6.826—Principles of Computer Systems 2002

9. Atomic Semantics of Spec

This handout defines the semantics of the atomic part of the Spec language fairly carefully. It
triesto be precise about al difficult points, but is sloppy about some things that seem obviousin
order to keep the description short and readable. For the syntax and an informal account of the
semantics, see the Spec reference manual, handout 4.

There are three reasons for giving a careful semantics of Spec:
1. Togiveaclear and unambiguous meaning for Spec programs.

2. Tomakeit clear that thereis no magic in Spec; its meaning can be given fairly easily and
without any exotic methods.

3. Toshow the versatility of Spec by using it to defineitself, which is quite different from the
way we useit in therest of the course.

This handout is divided into two parts. In the first half we describe semi-formally the essential
ideas and most of the important details. Then in the second half we present the compl ete atomic
semantics precisely, with a small amount of accompanying explanation.

Semi-formal atomic semantics of Spect

Our purpose isto makeit clear that thereis no arm waving in the Spec notation that we have
given you. A trandation of thisinto fancy words isthat we are going to study aformal semantics
of the Spec language.

Now that is aformidable sounding term, and if you take a course on the semantics of pro-
gramming languages (6.821—Gifford, 6.830}—Meyer) you will learn all kinds of fancy stuff
about bottom and stack domains and fixed points and things like that. Y ou are not going to see
any of that here. We are going to do a very simple minded, garden-variety semantics. We are just
going to explain, very carefully and clearly, how it isthat every Spec construct can be
understood, as atransition of a state machine. So if you understand state machines you should be
able to understand all this without any trouble.

One reason for doing this isto make sure that wereally do know what we are talking about. In
general, descriptions of programming languages are not in that state of grace. If you read the
Pascal manual or the C manual carefully you will come away with anumber of questions about
exactly what happens if | do this and this, questions which the manual will not answer
adequately. Two reasonably intelligent people who have studied it carefully can cometo
different conclusions, argue for along time, and not be able to decide what is the right answer by
reading the manual.

! These semi-formal notes take the form of a dialogue between the lecturer and the class. They were originally
written by Mitchell Charity for the 1992 edition of this course, and have been edited for this handout.

Handout 9. Atomic Semantics of Spec 1

6.826—Principles of Computer Systems 2002

Thereis one class of mechanisms for saying what the computer should do that often does answer
your questions precisely, and that is the instruction sets of computers (or, in more modern
language, the architecture). These specs are usually written as state machines with fairly simple
transitions, which are not beyond the power of the guy who iswriting the manual to describe
properly. A programming language, on the other hand, is not like that. It has much more power,
generality, and wonderfulness, and also much more room for confusion.

Another reason for doing this is to show you that our methods can be applied to adifferent kind
of system than the ones we usually study, that is, to a programming language, a notation for
writing programs or a notation for writing specs. We are going to learn how to write a spec for
that particular class of computer systems. Thisisavery different application of Spec from the
last one we looked at, which was file systems. For describing a programming language, Spec is
not the ideal descriptive notation. If you were in the business of giving the semantics of
programming languages, you wouldn't use Spec. There are many other notations, some of them
better than Spec (although most are far worse). But Spec is good enough; it will do the job. And
thereisalot to be said for just having one notation you can use over and over again, as opposed
to picking up a new one each time. There are many pitfallsin devising a new notation.

Those are the two themes of thislecture. We are going to get down to the foundations of Spec,
and we are going to see another, very different application of Spec, a programming language
rather than afile system.

For thislecture, we will only talk about the sequential or atomic semantics of Spec, not about
concurrent semantics. Consider the program:

X, y =0
thread 1: thread 2:
<< X = 3 >> <<z:=XxX+ty >
<< y = 4 >>

In the concurrent world, it is possible to get any of the values 0, 3, or 7 for z. In the sequential
world, which we are in today, the only possible valuesare 0 and 7. It isasimpler world. We will
betalking later (in handout 17 on formal concurrency) about the semantics of concurrency,
which is unavoidably more complicated.

In asequential Spec program, there are three basic constructs (corresponding to sections 5, 6, and
7 of the reference manual):

Expressions
Commands
Routines

For each of these we will give a meaning function, Mg, Mc, and MR, that takes a fragment of Spec
and yields its meaning as some sort of Spec value. We shall see shortly exactly what type of
valuesthese are.

In order to describe what each of these things means, wefirst of all need some notion of what
kind of thing the meaning of an expression or command might be. Then we haveto explain in
detail the exact meaning of each possible kind of expression. The basic technique we useis the

Handout 9. Atomic Semantics of Spec 2

6.826—Principles of Computer Systems 2002

standard one for a situation where you have things that are made up out of smaller things:
structural induction.

Theidea of structural induction isthis. If you have something which is made up of an Aand aB,
and you know the meaning of each, and have away to put them together, you know how to get
the meaning of the bigger thing.

Some ways to put things together in Spec:

>0 > >
— 4

T ww
@

State

What are the meanings going to be? Our basic notion is that what we are doing when writing a
Spec program is describing a state machine. The central properties of a state machine are that it
has states and it has transitions.

A stateisafunction from namesto values: St ate: Name -> Val ue. For example:

VAR x: Int
y: Int

If there are no other variables, the state simply consists of the mapping of the names" x" and " y"
to their corresponding values. Initially, we don’'t know what their values are. Somehow the
meaning we give to thiswhole construct has to express that.

