6.826—Principles of Computer Systems 2002

8. Generalizing Abstraction Functions

In this handout, we give a number of examples of specs and code for which simple abstraction
functions (of the kind we studied in handout 6 on abstraction functions) don’t exist, so that the
abstraction function method doesn’t work to show that the code satisfies the spec. We explain
how to generalize the abstraction function method so that it always works.

We begin with an example in which the spec maintains state that doesn’t actually affect its
behavior. Optimized code can simulate the spec without having enough state to generate all the
state of the spec. By adding history variables to the code, we can extend its state enough to
define an abstraction function, without changing its behavior. An equivalent way to get the same
result isto define an abstraction relation from the code to the spec.

Next we look at code that simulates a spec without taking exactly one step for each step of the
spec. Aslong as the external behavior is the same in each step of the simulation, an abstraction
function (or relation) is still enough to show correctness, even when an arbitrary number of
transitions in the spec correspond to a single transition in the code.

Finally, we look at an example in which the spec makes a non-deterministic choice earlier than
the choice is exposed in the external behavior. Code may make this choice later, so that thereis
no abstraction relation that generates the premature choice in the spec’s state. By adding
prophecy variables to the code, we can extend its state enough to define an abstraction function,
without changing its behavior. An equivalent way to get the same result is to use an abstraction
relation and define a backward simulation from the code to the spec.

If we avoided extra state, too few or too many transitions, and premature choices in the spec, the
simple abstraction function method would always work. Y ou might therefore think that all these
problems are not worth solving, because it sounds as though they are caused by bad choicesin
the way the spec iswritten. But thisiswrong. A spec should be written to be as clear as possible
to the clients, not to make it easy to prove the correctness of code for. The reason for these
prioritiesis that we expect to have many more clients for the spec than implementers. The
examples below should make it clear that there are good reasons to write specs that create these
problems for abstraction functions. Fortunately, with all three of these extensions we can always
find an abstraction function to show the correctness of any code that actually is correct.

A statistical database

Consider the following spec of a“ statistical database” module, which maintains a collection of
values and allows the size, mean, and variance of the collection to be extracted. Recall that the
Z db(i)

mean m of a sequence db of sizen > Qisjust the average- , and the variance is

Handout 8. Generalizing Abstraction Functions 1

6.826—Principles of Computer Systems 2002

> (db@)-m)* " db(i)?
= -m?. (We make the standard assumptions of commutativity,
n

associativity, and distributivity for the arithmetic here.)

MODULE StatDB [VWTH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,
"It (V,Int)->V)]
EXPORT Add, Size, Mean, Variance =
VAR db : SEQV = {}

APRCC Add(v) = << db + := {v}; RET >>

% a multiset; we don’t care about the order

APROC Size() -> Int = << RET db.size >>

APRCC Mean() -> V RAISES {empty} = <<
IF db = {} => RAISE enpty [*] VAR sum:= (+ : db) | RET sum Size() FI >>

APRCC Variance() -> V RAISES {enpty} = <<
IF db = {} => RAISE enpty

[*] VAR avg := Mean(), sum:= (+ : {v :INdb | | (v - avg)**2}) |
RET suni Si ze()
Fl >>
END St at DB

This specisavery natural one that follows directly from the definitions of mean and variance.

The following code for the st at DB module does not retain db. Instead, it keepstrack of the size,
sum, and sum of squares of the valuesin db. Simple algebra shows that thisis enough to
compute the mean and variance incrementally, as St at DBI npl does.

MODULE St at DBI npl % implements St at DB

[VWTH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,
"It (VW Int)->V}]
EXPORT Add, Size, Mean, Variance =
VAR count =0
sum = V. Zero()
sunBquar e 1= V. Zero()

APRCC Add(v) = << count + := 1; sum+ := v; sunBquare + := v**2; RET >>
APRCC Size() -> Int = << RET count >>

APRCC Mean() -> V RAISES {enpty} =
<< |F count = 0 => RAISE enpty [*] RET sumf count FI >>

APRCC Variance() -> V RAISES {enpty} = <<
IF count = 0 => RAISE enpty
[*] RET sunBquare/count — Mean()**2
Fl >>

END St at DBl npl

St at DBI npl implements St at DB, in the sense of trace set inclusion. However we cannot prove
this using an abstraction function, because each nontrivia state of the code corresponds to many

Handout 8. Generalizing Abstraction Functions 2

6.826—Principles of Computer Systems 2002

states of the spec. This happens because the spec contains more information than is needed to
generateits externa behavior. In this example, the states of the spec could be partitioned into
equival ence classes based on the possible future behavior: two states are equivalent if they give
rise to the same future behavior. Then any two equivalent states yield the same future behavior
of the module. Each of these equivalence classes corresponds to a state of the code.

To get an abstraction function we must add history variables, as explained in the next section.

