nil.

1. Inthefirst case, thetransition from A, to A, is enabled and, when taken, changes the state so
that m = SELF. Thisisjust what the transition from a; to az does.

2. Now consider thecasewhenms + ni | . We claim this caseis possible only if athread that
didn’t hold the mutex hasdonear el . Thenhs = true, the spec has done Havoc, and
anything can happen. In the absence of havoc, if athread isat as;, then s = ni | . But even
though this invariant is what we want, it's too weak to prove itself inductively; for that, we
need the following, stronger invariant:

Either
Ifm= freethenms = nil,and
If athreadisat as, or at a, witht = free,thennms = nil, m = hel d, thereareno
other threads at a, and for all other threadsat a,, t = hel d

or hs istrue.

Given thisinvariant, we are done: we have shown the appropriate correspondence for all the
transitions in the code. So we must prove the invariant. We do this by induction. It's vacuously
truein theinitial state, since no thread could be at a, or a5 in the initial state. Now, for each
transition, we assume that the invariant is true before the transition and prove that it still holds
afterwards.

The external transitions preserve the invariant, since they change nothing relevant to it.

Thetransitioninrel preservesthefirst conjunct of the invariant because afterwards both
m = freeandms = nil.To provethat thetransitioninrel preservesthe second conjunct of the
invariant, there are two cases, depending on whether the spec allows HAVCC.

1. If it does, then the code sets hs true; this corresponds to the HAVOC transition in the spec, and
thereafter anything can happen in the spec, so any transition of the code simulates the spec.
The reason for explicitly simulating HAVOC is that the rest of the invariant may not hold after
arogue thread doesr el . Because the rogue thread resets mto f r ee, if there' sathread at a5 or
ata,witht = free,andm = hel d, then after theroguer el , mis no longer hel d and hence
the second conjunct is false This meansthat it's possible for several threads to get to a5, or to
a,witht = free. Theinvariant still holds, because hs is now true.

Handout 17. Formal Concurrency 34

6.826—Principles of Computer Systems 2002

2. Inthenormal casems # nil, and since we re assuming the invariant is true before the
transition, thisimpliesthat no thread isat a, witht = free or at a;. After thetransitiontor,
it' s still the case that no thread isat a, witht = free or at a;, so theinvariant is still true.

Now we consider thetransitionsin acq. Thetransitions from a, to a, and from a, to a; obviously
preserve the invariant. The transition from a, to a; puts athread at a5, butt = free inthiscase
so theinvariant is true after the transition by induction. The transition from a, to a5 also clearly
preserves the invariant.

The transition from a; to a, isthefirst interesting one. We need only consider the case

hs = fal se, since otherwise the spec allows anything. This transition certainly preserves the
first conjunct of the invariant, since it doesn’t change ns and only changes mto hel d. Now we
assume the second conjunct of the invariant true before the transition. There are two cases:

1. Beforethetransition, thereisathread at ag, or at a, witht = free. Thenwehavem = hel d
by induction, so after thetransition botht = hel d and m = hel d. This preserves the
invariant.

2. Beforethetransition, thereareno threads at a; or at a, witht = free. Then after the
transition, thereis still no thread at ag, but thereis anew thread at a,. (Any others must have
t = hel d.) Now, if thisthread hast = hel d, the second part of theinvariant is true
vacuoudly; butif t = free, then we have:

ms = nil (Sincewhen the thread was at a; mmust have been f r ee, hence thefirst part of
theinvariant applies);

m = hel d (asadirect result of the transition);

there are no threads at ag (by assumption); and

there are no other threads at a, witht = free (by assumption).
So theinvariant is still true after the transition.

Finally, assume athread h is at ag, about to transition to ag. If theinvariant istrue here, thenh is
the only thread at a;, and all threads at a, havet = hel d. So after it makes the transition, the
invariant is vacuously true, because thereis no other thread at a5 and the threads at a, haven't
changed their state.

We have proved theinvariant. Theinvariant impliesthat if athread isat a, ms = ni |, whichis
what we wanted to show.

