6.826—Principles of Computer Systems 2002

7. Disksand File Systems

Motivation

The two lectures on disks and file systems are intended to show you a number of things:
Some semi-realistic examples of specs.
Many important coding techniques for file systems.
Some of the tradeoffs between a simple spec and efficient code.
Examples of abstraction functions and invariants.
Encoding: a general technique for representing arbitrary types as byte sequences.
How to mode! crashes.

Transactions: ageneral technique for making big actions atomic.

There arealot of ideas here. After you have read this handout and listened to the lectures, it'sa
good ideato go back and reread the handout with this list of themesin mind.

Outline of topics
We give the specs of disks and filesin the Di sk and Fi | e modules, and we discuss a variety of
coding issues:
Crashes
Disks
Files
Caching and buffering of disks and files
Representing files by trees and extents
Allocation
Encoding and decoding
Directories
Transactions
Redundancy

Crashes
The specs and code here are without concurrency. However, they do alow for crashes. A crash

can happen between any two atomic commands. Thus the possibility of crashesintroduces a
limited kind of concurrency.

Handout 7. Disksand File Systems 1

6.826—Principles of Computer Systems 2002

When acrash happens, the volatile global state isreset, but the stable state is normally
unaffected. We express precisely what happens to the global state as well as how the module
recovers by including acr ash procedure in the module. When a crash happens:

1. Thecrash procedureisinvoked. It need not be atomic.

2. If the crash procedure does a CRASH command, the execution of the current invocations (if
any) stop, and their local state is discarded; the same thing happens to any invocations
outside the module from within it. After CRASH, no procedure in the modul e can be invoked
from outside until Cr ash returns.

3. Thecrash procedure may do other actions, and eventually it returns.
4. Normal operation of the module resumes; that is, external invocations are now possible.

Y ou can tell which parts of the state are volatile by looking at what Cr ash does; it will reset the
volatile variables.

Because crashes are possible between any two atomic commands, atomicity is important for any
operation that involves a change to stable state.

The meaning of a Spec program with thislimited kind of concurrency is that each atomic
command corresponds to atransition. A hidden piece of state called the program counter keeps
track of what transitions are enabled next: they are the atomic commands right after the program
counter. There may be several if the command after the program counter has[] asits operator.
In addition, a crash transition is always possible; it resets the program counter to anull value
from which no transition is possible until some external routine isinvoked and then invokes the
Cr ash routine.

If there are non-atomic procedures in the spec with many atomic commands, it can be rather
difficult to see the consequences of acrash. It is therefore clearer to write a spec with as much
atomicity as possible, making it explicit exactly what unusual transitions are possible when
there’sacrash. We don't always follow this style, but we give some examples of it, notably at
the end of the section on disks.

Disks
Essentia properties of adisk:

Storage is stable across crashes (we discuss error models for disksin the Di sk spec).

It's organized in blocks, and the only atomic update is to write one block.

Random access is about 100k times slower than random accessto RAM (10 msvs. 100 ns)
Sequential accessis 10-100 times slower than to RAM (40 MB/s vs. 400-6000 MB/s)
Costs 50 times |ess than RAM ($2/GB vs. $100/GB) in January 2002.

MTBF 1 million hours = 100 years.

Performance numbers:

Blocks of .5k - 4k bytes
40 MB/sec sequential, sustained (more with parallel disks)

Handout 7. Disksand File Systems 2

6.826—Principles of Computer Systems 2002

3 ms average rotational delay (10000 rpm = 6 ms rotation time)
7 ms average seek time; 3 ms minimum

It takes 10 msto get anything at al from arandom place on the disk. In another 10 ms you can
transfer 400 KB. Hence the cost to get 400 KB is only twice the cost to get 1 byte. By reading
from several disksin parallel (called striping or RAID) you can easily increase the transfer rate
by afactor of 5-10.

Performance techniques:

Avoid disk operations: use caching
Do sequential operations: allocate contiguously, prefetch, writeto log
Writein background (write-behind)

A spec for disks

The following modul e describes a disk Dsk as afunction from a DA to adisk block DB, which is
just asequence of DBSi ze bytes. The Dsk function can aso yield ni I, which represents a
permanent read error. The module is aclass, so you can instantiate as many Di sks as needed.
The stateis one Dsk for each Di sk. Thereis aNew method for making anew disk; think of thisas
ordering anew disk drive and plugging it in. An extent E represents a set of consecutive disk
addresses. The main routines arether ead and wri t e methods of Di sk: r ead, which reads an
extent, and wr i t e, which writesn disk blocks worth of data sequentially to the extent E{ da, n}.
The writeis not atomic, but can be interrupted by afailure after each single block is written.

Usually a spec like thisis written with a concurrent thread that introduces permanent errorsin the
recorded data. Since we haven't discussed concurrency yet, in this spec we introduce the errors
inreads, using the AddEr r or s procedure. An error setsablock toni I, after which any read that
includes that block raises the exception er r or . Strictly speaking thisisillegal, sincer ead isa
function and therefore can’t call the procedure AddEr r or s. When we learn about concurrency we
can move AddEr r or s to a separate thread; in the meantime we take the liberty, since it would be
areal nuisance for r ead to be a procedure rather than a function.

Since neither Spec nor our underlying model deals with probabilities, we don’t have any way to
say how likely an error is. We duck this problem by making AddEr r or s completely non-
deterministic; it can do anything from introducing no errors (which we must hope is the usual
case) to clobbering the entire disk. Characterizing errors would be quite tricky, since disks
usually have at least two classes of error: failures of single blocks and failures of an entire disk.
However, any user of this module must assume something about the probability and distribution
of errors.

Transient errors are less interesting because they can be masked by retries. We don’t model
them, and we also don’'t model errorsreported by wri t es. Finally, arealistic error model would
include the possibility that a block that reports aread error might later be readable after all.

CLASS Di sk EXPORT Byte, Data, DA, E, DBSize, read, wite, size, check, Crash

TYPE Byt e = INO .. 255
Dat a = SEQ Byte
DA = Nat % Disk block Address
Handout 7. Disksand File Systems 3

6.826—FPrinciples of Computer Systems 2002
DB = SEQ Byte % Disk Block
SUCHTHAT (\db| db.size = DBSize)
Bl ocks = SEQ DB
E = [da, size: Nat] % Extent, in disk blocks

W TH {das: =EToDAs, "IN':=(\ e, da | da IN e.das)}

Dsk = DA -> (DB + Null) % aDBor ni | (error) for each DA
CONST DBSi ze 1= 1024 % bytesin adisk block
VAR di sk . Dsk

APRCC new(size: Int) -> Disk = <<
VAR dsk | dsk.dom = size.seq.rng =>
self := StdNew(); disk := dsk; RET self >>

% overrides St dNew
% si ze blocks, arbitrary contents

FUNC read(e) -> Data RAI SES {not There, error} =
check(e); AddErrors();
VAR dbs := e.das * disk | % contents of the blocksin e
IF nil INdbs => RAISE error [*] RET BToD(dbs) FI

PROC write(da, data) RAI SES {notThere} =
VAR bl ocks := DToB(data), i := 0 |
% Atomic by block, and in order
check(E{da, bl ocks.size});
DO bl ocks!i => WiteBlock(da + i, blocks(i)); i +:=1 QD

APROC WiteBlock(da, db) = << disk(da) := db >>
FUNC si ze() -> Int = RET di sk.dom si ze

APRCC check(e) RAISES {not There} = % every DAine isindi sk. dom
<< e.das.rng <= disk.dom => RET [*] RAI SE not There >>

PRCC Crash() = CRASH % no global volatile state
FUNC EToDAs(e) -> SEQ DA = RET e.da .. e.date.size-1 %e.das
% Internal routines

% Functions to convert between Dat a and Bl ocks.

FUNC BToD(bl ocks) -> Data = RET + : blocks

FUNC DToB(data) -> Blocks = VAR bl ocks | BToD(bl ocks) = data => RET bl ocks
% Undefined if dat a. si ze isnot amultiple of DBsi ze

APRCC AddErrors() = % clobber some blocks
<< DO RET [] VAR da :IN disk.dom| disk(da) := nil OD >>

END Di sk
This module doesn’t worry about the possibility that a disk may fail in such away that the client
can't tell whether awriteisstill in progress; thisisasignificant problem in fault tolerant systems

that want to allow a backup processor to start running a disk as soon as possible after the primary
fails.

Many disks do not guarantee the order in which blocks are written (why?) and thus do not
implement this spec, but instead one with aweaker wri t e:

Handout 7. Disksand File Systems 4

% failsif dat a not amultiple of DBsi ze

% the atomic update. PRE: di sk! da

6.826—Principles of Computer Systems 2002

PROC writeUnordered(da, data) RAISES {notThere} =
VAR bl ocks : = DToB(data) |
% Atomic by block, in arbitrary order; assumes no concurrent writing.
check(E{da, bl ocks.size});
DO VAR i | blocks(i) # disk(da + i)] => WiteBlock(da + i, blocks(i)) OD

In both specswri t e establishesbl ocks = E{da, bl ocks. size}.das * disk,whichisthe
sameasdata = read(E{da, bl ocks. size}), and both change each disk block atomically.

wr i t eUnor der ed says nothing about the order of changes to the disk, so after a crash any subset
of the blocks being written might be changed; wr i t e guarantees that the blocks changed are a
prefix of al the blocks being written. (wr i t eUnor der ed would have other differences from

wri t e if concurrent accessto the disk were possible, but we have ruled that out for the moment.)

Clarifying crashes

In this spec, what happens when there' s a crash is expressed by the fact that wri t e is not atomic
and changes the disk one block at atimein the atomic Wi t eBl ock. We can make this more
explicit by making the occurrence of a crash visible inside the spec in the value of the cr ashed
variable. To do this, we modify Cr ash so that it temporarily makescr ashed true, togivewite
achanceto seeit. Thenwri t e can be atomic; it writes all the blocks unlesscr ashed istrue, in
which caseit writes some prefix; thiswill happen only if wri t e isinvoked between the cr ashed
. = true and the CRASH commands of Cr ash. To describe the changes to the disk neatly, we
introduce an interna function NewDi sk that maps adsk vaue into another onein which disk
blocks at da are replaced by corresponding blocks defined in bs.

Again, thiswouldn’t beright if there were concurrent accesses to Di sk, since we have made all
the changes atomically, but it gives the possible behavior if the only concurrency isin crashes.

VAR [crashed . Bool := false]

[APROJ write(da, data) RAISES {notThere} =
VAR bl ocks : = DToB(data) |

check(E{da, bl ocks.size});

IF crashed => % if crashed, write some prefix
VAR i | i < blocks.size => blocks := bl ocks.sub(0, i)

[1 SKIPFI;

di sk : = NewDi sk(di sk, da, blocks)

% failsif dat a not amultiple of DBsi ze

FUNC NewDi sk(dsk, da, bs: (Int -> DB)) -> Dsk =

% result isdsk overwritten with bs at d
RET dsk + (\ da' | da' — da) * bs

PROC Crash() = [crashed := true;| CRASH, [crashed : = fals¢

For unordered writes we need only a slight change, to write an arbitrary subset of the blocks if

there' s a crash, rather than a prefix:
IF crashed => % if crashed, write some subset

VAR [w._SET | | w <= blocks.don} => bl ocks := bl ocks.[estrict(w]

Handout 7. Disksand File Systems 5

6.826—Principles of Computer Systems 2002

Specifying files
This section gives a variety of specsfor files. Code followsin later sections.