History variables

The problem in the st at DB exampleis that the spec states contain more information than the
code states. A history variable is a variable that is added to the state of the code T in order to
keep track of the extrainformation in the spec Sthat was left out of the code. Even though the
code has been optimized not to retain certain information, we can put it back in to prove the code
correct, aslong aswedo it in away that does not change the behavior of the code. What we do is
to construct new code TH (T with History) that has the same behavior as T, but a bigger state. If
we can show that TH implements S it follows that T implements S, since traces of T = traces of
TH O tracesof S

In this example, we can simply add an extra state component db (which is the entire state of
St at DB) to the code St at DBI npl , and use it to keep track of the entire collection of elements,
that is, of the entire state of st at DB. This gives the following module:

MODULE StatDBlnplH ... = % implements St at DB

VAR count =0 % as before
sum = V. Zero() % as before
sunSquar e = V. Zero() % as before
[db . SEQV :={}] % history: state of St at DB

APRCC Add(v) = <<
count + := 1; sum+ := v; sunBquare + := v**2;

db + := {v};| RET >>
% The remaining procedures are as before

END St at DBI npl H

All we have done hereisto record some additional information in the state. We have not
changed the way existing state components are initialized or updated, or the way results of
procedures are computed. So it should be clear that this module exhibits the same external
behaviors as the code st at DBI npl given earlier. Thus, if we can provethat st at DBI npl H
implements st at DB, then it follows immediately that St at DBI npl implements St at DB.

However, we can prove that St at DBI npl Himplements St at DB using an abstraction function.
The abstraction function, AF, simply discards all components of the state except db. The
following invariant of st at DBI npl H describes how db isrelated to the other state:

I NVARI ANT
count = db. si ze

Handout 8. Generalizing Abstraction Functions 3

6.826—FPrinciples of Computer Systems 2002
/\ sum = (+ : db)
/\ sunBquare = (+ : {v :INdb | | v**2})

That is, count , sumand sunSquar e contain the number of e ementsin db, the sum of the
elementsin db, and the sum of the squares of the elementsin db, respectively.

With thisinvariant, it is easy to prove that AF is an abstraction function from St at DBI npl Hto

St at DB. This proof shows that the abstraction function is preserved by every step, because the
only variablein st at DB, db, is changed in exactly the same way in both modules. Theinteresting
thing to show isthat the Si ze, Mean, and Var i ance operations produce the same resultsin both
modules. But this follows from the invariant.

In general, we can augment the state of code for with additional components, called history
variables (because they keep track of additional information about the history of execution),
subject to the following constraints:

1. Everyinitia state has at least one value for the history variables.
2. No existing step is disabled by the addition of predicates involving history variables.

3. A vaueassigned to an existing state component does not depend on the value of a history
variable. Oneimportant case of thisisthat areturn value does not depend on a history
variable.

These constraints guarantee that the history variables simply record additional state information
and do not otherwise affect the behaviors exhibited by the module. If the module augmented with
history variablesis correct, the original modul e without the history variables is aso correct,
because they have the same traces.

This definition is formulated in terms of the underlying state machine model. However, most
people think of history variables as syntactic constructs in their own particular programming
languages; in this case, the restrictions on their use must be defined in terms of the language
syntax.

In the st at DB example, we have smply added a history variable that records the entire state of
the spec. Thisis not necessary; sometimes there might be only asmall piece of the state that is
missing from the code. However, the brute-force strategy of using the entire spec state asa
history variable will work whenever any addition of history variables will work.

Abstraction relations

If you don’t like history variables, you can define an abstraction relation between the code and
the spec; it's the same thing in different clothing.

An abstraction relation is a simple generalization of an abstraction function, allowing several
statesin Sto correspond to the same state in T. An abstraction relation is a subset of
states(T) x states(S) that satisfies the following two conditions:

1. If tisany initia state of T, then thereisan initial state s of Ssuch that (t, s) O R.

Handout 8. Generalizing Abstraction Functions 4

6.826—Principles of Computer Systems 2002

2. Iftand sarereachable states of T and Srespectively, with (t, s) O R, and (t, T, t') isa step of
T, then thereis a step of Sfrom sto some s, having the same trace, and with (t',) O R.

The pictureillustrates theides; it is an elaboration of the picture for an abstraction function in
handout 6. It showst related tos1 and s2, and an action Tttaking each of them into a state
relatedtot " .

It turns out that the same theorem holds as for abstraction functions:

Theorem 1: If thereis an abstraction relation from T to S then T implements S, that is, every
traceof Tisatraceof S

Thereason isthat for T to simulate Sit isn't necessary to have afunction from T statesto S
states; it's sufficient to have arelation. A way to think of thisisthat the two modules, Tand S
arerunning in paralel. The execution is driven by module T, which executesin any arbitrary
way. Sfollows along, producing the same externally visible behavior. The two conditions above
guarantee that there is always some way for Sto do this. Namely, if T beginsin any initial statet,
wejust allow Sto beginin somerelated initia state s, as given by (1). Then as T performs each
of its transitions, we mimic the transition with a corresponding transition of Shaving the same
externally visible behavior; (2) sayswe can do so. In this way, we can mimic the entire execution
of T with an execution of S

An abstraction relation for St at DB

Recall that in the st at DB example we couldn’t use an abstraction function to prove that the code
satisfies the spec, because each nontrivia state of the code corresponds to many states of the
spec. We can capture this connection with an abstraction relation. The relation that worksis
described in Spec! as:

TYPET
S

[count: Int, sum V, sunfSquare: V]
[db: SEQ V]

FUNC AR(t, s) -> Bool =

% state of St at DBI npl
% state of St at DB

1 Thisisone of several waysto represent arelation, but it is the standard one in Spec. Earlier we described the
abstraction relation asa set of pairs (t, s). Intermsof AR, thissetis{t, s | AR(t, s) | (t, s)} orsmply
AR. set , using one of Spec’s built-in methods on predicates. Y et another way to writeitisasafunction T ->
SET S. Intermsof AR, thisfunctionis(\ t | {s | AR(t, s)} orsimply AR setF, using another built-in
method. These different representations can be confusing, but different aspects of the relation are most easily
described using different representations.

Handout 8. Generalizing Abstraction Functions 5

6.826—Principles of Computer Systems 2002

RET db. si ze = count
/\ (+ : db)) = sum
I\ (+: {v :INdb | | v**2}) = sunBquare

The proof that AR is an abstraction relation is straightforward. We must show that the two
propertiesin the definition of an abstraction relation are satisfied. In this proof, the abstraction
relation is used to show that every response to a size, mean or variance query that can be given
by st at DBI npl can also be given by st at DB. The new state of St at DB is uniquely determined by
the code of st at DB. Then the abstraction relation in the prior states together with the code
performed by both modul es shows that the abstraction relation still holds for the new states.

An abstraction relation for Maj Reg

Consider the abstraction function given for Maj Reg in handout 5. We can easily writeit asan
abstraction relation from Maj Reg to Regi st er , not depending on the invariant to makeit a
function. Recall the types:

TYPE P
M

[V, N % Pair of value and sequence number
CcC->P % Memory: apair at each copy

FUNC AR(m V) -> Bool = VAR n := mrng.max.n | RET (P{v, n} I N mrng)

For (1), supposethat t isany initial state of Maj Reg. Then thereis some default value v such that
al copieshavevaluev andn = 0 int. Let shethe state of Regi st er with valuev; then sisan
initial state of Regi st er and (t,) O AR, as needed.

For (2), suppose that t and s are reachable states of Maj Reg and Regi st er , respectively, with (t,
s) O AR, and (t, Tt t') a step of Maj Reg. Becauset is areachable state, it must satisfy the
invariants given for Maj Reg. We consider cases, based on 1t Again, the interesting cases are the
procedure bodies.

Abstraction relations vs. history variables

Notice that the invariant for the history variable db above bears an uncanny resemblance to the
abstraction relation AR. Thisis not an accident—the same ideas are used in both proofs, only
they appear in dlightly different places. The following table makes the correspondence explicit.

Abstraction relation to history variable

History variable to abstraction relation

Given an abstraction relation AR, define TH by
adding the abstract state s as a state variable to
T. AR defines an invariant on the state of TH:
AR(t, s).

Given TH, T extended with a history variableh,
theré saninvariant | (t, h) relatingh tothe
state of T, and an abstraction function

AF(t, h) -> Ssuchthat THsimulatess.

DefineAF((t, s)) = s

Define AR(t, s) =

(EXISTS h | I(t, h) /\ AF(t, h) =s)
Thatis, t isrelated tos if theré savaluefor h
in statet that AF mapstos.

Handout 8. Generalizing Abstraction Functions

6.826—Principles of Computer Systems 2002

Foreachstep (t, m t') of T,ands suchthat | Foreachstep (t, m t') of T, and h such that
AR(t, s) holds, the abstraction relation gives | theinvariant1 (t, h) holds, TH hasastep
uss' suchthat (t, m t') sSimulates(s, m ((t, h)y, m (t', h')) that simulates(s,
s').Add((t, s), p, (t', s')) asa n s') wheres = AF(t, h) ands' =
transition of TH. This maintains the invariant. AF(t', h').SOAR(t', s') asrequired.

This correspondence makes it clear that any code that can be proved correct using history
variables can a so be proved correct using an abstraction relation, and vice-versa. Some people
prefer using history variables because it allows them to use an abstraction function, which may
be simpler (especially in terms of notation) to work with than an abstraction relation. Others
prefer using an abstraction relation because it allows them to avoid introducing extra state
components and explaining how and when those components are updated. Which you useisjust
amatter of taste.

Taking several stepsin the spec

A simple generalization of the definition of an abstraction relation (or function) allows for the
possibility that a particular step of T may correspond to more or lessthan one step of S. Thisis
fine, aslong as the externally-visible actions are the same in both cases. Thus this distinction is
only interesting when there are internal actions.

Formally, a (generalized) abstraction relation R satisfies the following two conditions:
1. Iftisanyinitial state of T, then thereisan initial state s of Ssuch that (t, s) O R.