Smplifying the proof

This proof is agood example of how to use invariants and of the subtleties associated with
preconditions. It's possible to give a considerably simpler proof, however, by handling the
history variable ms in aless natural way. Thisversion is closer to the two-stage proof we saw
earlier. In particular, it uses the transition from a, to a, to simulate the body of Mut ex. acq. We
omit the hs history variable and augment the code as follows:

Handout 17. Formal Concurrency 35

6.826—Principles of Computer Systems 2002

PRCC acq() = [a] VARt := FH
[a] DO[ag] <<t :=m
[a4] IFt # held => [

|
m:= held; [Ft # held => ns .= SELF [*] SKIP FI| >>;
ag] RET [a] [*] SKIP FI OO,

PROC rel () = [ry] << m:=free; ms := nil >> [r,]

The abstraction function maps ns to Mut ex. mas before, and it maps PC’s a;- a5 to A, and ag-a; to
Ay It mapsa, to A ift = held, andtoA,ift = free; thusagtoa, simulates Mut ex. acq only if
mwasf r ee, aswe should expect. Thereis no need for an invariant; we only used it at a5 to ag,
which no longer exists.

The simulation argument is the same as before except for a; to a,, which isthe only place where
we changed the code. If m = hel d, then mand ns don’t change; hence Mut ex. mdoesn’t change,
and neither does the abstract PC; in this case the transition simulates the empty trace. If m =
free, then mbecomes hel d, ms becomes SELF, and the abstract PC becomes A,; in this case the
transition simulates A, to A,, as promised.

The mora of this story isthat it can make a big difference how you choose the abstraction
function. The crucial decision isthe choice of the ‘critical transition’ that models the body of

Mut ex. acq, that is, how to abstract the PC. It seems very natural to change ns in the code after
thetest of t # hel d that isaready there, but this forces the critical transition to be after the test.
Then there has to be an invariant to carry forward the relationship between the local variablet
and the global variable m which complicates things, and the HAvoC caseinr el complicates them
further by falsifying the natural statement of the invariant and requiring the additional hs
variable to patch things up. The uglier code with asecond test of t # hel d inside the atomic
test-and-set command makes it possible to use that action, which does the real work, to simulate
the body of Mut ex. acq, and then everything falls out nicely.

More complicated code requires invariants even when we choose the best abstraction function, as
we see in the next two examples.

Miut ex2l npl implements Mut ex

Thisisthe rather subtle code that implements a mutex for two threads using only memory reads
and writes. We begin with a proof in the style of the last few, and then give an entirely different
proof based on model checking.

First we show that the simple, deadlocking version acqo maintains mutua exclusion. Recall that
wewrite h* for the thread that is the partner of thread h. Here are the spec and code again:

CLASS Mut ex EXPORT acq, rel =

VAR m : (Thread + Null) := nil
PRCC acq() = << m=nil => m:= SELF, RET >>
PROC rel () = << m= SELF => m:= nil ; RET [*] HAVCC >>
END Mt ex
Handout 17. Formal Concurrency 36

6.826—Principles of Computer Systems 2002

CLASS Mut ex2l nmpl O EXPORT acq, rel =

VAR req : Thread -> Bool := {* -> fal se}
| ast Req o Int
PROC acqO() =

[a] req(SELF) := true;
DO [a,] req(SELF*) => SKIP OD [a]

PROC rel () = req(SELF) := fal se
END Mut ex2] npl O

Intuitively, we get mutual exclusion because oncer eq(h) istrue, h* can't get froma, toas. It's
convenient to define

FUNC Hol dsO(h: Thread) = RET req(h) /\ h.$pc # a,

Abstractly, h has the mutex if Hol dso(h) , and the transition from a, to a; Simulates the body of
Mut ex. acq. Precisdly, the abstraction function is

Mit ex. m = (Hol ds0O.set = {} => nil [*] Hol dsO. set. choose)
Recall that if Pisapredicate, P. set isthe set of argumentsfor which it istrue.

To make precisetheideathat r eq(h) stopsh* from getting to a;, the invariant we need is
Hol ds0O.set.size <= 1 /\ (h.$pc = a, ==> req(h))

Thefirst conjunct is the mutual exclusion. It holds because, given thefirst conjunct, only (a,, as)
can increase the size of Hol ds0. set, and h can takethat step only if req(h*) = fal se, SO

Hol ds0. set goesfrom{} to{h}. The second conjunct holds because it can never be

true ==> fal se, sinceonly thestep (a;, req(h) := true, a,) can make the antecedent true,
this step also makes the consequent true, and no step away from a, makes the consequent false.