Wetresat afile asjust a sequence of bytes, ignoring permissions, modified dates and other
paraphernalia. Files have names, and for now we confine ourselvesto a single directory that
maps names to files. We call the name a‘ path name' PN with an eye toward later introducing
multiple directories, but for now wejust treat the path name as a string without any structure. We
package the operations on files as methods of PN. The main methods areread and wri t e; we
definethe latter initially asw i t eAt oni ¢, and later introduce |ess atomic variationsw i t e and

W it eUnor der ed. There are also boring operations that deal with the size and with file names.

MODULE Fil e EXPORT PN, Byte, Data, X, F, Crash =

TYPE PN = String % Path Name

W TH {read: =Read, wite:=WiteAtonic, size:=CetSize,
set Si ze: =Set Si ze, create:=Create, renove: =Renove,
renane: =Renane}

I nt

Byt e = INO .. 255
Dat a = SEQ Byte
X = Nat % byte-in-file indeX
F = Data % File
D = PN->F % Directory
VAR d = D{} % undefined everywhere

Note that the only state of the spec isd, sincefiles are only reachable through d.

There are tiresome complicationsin Wi t e caused by the fact that the arguments may extend
beyond the end of the file. These can be handled by imposing preconditions (that is, writing the
spec to do HavoC when the precondition isn't satisfied), by raising exceptions, or by defining
some sensible behavior. This spec takes the third approach; NewFi | e computes the desired
contents of thefile after the write. So that it will work for unordered writes aswell, it handles
sparse dat a by choosing an arbitrary dat a' that agrees with dat a where dat a is defined.
Compareit with Di sk. NewDi sk.

FUNC Read(pn, x, i) -> Data = RET d(pn).seg(x, i)
% Returns as much dataas available, uptoi bytes, starting at x.

APROC WiteAtom c(pn, x, data) = << d(pn) := NewFile(d(pn), x, data) >>

FUNC Newri |l e(f0, x, data: Int -> Byte) -> F =
% f isthe desired final file. Fill in space between f 0 and x with zeros, and undefined dat a elements arbitrarily.
VAR z := data.domnex, z0 := fO.size , f, data' |
data'.size = z /\ data' .restrict(data.dom) = data
I\ f.size = {z0, x+z}.nax

I\ (ALL i | (i INO .. {x, zO}.nmin-1 ==>f(i) =f0O(i))
/\ (i INzO .. x-1 ==> f(i) =0)
I\ (i INX ..o Xx+z-1 ==> f(i) = data' (i-x))
I\ (i INx+z .. z0-1 ==> f(i) =f0(i)))
=> RET f
Handout 7. Disksand File Systems 6

6.826—Principles of Computer Systems 2002

FUNC Get Si ze(pn) -> X = RET d(pn).size

APROC Set Si ze(pn, X) = << VAR z := pn.size |
IF x <=z => << d(pn) := pn.read(0, z) >> % truncate
[*] pn.wite(z, F.fill(0, x - z + 1)) % handles crasheslikewr i t e
FI >>

APROC Cr eat e(pn) << d(pn) := K} >>
APROC Renove(pn) << d :=d{pn ->} >>
APROC Renane(pnl, pn2) = << d(pn2) := d(pnl); Renove(pnl) >>

PROC Crash() = SKI P
END File

W i t eAt oni ¢ changes the entire file contents at once, so that a crash can never leave thefilein
an intermediate state. This would be quite expensivein most code. For instance, consider what is
involved in making awrite of 20 megabytes to an existing file atomic; certainly you can’t
overwrite the existing disk blocks one by one. For this reason, real file systems don’t implement
Wi t eAt oni c. Instead, they change the file contents alittle at atime, reflecting the fact that the
underlying disk writes blocks one at atime. Later we will see how an atomic Wi t e could be
implemented in spite of the fact that it takes several atomic disk writes. In the meantime, hereis
amorerealistic spec for wi t e that writesthe new bytesin order. Itisjust likeDi sk. write
except for the added complication of extending the file when necessary, which istaken care of in
NewFi | e.

APRCC Wite(pn, x, data) = <<

|F crashed => % if crashed, write some prefix
VAR i | i < data.size => data := data.sub(0, i)

[*] SKIP FI;

d(pn) := Newrile(d(pn), x, data) >>

PROC Crash() = [crashed := true; CRASH, crashed := fals¢

This spec reflects the fact that only a single disk block can be written atomically, so thereis no
guarantee that all of the data makes it to the file before a crash. At thefilelevd itisn't
appropriate to deal in disk blocks, so the spec promises only bytewise atomicity. Actua code
would probably make changes one page at atime, so it would not exhibit al the behavior
allowed by the spec. There' s nothing wrong with this, aslong as the spec is restrictive enough to
satisfy its clients.

Wi t e does promise, however, that f (i) ischanged no later thanf (i +1) . Somefile systems
make no ordering guarantee; actually, any file system that runs on a disk without an ordering
guarantee probably makes no ordering guarantee, since it requires considerable care, or
considerable cost, or both to overcome the consequences of unordered disk writes. For such afile
system the following W i t eUnor der ed is appropriate; it isjust like Di sk. wri t eUnor der ed.

APRCC Wi teUnordered(pn, x, data) = <<
IF crashed => % if crashed, write some subset
VAR w._SET | | w <= data.don) => data := data.[restrict(w]
[*] SKIP FI;
d(pn) := Newrile(d(pn), x, data) >>

Handout 7. Disksand File Systems 7

% no volatile state or non-atomic changes

6.826—Principles of Computer Systems 2002

Notice that although writing afileis not atomic, Fi | e’ s directory operations are atomic. This
corresponds to the semantics that file systems usually attempt to provide: if thereisafailure
during aCr eat e, Renove, Or Renane, the operation is either completed or not done at al, but if
thereisafailureduringawi t e, any amount of the data may be written. The other reason for
making this choice in the spec is simple: with the abstractions available there' s no way to express
any sensible intermediate state of a directory operation other than Renane (of course sloppy code
might leave the directory scrambled, but that has to count as a bug; think what it would look like
in the spec).

The spec we gave for Set Si ze madeit asatomic aswri t e. The following spec for Set Si ze is
unconditionally atomic; this might be appropriate because an atomic Set Si ze is easier to
implement than a general atomicwite:

APRCC Set Si ze(pn, x) = << d(pn) := (d(pn) + F.fill(0, x)).seg(0, x) >>

Hereisanother version of NewfFi | e, written in a more operational style just for comparison. It is
abit shorter, but less explicit about the relation between the initial and fina states.

FUNC NewFi |l e(f0, x, data: Int -> Byte) -> F = VAR z0 := f0.size, data' |
data'.size = data.dom max =>
data' := data' + data;
RET (x >2z0 =>f0 + F.fill(0, x - z0) [*] fO.sub(0, x - 1))
+ data'
+ f0.sub(f.size, z0-1)

Our Fi | e spec is missing some things that areimportant in real file systems:

Access control: permissions or access control lists on files, ways of defaulting these when a
fileis created and of changing them, an identity for the requester that can be checked against
the permissions, and away to establish group identities.

Multiple directories. We will discuss this when we talk about naming.
Quotas, and what to do when the disk fills up.
Multiple volumes or file systems.

Backup. We will discuss this near the end of this handout when we describe the copying file
system.

Cached and buffered disks

The simplest way to decouple the file system client from the slow disk isto provide code for the
Di sk abstraction that does caching and write buffering; then the file system code need not
change. The basic ideas are very similar to the ideas for cached memory, although for the disk
we preserve the order of writes. We didn’t do this for the memory because we didn’t worry about
failures.

Failures add complications; in particular, the spec must change, since buffering writes means that
some writes may be lost if there is a crash. Furthermore, the client needs away to ensure that its
writes are actually stable. We therefore need a new spec BDi sk. To get it, weadd to Di sk a

Handout 7. Disksand File Systems 8

6.826—Principles of Computer Systems 2002

variable ol dbi sks that remembers the previous states that the disk might revert to after a crash

(note that thisis not necessarily all the previous states) and code to use ol dDi sks appropriately.
BDi sk. write nolonger needsto test crashed, sinceit’s now possible to lose writes even if the
crash happens after thewri te.

CLASS BDi sk EXPORT ..., sync = % write-buffered disk
TYPE ...
CONST ...
VAR di sk . Dsk %asinDi sk
[ol dDi sks SET Dsk := {}]

APRCC write(da, data) RAISES {notThere} = <<
<< VAR bl ocks : = DToB(data) |
check(Efda, blocks.size}):
di sk : = NewDi sk(di sk, da, blocks);
oldDisks \/ :={i | i < blocks.size |
NewDi sk(di sk, da, blocks.sub(0, i))};

% failsif dat a not amultiple of DBsi ze

For get ()

>>

FUNC NewDi sk(dsk, da, bs: (Int -> DB)) -> Dsk % result isdsk overwritten with bs at da

RET dsk + (\ da' | da' — da) * bs

PROC sync() = ol dDisks := {} % make di sk stable

PROC Forget() = VAR ds: SET Dsk | ol dDi sks - ds

% Discards an arbitrary subset of the remembered disk states.

PROC Crash() = CRASH, << VAR d :IN ol dDisks [disk :=d; sync() [*] SKIP >3

END BDi sk

For get isthere so that we can write an abstraction function for code for that doesn’t defer al its
disk writes until they areforced by Sync. A writethat actually changes the disk needs to change
ol dDi sks, because ol dDi sks contains the old state of the disk block being overwritten, and
thereis nothing in the state of the code after the write from which to compute that old state. Later
we will study a better way to handle this problem: history variables or multi-valued mappings.
They complicate the code rather than the spec, which is preferable. Furthermore, they do not
affect the performance of the code at all.

A weaker spec would revert to astate in which any subset of the writes has been done. For this,
change the assignment to ol dDi sks inwri t e, along the lines we have seen before.

ol dDisks \/ := {w SET I | w <= bl ocks. donj |

NewDi sk(di sk, da, blocks.[restrict(w)};

The module Buf f er edDi sk below is code for BDi sk. It copies newly written datainto the cache
and does the writes | ater, preserving the original order so that the state of the disk after acrash
will always be the state at some timein the past. In the absence of crashes thisimplements Di sk
and is completely deterministic. We keep track of the order of writes with aqueue variable,
instead of keeping adi rty bit for each cache entry aswe did for cached memory. If we didn’'t do

Handout 7. Disksand File Systems 9

6.826—Principles of Computer Systems 2002

the writesin order, there would be many more possible states after a crash, and it would be much
more difficult for aclient to use this module. Many real disks have this unpleasant property, and
many real systems deal with it by ignoring it.