Next, if wewritex : = 1, after that the value of x is 1. So the meaning of this had better look
something like a transition that changes the state, so that no matter what the x was before, it is 1
afterwards. That's what we want this assignment to mean.

Spec is much simpler than C. In particular, it does not have “references’ or “pointers’. When
you are doing problems, if you feel the urgeto call mal | oc, the correct thing to do isto make a
function whose range is whatever sort of thing you want to allocate, and then choose a new
element of the domain that isn’t being used already. Y ou can use theintegers or any convenient
sort of name for the domain, that is, to name the values. If you define a CLASS, Spec will do this
for you automatically.

So the state isjust these name-to-value mappings.

Names

Spec has a modul e structure, so that names have two parts, the modul e name and the simple
name. When referring to a variable in another module, you need both parts.

MODULE M MODULE N
VAR x Mx :=3

Handout 9. Atomic Semantics of Spec 3

6.826—Principles of Computer Systems 2002

X =3
Mx :=3

To simplify the semantics, we will use M x as the name everywhere. In other words, to apply the
semantics you first must go through the program and replace every x declared in the current
module Mwith M x. This converts all referencesto global variables into these two part names, so
that each name refersto exactly one thing. This transformation makes things simpler to describe
and understand, but uglier to read. It doesn’t change the meaning of the program, which could
have been written with two part namesin the first place.

All the global variables have these two part names. However, local variables are not prefixed by
the module name:

PROC
VARG | ... i

Thisis how wetdll the global state apart from the local state. Global state names have dots, |ocal
state names do not.

Question: Can modules be nested?

No. Spec is meant to be suitable for the kinds of specs and code that we do in this course, which
are no more than moderately complex. Features not really needed to write our specs are | eft out
to keep it smpler.

Expressions
What should the meaning of an expression be? Note that expressions do not affect the state.

The type for the meaning of an expressioniss -> V: an expression is afunction from state to
value (weignore for now the possibility that an expression might raise an exception). It can be a
partial function, since Spec does not require that all expressions be defined. But it hasto bea
function—we require that expressions are deterministic. We want determinism so something like
f(x) = f(x) awayscomesout true. Reasoning isjust too hard if thisisn’t true. If afunction is
nondeterministic then obviously this needn’t come out true. (The classic example of a
nondeterministic function is a random number generator.)

So, expressions are deterministic and do not affect state.
Question: What about assignments?

Assignments are not expressions. If you have been programming in C, you have the weird idea
that assignments are expressions. Spec, however, takes a hard line that expressions must be
deterministic or functional; that is, their values depend only on the state. This means that
functions, which are the abstraction of expressions, are not allowed to affect the state. The whole
point of an assignment is to change the state, so an assignment cannot be an expression.

Handout 9. Atomic Semantics of Spec 4

6.826—Principles of Computer Systems 2002

There are three types of expressions:

Type Example Meaning
constant 1 (\ s | 1)
variable X (\ s | s("x"))
function invocation f(x) next sub-section

(The type of these lambda s is not quite right, as we will seelater).

Note that we have to keep the Spec in which we are writing the semantics separate from the Spec
of the semantics we are describing. Therefore, we had to writes(" x") instead of just x, because
itisthex of the target Spec we are talking about, not the x of the describing Spec.

The third type of expression is function invocation. We will only talk about functions with a
single argument. If you want a function with two arguments, you can make one by combining the
two arguments into a tuple or record, or by currying: defining a function of the first argument
that returns a function of the second argument. Thisis aminor complication that weignore.

What about x + y? Thisisjust shorthand for T. " +"(x, y),whereT isthetype of x. Everything
that is not a constant or a variableis an invocation. This should be afamiliar concept for those of
you who know Scheme.

Semantics of function invocation

What are the semantics of function invocation? Given afunction T - > U, the correct type of its
meaningis(T, S) -> U, sincethe function can read the state but not modify it. Next, how are
we going to attach a meaning to an invocation f (x) ? Remember the rule of structural induction.
In order to explain the meaning of acomplicated thing, you are supposed to build it out of the
meaning of simpler things. We know the meaning of x and of . We need to come up with a map
from states to values that is the meaning of f (x) . That is, we get our hands on the meaning of f
and the meaning of x, and then put them together appropriately. What isthe meaning of f ? Itis
s("f"). So,

f(x) means ... s("f") ... s("x") ...
How are we going to put it together, remembering the type we want for f (x) , whichiss -> u?
f(x) means (\ s | s("f") (s("x"), s)))

Now this could be complete nonsense, for instanceif s("f") evaluatesto aninteger. If s("f")
isn’'t afunction then this doesn’t typecheck. But there is no doubt about what this meansiif itis
legal. It meansinvoke the function.

That takes care of expressions, because there are no other expressions besides these. Structural
induction says you work your way through all the different ways to put little things together to
make big things, and when you have done them all, you are finished.

Question: What about undefined functions?

Handout 9. Atomic Semantics of Spec 5

6.826—Principles of Computer Systems 2002

Thenthe(T, S) -> Umappingis partial.
Question: Isf (x) = f(x) if f(x) isundefined?

No, it's undefined. But those are deep waters and | propose to stay out of them.

Commands

What is the type of the meaning of acommand? Well, we have states and values to play with,
and wehaveused up S -> V on expressions. What sort of thing isacommand? It'satransition
from one state to another.

Expressions. S -> Vv
Commands. S -> S ?