2. If tand sarereachable states of T and Srespectively, with (t, s) O R, and (t, T, t) isa step of
T, then there is an execution fragment of Sfrom sto some s, having the same trace, and with
(t,s)OR

Only the second condition has changed, and the only differenceisthat an execution fragment (of
any number of steps, including zero) is allowed instead of just one step, aslong asit hasthe
sametrace, that is, aslong as it looks the same from the outside. We generalize the definition of
an abstraction function in the same way. The same theorem still holds:

Theorem 2: If thereis a generalized abstraction function or relation fromTto S then T
implements S that is, every trace of T isatrace of S

From now on in the course, when we say “ abstraction function” or “abstraction relation”, we will
mean the generalized versions.

Some examples of the use of these generalized definitions appear in handout 7 on file systems,
where there are internal transitions of code that have no counterpart in the corresponding specs.
We will see examples later in the course in which single steps of code correspond to several
steps of the specs.

Here, we give asimple example involving alarge write to a memory, which is done in one step
in the spec but in individual stepsin the code. The spec is:

Handout 8. Generalizing Abstraction Functions 7

6.826—Principles of Computer Systems 2002

MODULE RWVMEmM [A, V] EXPORT BigRead, BigWite =

TYPEM = A->V
VAR nenory M

FUNC Bi gRead() -> M = RET nenory

APROC BigWite(m M = << menory := m RET >>
END RWvem

Thecodeis:

MODULE RWvem npl [A, V] EXPORT BigRead, BigWite =

TYPEM = A->V
VAR nenory M
lpendi ng . SET A :={}]

FUNC Bi gRead() -> M= pending = {} => RET nmenory
PROC Bi gWite(m

<< pending := menory.dom >>;

N pendi ng =>

END RWvem npl

We can prove that Rviven npl implements Rvemusing an abstraction function. The state of
RWven npl includes program counter values to indicate intermediate positions in the code, as
well as the values of the ordinary state components. The abstraction function cannot yield partial
changes to memory; therefore, we define the function asif an entire abstract Bi gw i t e occurred
at the point where the first change occurs to the memory occurs in Ravent npl . (Alternative
definitions are possible; for instance, we could have chosen the last change.) The abstraction
function is defined by:

RWem nermory = RWven npl . menor y unless pendi ng is nonempty. In this case

RWvem nenory = m whereBi gWite(n istheactiveBi gwit e that made pendi ng non-
empty. Rviveni s pc for an active Bi gRead is the same as that for Ravem npl . Rwkeni s pc for
an active Bi gW i t e isbefore the body if the pc in Ravem npl is at the beginning of the body;
otherwiseit is after the body.

In the proof that thisis an abstraction function, all the atomic stepsin aBi gwi t e of Rwven npl
except for the step that writes to memory correspond to no steps of Rvem Thisistypical: code
for usually has many more transitions than a spec, because the code is limited to the atomic
actions of the machine it runs on, but the spec has the biggest atomic actions possible because
that is the simplest to understand.

Note that the guard in R\EMen npl . Bi gRead prevents aBi gRead from returning an intermediate
state of menor y, which would be a transition not allowed by the spec. Of course this can’t happen
unless thereis concurrency.

Handout 8. Generalizing Abstraction Functions 8

6.826—Principles of Computer Systems 2002

In this example, it is aso possible to interchange the code and the spec, and show that Rvivem
implements Rwker npl . This can be done using an abstraction function. In the proof that thisis
an abstraction function, the body of aBi gw i t e in RWemcorresponds to the entire sequence of
steps comprising the body of the Bi gw i t e in Rviver npl .

Exercise: Add crashes to this example. The spec should contain a component O dst at es that
keeps track of the results of partial changes that could result from a crash during the current

Bi gwWite.A Crash during aBi gwi t e in the spec can set the memory nondeterministically to
any of the statesin d dst at es. A Crash in the code simply discards any active procedure. Prove
the correctness of your code using an abstraction function. Compare this to the specsfor file
system crashes in handout 7.

Premature choice

In al the examples we have done so far, whenever we have wanted to prove that one module
implements another (in the sense of trace inclusion), we have been able to do this using either an
abstraction function or elseits slightly generalized version, an abstraction relation. Will this
alwayswork? That is, do there exist modules T and S such that the traces of T areall included
among thetraces of S, yet there is no abstraction function or relation from T to S? It turns out that
there do—abstraction functions and relations aren't quite enough.

Toillustrate the problem, we give avery simple example. It istrivial, sinceits only point isto
illustrate the limitations of the previous proof methods.

Example: Let NonDet be a state machine that makes a nondeterministic choice of 2 or 3. Then it
outputs 1, and subsequently it outputs whatever it chose.

MODULE NonDet EXPORT Qut =

VAR i 1= 0

APROC Qut () -> Int = <<
IF i =0=>BEGANi :=2[] i :=3END, RET 1
[*] RET i FI >

END NonDet

Let Lat eNonDet be a state machine that outputs 1 and then nondeterministically chooses whether
to output 2 or 3 thereafter.

MODULE Lat eNonDet EXPORT Qut =

VAR i :=0

APROC Qut () -> Int = <<
[Fi =0=>i :=1[*]i =1=>BEGNi :=2[] i :=3END[*] SKIP FI;]
RET i >>

END Lat eNonDet

Handout 8. Generalizing Abstraction Functions 9

6.826—Principles of Computer Systems 2002
Clearly NonDet and Lat eNonDet havethesametraces: qut() = 1; Qut() =2; ... and
Qut() =1; aut() = 3;Canweshow theimplements relationshipsin both directions

using abstraction relations?