A striking feature of this codeisthat it uses the same abstraction that it implements, namely

BDi sk. The codefor BDi sk that it useswe call UDi sk (Ufor ‘underlying’). Wethink of it asa
‘physical’ disk, and of courseit is quite different from Buf f er edDi sk: it contains SCSI
controllers, magnetic heads, etc. A module that implements the same interface that it usesis
sometimes called afilter or astackable module. A Unix filter likesed isafamiliar example that
uses and implements the byte stream interface. We will see many other examples of thisin the
course.

Invocations of UDi sk arein bold type, so you can easily see how the modul e depends on the
lower-level codefor BDi sk.

CLASS Buf f er edDi sk % implements BDi sk
EXPORT Byte, Data, DA, E, DBSize, read, wite, size, check, sync, Crash =

TYPE % Data, DA, DB, Blocks, E asinDi sk

| = Int

J = Int

Queue = SEQ DA % dataisincache
CONST

cacheSi ze = 1000

queuesSi ze = 50
VAR udi sk : Disk

cache . DA ->DB:={}

queue 1= Queue{}

% ABSTRACTI ON FUNCTI ON bdi sk. di sk = udi sk. di sk + cache
% ABSTRACTI ON FUNCTI ON bdi sk. ol dDi sks =
{ q: Queue | q <= queue | udisk.disk + cache.restrict(q.rng) }

% | NVARI ANT queue.rng <= cache. dom
% | NVARI ANT queue. si ze = queue.rng.si ze
% | NVARI ANT cache. dom si ze <= cacheSi ze
% | NVARI ANT queue. si ze <= queueSi ze

% if queued then cached
% no duplicatesin queue
% cache not too big

% queue not too big

<< % overrides St dNew
udi sk. new(si ze); RET self >>

APRCC new(size: Int) -> BDisk =
self := StdNew(); udisk :=
PRCC read(e) -> Data RAI SES {not There} =
% We could make provision for read-ahead, but do not.
check(e);
VAR data := Data{}, da := e.da, upTo := e.da + e.size |
DO da < upTo =>

IF cache!da => data + := cache(da); da + :=1
[*] % read as many blocks from disk as possible
VAR i := RunNot | nCache(da, upTo),

buffer := udisk.read(E{da, i}),
k := MakeCacheSpace(i) |
% k blocks will fit in cache; add them.

Handout 7. Disksand File Systems 10

6.826—Principles of Computer Systems 2002

DO VAR j :IN k.seq | ~ cache!(da + j) =>
cache(da + j) := udisk.DToB(buffer)(j)

oD;

data + := buffer; da + :=i

FI
OD; RET data

PROC write(da, data) RAISES {notThere} =
VAR bl ocks := udi sk. DToB(data) |
check(E{da, bl ocks.size});

DO VAR i :IN queue.dom | queue(i) INda .. datsize-1 => FlushQueue(i) OD
% Do any previously buffered writes to these addresses. Why?
VAR j := MakeCacheSpace(bl ocks.size), i := 0 |

IF j < blocks.size => udisk.wite(da, data)

% Don't cache if the writeis bigger than the cache.
[*] DO blocks!i =>
cache(da+i) := blocks(i); queue + :={da+i}; i +:=1
oD
Fl

PROC Sync() = FlushQueue(queue. size - 1)
PROC Crash() = CRASH, cache := {}; queue := {}

FUNC RunNot | nCache(da, upTo: DA) -> 1 =

RET {i | da + i <= upTo /\ (ALL j :INi.seq | ~ cache!(da + j)}.nmax
PROC MakeCacheSpace(i) -> Int =
% Makeroom for i new blocksin the cache; returning mi n(i, the number of blocks now available) .

% May flush queue entries.
% POST: cache. dom si ze + result <= cacheSi ze

PROC Fl ushQueue(i) = VAR q := queue.sub(0, i) |

% Write queue entriesO . . i and remove them from queue.

% Should try to combine writes into the biggest possiblewr i t es
DO q # {} => udisk.wite(q.head, 1); q := qg.tail OD
queue : = queue.sub(i + 1, queue.size - 1)

END Buf f er edDi sk

This code keeps the cache as full as possible with the most recent data, except for gigantic
writes. It would be easy to change it to make non-deterministic choices about which blocks to
keep in the cache, or to take advice from the client about which blocks to keep. The latter would
require changing the interface to accept the advice, of course.

Note that the only state of BDi sk that this module can actually revert to after acrashistheonein
which none of the queued writes has been done. Y ou might wonder, therefore, why the body of
the abstraction function for BDi sk. ol dDi sks hasto involve queue. Why can't it just be

{ udi sk. di sk} ? The reason isthat when the internal procedure Fl ushQueue does awrite, it
changes the state that a crash reverts to, and there’ s no provision in the BDi sk spec for adding
anything to ol dDi sks except duringwri t e. SO ol dbi sks hastoinclude al the states that the
disk can reach after a sequence of ‘internal’ writes, that is, writes done in Fl ushQueue. And this
isjust what the abstraction function says.

Handout 7. Disksand File Systems 11

6.826—Principles of Computer Systems 2002

Building other kinds of disks

There are other interesting and practical ways to code a disk abstraction on top of a‘base’ disk.
Some exampl es that are used in practice:

Mirroring: use two base disks of the same size to code asingle disk of that size, but with
much greater availability and twice the read bandwidth, by doing each write to both base
disks.

Striping: use n base disks to code a single disk n times as large and with n times the
bandwidth, by reading and writing in parallel to all the base disks

RAID: use n base disks of the same size to code asingle disk n-1 times as large and with n-1
times the bandwidth, but with much greater availability, by using the nth disk to store the
exclusive-or of the others. Then if one disk fails, you can reconstruct its contents from the
others.

Shapshots: use ‘ copy-on-write' to code an ordinary disk and some number of read-only
‘snapshots’ of its previous state.

Buffered files

We need to make changesto the Fi | e spec if we want the option to code it using buffered disks
without doing too many syncs. One possibility isdo abdi sk. sync at theend of eschwri te.
This spec is not what most systems implement, however, because it’s too slow. Instead, they
implement a version of Fi | e with the following additions. This version allows the data to revert
to any previous state since the last Sync. The additions are very much like those we made to

Di sk to get BDi sk. For simplicity, we don’t change ol dDi r s for operations other thanwr i t e and
set Si ze (well, except for truncation); real systems differ in how much they buffer the other
operations.

MODULE File EXPORT ..., Sync =
TYPE ...
VAR d o= D}

ol dDs . SET D := {}

APROCC Wite(pn, X, byte) = << VAR f0 := d(pn) |
d(pn) := NewFile(f0O, x, data);
oldDs \/ :={i | I < data.size |
d{pn -> NewFile(f0, x, data.sub(0, i)))} >>

[APROC Sync() = << oldDirs := {} >3

PROC Crash() = CRASH, K< VAR d :INoldDirs =>dir :=d; Sync() [*] SKIP >

END File

Henceforth we will useFi | e to refer to the modified module. Since we are not giving code for,
we leave out For get for simplicity.

Handout 7. Disksand File Systems 12

6.826—Principles of Computer Systems 2002

Many file systems do their own caching and buffering. They usually loosen this spec so that a
crash resets each file to some previous state, but does not necessarily reset the entire systemto a
previous state. (Actually, of course, real file systems usually don’'t have a spec, and it is often
very difficult to find out what they can actually do after a crash.)

MODULE Fil e2 EXPORT ..., Sync =
TYPE ...

A dFil es = PN-> SET F
VAR d

D{}
ol dFi | es A dFiles{* -> {}}

APROC Wite(pn, x, byte) = << VAR f0 := d(pn) |
d(pn) := NewFile(f0, x, data);
ol dFiTes(pn) \/ :={i | i < data.size | NewFile(fO, x, data.sub(0, i)))} >3

APROC Sync() = << pldFiles:= OdFiles{* -> {1}] >>

PROC Crash() =
CRASH,
<< VAR d' | d' .dom = d.dom
/\ (ALL pn :IN d.dom| d' (pn) IN oldFiles(pn) \/ {d(pn)})
= d:=d >>
END File

A picky point about Spec: A function constructor like (\ pn | {d(pn)}) isnogood asavaue
for ol dFi | es, because the value of the global variabled in that constructor is not captured when
the constructor is evaluated. Instead, this function uses the value of d wheniitisinvoked. Thisis
alittleweird, but it isusually very convenient. Hereit is a pain; we avoid the problem by using a
local variable d whose value is captured when the constructor is evaluated in Snapshot D.

A still weaker spec allows d to revert to a state in which any subset of the byte writes has been
done, except that the files still have to be sequences. By analogy with unordered BDI sk, we
changethe assignment tool dFil es inWite.

oldFiles(pn) \/ :={w SET i | w <= data.don |

NewFi | e(f0, x, data.frestrict(w)} >>

Coding files

The main issue is how to represent the bytes of the file on the disk so that large reads and writes
will befast, and so that the file will still be there after a crash. The former requires using
contiguous disk blocks to represent the file as much as possible. The latter requiresa
representation for D that can be changed atomically. In other words, the file system state has type
PN -> SEQ Byt e, and we haveto find adisk representation for the SEQ Byt e that is efficient,
and one for the function that is robust. This section addresses the first problem.

The simplest approach is to represent afile by a sequence of disk blocks, and to keep an index
that is a sequence of the DA's of these blocks. Just doing this naively, we have

Handout 7. Disksand File Systems 13

6.826—Principles of Computer Systems 2002

TYPEF = [das: SEQ DA, size: N % Contents and size in bytes

The abstraction function to the spec says that thefileisthefirst f . si ze bytesin the disk blocks
pointed to by c. Writing this as though both Fi | e and its code FI npl 0 had thefilef asthe state,
we get

File.f = (+ : (FInplO.f.das * disk.disk)).seg(0, FInplO.f.size)

or, using the di sk. r ead method rather than the state of di sk directly

File.f = (+: {da :INFInmplO.f.das | | disk.read(E{da, 1})}).seg(0, FInplO.f.size)

But actually the state of Fi | e isd, so we should have the same state for FI npl (with the different
representation for F, of course), and

File.d = (LAMBDA (pn) -> File.F =
VAR f := Flnpl0.d(pn) |
RET (+ : (f.das * disk.disk)).seg(0, f.size)

% failsif d isundefined at pn

We need an invariant that says the blocks of each file have enough space for the data.
% | NVARIANT (ALL f :INd.rng | f.das.size * DBSize >= f.size)

Then it’'s easy to see how to coder ead:

PRCC read(pn, x, i) =
VAR f = dir(pn),
diskData := + : (da :INf.das | | disk.read(E{da, 1})},
fileData : = diskData.seg(0, f.size) |
RET fileData.seg(x, i)

Tocodew i t e we need away to allocate free Das; we defer this to the next section.
There are two problems with using this representation directly:

1. Theindex takes up quite alot of space (with 4 byte DA’s and DBSi ze = 1Kbyte it takes .4% of
the disk). Since RAM costs about 50 times as much as disk, keeping it all in RAM will add
about 20% to the cost of the disk, which isasignificant dollar cost. On the other hand, if the
index isnot in RAM it will take two disk accesses to read from arandom file address, which
isasignificant performance cost.