Thisisgood for a subset of commands. But what about this one?
X :=1[] x:=2

Isits meaning afunction from states to states? No, from states to sets of states. It can't just bea
function. It hasto be arelation. Of course, there are lots of ways to code relations as functions.
Theway we useis:

Commands. (S, S) -> Bool

Thereisasmall complication because Spec has exceptions, which are useful for writing many
kinds of specs, not to mention programs. So we have to deal with the possibility that the result of
acommand is not a garden-variety state, but involves an exception.

To handle this we make a slight extension and invent a thing called an outcome, which is very
much like a state except that it has some way of coding that an exception has happened. Again,
there are many ways to code that. The way we use is that an outcome has the same type asa
state: it’s a function from names to values. However, there are a couple of funny names that you
can't actually write in the program. One of themis $x, and we adopt the convention that if
o("$x") = "" (empty string), then o isagarden-variety state. If o("$x") = "excepti on-
nane", then thereis that exception in outcome o. Some Spec commands, in particular *; * and
EXCEPT, do something specia if one of their pieces produces an exception.

How do we say that o isrelated to s? The function returnst r ue. We are encoding a relation
between states and outcomes as a function from a state and outcome to aBool . The function is
supposed to give back t r ue exactly when the relation holds.

So the meaning of acommand hastherelationtype(s, O -> Bool . Wecall thistype ATr, for
Atomic TRansition.

Now we just work our way through the command constructs (with an occasional digression).

Commands — assignment

x =1

Handout 9. Atomic Semantics of Spec 6

6.826—Principles of Computer Systems 2002
orin general
vari abl e : = expression

What we have to come up with for the meaning is an expression of the form
Vs, 0of ..0)

So when doestherelation hold for x : = exp? Well, perhapswhen o(x) = exp? (MEisthe
meaning function for expressions.)

o("x") = ME(e)(s)
. Thisisastart, since the valid transition
x=0 x=1
y=0 y=0
would certainly be allowed. But what others would be allowed? What about:
x=0 x=1
y=0 y=94

It would also be allowed, so this can’t be quite right. Half right, but missing something
important. Y ou have to say that you don’t mess around with the rest of the state. The way you do
that isto say that the outcome is equal to the state except at the variable.

o = s{"x" -> ME(e)(s)}

Thisisjust a Spec function constructor, of theformf {arg -> val ue}. Notethat we areusing
the semantics of expressions that we defined in the previous section.

Aside—an alternate encoding for commands
Aswe said before, there are many ways to code the command relation. Another possibility is:
Commands. S -> SET S

This encoding seems to make the meanings of commands clumsier to write, though it is entirely
equivalent to the one we have chosen.

Thereisathird approach, which has alot of advantages: write predicates on the state values. If x
andy arethe state variablesin the pre-state, and x' andy' the state variables in the post-state,
then

(X' =1/\Vy =y)
is another way of writing

o = s{"x" -> 1}

Handout 9. Atomic Semantics of Spec 7

6.826—Principles of Computer Systems 2002

In fact, this approach is another way of writing programs. Y ou could write everything just as
predicates. (Of course, you could also write everything intheugly o = s{...} form, but that
would look pretty awful. The predicates don't |ook so bad.)

Sometimes it’s actually niceto do this. Say you want to write the predicate that says you can
have any value at all for x. The Spec

VAR z | x := 2
isjust

(y =)
(in the simple world where the only state variables are x and y). Thisis much simpler that the
previous, rather inscrutable, piece of program. So sometimes this predicate way of doing things

can bealot nicer, but in general it seemsto be not as satisfactory, mainly becausethey' =y stuff
cluttersthingsup alot.

That wasjust an aside, to let you know that sometimesiit’s convenient to describe the things that
can go on in a spec using predicates rather than functions from state pairs to Bool .

Commands — routine invocation p(x)

What are the semantics of routine invocation? Well, it hasto do something with s. Theideais
that p is an abstraction of a state transition, so its meaning will be arelation of type ATr . What
about the argument x ? There are many ways to deal with it. Our way is to use another pseudo-
variable $a to pass the argument and get back the result.

The meaning of p(e) isgoing to be

(\ s, o (s Take the state,
{"$a" -> ME(e)(s)} append the argument,
VE(p) (s) get p’smeaning
, 0)) and invokeit
or, writing the whol e thing on one line in the normal way,

(\'s, o ME(p)(s)(s{"$a" -> ME(e)(s)}, 0))

What does this say? This invocation relates a state to an outcome if, when you take that state, and
modify its $a component to be equal to the value of the argument, the meaning of the routine
relates that state to the outcome. Another way of writing this, which isn’t so nested and might be
clearer, would be to introduce an intermediate state s' . Now we have to use LAVBDA:

(LAVMBDA (s, 0)->Bool = VAR s' = s{"$a" -> ME(e)(s)} | RET ME(p)(s)(s', 0))

These two are exactly the same thing. Theinvocation relates s to o iff theroutinerelatess' too,
wheres' isjust s with the argument passing component modified. $a isjust away of
communicating the argument value to the routine.

Question: Why use ME(p) (s) rather than MR?

Handout 9. Atomic Semantics of Spec 8

6.826—Principles of Computer Systems 2002

MR is the meaning function for routines, that is, it turns the syntax of a routine declaration into a
function on states and arguments that is the meaning of that syntax. We would use MR if we were
looking at a FUNC. But p isjust avariable (of courseit had better be bound to aroutine value, or
this won’t typecheck).