Well, we can show that NonDet implements Lat eNonDet with an abstraction function that isjust
the identity. However, no abstraction relation can be used to show that Lat eNonDet implements
NonDet . The problem isthat the nondeterministic choice in NonDet occurs before the output of 1,
whereas the choicein Lat eNonDet occurs later, after the output of 1. It isimpossible to use an
abstraction relation to simulate an early choice with alater choice. If you think of constructing an
abstract execution to correspond to a concrete execution, this would mean that the abstract
execution would have to make a choice before it knows what the code is going to choose.

Y ou might think that this exampleis unredlistic, and that this kind of thing never happensin rea
life. The following three examples show that thisiswrong; we will study code for al of these
examples later in the course. We go into alot of detail here because most people find these
situations very unfamiliar and hard to understand.

Premature choice: Reliable messages

Hereisarealistic example (somewhat simplified) that illustrates the same problem: two specs for
reliable channels, which we will study in detail later, in handout 26 on reliable messages. A
reliable channel accepts messages and delivers them in FIFO order, except that if thereisacrash,
it may lose some messages. The straightforward spec drops some queued messages during the
crash.

MODULE Rel i abl eMsg [M EXPORT Put, Get, Crash =
VAR q : SEQM:= {}

APRCC Put (m =<<q+:={n >

APRCC Cet() -> M= << VAR m:=q.head | q := qg.tail; RET m>>
APRCC Crash() = << VAR(Q | ¢ <<=q=>q:=¢9q >

% Drop any of the queued messages (<<= is non-contiguous subsequence)

END Rel i abl eMsg

Most practical code (for instance, the Internet’s TCP protocol) has casesin which it isn’t known
whether a message will be lost until long after the crash. Thisis because they ensure FIFO
delivery, and get rid of retransmitted duplicates, by numbering messages sequentially and
discarding any received message with an earlier sequence number than the largest one already
received. If the underlying message transport is not FIFO (like the Internet) and there are two
undelivered messages outstanding (which can happen after a crash), the earlier one will be lost if
and only if the later one overtakesit. Y ou don’'t know until the overtaking happens whether the
first message will belost. By this time the crash and subsequent recovery may be long since
over.

The following spec models this situation by ‘marking’ the messages that are queued at the time
of acrash, and optionally dropping any marked messages in Get .

MODULE Lat eRel i abl eMsg [M EXPORT Put, Get, Crash =

Handout 8. Generalizing Abstraction Functions 10

6.826—Principles of Computer Systems 2002

VAR q : SEQ[m [mrk: Bool] := {}

APRCC Put (m) =<<qg+:={n >
APROC Get() -> M=

<< DQ VAR x := qg.head | q := g.tail; [[F x.mark => SKIP []] RET x. m[FI_Of >>
APROC Crash() =<<[g:={x:INg [[x{mark := true}}] >>

% Mark all the queued messages. Thisis a sequence, not a set constructor, so it doesn’t reorder the messages.
END Lat eRel i abl eMsg

Likethe simple NonDet example, these two specs are equiva ent, but we cannot prove that

Lat eRel i abl eMsg implements Rel i abl eMsg with an abstraction relation, because Rel i abl eMsg
makes the decision about what messages to drop sooner, in Cr ash. Lat eRel i abl eMsg makesthis
decision later, in Get , and so does the standard code.

Premature choice: Consensus

For another exampl es, consider the consensus problem of getting a set of processto agree on a
single value chosen from some set of allowed values; we will study this problem in detail later,
in handout 18 on consensus. The spec doesn’t mention the processes at all:

MODULE Consensus [V] EXPORT Allow, CQutcone =

VAR out cone (V+ Null) :=nil % Data value to agree on

APRCC Allow(v) = << outconme = nil => outconme := v [] SKIP >>
FUNC CQutcone() -> (V + Null) = RET outcone [] RET nil

END Consensus

This spec chooses the value to agree on as soon as the value is allowed. cut come may return ni |
even after the choice is made because in distributed codeit’s possible that not all the participants
have heard what the outcome is. Code for almost certainly saves up the allowed values and does
alot of communication among the processes to come to an agreement. The following spec has
that form. It is more complicated than the first one (more state and more operations), and closer
to code, using an internal Agr ee action to model what the processes do in order to choose a
value.

MODULE Lat eConsensus [V] EXPORT Allow, Qutcone

VAR out conme (V + Null) :=nil
[al Towed . SET V:={}]

% Data value to agree on

APROC Al low(v) = << [alTowed \/ = {v}] >>

FUNC CQutcone() -> (V + Null) = RET outcone [] RET nil

[APROC Agree() = << VARV [v IN alTowed /\ outcone = nil => outcone := v >3

END Lat eConsensus

It should be clear that these two modul es have the same traces: a sequence of Al | ow(x) and
Qut come() = y actionsinwhich everyy iseither ni | or the same value, and that valueis an

Handout 8. Generalizing Abstraction Functions 11

6.826—Principles of Computer Systems 2002

argument of some preceding Al | ow. But there is no abstraction relation from Lat eConsensus to
Consensus, because thereis no way for Lat eConsensus to come up with the outcome before it
doesitsinternal Agr ee action.