2. Theindex is of variable length with no small upper bound, so representing the index on the
disk isnot trivial either.

To solvethefirst problem, store Di sk. E'sin theindex rather than DA’s. A single extent can
represent lots of disk blocks, so the total size of the index can be much less. Following this idea,
we would represent the file by a sequence of Di sk. E's, stored in asingle disk block if it isn’t too
big or in afile otherwise. This recursion obviously terminates. It has the drawback that random
access to the file might become slow if there are many extents, because it’s necessary to search
them linearly to find the extent that contains byte x of thefile.

To solve the second problem, use some kind of tree structure to represent the index. In standard
Unix file systems, for example, theindex is a structure called an inode that contains:

Handout 7. Disksand File Systems 14

6.826—Principles of Computer Systems 2002

a sequence of 10 DA’s (enough for a 10 KB file, which iswell above the median file size),
followed by

the DA of an indirect DB that holds DBSi ze/ 4 = 250 or so DA’s (enough for 2250 KB file),
followed by

the DA of a second-level indirect block that holds the DA's of 250 indirect blocks and hence
points to 2502 = 62500 DA’s (enough for a62 MB file),

and so forth. The third level can address a 16 GB file, which is enough for today's systems.

Thus the inode itself has room for 13 DA's. These systems duck the first problem; their extents
are always asingle disk block.

We give code for that incorporates both extents and trees, representing afile by a generalized
extent that is atree of extents. The leaves of thetree are basic extents Di sk. E, that is, references
to contiguous sequences of disk blocks, which are the units of i/o for di sk. r ead and

di sk. wri t e. The purpose of such ageneral extent is simply to define a sequence of disk
addresses, and the E. das method computes this sequence so that we can useit in invariants and
abstraction functions. The tree structure is there so that the sequence can be stored and modified
more efficiently.

An extent that contains a sequence of basic extentsis called alinear extent. To dofasti/o
operations, we need alinear extent which includes just the blocks to be read or written, grouped
into the largest possible basic extents so that di sk. read and di sk. wr i t e can work efficiently.
FI at t en computes such alinear extent from a general extent; the spec for Fl at t en given below
flattens the entire extent for the file and then extracts the smallest segment that contains all the
blocks that need to be touched.

Read and Wi t e just call FI at t en to get the relevant linear extent and then call di sk. r ead and
di sk. wri t e on the basic extents; wi t e may extend thefilefirst, and it may have to read the
first and last blocks of the linear extent if the data being written does not fill them, since the disk
can only write entire blocks. Extending or truncating a file is more complex, because it requires
changing the extent, and also because it requires allocation. Allocation is described in the next
section. Changing the extent requires changing the tree.

Thetreeitself must be represented in disk blocks; methods inspired by B-trees can be used to
change it while keeping it balanced. Our code shows how to extract information from the tree,
but not how it is represented in disk blocks or how it is changed. In standard Unix file systems,
changing thetreeisfairly simple because abasic extent is aways a single disk block in the
multi-level indirect block scheme described above.

We give the abstraction function to the simple code above. It just says that the Das of afile are
the ones you get from Fl at t en.

The code below makes heavy use of function composition to apply some function to each
element of asequence:s * f is{f(s(0)), ..., f(s(s.size-1))}.Iff yieddsaninteger ora
sequence, the combination+ : (s * f) addsup or concatenates all thef (s(i)).

Handout 7. Disksand File Systems 15

6.826—Principles of Computer Systems 2002

MODULE FSInpl =

TYPEN
E

BE
LE

SE

X
E

PN

CONST DBSi ze .=

VAR d
di sk

% implementsFi | e

Nat

[c: (Disk.DA + SE), size: N %size = #of DA'sine
SUCHTHAT (\e | Size(e) = e.size)

W TH {das: =EToDAs, | e: =EToLE}

E SUCHTHAT (\e| e.c IS Disk.DA) % Basic Extent

E SUCHTHAT (\e| e.c IS SEQ BE) % Linear Extent: sequence of BEs
WTH {"+": =Cat }

SEQ E % Seguence of Extents: may be tree
File. X

[e, size: X %si ze = #of bytes

File.PN % Path Name

1024

File.PN -> F := {}

% ABSTRACTI ON FUNCTION File.d = (LAMBDA (pn) -> File.F = d!pn =>
% Thefileisthefirst f . si ze bytesin the disk blocks of theextent f . e

VAR f := d(pn),
data := + :

{be :IN Flatten(f.e, 0, f.e.size).c | | disk.read(be)} |

RET data. seg(0, f.size))

% ABSTRACTI ON FUNCTI ON FInpl 0.d = (LAVBDA (pn) -> FInpl 0. F =

VAR f := d(pn)
FUNC Si ze(e) -> Int

| RET {be :IN Flatten(f.e, 0, f.e.size).c | | be.c}
= RET (e ISBE => e.size [*] + :(e.c * Size))

% # of DA'sreachable from e. Should beegual toe. si ze.

FUNC EToDAs(e) -> SEQ DA = % e. das
% The sequence of DA’s defined by e. Just for specs.
RET (e ISBE =>{i :INe.size.seq | | e.c +i} [*] + :(e.c * EToDAs))
FUNC EToLE(e) -> LE = %e.le
% The sequence of BE'sdefined by e.
RET (e IS BE => LE{SE{e}, e.size} [*] + :(e.c * EToLE))

FUNC Cat (1 el, |e2)

-> LE =

% The" +" method of LE. Mergeel and e2 if possible.

|
[]
[

F el ={} => RET le2
e2 ={} => RET lel
] VAR el :=lel.c.last, e2 := le2.c. head, se |

IF el.c + el.size = e2.c =>

se : =
[*] se :=
Fl;
RET LE{se,

Fl

lel.c.rem + SE{E{el.c, el.size + e2.size}} + le2.c.tail
lel.c + le2.c

lel.size + le2. size}

FUNC Flatten(e, start: N, size: N) -> LE = VAR le0 :=e.le, lel, le2, le3|
% Theresult| eissuchthat| e. das = e. das. seg(start, size);

% Thisisfewer thansi ze

DA'sif e gets used up.

Handout 7. Disksand File Systems 16

6.826—Principles of Computer Systems 2002

% It'semptyif start >= e. si ze.
% Thisisnot practical code; see below.
le0O = lel +1e2 + le3
/\ lel.size = {start, e.size}.mn
I\ le2.size = {size, {e.size - start, O}.max}.mn
=> RET |l e2

END FSI npl

Thisversion of Fl at t en isnot very practical; in fact, it is more like a spec than code for. A
practical one, given below, searches the tree of extents sequentially, taking the largest possible
jumps, until it finds the extent that contains the st ar t th DA. Then it collects extents until it has
gotten si ze DA's. Note that because each e. si ze givesthetotal number of DA'sine, Fl atten
only needstimel og(e. si ze) to find the first extent it wants, provided the treeis balanced. This
isastandard trick for doing efficient operations on trees: summarize the important properties of
each subtreeinitsroot node. A further refinement (which we omit) isto store cumulative sizesin
an SE so that we can find the point we want with a binary search rather than the linear search in
the DOloop below; we did thisin the editor buffer example of handout 3.

FUNC Fl atten(e, start: N, size: N) -> LE =

VAR z := {size, {e.size - start, O}.max}.mn |
IF z=0 => RET E{c := SK{}, size : = 0}
[*] e 1S BE => RET E{c := e.c + start, size :=z}.le
*

[*] VAR se := e.c AS SE, she : SEQ BE := {}, at := start, want := z |
DO want > 0 => % maintainat + want <= Size(se)
VAR el := se.head, e2 := Flatten(el, at, want) |

she := she + e2.c; want := want - e2.size;
se := se.tail; at := {at - el.size, 0}.max
D,
RET E{c := sbe, size := z}
FI
Allocation

We add something to the state to keep track of which disk blocks are free:

VAR free: DA -> Bool

We want to ensure that afree block is not also part of afile. In fact, to keep from losing blocks, a
block should be freeiff it isn’t in afile or some other data structure such as an inode:

PROC | sReachabl e(da) -> Bool =
RET (EXISTS f :INd.rng | da INf.e.das \/ ...

% | NVARI ANT (ALL da | |sReachable(da) = ~ free(da))

This can’t be coded without some sort of 1og-like mechanism for atomicity if we want separate
representationsfor free and f . e, that is, if we want any code for f r ee other than the brute-force
search implied by | sReachabl e itself. The reason is that the only atomic operation we have on
the disk isto write asingle block, and we can’t hope to update the representations of both f r ee
andf . e with asingle block write. But ~ 1 sReachabl e isnot satisfactory codefor f r ee, even

Handout 7. Disksand File Systems 17

6.826—Principles of Computer Systems 2002

though it does not require a separate data structure, because it’s too expensive — it traces the
entire extent structure to find out whether ablock isfree.

A weaker invariant allows blocks to be lost, but still ensures that the file data will be inviolate.
Thisisn't as bad as it sounds, because blocks will only belost if thereis a crash between writing
the allocation state and writing the extent. Also, it's possible to garbage-collect the lost blocks.

% | NVARI ANT (ALL da | |sReachabl e(da) ==> ~ free(da))

A weaker invariant than thiswould be a disaster, sinceit would allow blocks that are part of a
fileto be free and therefore to be allocated for another file.

The usual representation of fr ee isaSEQ Bool (often called abit table). It can bestored ina
fixed-sizefile that is allocated by magic (so that the code for allocation doesn’t depend on itself).
Toreducethe size of fr ee, the physical disk blocks may be grouped into larger units (usually
caled ‘clusters') that are alocated and deall ocated together.

Thisisafairly good scheme. The only problem with it is that the table size grows linearly with
the size of the disk, even when there are only afew large files, and concomitantly many bits may
have to be touched to allocate a single extent. Thiswill certainly be trueif the extent islarge, and
may be true anyway if lots of allocated blocks must be skipped to find a free one.

The dternative is atree of free extents, usually coded as a B-tree with the extent size asthe key,
so that we can find an extent that exactly fitsif thereis one. Another possibility is to use the
extent address as the key, since we also care about getting an extent close to some existing one.
These goals are in conflict. Also, updating the B-tree atomically is complicated. Thereis no best
answer.

Encoding and decoding

To store complicated values on the disk, such as the function that constitutes a directory, we need
to encode them into a byte sequence, since Di sk. Dat a iS SEQ Byt e. (We aso need encoding to
send values in messages, an important operation later in the course.) It’s convenient to do this
with apair of functions for each type, called Encode and Decode, which turn avalue of the type
into a byte sequence and recover the value from the sequence. We package them up into an
EncDec pair.

TYPE Q
EncDec

SEQ Byte
[enc: Any -> Q dec: Q -> Any] % Encode/Decode pair
SUCHTHAT (\ed: EncDec | (EXISTS T: SET Any |
ed.enc.dom=T
/\ (ALL t :IN T | dec(enc(t)) =1)))

Other names for ‘encode’ are ‘serialize’ (used in Java), ‘pickle’, and ‘ marshal’ (used for
encoding arguments and results of remote procedure calls).

