Problem 1: Matrix Multiplication

a) Each element $mc(i,j)$ of the matrix is equal to a sum of products. We calculate the sum by generating the sequence of the elements in the sum and then folding the elements of the sequence using the $+ :$ construct.

```
FUNC isMatMul(ma: Matrix, mb: Matrix, mc: Matrix) -> Bool =
  << RET (ALL i: Range | ALL j: Range |
     mc(i,j) = + : { k :IN 0 .. n-1 | | ma(i,k)*mb(k,j) }) >>
```

b) The following implementation corresponds to an implementation of matrix multiplication in a conventional imperative language.

```
APROC MatMul(ma: Matrix, mb: Matrix) -> Matrix =
  << VAR mc: Matrix |
      VAR i: Int := 0 |
      DO i < n =>
        VAR j: Int := 0 |
        DO j < n =>
          VAR sum: Int := 0 |
          VAR k: Int := 0 |
          DO k < n =>
            sum := sum + ma(i,k)*mb(k,j);
            k := k+1
          OD;
          mc(i,j) := sum;
          j := j + 1
        OD;
        i := i+1
      OD;
    RET mc
  >>
```

Problem 2: Distribution of Prime Numbers

a) The following Spec function closely follows the mathematical definitions of prime numbers. (Operator $//$ denotes the remainder in division of integers.)

```
FUNC isPrime(p: Int) -> Bool =
  (p > 1) /\ 
  { n:Int | n > 0 /\ p // n = 0 } = {1, p}

FUNC isPrimeBetween(p: Int, n: Int) -> Bool =
  isPrime(p) /\ n < p /\ p < 2*n
```
b) This is a simple-minded implementation of the specification in the previous part. The atomic procedure primeBetween does a linear search for prime numbers from $n+1$ to $2n-1$ and returns the least number that is prime. The primality test is implemented in the isPrimeImpl atomic procedure by a linear search that attempts to find the smallest factor k of p where $2 < k \leq \sqrt{p}$.

APROC isPrimeImpl(p: Int) -> Bool =
<< VAR k: Int := 2 |
 DO (k*k <= p) =>
 IF (p // k = 0) => RET false [*] SKIP FI;
 k := k+1
 OD;
 RET true
>>

APROC primeBetween(n: Int) -> Int =
<< VAR x: Int := n+1 |
 DO x < 2*n =>
 IF isPrimeImpl(x) => RET x [*] x := x+1
 FI
 OD
>>

c) For example, let $n = 7$ and $p = 13$. Procedure primeBetween returns always 11, never 13.

Problem 3. Shortest Path

a) The shortest path predicate considers the set of all paths from n_1 to n_2 and then ensures that path has the minimum length.

FUNC isPathFromTo(g: Graph[Node].G, n1: Node, n2: Node, path: SEQ Node) -> Bool =
g.paths(path) /\ path.head=n1 /\ path.last=n2

FUNC isShortestPath(g: Graph[Node].G, n1: Node, n2: Node, path: SEQ Node) -> Bool =
isPathFromTo(g,n1,n2,path) /\ path.size = { path2: SEQ Node | isPathFromTo(g,n1,n2,path2) /\ path2.size }.min

b) The implementation performs a breadth-first search in the graph finding the shortest distance to every reachable node from the node n_1. The breadth-first search is implemented using a queue represented as a list of nodes queue. After reaching the target node n_2, the path is reconstructed using the atomic procedure recoverPath. The reconstruction traverses the path backwards using the fact that $dist(path(i+1))=dist(path(i))+1$ on the shortest path.

APROC recoverPath(g : Graph[Node].G, dist : Node -> IN 0 .. n+1, n2 : Node) -> SEQ Node =
<< IF dist(n2)=0 => RET {n2} [*] VAR nd: Node := { nd2: Node | g(nd2,n2) /\ dist(nd2)=dist(n2)+1 }.min |
APROC shortestPath(g: Graph[Node].G,
n1: Node, n2: Node) -> SEQ Node =
<< VAR queue: SEQ Node := { n1 } |
 VAR dist: Node -> IN 0 .. n+1 := (\ nd:Node | n+1) |
 dist(n1) := 0;
 DO queue.size > 0 =>
 VAR first: Node := queue.head |
 IF first=n2 => RET recoverPath(g,dist,n2)
 [*] queue := queue.tail;
 VAR succ: SEQ Node :=
 { nd :IN 1 .. n | g(first,nd) \ dist(nd) = n+1 } |
 queue := queue + succ;
 DO succ.size > 0 =>
 dist(succ.head) := dist(first) + 1;
 succ := succ.tail;
 OD
 FI
DO;
% There is no path from n1 to n2. Procedure fails.
false => SKIP
>>

c) One of the examples is the following. Let n = 4, n1 = 1, n2 = 4, and let the graph g be
\[g = \{(1,2), (1,3), (2,4), (3,4)\} \]
The path \[\text{path} = [1, 3, 4] \] satisfies \(\text{isShortestPath}(n1, n2, \text{path}) \) but the result of \(\text{shortestPath}(g, n1, n2) \) is always the path \[[1, 2, 4] \].