Aside—an alternate encoding for invocation

Hereis a different way of communicating the argument value to the function; you can skip this
section if you like. We could take the view that the routine definition

PROC P(i: Int) = ...

is defining awhole flock of different commands, one for every possible argument value. Then
we need to pick out the right one based on the argument value we have. If we coded it this way
(and it is merely a coding thing) we would get:

ME(p) (s) (ME(e) (s)) (s, 0)

This says, first get ME(p) , the meaning of p. Thisis no longer atransition but a function from
argument values to transitions, because the ideaiis that for every possible argument value, we are
going to get adifferent meaning for the routine, namely what that routine does when given that
particular argument value. So we pass it the argument value ME(e) (s) , and invoke the resulting
transition.

These two aternatives are based on different choices about how to code the meaning of routines.
If you code the meaning of aroutine simply as atransition, then Spec picks up the argument
value out of the magic $a variable. But thereis nothing mystical going on here. Setting $a
corresponds exactly to what we would do if we were designing a calling sequence. We would
say “| am going to pass the argument in register 1”. Here, register 1is $a.

The second approach is alittle bit more mystical. We are taking more advantage of the won-
derful abstract power and generality that we have. If someone writes a factorial function, we will
treat it asan infinite supply of different functions with no arguments; one computes the factorial
of 1, another the factorial of 2, another the factoria of 3, and so forth. In

MVE(p) (s) (ME(e)(s)) (s, o), ME(p)(s) istheinfinitesupply, ME(e)(s) istheargument that
picks out a particular function, to which wefinaly pass(s, o).

However, there are | ots of other ways to do this. One of the things which makes the semantics
game hard is that there are many choices you can make. They don’t really make that much
difference, but they can create alot of confusion, because

» abad choice can leave youin abriar patch of notation,
» you can get confused about what choice was made, and
* every author uses adlightly different scheme.
So, whilethis

RET ME(p) (S) (S("$a" -> ME(e) (s)),0)

and this

Handout 9. Atomic Semantics of Spec 9

6.826—Principles of Computer Systems 2002

VAR s' := s{"$a" -> ME(e)(s)} | RET ME(p)(s) (s',o0)
aretwo ways of writing exactly the same thing, this
RET ME(p) (s) (ME(e)(s)) (s,0)

is different, and only makes sense with a different choice about what the meaning of afunction
is. The latter is more el egant, but we use the former becauseit is less confusing.

Stepping back from these technical details, what the meaning function is doing is taking an
expression and producing its meaning. The expression is a piece of syntax, and there are alot of
possible ways of coding the syntax. Which exact way we chooseisn’t that important.

Now we return to the meanings of Spec commands.
Commands —SKI P
(\ s, o] s =0)

In other words, the outcome after Ski P is the same as the pre-state. Later on, in the formal half of
the handout, we give atable for the commands which takes advantage of the fact that thereisa
lot of boilerplate—the (\ s, o | ...) stuff isawaysthe same, and so isthe treatment of
exceptions. So the table just shows, for each syntactic form, what goes after the | .

Commands — HAVOC
(\ s, o] true)

In other words, after HAVOC you can have any outcome. Actually thisisn’t quite good enough,
since we want to be able to have any sequence of outcomes. We deal with this by introducing
another magic state component $havoc with aBool value. Once $havoc istrue, any transition
can happen, including one that leaves it true and therefore allows havoc to continue. We express
this by adding to the command boilerplate the disjunct s(" $havoc") , so that if $havoc istruein
s, any command relatess to any o.

Now for the compound commands.
Commands—c1 [] c2

M(cl) MZ(c2)

(s, o) (s, o)

or ononeline,

MC(cl) (s, o) \/ M(c2)(s, o)
Non-deterministic choiceisthe‘or’ of therelations.
Commands —c1 [*] c2

Itis clear we should begin with

Handout 9. Atomic Semantics of Spec 10

6.826—Principles of Computer Systems 2002

MC(cl) (s, o) \/
But what next? One possibility is
~ MC(cl)(s, o) /\ ...

Thisisin theright direction, but not correct. Else meansthat if thereis no possible outcome of
c1, then you get to try c2. So there are two possible ways for an elseto relate a state to an
outcome. Oneisfor c1 to relate the state to the outcome, the other is that thereis no possible way
to make progress with ¢l in the state, and c2 to relates the state to the outcome.

The correct encoding is
MC(cl)(s,0) \/ (ALL o' | ~ M(cl) (s, 0')) /\ MXc2)(s,0))
Commands—c1 ; c2

Although the meaning of semicolon may seem intuitively obvious, it is more complex than one
might first suspect—more complicated than “or”, for instance, even though “or” isless familiar.
Weinterpreted thecommand c1 [] c2 asM(cl) \/ M(c2).Becausesemicolonisa
sequential composition, it requires that our semantics move through an intermediate state.

If these were functions (if we could describe the commands as functions) then we could simply
describe a sequential composition as(F2 (FlI s)). However, because Spec is not a functional
language, we need to compose relations, in other words, to establish an intermediate state asa
precursor to the final output state. As afirst attempt, we might try:

(LAMBDA (s, 0) -> Bool = RET
(EXISTS o' | M(cl)(s, o) /\ M(c2)(o', 0)))

In words, this saysthat you can get froms too viacl ; c2 if there exists an intermediate state
o' suchthat c1 takesyou froms to o' and c2 takesyou fromo' too. Thisisindeed the
composition of the relations, which we can write more concisely asmc(cl) * Mc(c2) . Butis
this always the meaning of "; * ? In particular, what if c1 produces an exception?