A particular EncDec works only on values of asingle type (represented by the set T in the
SUCHTHAT, since you can’t quantify over typesin Spec). This means that enc is defined exactly
on values of that type, and dec isthe inverse of enc so that the process of encoding and then
decoding does not |ose information. We do not assume that enc istheinverse of dec, since there

Handout 7. Disksand File Systems 18

6.826—Principles of Computer Systems 2002

may be many byte sequences that decode to the same value; for example, if the valueis a set, it
would be pointless and perhaps costly to insist on acanonical ordering of the encoding. In this
course we will generally assume that every type has methods enc and dec that form an EncDec
pair.

A typethat has other types as its components can haveits EncDec defined in an obviousway in
terms of the EncDec’s of the component types. For example, aSEQ T can be encoded as a
sequence of encoded T's, provided the decoding is unambiguous. A function T -> U can be
encoded as a set or sequence of encoded (T, U) pairs.

A directory is one example of a situation in which we need to encode a sequence of valuesinto a
sequence of bytes. A log is another example of this, discussed below, and a stream of messages
isathird. It's necessary to be able to parse the encoded byte sequence unambiguously and
recover the original values. We can express this idea precisely by saying that aparseisan
EncDec Sequence, alanguageis aset of parses, and the language is unambiguous if for every
byte sequence q the language has at most one parse that can completely decode g.

TYPEM = SEQQ % for segmenting aQ
P = SEQ EncDec % Par se
% A sequence of decoders that parsesa Q as defined by | sPar se below
Language = SET P
FUNC | sParse(p, q) -> Bool = RET (EXI STS m |
+:m=q % msegments q
/\ msize = p.size % mistheright size

/\ (ALL i :IN p.dom| (p(i).dec)!m(i)]) % each p decodesitsm

FUNC | sUnanbi guous(|: Language) -> Bool = RET (ALL g, pl, p2|
pl INIT /\ p2 INI /\ IsParse(pl, q) /\ IsParse(p2, q) ==> pl = p2)

Of course ambiguity is not decidablein general. The standard way to get an unambiguous
language for encodingsisto use type-length-value (TLV) encoding, in which the result q of
enc(x) startswith some sort of encoding of x’stype, followed by an encoding of q’s own length,
followed by a Qthat contains the rest of the information the decoder needs to recover x.

FUNC | sTLV(ed: EncDec) -> Bool =
RET (ALL x :IN ed.enc.dom | (EXI STS d1, d2, d3 |
ed.enc(x) = dl + d2 + d3 /\ EncodeType(x) = dil
/\ (ed.enc(x).size).enc = d2))

In many applications thereis a grammar that determines each type unambiguously from the
preceding values, and in this case the types can be omitted. For instance, if the sequenceisthe
encoding of aSEQ T, then it’s known that all the types are T. If thelength is determined from the
typeit can be omitted too, but thisis done less often, since keeping the length means that the
decoder can reliably skip over parts of the encoded sequence that it doesn’t understand. If
desired, the encodings of different types can make different choices about what to omit.

Thereis an international standard called ASN-1 (for Abstract Syntax Notation) that defines a
way of writing a grammar for alanguage and deriving the EncDec pairs automatically from the
grammar. Like most such standards, it is rather complicated and often yields somewhat
inefficient encodings. It's not as popular asit used to be, but you might stumble acrossit.

Handout 7. Disksand File Systems 19

6.826—Principles of Computer Systems 2002

Another standard way to get an unambiguous language is to encode into S-expressions, in which
the encoding of each valueis delimited by parentheses, and the type, unlessit can be omitted, is
given by the first symbol in the S-expression. A variation on this scheme which is popular for
Internet Email and Web protocols, isto have a‘header’ of the form

attributel: val uel
attribute2: val ue2

with various fairly ad-hoc rules for delimiting the values that are derived from early conventions
for the human-readabl e headers of Email messages.

The trendy modern version seriaization languaeis called XML (eXtensible Markup Language).
It generalizes S-expressions by having labeled parentheses, which you write <f oo> and </ f 0o>.

In both TLV and S-expression encodings, decoding depends on knowing exactly where the byte
sequence starts. Thisis not a problem for @'s coming from afile system, but it is a serious
problem for @ s coming from awire or byte stream, since the wire produces a continuous stream
of voltages, bits, bytes, or whatever. The process of delimiting a stream of symbolsinto @ s that
can be decoded is called framing; we will discussit later in connection with networks.

Directories

Recall that aDisjust a PN -> F. We have seen various ways to represent F. The simplest code
relies on an EncDec for an entire D. It represents aD as afile containing enc of the PN -> F map
asaset of ordered pairs.

There are two problems with this scheme:

¢ LookupinalargeDwill beslow, sinceit requires decoding the whole D. This can be fixed
by using a hash table or B-tree. Updating the D can still be done as in the simple scheme, but
thiswill also be slow. Incremental update is possible, if more complex; it also has atomicity
issues.

« If wecan't do an atomic file write, then when updating a directory we arein danger of
scrambling it if there is a crash during the write. There are various ways to solve this
problem. The most general and practical way isto use the transactions explained in the next
section.

It is very common to code directories with an extralevel of indirection called an ‘inode’, so that
we have

TYPE | No = Int % Inode Number
D = PN->1No
| NoMap = INo -> F

VAR d . D:={}
i nodes I NoMvap : = {}

You can seethat i nodes isjust like adirectory except that the names are | No’sinstead of PN's.
There are three advantages:

Handout 7. Disksand File Systems 20

6.826—Principles of Computer Systems 2002

Because | No's are integers, they are cheaper to store and manipulate. It's customary to
provide an Open operation to turn aPNinto an 1 No (usually through yet another level of
indirection called a‘file descriptor’), and then use the 1 No as the argument of Read and
Wite.

Because | No's areintegers, if F isfixed-size (asin the Unix example discussed earlier, for
instance) then i nodes can be represented as an array on the disk that isjust indexed by the
I No.

The enforced level of indirection means that file names automatically get the semantics of
pointers or memory addresses: two of them can point to the samefile variable.

The third advantage can be extended by extending the definition of D so that the value of aPN
can be another PN, usually called a“symbolic link”.

TYPE D = PN-> (INo [FPN)
Transactions

We have seen several examples of ageneral problem: to give a spec for what happens after a
crash that is acceptable to the client, and code for that satisfies the spec even though it has only
small atomic actions at its disposal. In writing to afile, in maintaining allocation information,
and in updating a directory, we wanted to make a possibly large state change atomic in the face
of crashes during its execution, even though we can only write asingle disk block atomically.

The general technique for dealing with this problem is called transactions. General transactions
make large state changes atomic in the face of arbitrary concurrency aswell as crashes; we will
discuss thislater. For now we confine ourselves to ‘ sequential transactions', which only take care
of crashes. Theideaisto conceal the effects of a crash entirely within the transaction abstraction,
so that its clients can program in a crash-free world.

The code for sequential transactionsis based on the very general idea of a deterministic state
machine that has inputs called actions and makes a deterministic transition for every input it
sees. The essential observation isthat:

If two instances of a deterministic state machine start in the same state and see the
same inputs, they will make the same transitions and end up in the same state.

This means that if we record the sequence of inputs, we can replay it after a crash and get to the
same state that we reached before the crash. Of course this only works if we start in the same
state, or if the state machine has an ‘idempotency’ property that allows us to repeat the inputs.
More on this below.

Hereisthe spec for sequential transactions. There' s astate that is queried and updated (read and
written) by actions. We keep a stable version ss and a volatile version vs. Updates act on the
volatile version, which isreset to the stable version after acrash. A ‘commit’ action atomically
sets the stable state to the current voltile state.

Handout 7. Disksand File Systems 21

6.826—Principles of Computer Systems 2002

MODULE SeqTr [% Sequential Transaction
V, % Value of an action
SWTH{ s0: ()-> S} % State; sO initially
] EXPORT Do, Commit, Crash =

TYPE A = S>>V, 9 % Action
VAR ss 1= S.s0() % Stable State
Vs 1= S.s0() % Volatile State

APRCC Do(a) -> V = << VARV | (v, vs) := a(vs); RET v >>
APRCC Conmi t () << 8s = Vs >>
APRCC Crash () << Vs 1= ss >>

% Abor t isthe same
END SeqTr

In other words, you can do awhole series of actions to the volatile state vs, followed by a

Conmi t . Think of the actions as reads and writes, or queries and updates. If there's a crash before
the Conmi t , the state revertsto what it was initially. If there's a crash after the Conmi t, the state
revertsto what it was at the time of the commit. An action isjust afunction from an initial state
to afinal state and aresult value.

There are many coding techniques for transactions. Here is the simplest. It breaks each action
down into a sequence of updates, each one of which can be done atomically; the most common
example of an atomic update is awrite of asingle disk block. The updates also must have an
‘idempotency’ property discussed |ater. Given a sequence of Do’s, each applying an action, the
code concatenates the update sequences for the actions in a volatile log that is a representation of
the actions. Conmi t writes thislog atomically to a stable log. Once the stable log is written, Redo
appliesthe volatile log to the stable state and erases both logs. ¢ ash resets the volatile to the
stable log and then applies the log to the stable state to recover the volatile state. It then uses
Redo to update the stable state and erase the logs. Note that we gives a" +" methods + | that
appliesalog to a state.

This scheme reduces the problem of implementing arbitrary changes atomically to the problem
of atomically writing an arbitrary amount of stuff to alog. Thisis easier but till not trivial to do
efficiently; we discussit at the end of the section.

MODULE LogRecovery [% implements SeqTr

Vv, % Value of an action
SO WTH { sO: () -> SO} % State
] EXPORT Do, Commit, Crash =
TYPEA = S>>V, 9 % Action
U = S->8 % atomic Update
Handout 7. Disksand File Systems 22

6.826—Principles of Computer Systems 2002
L = SEQU % Log
S = SO WTH { "+":=DoLog } % State; s+l applies| tos
VAR ss = S.s0() % Stable State
Vs = S.s0() % Volatile State
sl = L{} % Stable Log
vl = L{} % Volatile Log

% ABSTRACTI ON to SeqTr
SeqTr.ss = ss + sl
SeqTr.vs = vs

% I NVARIANT vs = ss + vl

FUNC DolLog(s, |) -> S = %s+l = DoLog(s, I)
% Apply the updatesin| tothe state s.
I={} => RET s [*] RET DoLog((!l.head)(s),!.tail))

APRCC Do(a) -> V =
% Find an| (asequence of updates) that has the same effect as a on the current state.

<< VAR v, | | (v, vs +1) = a(vs) =>
vl :=vl +1; vs :=vs +1|; RET v >>

PROC Commit() = << sl := vl >> Redo()
PROC Redo() = % replay vl , then clear sl

DO vl # {} => << ss :=ss + vl.head; vl :=vl.tail >> 0D, << sl :={} >>
PROC Crash() =

CRASH;

<< vl :={}; vs := S.s0() >>; % crash erasesvs, vl

<< vl :=sl; vs :=ss + vl >> % recovery restores them

Redo() % and repeats the Redo; thisis optional

END LogRecovery

For this redo crash recovery to work, I must have the property that repeatedly applying prefixes
of it, followed by the whole thing, has the same effect as applying the whole thing. For example,
supposel = L{a,b,c,d,e}. ThenL{fa, b, c| [[[e.b.c. d,fa.bl[a b, c.d, e fafa b, c d e}
must have the same effect as| itself; here we have grouped the prefixes together for clarity. We
need this property because a crash can happen while Redo is running; the crash reapplies the
wholelog and runs Redo again. Another crash can happen while the second Redo is running, and
so forth.