Notethat if cut cone didn’t have the option to return ni | even after out come # ni | , these
modul es would not be equivalent, because Lat eConsensus would allow the behavior

Al low(1l); CQutcone()=nil, Allow(2), CQutcone()=1
and Consensus would not.

Premature choice: Multi-word clock
Hereisathird example of premature choice in a spec: reading a clock. The spec is simple:

MODULE Cl ock EXPORT Read =

VAR t o Int % the current time

THREAD Tick() = DO<<t + :=1 > D % demon thread advancest

PROC Read() -> Int = << RET t >>
END Cl ock

Thisisin aconcurrent world, in which several threads can invoke Read concurrently, and Ti ck is
ademon thread that is entirely internal. In that world there are three transitions associated with
each invocation of Read: entry, body, and exit. The entry and exit transitions are external because
Read is exported.

We may want code for that allows the clock to have more precision than can be carried in a
single memory location that can be read and written atomically. We could easily achieve this by
locking the clock representation, but then a slow process holding the lock (for instance, one that
gets pre-empted) could block other processes for along time. A clever ‘wait-free’ code for Read
(which appears in handout 17 on formal concurrency) reads the various parts of the clock
representation one at atime and puts them together deftly to come up with aresult which is
guaranteed to be one of the valuesthat t took on during this process. The following spec
abstracts this strategy; it breaks Read down into two atomic actions and returns some value, non-
deterministically chosen, between the values of t at these two actions.

MODULE Lat eCl ock EXPORT Read =
VAR t o Int % the current time
THREAD Tick() = DO<<t :=t + 1> D % demon thread advancest

PROC Read() -> Int = VAR t1: Int |
K<tl =1t >; << VARt2 | t1 <=t2/\ t2 <=t => RET t2 >

END Lat eCl ock

Again both specs have the same traces. a sequence of invocations and responses from Read, such
that for any two Reads that don’t overlap, the earlier onereturns asmaller valuetr. In d ock the
choice of t r depends on when the body of Read runsrelative to the various Ti cks. In Lat ed ock

Handout 8. Generalizing Abstraction Functions 12

6.826—Principles of Computer Systems 2002

the VAR t 2 makesthe choice of t r, and it may choose avalue of t some time ago. Any
abstraction relation from Lat e ock to d ock hasto preservet , because athread that doesa
complete Read exposes the value of t, and this can happen between any two other transitions.
But Lat ed ock doesn't decideits return value until itslast atomic command, and when it does, it
may choose an earlier value than the current t ; no abstraction relation can explain this.

Prophecy variables

One way to cope with these examples and others like them is to use ad hoc reasoning to show
that Lat eSpec implements Spec; we did thisinformally in each example above. This strategy is
much easier if we make the transition from premature choice to late choice at the highest level
possible, aswe did in these examples. It's usually too hard to show directly that a complicated
modul e that makes a late choice implements a spec that makes a premature choice.

But it isn’t necessary to resort to ad hoc reasoning. Our trusty method of abstraction functions
can also do the job. However, we have to use a different sort of auxiliary variable, one that can
look into the future just as a history variable looks into the past. Just as we did with history
variables, we will show that a module TP (T with Prophecy) augmented with a prophecy
variable has the same traces as the original module T. Actually, we can show that it has the same
finite traces, which is enough to take care of safety properties. It also has the same infinite traces
provided certain technical conditions are satisfied, but we won’'t worry about this because we are
not interested in liveness. To show that the traces are the same, however, we have to work
backward from the end of the trace instead of forward from the beginning.

A prophecy variable guesses in advance some non-deterministic choicethat T is going to make
later. The guess gives enough information to construct an abstraction function to the spec that is
making a premature choice. When execution reaches the choice that T makes non-
deterministically, TP makesit deterministically according to the guess in the prophecy variable.
TP has to choose enough different values for the prophecy variable to keep from ruling out any
executions of T.

The conditions for an added variable to be a prophecy variable are closdly related to the ones for
ahistory variable, as the following table shows.

6.826—Principles of Computer Systems 2002

component must not depend on the value of
ahistory variable. Oneimportant case of
thisisthat areturn value must not depend
on ahistory variable.

4. Iftisaninitia state of T and (t, p) isa state
of TP, it must be aninitial state.

History variable Prophecy variable

1. Everyinitia statehasat least onevaluefor | 1. Every state has at |east one value for the
the history variable. prophecy variable.

2. Noexisting step is disabled by new guards | 2. No existing step is disabled in the

involving a history variable. backward direction by new guards
involving a prophecy variable. More
precisely, for each step (t, Tt t') and state
(t', p") there must be a p such that thereisa
step ((t, p), T (', p)).