When c1 produces an exception, we should not execute c2. Our first try does not capture that
possibility. To correct for this, we need to verify that o' isanormal state. If it isan exceptional
state, then it is the result of the composition and weignorec2.

~IsX(o') /\ M(c2)
\/ IsX(o') /\ o =0))

(EXISTS o' | M(cl)(s, o) I\ (

Commands—c1 EXCEPT xs => c2

Now, what if we have ahandler for the exception? If we assume (for simplicity) that all
exceptions are handled, we simply have the complement of the semicolon case. If there'san
exception, then do c2. If there's no exception, do not do c2. We aso need to include an
additional check to insure that the exception considered is an element of the exception set—that
isto say, that it is a handled exception.

(EXISTS o' | M(cl)(s, o) /\
(((~IsX(0o') \/ ~o'("$x") INxs) /\ o = o)

Handout 9. Atomic Semantics of Spec 11

6.826—Principles of Computer Systems

\/ IsX(0') /\ o ("$x") INxs) /\ M{c2) (o {"$x" -> """}, o)

)
So, with this semantics for handling exceptions, the meaning of:

(cl EXCEPT xs => c2); c3

if normal doci1,noc2,doc3

if exception, handled doci1,doc2,doc3

if exception and not handled doci1,noc2,noc3

Commands—VAR id: T | cO

Theideais “there existsavaluefor i d such that co succeeds’. This intuition suggests something
like

(EXISTS Vv :INT | MX(cO) (s{"id" -> v}, 0))

However, if welook carefully, we seethat i d is|eft defined in the output state o. (Why isthis
bad?) To correct this omission we need to introduce an intermediate state o' from which we may
arrive at the final output state o wherei d is undefined.

(EXISTS v :INT, 0 | MXcO)(s("id" ->v}, o) /\ o =o0'(id->1})
Routines

In Spec, routines include functions, atomic procedures, and procedures. For simplicity, we focus
on atomic procedures. How do we think about APROCS?

We know that the body of an APROC describes transitions from its input state to its output state.
Given this transition, how do we handle the results? We previously introduced a pseudo name $a
to which aprocedure’ s argument value is bound. The caller aso collects the value from $a after
the procedure body’ s transition. Refer to the definition of MR below for amore complete
discussion.

In reality, Spec is more complex because it attempts to make RET more convenient by allowing it
to occur anywhere in aroutine. To accommodate this, the meaning of RET e isto set $a to the
value of e and then raise the special exception $ReT, which is handled as part of the invocation.

Formal atomic semantics of Spec

In therest of the handout, we describe the meaning of atomic Spec commands in compl ete detail
except that we do not give precise meanings for the various expression forms other than lambda
expressions; for the most part these are drawn from mathematics, and their meanings should be
clear. We also omit the detail ed semantics of modules, which is complicated and uninteresting.

Handout 9. Atomic Semantics of Spec

2002

12

6.826—Principles of Computer Systems 2002

Overview

The semantics of Spec are defined in three stages: expressions, atomic commands, and non-
atomic commands (treated in handout 17 on formal concurrency). For the first two thereis no
concurrency: expressions and atomic commands are atomic. This makes it possible to give their
meanings quite simply:

Expressions as functions from states to results, that is, values or exceptions.

Atomic commands as relations between states and outcomes: a command relates an initial
state to every possible outcome of executing the command in theinitial state.

An outcome maps names (treated as strings) to values. It also maps three specia strings that are
not program names (we call them pseudo-names):

$a, which is used to pass argument and result valuesin an invocation;

$x, which records an exceptional outcome;

$havoc, which istrueif any sequence of later outcomesis possible.

A stateisanormal outcome, that is, an outcome which is not exceptional; it has $x=noX. The
looping outcome of acommand is encoded as the exception $1 oop; since thisis not an identifier,
you can't writeit in ahandler.

The state is divided into aglobal state that maps variables of theformm i d (for whichi d is
declared at the top level in module m) and alocal state that maps variables of theformi d (those
whose scope is a VAR command or aroutine). Routines share only the global state; the ones
defined by LAMBDA also have an initial local state, while the ones declared in ar out i neDecl start
with an empty local state. We leave as an exercise for the reader the explicit construction of the
global state from the collection of modules that makes up the program.

We give the meaning of a Spec program using Spec itself, by defining functions Mg, Mc, and MR
that return the meaning of an expression, command, and routine. However, we use only the
functional part of Spec. Specisnot ideally suited for thisjob, but it is serviceable and by using it
we avoid introducing a new notation. Also, it isinstructive to see how the task iswriting this
particular kind of spec can be handled in Spec.

Y ou might wonder how this spec is related to code for Spec, that is, to acompiler or interpreter.
It doeslook alot like an interpreter. Aswith other specs written in Spec, however, this oneis not
practical code because it uses existential quantifiers and other forms of non-determinism too
freely. Most of these quantifiers are just there for clarity and could be replaced by explicit
computations of the needed values without much difficulty. Unfortunately, the quantifier in the
definition of VAR does not have this property; it actually requires a search of all the values of the
specified type. Since you have already seen that we don’t know how to give practical code for
Spec, it shouldn’t be surprising that this handout doesn’t contain one.

Note that before applying these rules to a Spec program, you must apply the syntactic rewriting
rulesfor constructs like VAR i d : = e and CLASS that are given in the reference manual. Y ou
must also replace al global names with their fully qualified forms, which include the defining
module, or d obal for names declared globally (see section 8 of the reference manual).