This‘hiccup’ property follows from ‘log idempotence':

s+l +1 =s +1 (1)
From this we get (recall that < isthe‘prefix’ predicate for sequences).

kK<l ==>(s+k+1 =5 +1) (2)
becausek < | impliesthereisal' suchthatk + I' = I, and hence

s+k+1 =s+k+(k+1") =(s+k+k +1I

=(s+k) +1" =s + (k+1') =5 +
From (2) we get the property we want:

IsH ccups(k, 1) ==> (s + k +1 =s +1) (3)
where

Handout 7. Disksand File Systems 23

6.826—Principles of Computer Systems 2002

FUNC | sHi ccups(k, |) -> Bool =
% k is aseguence of attempts to complete |
RET k = {}
\/ (EXISTS k', |I'] K=Kk + 1" /\ 1 #{} I\ <=
/\ 1sHiccups(k', 1))

because we can keep absorbing the last hiccup | * into the final complete| . For example, taking
some liberties with the notation for sequences:
abcaaabcdababcdeaabcde
abcaaabcdababcde + (a + abcde)

= abcaaabcdababcde + abcde by (2)

= abcaaabcdab + (abcde + abcde)

= abcaaabcdab + abcde by (2)

= abcaaabcd + (ab + abcde)

= abcaaabcd + abcde by (2)
and so forth.

To prove (3), observe that

I'sHiccups(k, I') /\ k #{} ==>k =k'" + 1" /\V I'" <=1 /\ IsH ccups(k', I).
Hence

s+k+l = (s+k')+l '+l = s+k' +l by (2)
andk' < k.ButwehavelsH ccups(k', 1), sowecan proceed by inductionuntil k' = {}
and we have the desired resullt.

We can get log idempotence if the U's commute and are idempotent (that is,u * u = u), or if
they are all writes. More generaly, for arbitrary U s we can attach aul Dto each U and record it in
swhen theuis applied, so we can tell that it shouldn’t be applied again. Calling the original state
Ss, and defining ameani ng method that turns a U record into a function, we have

TYPE

S
U

[ss, tags: SET U D
[uu: SS->SS, tag: U D WTH{ neani ng: =Meani ng }

FUNC Meani ng(u, s)->S =
u.tag IN s.tags => RET s
[*] RET S{ (u.uu)(s.ss), s.tags + {u.tag} }

% u aready done

If al theU'sin| have different tags, we get log idempotence. The tags make U's ‘testable’ in the
jargon of transaction processing; after a crash we can test to find out whether a U has been done
or not. In the standard database code each U works on one disk page, the tag is the ‘log sequence
number’, the index of the update in the log, and the update writes the tag on the disk page.

Writing the log atomically

Thereis still an atomicity problem in this code: Conmi t atomically does<< sl := vI >>, and
thelogs can belarge. A simple way to use adisk to code alog that requires this assignment of

arbitrary-sized sequences isto keep the size of sI in a separate disk block, and to write all the

datafirst, then do async if necessary, and finally write the new size. Sinces! is aways empty
before this assignment, in this representation it will remain empty until thesingle Di sk. write

that setsits size. Thisis rather wasteful code, sinceit does an extra disk write.

Handout 7. Disksand File Systems 24

6.826—Principles of Computer Systems 2002

More efficient code writes a‘commit record’ at the end of the log, and treats the log as empty
unless the commit record is present. Now it’'s only necessary to ensure that the log can never be
mis-parsed if a crash happens whileit’s being written. An easy way to accomplish thisisto write
adistinctive ‘ erased value into each disk block that may become part of the log, but this means
that for every disk writeto alog block, there will be another writeto eraseit. To avoid this cost
we can use aring buffer of disk blocks for the log and a sequence number that increments each
time the ring buffer wraps around; then ablock is*erased’ if its sequence number is not the
current one. There' s still acost to initialize the sequence numbers, but it’s only paid once. With
careful code, asingle bit of sequence number is enough.

In some applications it’s inconvenient to make room in the data stream for a sequence number
every DBsi ze bytes. To get around this, use a‘displaced’ representation for thelog, in which the
first data bit of each block is removed from its normal position to make room for the one bit
sequence number. The displaced bits are written into their own disk blocks at convenient
intervals.

Another approach is to compute a strong checksum for the log contents, writeit at the end after
all the other blocks are known to be on the disk, and treat the log as empty unless a correct
checksum is present. With a good n-bit checksum, the probability of mis-parsingis2™.

Redundancy

A disk has many blocks. We would like some assurance that the failure of a single block will not
damage alarge part of the file system. To get such assurance we must record some critical parts
of the representation redundantly, so that they can be recovered even after afailure.

The simplest way to get this effect is to record everything redundantly. This gives us more: a
single faillure won’'t damage any part of the file system. Unfortunately, it is expensive. In current
systems thisis usually done at the disk abstraction, and is called mirroring or shadowing the
disk.

The alternative is to record redundantly only the information whose | oss can damage more than
onefile: extent, allocation, and directory information.

Another approach isto
do all writesto alog,
keep acopy of thelog for along time (by writing it to tape, usualy), and
checkpoint the state of the file system occasionally.

Then the current state can be recovered by restoring the checkpoint and replaying the log from
the moment of the checkpoint. This method is usually used in large database systems, but not in
any file systems that | know of.

We will discuss these methods in more detail near the end of the course.

Handout 7. Disksand File Systems 25

6.826—Principles of Computer Systems 2002

Copying File Systems

The file system described in FSI npl above separates the process of adding DB's to the
representation of afile from the process of writing datainto thefile. A copying file system (CFS)
combines these two processes into one. It iscalled a‘log-structured’ file system in the literature?,
but as we shall see, thelog is not the main idea. A CFSis based on threeideas:

* Useagenerationa copying garbage collector (called a cleaner) to reclaim DB’ s that are no
longer reachable and keep all the free spacein asingle (logically) contiguous region, so that
thereis no need for a bit table or freelist to keep track of free space.

« Doall writes sequentially at one end of thisregion, so that existing datais never overwritten
and new datais sequential .

¢ Log and cache updates to metadata (the index and directory) so that the metadata doesn’t
have to be rewritten too often.

A CFSisavery interesting example of the subtle interplay among the ideas of sequential
writing, copying garbage collection, and logging. This section describes the essentials of a CFS
in detail and discusses more briefly a number of refinements and practical considerations. It will
repay careful study.

Hereisapicture of adisk organized for a CFS:

abc==def gh====ij kl =mFnopqrs-----------------
In this picture letters denote reachable blocks, ="s denote unreachabl e blocks that are not part of
the free space, and - ’ s denote free blocks (contiguous on the disk viewed as aring buffer). After
the cleaner copies blocks a- e the pictureis

------- f gh====i j kI =n¥nopqr sabcde------------
because the data a- e has been copied to free space and the blocks that used to hold a- e are free,
together with the two unreachabl e blocks which were not copied. Then after blocksg andj are
overwritten with new values Gand J, the pictureis

-------f=h====i =kl =mFnopqr sabcdeGJ----------
The new data Gand J has been written into free space, and the blocks that used to hold g and j
are now unreachable. After the cleaner runs to completion the pictureis

--------------------- nopqr sabcdeGIf hi kl m - - -

Prosand cons
A CFS has two main advantages:

« All writing is done sequentially; as we know, sequential writes are much faster than random
writes. We have a good technique for making disk reads faster: caching. As main memory
caches get bigger, more reads hit in the cache and disks spend more of their time writing, so
we need a technique to make writes faster.

1 M. Rosenblum and J. Osterhout, The design and implementation of alog-structured file system, ACM
Transactions on Computer Systems, 10, 1, Feb. 1992, pp 26-52.

Handout 7. Disksand File Systems 26

6.826—Principles of Computer Systems 2002

e The cleaner can copy reachable blocks to anywhere, not just to the standard free space
region, and can do so without interfering with normal operation of the system. In particular, it
can copy reachable blocks to tape for backup, or to a different disk drive that is faster,
cheaper, lessfull, or otherwise more suitable as ahome for the data.

There are some secondary advantages. Since the writes are sequential, they are not tied to disk
blocks, soit’s easy to write items of various different sizes without worrying about how they are
packed into DB's. Furthermore, it's easy to compress the sequential stream asit’s being written?,
and if the disk isa RAID you never have to read any blocks to recompute the parity. Finally,
thereis no bit table or freelist of disk blocks to maintain.

Thereis aso one major drawback: unless large amounts of datain the same file are written
sequentially, afilewill tend to have lots of small extents, which can cause the problems
discussed on page 13. In Unix file systems most files are written all at once, but thisis certainly
not true for databases. Ways of alleviating this drawback are the subject of current research. The
cost of the cleaner is also a potential problem, but in practice the cost of the cleaner seemsto be
small compared to the time saved by sequential writes.

Updating metadata

For the CFSto work, it must update the index that points to the DB’ s containing the file data on
every write and every copy done by the cleaner, not just when thefileis extended. And in order
to keep the writing sequential, we must handle the new index information just like the file data,
writing it into the free space instead of overwriting it. This means that the directory too must be
updated, since it points to the index; we writeit into free space aswell. Only theroot of the
entirefile systemiswritten in afixed location; this root says where to find the directory.

Y ou might think that all this rewriting of the metadata istoo expensive, sinceasingle writeto a
file block, whether existing or new, now triggers three additional writes of metadata: for the
index (if it doesn't fit in the directory), the directory, and the root. Previously none of these
writes was needed for an existing block, and only the index write for a new block. However, the
scheme for logging updates that we introduced to code transactions can also handle this problem.
Theideais to write the changes to theindex into alog, and cache the updated index (or just the
updates) only in main memory. An example of alogged changeis*“block 43 of file ‘apha now
has disk address 385672”. Later (with any luck, after several changes to the same piece of the
index) we write the index itself and log the consequent changes to the directory; again, we cache
the updated directory. Still later we write the directory and log the changes to the root. We only
write a piece of metadata when:

We run out of main memory space to cache changed metadata, or
The log gets so big (because of many writes) that recovery takes too long.

To recover wereplay the active tail of thelog, starting before the oldest logged change whose
metadata hasn’t been rewritten. This means that we must be able to read the log sequentially

2M. Burrowset al., On-line compression in alog-structured file system, Proc. 5th Conference on Architectural
Support for Programming Languages and Operating Systems, Oct. 1992, pp 2-9. This does require some blocking
s0 that the decompressor can obtain theinitial state it needs.

Handout 7. Disksand File Systems 27

6.826—Principles of Computer Systems 2002

from that point. It's natural to write the log to free space along with everything else. While we
areat it, we can also log other changes like renames.