This argument appliesto acqo as written, but you might think that it's unredlistic to fetch the
shared variabler eq(SELF*) and test it in asingle atomic action; certainly thiswill take more
than one machineinstruction. We can appeal to big atomic actions, since the whole sequence
from a, to a5 has only one action that touches a shared variable (the fetch of r eq(SELF*)) and
thereforeis atomic.

Thisistheright thing to do in practice, but it’ sinstructive to see how to do it by hand. We break
thelast line down into two atomic actions:

VARt | DO [a,)] << [:3 req(SELF*) B> [ay] <<t |F> SKIP >> OD [ay]

We examine several ways to show the correctness of this; they all have the sameidea, but the
details differ. The most obvious oneisto add the conjunct h. $pc # ay, to Hol ds0, and extend
the mutual exclusion conjunct of the invariant so that it covers athread that has reached ay;, with
t = fal se:

(Hol dsO.set \/ {h | h.$pc = ay,; /\ h.t = false}).size <= 1

Handout 17. Formal Concurrency 37

6.826—Principles of Computer Systems 2002

Or we could get the same effect by saying that athread acquires the lock by reaching a,, with t
= fal se, sothat it'sthetransition (a,, ay) witht = fal se that simulates the body of

Mut ex. acq, rather than the transition to a5 as before. This means changing the definition of

Hol dsO to

FUNC Hol dsO(h: Thread) =
RET req(h) /\ h.$pc # a, |\ (h.$pc = a; ==> h.t = fal se)]

Y et another approach isto make explicit in the invariant what h knows about the global state.
One purpose of an invariant is to remember things about the global state that a thread has
discovered in the past; the fact that it's an invariant means that those things stay true, even
though other threads are taking steps. Inthiscase,t = fal se inh meansthat either req(h*) =
fal se or h* isat a, Of ay,, in other words, Hol ds(h*) = fal se. We can put thisinto the
invariant with the conjunct

h.$pc = a,; /\ h.t = false ==> Hol ds(h*) = false
and thisis enough to ensure that the transition (ay,, ag) maintains theinvariant.

We return from this digression on proof methodol ogy to study the non-deadlocking acq:

PRCC acq() =
[a] req(SELF) := true;
[a] lastReq := self;

DO [ay] (req(SELF*) /\ lastReq = SELF) => SKIP OD [as]

We discussed liveness informally earlier, and we don’t attempt to proveit. To prove mutual
exclusion, we need to extend Hol ds0 in the obvious way:

FUNC Hol ds(h: Thread) = req(h) J\ h.$pc # a /\ h.$pc # a,

andadd\/ h.$pc = a, totheantecedent of the invariant In order to have mutual exclusion, it
must betruethat h won't find | ast Req = h* aslong ash* holds the lock. We need to add a
conjunct to the invariant to express this. This leaves us with:

Hol dsO. set.size <= 1

/\ (h.$pc = a N/ h.s$pc = a,| ==> req(h))

I\ (Holds(h*) /\ h.$pc = a ==> lastReq = h)]

Thelast conjunct holds because (a,, a,) makesit true, and the only way to make it falseisfor h*
todol ast Req : = SELF, which it can only do from a;, so that Hol ds(h*) isfalse. With this
invariant it's obvious that (a,, a;) maintains the invariant.

Proof by model checking

We have been doing all our proofs by establishing invariants; these are called assertional proofs.
An alternative method is to explore the state space exhaustively; thisis called model checking. It
only works when the state space not too big. In this case, if the two threads are a and b, the state
spaceisjust:

a.$pc IN{ay a;, a, ag}

b.$pc IN{ay a;, a, az}

req(a) IN {false, true}

Handout 17. Formal Concurrency 38

6.826—Principles of Computer Systems 2002

req(b) IN {false, true}
lastReq IN {a, b}

We can write down a state concisely with one digit to represent each PC, at or f for eachreq,
andanaorb forl ast Req. ThusooOffaisa. $pc = ag b. $pc = ay, req(a) = false,req(b) =
fal se,l ast Req = a. When the value of a component is unimportant we writex for it.

Now we can display the complete state machine.

/Off\
/Otfx Olft\
‘/ZOtfa\AA/llttx\ Othb\
30tfa\ 21tta\ 12tt@ »/osn b

32tt@

Note the extensive symmetries. Nominally there are 128 states, but many are not reachable:
1. Thevalueof req follows from the PC's, which cuts the number of reachable states to 32.