Handout 9. Atomic Semantics of Spec 13

6.826—Principles of Computer Systems

Terminology

We begin by giving the types and special values used to represent the Spec program whose
meaning is being defined. We use two methods of functions, + (overlay) andrestri ct, that are
defined in section 9 of the reference manual.

TYPEV = (Routine + ...) % Vaue
Rout i ne = aTr % defined as the last type below
Id = String % |dentifer

SUCHTHAT (\ id | (EXISTS c: Char, sl1l: String, s2: String |
id={c} +s1 +s2/\ cINletter + digit
I\ sl.rng <= letter\/digit\/{"_"} /\ s2.rng <= {"""}))
Name = String
SUCHTHAT (\ name | nanme IN ids \/ globals

\/ {"$a", "$x", "$havoc"})

X = String % eXception

SUCHTHAT (\ x | x INids \/ {noX, retX |oopX, typeX})
XS = SET X % eX ception Set
O Name -> V WTH {isX =0 sX} % Outcome

S = O SUCHTHAT (\ o | ~ o0.isX) % State

ATr = (S, O -> Bool % Atomic Transition
CONST

letter = " ABCDEFGHI JKLMNOPQRSTUW\KYZabcdef ghi j kl mopqr st uvwxyz" . rng

digit = "0123456789".rng

ids ={id | true}

gl obal s ={idl, id2 | idl +"." + id2}

noX ="

retX = "$ret"”

| oopX = "$l oop"

typeX = "$type error"”

trueV Y % thevaluet rue

FUNCO sX(0) -> Bool = RET o("$x") # noX %o0.isX

To write the meaning functions we need types for the representations of the main non-terminals
of thelanguage: i d, name, exceptionSet, type, exp, cnd, routineDecl, nodule, and
pr ogr am Rather than giving the detailed representation of these types or acomplete set of
operations for making and analyzing their values, wewrite C« c1 [] c2 » for acommand
composed from subcommands c1 and c2 with[], and so forth for the rest of the command
forms. Similarly wewrite E« el + e2 » and R« FUNC Succ(x: |INT)->INT = RET x+1 » for
the indicated expression and function, and so forth for the rest of the expression and routine
forms. This notation makes the spec much more readable. | d, Narme, and XS are declared above.

TYPET = SET V % Type
E = [...] % Expression
C = [...] % Command
R = [id, ...] % RoutineDecl
Mod = [id, tops: SET TopLevel] % Module
TopLevel = (R+...) % module toplevel decl
Prog = [ms: SET Mod, ts: SET TopLevel] % Program

Handout 9. Atomic Semantics of Spec

2002

14

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

The meaning of ani d or var isjust the string, of an except i onSet the set of strings that are the Command Predicate
exceptionsin the set, of at ype the set of values of the type. For the other constructs there are

meaning functions defined below: M for expressions and Mc and MR for atomic commands and SKi P 0=s5
routines. The meaning functions for nodul e, t opl evel , and pr ogr amare | eft as exercises. HAVOC true
. RET e 0 = s{"$x" ->retX, %$a -> ME(e)(s)}
Expressions RET 0 = s{"$x" ->retx}
An expression maps a state to a value or exception. Evaluating an expression does not change the RAI SE i d 0o = s{"$x" ->"id"}

state. Thus the meaning of expressionsis given by apartial function ME with type

E->S->(V + X); that is, given an expression, ME returns a function from states s to results
(values v or exceptions X). ME is defined informally for @l of the expression formsin section 5 of
the reference manual. The possible expression forms are literal, variable, and invocation. We

el(e2) (EXISTS r: Routine |
r = ME(el)(s) /\ r(s{"%$a" -> ME(e2)(s)}, o))

| N N . X - Ny var 1= e [1] o = s{var -> ME(e)(s)}
giveformal definitions only for invocations and LAVBDA literals; they are written in terms of the var = el(e2) [1] MY Cx el(e2): var := $a »)(s, o)
meaning of commands, so we postpone them to the next section
. e => c0 ME(e) (s) = trueV /\ MZ(cO)(s, o)
Type checking ¢l [] c2 MXc1) (s, o) \/ MX c2) (s, o)
For type checking to work we need to ensure that the value of an expression always has the type cl [*] e2 MC(el) (s, o) \/ (MXc2)(s, o)
of the expression (that is, is a member of the set of valuesthat is the meaning of the type). We do IV ~(BXISTS o' | MXcl)(s, o)))
this by structural induction, considering each kind of expression. The type checking of return ¢l : c2 MXcl)(s, o) /\ o .isX
values ensures that the result of an invocation will have its declared type. Literalsaretrivial, and \/ (EXISTS o' | M cl) (s, o) /\ ~ o .isX
the only other expression form isavariable. A variable declared with VAR isinitialized to avalue I\ MX(c2) (0,0))
of itstype. A formal parameter of aroutineisinitialized to an actual by an invocation, and the
type checking of arguments (see MR below) ensures that thisis a value of the variable stype. The cl EXCEPT xs => c2 MC(c1)(s, o) /\ ~ o ("$x") IN xs
value of a variable can only be changed by assignment. \/ (EXISTS o' | MX(c1) (s, o) /\ o' ("$x") IN xs
. . . I\ M(c2) (o' {"$x" -> noX}, o))
Anassignment var : = e requires that the value of e have the type of var . If the type of e is not
equal to thetype of var becauseit involves a union or a SUCHTHAT, this check can’'t be done VAR id: T | cO (EXISTSv, o0 | VINT
statically. To take account of this and to ensure that the meaning of expressionsis independent of /\ M(c0)(s {id -> v}, o)
the static type checking, we assume that in the context var : = e the expression e is replaced by I\ o = o' {id-> })