Note that a CFS can use exactly the same directory and index data as an ordinary file system, and
in fact exactly the same code for Read. To do this we must give up the added flexibility we can
get from sequential writing, and write each DB of datainto a DB on the disk. Several codes have
done this (but the simple code bel ow does not).

The logged changes serve another purpose. Because afile can only be reached from asingle
directory entry (or inode), the cleaner need not trace the directory structure in order to find the
reachable blocks. Instead, if the block at da was written as block b of filef , it's sufficient to look
at thefileindex and find out whether block b of filef istill a da. But thetriple (b, f, da) is
exactly the logged change. To take advantage of this we must keep the logged change as long as
da remains reachable since the cleaner needsit (it's called ‘ segment summary’ information in the
literature). We don’t need to replay it on recovery once its metadata is written out, however, and
hence we need the sequential structure of thelog only for the active tail.

Existing CFS's use the extralevel of naming called inodes that is described on page 19. The
inode numbers don’t change during writing or copying, so the PN - > 1 No directory doesn’t
change. The root pointsto index information for the inodes (called the ‘inode map’), which
points to inodes, which point to data blocks or, for large files, to indirect blocks which point to
data blocks.

Segments

Running the cleaner isfairly expensive, sinceit hasto read and write the disk. It’ stherefore
important to get as much value out of it as possible, by cleaning lots of unreachable data instead
of copying lots of datathat is still reachable. To accomplish this, divide the disk into segments,
large enough (say 1 MB or 10 MB) that the time to seek to a new segment is much smaller than
thetimeto read or write a whole segment. Clean each segment separately. Keep track of the
amount of unreachable space in each segment, and clean a segment when (unreachabl e space) *
(age of data) exceeds athreshold. Rosenblum and Osterhout explain thisrule, which issimilar in
spirit to what a generational garbage collector? does; the goal isto recover as much free space as
possible, without allowing too much unreachable space to pile up in old segments.

Now the free spaceisn’t physically contiguous, so we must somehow link the segmentsin the
active tail together. We also need atable that keeps track for each segment of whether it isfree,
and if not, what its unreachable space and age are; this is cheap because segments are so large.

Backup

Aswe mentioned earlier, one of the major advantages of a CFSisthat it is easier to back up.
There are several reasonsfor this.

3 H. Lieberman and C. Hewitt, A real-time garbage collector based on the lifetimes of objects, Comm. ACM 26, 6,
June 1983, pp 419-429.

Handout 7. Disksand File Systems 28

6.826—Principles of Computer Systems 2002

1. You can take a snapshot just by stopping the cleaner from freeing cleaned segments, and then
copy the root information and the log to the backup medium, recording the logged data
backward from the end of the log.

2. Thisbackup data structure allows a single file (or asmall set of files) to be restored in one
pass.

3. It'sonly necessary to copy the log back to the point at which the previous backup started.

4. Thedisks reads done by backup are sequential and therefore fast. Thisis an important issue
when thefile system occupies many terabytes. At the 10 MB/s peak transfer rate of the disk,
it takes 10° seconds, or a hit more than one day, to copy aterabyte. This means that a small
number of disks and tapes running in parallel can doit in afraction of aday. If the transfer
rate is reduced to 1 MB/s by lots of seeks (which iswhat you get with random seeks if the
average block sizeis 10 KB), the copying time becomes 10 days, which isimpractical.

5. If alargefileis partialy updated, only the updates will belogged and hence appesar in the
backup.

6. It'seasy to merge several incremental backups to make afull backup.

To get these advantages, we have to retain the ordering of segmentsin thelog even after
recovery no longer needsit.

There have been several research implementations of CFS's, and at least one commercia one
called Spiralog in Digital Equipment Corporation’s (now Compag’s) VMS system. Y ou can read
agood deal about it at http://www.digital.com/info/DTIMO00/.

A simple CFS code

We give code for Copyi ngFs of a CFS that contains all the essential ideas (except for segments,
and the rule for choosing which segment to clean), but simplifies the data structures for the sake
of clarity. Copyi ngFs treats the disk asaroot DB plus aring buffer of bytes. Since writingis
sequential thisis practical; the only cost is that we may have to pad to the end of aDB
occasionally in order to do aSync. A DA istherefore a byte address on the disk. We could
dispense with the structure of disk blocks entirely in the representation of files, just write the
data of each Fil e. Wit e to thedisk, and make aFsi npl . BE point directly to the resulting byte
sequence on the disk. Instead, however, we will stick with tradition, take BE = DA, and represent
afileasasEQ DA plusitssize.

So the disk consists of aroot page, abusy region, and afreeregion (as we have seen, in area
system both busy and free regions would be divided into segments); see the figure below. The
busy region is a sequence of encoded | t emi's, wherean | t emis either aD or aChange toabDBina
file or to the D. The busy region starts at busy and endsjust beforef r ee, which always points to
the start of adisk block. We could writef r ee into the root, but then making anything stable
would require a (non-sequential) write of theroot. Instead, the busy region ends with a
recognizable endDB, put there by Sync, so that recovery can find the end of the busy region.

Handout 7. Disksand File Systems 29

6.826—Principles of Computer Systems 2002

dDA isthe address of the latest directory on the disk. The part of the busy region after dDA isthe
activetail of the log and contains the changes that need to be replayed during recovery to
reconstruct the current directory; this arrangement ensures that we start the replay with ad to
which it makes sense to apply the changes that follow.

This code does bytewise writes that are buffered in buf and flushed to the disk only by Sync.
Hence after a crash the state reverts to the state at the last Sync. Without the replay done during
recovery by Appl yLog, it would revert to the state the last time the root was written; be sure you
understand why thisistrue.

We assume that a sequence of encoded | t emis followed by an endDB can be decoded
unambiguously. See the earlier discussion of writing logs atomically.

Other smplifications:

1. Westorethe SEQ DA that pointsto thefile DB'sright in the directory. Inredl lifeit would bea
tree, along one of the lines discussed in FS npl , so that it can be searched and updated
efficiently even when it islarge. Only the top levels of the tree would be in the directory.

2. Wekeep the entire directory in main memory and writeit all out asasinglel tem Inred life
we would cache parts of it in memory and write out only the parts that are dirty (in other
words, that contain changes).

3. Wewrite adata block as part of the log entry for the change to the block, and make the DA’ s
in the file representation point to these log entries. In real life the logged change information
would be batched together (as ‘ segment summary information’) and the data written

busy region
3 active log tail
bot t om sBusy busy sDir DA next free top
freeregion| volatilefree, | stable | .| volaile [, freeregion
stable busy
A A 4
i r oot pB'splusoldbir’s Dir DB'sand current | M nSpace
2 LI and Di r Change’s Di r Change’s bytes e
L ogical Write
; {
view buffer v
in RAM] buf same s
logical view
A
DB's cleaned, but . . end-
root pusspe maybe not stably same aslogica view DB nn

Disk

Handout 7. Disksand File Systems 30

6.826—Principles of Computer Systems 2002

separately, so that recovery and cleaning can read the changes efficiently without having to
read thefile data as well, and so that contiguous data bl ocks can be read with asingle disk
operation and no extra memory-to-memory copying.

4. Weallocate spacefor datain Wi t e, though we buffer the datain buf rather than writing it
immediately. In real life we might cache newly written datain the hope that another adjacent
write will come along so that we can allocate contiguous space for both writes, thus reducing
the number of extents and making alater sequential read faster.

5. Becausewe don’t have segments, the cleaner always copiesitems starting at busy. In redl life
it would figure out which segments are most profitable to clean.

6. Werun the cleaner only when we need space. Inredl life, it would run in the background to
take advantage of times when the disk isidle, and to maintain a healthy amount of free space
so that writes don't have to wait for the cleaner to run.

7. Wetreat WiteData and Wit eRoot asatomic. Inreal lifewewould use one of the
techniques for making log writes atomic that are described on page 23.

8. Wetreat I nit and Cr ash as atomic, mainly for convenience in writing invariants and
abstraction functions.In real life they do several disk operations, so we haveto lock out
external invocations while they are running.

9. Weignorethe possibility of errors.

MODULE Copyi ngFS EXPORTS PN, Sync = % implements Fi | e, uses Di sk

TYPE DA = Nat % Disk Addressin bytes
W TH "+": =DAAdd, "-":=DASub}
LE = SEQ DA % Linear Extent
Dat a = File.Data
X = File.X
F = [le, size: X %si ze = #of bytes
PN = String WTH [...] % Path Name
D = PN->F
Item = (DBChange + DChange + D + Pad) % item on the disk
DBChange = [pn, x, db] %db isdataat x infilepn
DChange = [pn, dOp, X] % x only for Set Si ze
DOp = ENUM create, delete, setSize]
Pad = [size: X] % For filling up a DB;
% Pad{ x}. enc. si ze = x.
| DA = [item da]
Sl = SEQ I DA % for parsing the busy region
Root = [dDA: DA, busy: DA] % assume encoding < DBSi ze
CONST
DBSi ze = Di sk. DBSi ze
di skSi ze = 1000000

Handout 7. Disksand File Systems 31

6.826—Principles of Computer Systems 2002

root DA =0

bottom = root DA + DBSi ze % smallest DA outside root

top = (DBSi ze * diskSize) AS DA

ringSi ze = top - bottom

endDB = DB{...} % startsunlikeany | t em
VAR % All volatile; stable datais on disk.

d . D ={}

sDDA DA = bottom % = ReadRoot (). dDA

sBusy DA = Bottom % = ReadRoot (). busy

busy DA = bottom

free DA = bottom

next DA = bottom % DAto writebuf at

buf : Data := {} % waiting to be written

di sk % the disk

ABSTRACTI ON FUNCTION File.d = (LAMBDA (pn) -> File.F =
% Thefileisthe data pointed to by the DA'sinitsF.
VAR f := d(pn), diskData := + :(f.le * ReadOneDB) |
RET di skDat a. seg(0, f.size))

ABSTRACTI ON FUNCTI ON File.ol dDs = { SIX), d }

INVARIANT 1: (ALL f :INd.rng | f.le.size * DBSize >= f.size)
% The blocks of afile have enough space for the data. From FSI npl .

The reason that ol dDs doesn’t contain any intermediate states is that the stabl e state changes
only in async, which shrinks ol dDs to just d.

During normal operation we need to have the variables that keep track of the region boundaries
and the stable directory arranged in order around the disk ring, and we need to maintain this
condition after a crash. Here are the relevant current and post-crash variables, in order (see below
for M nSpace) . The ‘post-crash’ column gives the value that the ‘ current’ expression will have
after acrash.

Current Post-crash
busy sBusy start of busy region
sDDA sDDA most recent stabled
next end of stable busy region
free next end of busy region

free + minSpace() next + minSpace() endof cushionfor writes

In addition, the stable busy region should start and end before or at the start and end of the
volatile busy region, and the stable directory should be contained in both. Also, the global
variables that are supposed to equal various stable variables (their names start with ‘s’) should in
fact do so. The analysisthat leads to thisinvariant is somewhat tricky; | hopeit’sright.

| NVARI ANT 2:
| sOrdered((SEQ DA) {next + M nSpace(), sBusy, busy, sDDA, next, free,
free + M nSpace(), busy})
/\ EndDA() = next /\ next//DBSize = 0 /\ Root{sDDA, sBusy} = ReadRoot ()

Finaly,

Handout 7. Disksand File Systems 32

6.826—Principles of Computer Systems 2002

The busy region should contain all theitems pointed to from DA’sind or in global variables.
The directory on disk at sDDA plus the changes between there and f r ee should agree with d.