2. 33xxx isnot reachable. Thisisthe mutual exclusion invariant, which is that both PC’s cannot
bein thecritical section at the end of acq.This removes 2 states.

3. Atthetop of the picture the value of | ast Req is not important, so we have shown it asx.
Thisremoves 4 states.

4. Wecan't have 20xxb or 21xxb or 30xxb Or 31xxb Or 32xxa, or the 5 symmetric states,
because of theway | ast Req is set. Thisremoves 10 states.

In the end there are only 16 reachable states, and 7 of them are obtained from the others simply
by exchanging the two threads a and b.

Since there is no non-determinism in this algorithm and a thread is never blocked from making a
transition, there are two transitions from each state, one for each thread. If there were no
transitions from a state, the system would deadlock in that state. It's easy to see that the

Handout 17. Formal Concurrency 39

6.826—Principles of Computer Systems

agorithmisliveif both threads are schedul ed fairly, since there are no non-trivial cyclesthat
don’'t reach the end of acq. It isfair because the transitions from 00f f x and 11t t x arefair.

The appeal of model-checking should be clear from the example: we don’t have to think, but can
just search the state space mechanically. The drawback is that the space may betoo large. This
small exampleillustrates that symmetries can cut the size of the search dramatically, but the
Symmetries are often not obvious.

C ockl npl implementsd ock

We conclude with the proof of the clock implementation. The spec says that a Read returns some
value that the clock had between the beginning and the end of the Read. Hereit is, with labels.

MODULE Cl ock EXPORT Read =

VAR t : Int :=0

THREAD Tick() =DO<<t + :=1>> OD
PROC Read() -> Int = VAR t1l: Int |

[Rl] << tl:=t > [R]] << VARt2 | t1 <=1t2/\ t2 <=t => RET t2 >> [Ry]]

END C ock

% the current time
% demon thread advancest

To show that d ockl npl implements this we introduce a history variablet 1Hi st in Read that
correspondstot 1 in the spec, recording the time at the beginning of Read’s execution. The
invariant that is needed is based on the idea that Read might complete before the next Ti ck, and
therefore the value Read would return by reading the rest of the shared variables must be
betweent 1H st and d ock. t . We can write this most clearly by annotating the labels in Read
with assertions that are true when the PC isthere.

MODULE C ockl npl EXPORT Read =

CONST base 1= 2%*32
TYPE Wor d = Int SUCHTHAT (\ i: Int | i IN base.seq)
VAR | o : Wrd =0

hi 1 : Wrd :=0

hi 2 : Wrd :=0

% ABSTRACTI ON FUNCTION d ock.t = T(lo, hil, hi2), Cock.Read.tl1 = Read.t1H st,
C ock.Read.t2 = T(Read.tLo, Read.tHl, read.tH2)

% The PC correspondenceis Ry < ry, Ry o Iy, I3, Ry o 1y

THREAD Ti ck() = DO VAR newLo: Word, newHi : Word |

<< newo :=1o + 1 // base; newH :=hil + 1 >>;

IF << newo # 0 => 10 := newLo >>

[*] << hi2 :=newH >> << 1o :=newo >> << hil := newHd >>
FI D

PROC Read() -> Int = VAR tLo: Word, tHL: Wrd, tH2: Wrd, ft1H st: Int] |
[r]| << tHL := hil; fIH st := T(lo, hil, hi2)]>>;
[r,] %12: T(lo, tHL, hi2) INt1Hi st T(lo, hil, hi2)]
<< tLo :=1lo; >
[rs] %13: T(tLo, tHL, hi2) IN t1H st T(lo, hil, hi2)]
<< tH2 := hi2; RET T(tLo, tHL, tH2) >>
[rad %14: $a IN t1Hi st T(lo, hil, hi2)]

Handout 17. Formal Concurrency

2002

40

6.826—Principles of Computer Systems 2002

FUNC T(I: Int, hl: Int, h2: Int) ->1Int = h2 * base + (hl = h2 =>1 [*] 0)
END d ockl npl

Thewholeinvariant is thus
h.$pc =r, ==> 12 /\ h.$pc =rz3 ==> 13 /\ h.$pc =r, ==> |4

The steps of Read clearly maintain this invariant, since they don’t change the value before 1 N.
The steps of Ti ck maintain it by case analysis.

Handout 17. Formal Concurrency 41