3. A valueassigned to an existing state 3. Same condition

Handout 8. Generalizing Abstraction Functions 13

If these conditions are satisfied, the state machine TP with the prophecy variable will have the
same traces as the state machine T without it. Y ou can see thisintuitively by considering any
finite execution of T and constructing a corresponding execution of TP, starting from the end.
Condition (1) ensures that we can find alast state for TP. Condition (2) says that for each
backward step of T thereis a corresponding backward step of TP, and condition (3) saysthat in
this step p doesn’t affect what happensto t. Finally, condition (4) ensures that we end up in an
initial state of TP.

Let'sreview our examples and see how to add prophecy variables (that al start with p), marking
the additions with boxes. For Lat eNonDet P we add p! that guesses the choice between 2 and 3.

The abstraction functionisjust NonDet . i = Lat eNonDet P. pl .

VAR i :=0

APROC Qut() -> Int = <<
IF i =0=>i :=1; BEGNpl := 2 [] pl := 3 ENJ
[*] i =1=>BEANpl =2 =>i :=2[] pl =3 =i :=3 END[*] SKIP FI;
RET i >>

For Lat eRel i abl eMsgP we add a pDead flag to each marked message that forces Get to discard
it. & ash chooses which dead flags to set. The abstraction function just discards the marks and
the dead messages.

VAR g : SEQ[m nark: Bool, |pDead: Bool] := {}
% ABSTRACTI ON FUNCTI ON Rel i abl eMsg. g = {x :IN LateReliableMsg.q | ~ x.dead | x.n}
% | NVARI ANT (ALL i :IN g.dom| q(i).dead ==> qg(i).mark)

APRCC Get () -> M=
<< DO VAR x := @. head |

g :=gq.tail; IF x.mark => SKIP [] | x.pDead => |RET x.mFI OD >>

APRCC Crash() = << VAR pDeads: SEQ Bool | pDeads.size = g.size =3
q:={x :INgqg, pD:INpDeads|| | x{mark := true, pDead := p

Alternatively, we can prophesy the entire state of Rel i abl eMsg aswe did with db in St at DB,
which is alittle less natural in this case:

VAR pQ : SEQ M:= {J]

PoINVARIANT {x :INqg | ~ x.mark | x.n} <<= pQ/\ pQ<<= {x :INg | | x.n}]

APRCC Get () -> M=
<< DO VAR x := ¢. head |

Handout 8. Generalizing Abstraction Functions 14

6.826—Principles of Computer Systems 2002

g:=g.tail;
IF x.mark [\ (pQ = {} \/ x.m# pQ head)] => SKI P

[T PQ:=pQtail;| RET x.m

FI. QD >>

APRCC Crash() =
|

<< VAR ¢' g <<= q=>pQ:=4q;]qg:={x:INqg| | x{mark := true}} >>

For Lat eConsensusP we follow the example of NonDet and just prophesy the outcomein Al | ow.
The abstraction function is Consensus. out come = Lat eConsensusP. pQut cone

VAR out cone (VA Null) 1= nil % Data value to agree on
[pQut cone (V. + Null) :=nil]
al | oned : SET V := {}

APRCC Al low(v) =
<< allowed \/ := {v}; [[F pQutcome = nil => pQutcone := v [] SKIP FI| >>

APRCC Agree() =
<< VARV | v IN allowed /\ outcone = nil => outcone := v >>

For Lat e ockP we choose the result at the beginning of Read. The second command of Read
has to choose this value, which means it has to wait until Ti ck hasadvanced t far enough. The
transition of Lat ed ockP that corresponds to the body of d ock. Read isthe Ti ck that givest the
pre-chosen value. This seems odd, but since al these transitions are internal, they al have empty
external traces, soiit is perfectly OK.

VAR t o Int % the current time

T . Int]

PROC Read() -> Int = VAR t1: Int |
<<tl:=t; VARt : Int [pT :=t"] >,
<< VAR t2 | t1 <=1t2/\ t2 <=1t |\ t2 = pT| => RET t2 >>

Most people find it much harder to think about prophecy variables than to think about history
variables, because thinking about backward execution does not come naturally. It's easy to see
that it's harmless to carry along extrainformation in the history variables that isn’t allowed to
affect the main computation. A prophecy variable, however, is allowed to affect the main
computation, by forcing a choice that was non-deterministic to be taken in a particular way.
Condition (2) ensuresthat in spite of this, no traces of T areruled out in TP. It requires usto use
aprophecy variable in such away that for any possible choicethat T could make later, there's
some choice that TP can make for the prophecy variable' s value that allows TP to later do what T
does.

Hereisanother way of looking at this. Condition (2) requires enough different values for the
prophecy variables p; to be carried forward from the points where they are set to the points where
they are used to ensure that as they are used, any set of choicesthat T could have madeis
possible for some execution of TP. So for each command that uses a p; to make a choice, we can
calculate the set of different values of the p; that are needed to allow all the possible choices.
Then we can propagate this set back through earlier commands until we get to the one that
chooses p;, and check that it makes enough different choices.

Handout 8. Generalizing Abstraction Functions 15

6.826—Principles of Computer Systems 2002

Because prophecy variables are confusing, it’simportant to use them only at the highest possible
level. If you write a spec SE that makes an early choice, and implement it with amodule T, don’t
try to show that T satisfies SE; that will be too confusing. Instead, write another spec SL that
makes the choice later, and use prophecy variables to show that S implements SE. Then show
that T implements SL; this shouldn’t require prophecy. We have given three examples of such SE
and SL specs; the implementations are given in later handouts.