This condition should still hold after acrash.

I NVARI ANT 3:
I sAl | Good(Par seLog(busy, buf), d)
/\ IsAl | Good(ParseLog(sBusy, {}), SD())

Thefollowing functions are mainly for the invariants, though they are also used in crash
recovery. Par seLog expects that the disk from da to the next DB with contents endDB, plus dat a,
isthe encoding of asequence of 1t em's, and it returns the sequence sI , each | t empaired with its
DA. Appl yLog takesan sI that starts with a D and returns the result of applying all the changesin
the sequence to that D.

FUNC ParselLog(da, data) -> SI = VAR si, end: DA |
% Parse the log from da to the next end DB block, and continue with dat a.
+ :(si * (\ ida| ida.itemenc) = ReadData(da, end - da) + data
/\ (ALL n :IN si.dom- {0} |
si(n).da = si(n-1).da + si(n-1).item enc. size)
/\ si.head.da = da
/\ ReadOneDB(end) = endDB => RET si

FUNC Appl yLog(si) -> D= VAR d'" := si.head.itemAS D |
% si must start with aD. Apply al the changesto this D.
DO VAR item : = si.head.item|
IF item|S DBChange => d'(itempn).le(itemx/DBSize) := si.head.da
[1 item|S DChange =>d' := ... % details omitted
[*] SKIP % ignore D and Pad
Fl; si :=si.tail
oD, RET d
FUNC | sAl | Good(si, d') -> Bool = RET
% All d' entries point to DBChange’sand si agreeswith d'
(ALL da, pn, item| d'!pn /\ da INd (pn).le /\ IDA{item da} IN si
==> item | S DBChange)
/\ ApplyLog(si) = d'
FUNC SD() -> D = RET Appl yLog(ParseLog(sDDA), {})
% The D encoded by the | t emat s DDA plus the following DChange’s

FUNC EndDA() -> DA = VAR ida := ParselLog(sDDA). | ast |
% Return the DA of the first end DB after s DDA, assuming a parsable log.
RET ida.da + ida.itemenc.size

The minimum free space we need isroom for writing out d when we are about to overwrite the
last previous copy on the disk, plus the wasted space in adisk block that might have only one
byte of data, plus the endDB.

FUNC M nSpace() -> Int = RET d.enc.size + (DBSize-1) + DBsize

Thefollowing Read and W i t e procedures are much the same as they would bein Fsl npl , where
we omitted them. They arefull of boring details about fitting things into disk blocks; we include
them here for compl eteness, and because theway wi t e handles allocation is an important part

Handout 7. Disksand File Systems 33

6.826—Principles of Computer Systems 2002

of Copyi ngFs. We continue to omit the other Fi | e procedureslike Set Si ze, aswell asthe
handling in Appl yLog of the DChange items that they create.

PRCC Read(pn, x, size: X) -> Data =

VAR f = d(pn),
si ze = {{size, f.size - x}.mn, 0}.max, % the available bytes
n = x/ DBSi ze, % first block number
nSi ze : = NunDBs(x, size), % number of blocks
blocks:=n .. n + nSize -1, % blocksweneedinf .| e
data := + :(blocks * f.le * Readltem* % all datain these blocks

(\ item]| (item AS DBChange).db)) |

RET dat a. seg(x//DBSi ze, size) % the data requested

—

PROC Wite(pn, x, data) = VAR f := d(pn) |
% First expand dat a to contain all the DB’ s that need to be written
data := Data.fill (0, x - f.size) + data;
x :={x, f.size}.mn;
IF VARyYy :=x//DBSize | y # 0 =>
X :=x - y; data := Read(pn, x, y) + data
[*] SKIP FI;
IF VARYy := data.size//DBSize | y # 0 =>
data + := Read(pn, x + data.size, DBSize - vy)
[*] SKIP FI;
% Convert dat a into DB's, write it, and computethenew f . | e
VAR bl ocks := Disk.DToB(data), n := x/DBSize,
% Extend f . | e with 0’ sto the right length.
le :=f.le + LEfill (0, x + blocks.size - le.size),
i =0 |
DO bl ocks!i =>
le(n + i) := WiteData(DBChange{pn, x, blocks(i)}.enc);
X + :=DBSize; i +:=1
QD; d(pn).le :=1le

% add 0’sto extend f to x
% and adjust X to match
% fill toaDB in front

% fill to aDB in back

These procedures initialize the system and handl e crashes. ¢ ash is somewhat idealized; more
realistic code would read the log and apply the changesto d asit reads them, but the logic would
be the same.

PROC Init() = disk := disk.new(di skSize); WiteD() % initially d isempty

PROC Crash() = << % atomic for simplicity

CRASH,
sDDA := ReadRoot().sDDA; d := SIX);
sBusy : = ReadRoot (). busy; busy := sBusy;

free := EndDA(); next := free; buf := {} >>

These functions read an item, some data, or asingle DB from the disk. They are boring. Read! t em
is somewhat unrealistic, sinceit just chooses a suitable sizefor thei t emat da sothat I t em dec
works. Inredl lifeit would read afew blocks at DA, determine the length of the item from the
header, and then go back for more blocks if necessary. It reads either from buf or from the disk,
depending on whether da isin the write buffer, that is, between next andfree.

FUNC Readlten(da) -> Item = VAR size: X |
RET Item dec((DABet ween(da, next, free) => buf.seg(da - next, size)
[*] ReadData(da, size)))

Handout 7. Disksand File Systems 34

6.826—Principles of Computer Systems 2002

FUNC ReadDat a(da, size: X) -> Data = %1lor 2disk.read’ s
IF size + da <= top => %I nt."+", not DA. " +"
% Read the necessary disk blocks, then pick out the bytes requested.
VAR data := disk.read(LE{da/DBSi ze, NunDBs(da, size)}) |
RET dat a. seg(da// DBSi ze, size)
[*] RET ReadData(da, top - da) + ReadData(bottom size - (top - da))

PROC ReadOneDB(da) = RET di sk.read(LE{da/DBSi ze, 1}))

W i t eDat a writes some data to the disk. It is not boring, sinceit includes the write buffering, the
cleaning, and the space bookkeeping. The writes are buffered in buf , and Sync does the actual
disk write. In this module Sync isonly called by wi t eD, but sinceit’saprocedureinFi | e it can
also be called by the client. When w i t eDat a needs spaceit callsd ean, which does the basic
cleaning step of copying asingle item. There should be a check for afull disk, but we omit it.
This check can be done by observing that theloop in Wi t eDat a advancesf r ee all the way
around thering, or by keeping track of the available free space. Thelatter isfairly easy, but
Crash would have to restore the information as part of itsreplay of thelog.

These write procedures are the only ones that actually writeinto buf . Sync and Wi t eRoot
below are the only procedures that write the underlying disk.

PROC WiteData(data) -> DA =
DO | sFul |l (data.size) => Cean() OD
buf + := data; VAR da := free | free + := data.size; RET da

% just to buf , not disk

PROC Witelten(iten) = VAR q := itemenc | buf + :=q; free + := g.size
% No check for space because thisisonly called by Cl ean, Wit eD.

PROC Sync() =
% Actually writeto disk, in1 or 2 di sk. write’s (2 if wrapping).
% If we will write past sBusy, we have to update the root.
I F (sBusy - next) + (free - next) <= M nSpace() => WiteRoot()[*] SKIP FI ;
% Pad buf to even DB's. A loop because one Pad might overflow current DB.
DO VAR z := buf.size//DBSize | z # 0 => buf := buf + Pad{DBSize-z}.enc OD;.
buf := buf + endDB; % add the end marker DB
<< % atomic for smplicity
IF buf.size + next < top => disk.wite(next/DBSize, buf)
[*] disk.wite(next /DBSize, buf.seg(0 , top-next));
di sk.write(bottonl DBSi ze, buf.sub(top-next, buf.size-1))
Fl;
>>; free := next + buf.size - DBSize; next := free; buf := {}

The constraints on using free space are that d ean must not cause writes beyond the stable sBusy
or into adisk block containing I t emi sthat haven’t yet been copied. (If sBusy is equal to busy and
in the middle of adisk block, the second condition might be stronger. It’s necessary because a
write will clobber the whole block.) Furthermore, there must be room to writean 1 t em
containing d. Invariant 2 expresses all this precisely. Inreal life, of course, d ean would be
called in the background, the system would try to maintain afairly large amount of free space,
and only small parts of d would be dirty. d ean drops DChange’s because they are recorded in
the D item that must appear later in the busy region.

FUNC I sFull (size: X) -> Bool = RET busy - free < M nSpace() + size

Handout 7. Disksand File Systems 35

6.826—Principles of Computer Systems 2002

PROC Clean() = VAR item : = Readlten(busy) | % copy the next item
IF item|S DBChange /\ d(itempn).le(itemx/DBSize) = busy =>
d(itempn).le(itemx/DBSize) := free; Witeltem(item

[1 item!1S D/\ da = sDDA => WitelX) % the latest D
[*] SKIP % drop DChange, Pad
Fl; busy := busy + itemenc.size

PROC WiteD() =

% Called only from Cl ean and | ni t . Could call it more often to speed up recovery

%, after DO busy - free < M nSpace() => O ean() ODto get space.
sDDA : = free; Witeltem(d); Sync(); WiteRoot()

The remaining utility functions read and write the root, convert byte sizes to DB counts, and
provide arithmetic on DA’ s that wraps around from the top to the bottom of the disk. Inredl life
we don’t need the arithmetic because the disk is divided into segments and items don’t cross
segment boundaries; if they did the cleaner would have to do something quite special for a
segment that starts with thetail of an item.

FUNC ReadRoot () -> Root = VAR root, pad |
ReadOneDB(root DA) = root.enc + pad.enc => RET root

PROC WiteRoot() = << VAR pad, db | db = Root{sDDA, busy}.enc + pad.enc =>
di sk.wite(rootDA, db); sBusy := busy >>

FUNC NunDBs(da, size: X) -> Int = RET (size + da//DBSize + DBSi ze-1)/DBSi ze
% The number of DB’s needed to hold si ze bytes starting at da.

FUNC DAAdd(da, i: Int) -> DA = RET ((da - bottom+ i) // ringSize) + bottom

FUNC DASub(da, i: Int) -> DA = RET ((da - bottom- i) // ringSize) + bottom
% Arithmetic modulo the dataregion. abs(i) shouldbe< ri ngSi ze.

FUNC DABet ween(da, dal, da2) -> Bool = RET da = dal \/ (da2 - dal) < (dal - da)

FUNC | sOrdered(s: SEQ DA) -> Bool =
RET (ALL i :IN s.dom- {0, 1} | DABetween(s(i-1), s(i-2), s(i)))

END Copyi ngFS

Handout 7. Disksand File Systems 36