e AS t,where t isthedeclared type of var. Themeaning of e AS t instates isME(e) (s) if

thatisint (the set of values of typet), and the exception t ypeX otherwise; this exception can't VARTd: T:=e | c0 MACVARId: T| id=e =>cO»(s, o)

be handled becauseit is not named by an identifier and is therefore afatal error. << c0 >> M(c0) (s, o)
We do not give practical code for the type check itself, that is, the check that avalue actually isa IF O Fl MX(cO) (s, ©0)
BEG N c0 END MC(cO0) (s, o)

member of the set of values of a given type. Such code would require too many details about
how values are represented. Note that what many people mean by “type checking” is a proof that DO c0 oD isthefixed point of the equation ¢ = c0; ¢ [*] SKIP

every expression in a program always has aresult of the correct type. Thiskind of completely

static type checking is not possible for Spec; the presence of unions and SUCHTHAT makes it

undecidable. Sections 4 and 5 of the reference manual define what it means for one type to fit [1] Thefirst casefor assi gnment applies only if theright sideisnot ani nvocat i on of an
another and for atype to be suitable. These definitions are a sketch of how to code as much static APRCC. Becausse an invocation of an APROC can have side effects, it needs different treatment.
type checking as Spec easily admits.

Table 1: The predicates that define MC(conmand) (s, o) when thereare
no exceptions raised by expressions at the top level in conmand, and $havoc isfalse.

Handout 9. Atomic Semantics of Spec 15 Handout 9. Atomic Semantics of Spec 16

6.826—Principles of Computer Systems 2002

Atomic commands

An atomic command relates a state to an outcome; in other words, it is defined by an ATr (atomic

transition) relation. Thus the meaning of commandsis given by afunction MC with type C- >ATr ,
whereATr = (S, O -> Bool . Wecan definethe ATr relation for each command by a
predicate: acommand relates state s to outcome o iff the predicate on's and o istrue. We give
the predicates in table 1 and explain them informally below; the predicates apply provided there
are no exceptions.

Here are the details of how to handle exceptions and how to actually define the Mc function. Y ou
might want to look at the predicates first, since the meat of the semanticsis there.

Thetable of predicates has been simplified by omitting the boilerplate needed to take account of
$havoc and of the possibility that an expression is undefined or yields an exception. If a
command containing expressionsel and e2 has predicate P in the table, the full predicate for the
command is

s("$havoc") % anything if $havoc
\/ ME(el)!s /\ ME(e2)!s % no outcome if undefined
I\ (ME(el)(s) 1SV I/\ 2)(s) ISVI/\ P
\/ ME(el)(s) IS X/\ s{ "$x" -> ME(el)(s) }
\/ ME(e2)(s) IS X/\ s{ "$x" -> ME(e2)(s) })
If the command contains only one expression e1, drop the terms containing e2. If it contains no
expressions, the full predicateisjust the predicate in the table.

Once we have the full predicates, it is simple to give the definition of the function Mc. It has the
form

FUNC MX(c) -> ATr =
IF

[1 VAR var, e | ¢ = «var := e» =>
RET (\ o, s | full predicate for this case)

[1 VAR cl, c2 | ¢ = «cl ; c2» =>
RET (\ o, s | full predicate for this case)

Fl

Now to explain the predicates. First we do the simple commands, which don’t have
subcommands. All of these that don’t involve an invocation of an APROC are deterministic; in
other words, the relation is a function. Furthermore, they are all total unless they involve an
invocation that is partial.

A RET produces the exception r et X and leaves the returned valuein $a.

A RAI SE yields an exceptional outcome which records the exceptioni d in $x.

Handout 9. Atomic Semantics of Spec 17

6.826—Principles of Computer Systems 2002

Aninvocati on relates s to o iff theroutine which is the value of e1 (produced by
VE(el) (s)) doesso after s ismodified to bind " $a" to the actual argument; thus $a is
used to communicate the value of the actual to the routine.

Anassi gnnment |eaves the state unchanged except for the variable denoted by the left
side, which gets the value denoted by the right side. Recall that assignment to a
component of afunction, sequence, or record variable is shorthand for assignment of a
suitable constructor to the entire variable, as described in the reference manual. If the
right sideisani nvocati on of aprocedure, the value assigned isthe value of $a inthe
outcome of the invocation; thus $a also communicates the result of the invocation back to
the invoker.

Now for the compound commands; their meaning is defined in terms of the meaning of their
subcommands.

A guarded command e => ¢ hasthe same meaning as c except that e must be true.
A choicerdatess too if either part does.
Anédsecl [*] c2relatess tooif c1 doesor if c1 hasno outcome and c2 does.

A sequential compositioncl ; c2 relatess to o if thereisasuitable intermediate state,
or if o isan exceptional outcome of c1.

cl EXCEPT xs=>c2 isthesameasc1 for anormal outcome or an exceptional outcome
not in the exception set xs. For an exceptional outcomeo' inxs, c2 must relateo’ asa
normal stateto o. Thisisthe dual of the meaning of c1 ; c2 if xs includesal
exceptions.

VAR id: t | c relatesstooif thereisavaluev of typet suchthat c relates (s withi d
bound tov) to an o' which isthe sameaso except that i d isundefined in o. It isthis
existential quantifier that makes the spec useless as an interpreter for Spec.