Backward simulation

Just as we could use abstraction relations instead of adding history variables, we can use a
different kind of relation, satisfying different start and step conditions, instead of prophecy
variables. This new sort of relation also guarantees trace inclusion. Like an ordinary abstraction
relation, it allows construction of an execution of the spec, working from an execution of the
code. Not surprisingly, however, the construction works backwards in the execution of the code
instead of forwards. (Recall the inductive proof for abstraction relations.) Therefore, itiscaled a
backward simulation.

The following table gives the conditions for a backward simulation using relation R to show that
T implements S, aigning each condition with the corresponding one for an ordinary abstraction
relation. To highlight the relationship between the two kinds of abstraction mappings, an
ordinary abstraction relation is also called aforward simulation.

Forward simulation Backward simulation

1. If tisanyinitia state of T, thenthereisan | 1. If tisany reachable state of T, then therea
initial state s of Ssuchthat (t, s) O R. state s of Ssuch that (t,s) R

2. Iftand sarereachable statesof Tand S 2. Ift'and s arestates of T and Srespectively,
respectively, with (t, s) O R, and (t, 5, t') is with (t,s) OR, (t, ;t)isastepof T,and t
astep of T, then there is an execution isreachable, then thereis an execution
fragment of Sfrom sto some s, having the fragment of Sfrom some sto s, having the
sametrace, and with (t', s) O R. sametrace, and with (t,s) O R

3. Iftisaninitia state of T and (t, s) 0 Rthen
sisaninitial stateof S

(2) appliesto any reachable state t rather than any initial state, since running backwards we can
start in any reachabl e state, while running forwards we start in an initia state. (2) requires that
every backward (instead of forward) step of T beasimulation of astep of S (3) isanew
condition ensuring that a backward run of T ending in aninitial state simulates a backward run of
Sendingin aninitial state; since aforward simulation never ends, it has no anal ogous condition.

Theorem 3: If there exists a backward simulation from T to Sthen every finite trace of T isaso
atraceof S

Proof: Start at the end of afinite execution and work backward, exactly aswe did for forward
simulations.

Handout 8. Generalizing Abstraction Functions 16

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems

Notice that Theorem 3 only yields finite trace inclusion. That's different from the forward case,
where we get infinite trace inclusion as well. Can we use backward simulations to help us prove
general traceinclusion? It turns out that this doesn’t always work, for technical reasons, but it
works in two situations that cover all the cases you are likely to encounter:

* Theinfinitetraces are exactly the limits of finite traces. Formally, we have the condition that
for every sequence of successively extended finite traces of S thelimitisaso atrace of S

» The correspondence relation relates only finitely many states of Sto each state of T.

In the NonDet example above, a backward simulation can be used to show that Lat eNonDet
implements NonDet . In fact, the inverse of the relation used to show that NonDet implements
Lat eNonDet will work. Y ou should check that the three conditions are satisfied.

Backward simulations vs. prophecy variables

The same equivalence that holds between abstraction relations and history variables also holds
between backward simulations and prophecy variables. Theinvariant on the prophecy variable
becomes the abstraction relation for the backward simulation.

Completeness

Earlier we asked whether forward simulations always work to show trace inclusion. Now we can
ask whether it is always possible to use either aforward or a backward simulation to show trace
inclusion. The satisfying answer is that a combination of aforward and a backward simulation,
one after the other, will always work, at least to show finite trace inclusion. (Technicalities again
arisein theinfinite case.) For proofs of this result and discussion of the technicalities, seethe
papers by Abadi and Lamport and by Lynch and Vondrager cited below.

History and further reading

The idea of abstraction functions has been around since the early 1970's. Tony Hoare introduced
itin aclassic paper (C.A.R. Hoare, Proof of correctness of data representations. Acta Informatica
1(1972), pp 271-281). It was not until the early 1980’ s that Lamport (L. Lamport, Specifying
concurrent program modules. ACM Transactions on Programming Languages and Systems 5, 2
(Apr. 1983), pp 190-222) and Lam and Shankar (S. Lam and A. Shankar, Protocol verification
via projections. |EEE Transactions on Software Engineering SE-10, 4 (July 1984), pp 325-342)
pointed out that abstraction functions can also be used for concurrent systems.

People call abstraction functions and relations by various names. ‘ Refinement mapping’ is
popular, especially among European writers. Some people say ‘ abstraction mapping’.

History variables are an old idea. They were first formalized (asfar as | know), in Abadi and
Lamport, The existence of refinement mappings. Theoretical Computer Science 2, 82 (1991), pp
253-284. The same paper introduced prophecy variables and proved the first compl eteness result.
For more on backward and forward simulations see N. Lynch and F. Vondrager, Forward and
backward simulations—Part |: Untimed systems. Information and Computation 121, 2 (Sep.
1995), pp 214-233.

Handout 8. Generalizing Abstraction Functions 17 Handout 8. Generalizing Abstraction Functions

2002

18