<< ... >>,IF ... FI OrBEG N ... ENDbracketsdon’'t affect MC.

The meaning of DO ¢ 0D can't be given so easily. It isthe fixed point of the sequence of longer
and longer repetitions of c.2 It is possible for DO ¢ oDto loop indefinitely; in this caseit relates s
to s with "$x"- >l oopX. Thisis not the same as relating s to no outcome, asf al se => SKI P
does.

The multiple occurrences of decl I nit and var in VAR decl I nit* and (varLi st): =exp areleft
as boring exercises, along with routines that have several formals.

Routines

Now for the meaning of aroutine. We define a meaning function MR for ar out i neDecl that
relates the meaning of the routine to the meaning of the routine’ s body; since the body isa

2 For the details of this construction see G. Nelson, A generalization of Dijkstra's calculus, ACM Trans.
Programming Languages and Systems 11, 4, Oct. 1989, pp 517-562.

Handout 9. Atomic Semantics of Spec 18

6.826—Principles of Computer Systems 2002

command, we can get its meaning from MC. Theidea is that the meaning of the routine should be
arelation of statesto outcomesjust like the meaning of a command. In this relation, the pseudo-
name $a holds the argument in the initial state and the result in the outcome. For technical
reasons, however, we define MR to yield not an ATr , but an S- >ATr ; alocal state (st ati ¢ below)
must be supplied to get the transition relation for the routine. For a LAMBDA thislocal stateisthe
current state of its containing command. For aroutine declared at top level in a module this state
is empty.

The MR function works in the obvious way:

Check that the argument value in $a has the type of the formal.

Remove local names from the state, since aroutine shares only global state with itsinvoker.
Bind the value to the formal.

Find out using Mc how the routine body relates the resulting state to an outcome.

Make the invoker's outcome from the invoker's local state and the routine's final global state.

o g~ W DN E

Deal with the various exceptions in that outcome.

A r et X outcome results in anormal outcome for the invocation if the result has the result
type of the routine, and at ypeXx outcome otherwise.

A normal outcomeis converted to t ypeX, atype error, since theroutine didn’t supply a
result of the correct type.

An exception raised in the body is passed on.

FUNC MR(r) -> (S->ATr) = VAR idl, id2, t1, t2, xs, cO |
r = R« APROC id1(id2: t1)->t2 RAISES xs = << c0 >> »
\/ r = R« FUNC idl(id2: t1)->t2 RAISES xs = c0 » =>
RET (\ static: S| (\ s, o]
s("$a") INt1
/I\ (EXISTS g: S, s', o |
g = s.restrict(globals)

% if argument typechecks

% g isthe current globals

/\ s' = (static + g){id2 -> s("$a")} %s' isinitia statefor cO
/\ MC(cO)(s', o) % apply cO
/I\ 0o =(s + o .restrict(globals)) % restore old localsfrom s
{"$x" -> % adjust $x in the outcome
(o' ("$x") =retX =>
(o' ("$a") INt2 => noX % r et X means normal outcome
[*] typeX) % if result typechecks;
[*] o' ("$x") = noX => typeX % normal outcome meanst ypeX;

[*] o' ("$x)
)

}
\/ ~s("$a") INt1l/\ o = s{"$x" -> typeX} % argument doesn't typecheck
)) % end of the two lambdas

% pass on exceptions

We leave the meaning of aroutine with no result as an exercise.

Handout 9. Atomic Semantics of Spec 19

6.826—Principles of Computer Systems 2002

Invocation and LAVBDA expressions

We have aready given in MC the meaning of invocations in commands, so we can use MC to desal
with invocations in expressions. Here is the fragment of the definition of Me that dealswith an E
that isan invocation e1(e2) of afunction. It iswritten in terms of the meaning M(C«el1(e2) »)
of theinvocation as acommand, which is defined above. The meaning of the command is an
atomic transition aTr , a predicate on an initial state and an outcome of the routine. In the
outcome the value of the pseudo-name $a is the value returned by the function. The definition
given here discards any side-effects of the function; in fact, in alegal Spec program there can be
no side-effects, since functions are not allowed to assign to non-local variables or call
procedures.

FUNC ME(e) -> (S -> (V + X)) =
IF

[1 VAR el, e2 | e = E« el(e2) » =>
% if Eisan invocation its meaning is this function from states to values
VAR aTr := MJ(C« el(e2) ») |
RET (LAMBDA (s) -> V =
% the command must have a unique outcome, that is, aTr must be a
% function at s. See Rel at i on in section 9 of the reference manual
VAR o0 := aTr.func(s) | RET (~0.isX => o("$a") [*] o("$x")))

Al
The result of the expression isthe value of $a in the outcomeif it is normal, the value of $x if it

is exceptiond. If theinvocation has no outcome or more than one outcome, ME(e) (s) IS
undefined.

The fragment of ME for LAMBDA uses MR to get the meaning of a FUNC with the same signature and
body. Aswe explained earlier, this meaning is afunction from a state to a transition function,
and it isthe value of ME((LAMBDA . ..)). Thevaueof (LAMBDA ...), likethe value of any
expression, istheresult of evaluating ME((LAMBDA . . .)) onthecurrent state. Thisyieldsa
transition function as we expect, and that function captures the local state of the LAVBDA
expression; thisis standard static scoping. .

I'F

[1 VAR signature, cO | e = E« (LAMBDA signature = c0) » =>
RET MR(R« FUNC idl signature = cO »)

FlI

Handout 9. Atomic Semantics of Spec 20

