6.826—Principles of Computer Systems 2004

10. Performance

Overview

Thisis not a course about performance analysis or about writing efficient programs, athough it
often touches on these topics. Both are much too large to be covered, even superficialy, ina
single lecture devoted to performance. There are many books on performance anaysist and a
few on efficient programs?.

Our godl in this handout is more modest: to explain how to take a system apart and understand its
performance well enough for most practical purposes. The analysisis necessarily rather rough
and ready, but nearly always arough analysisis adequate, often it’s the best you can do, and
certainly it's much better than what you usually see, whichiisno analysis at all. Note that
performance analysis is not the same as performance measurement, which is more common.

What is performance? The critical measures are bandwidth and latency. We neglect other aspects
that are sometimes important: availability (discussed later when we deal with replication),
connectivity (discussed later when we deal with switched networks), and storage capacity

When should you work on performance? When it's needed. Time spent speeding up parts of a
program that are fast enough is time wasted, at least from any practical point of view. Also, the
march of technology, also known as Moore’s law, means that in 18 months from March 2002 a
computer will cost the same but be twice as fast and have twice as much RAM and four times as
much disk storage; in five yearsit will be ten times as fast and have 100 times as much disk
storage. So it doesn’t help to make your system twice asfast if it takestwo yearsto doiit; it's
better to just wait. Of courseit still might pay if you get the improvement on new machines as
well, and if a4 x speedup is needed.

How can you get performance? There are techniques for making things faster: better algorithms,
fast paths for common cases, and concurrency. And there is methodology for figuring out where
thetime is going: analyze and measure the system to find the bottlenecks and the critical
parameters that determine its performance, and keep doing so both as you improve it and when
it'sin service. Asarule, arough back-of-the-envelope analysisis all you need. Putting in alot of
detail will be alot of work, take alot of time, and obscure the important points.

What is performance: bandwidth and latency

Bandwidth and latency are usualy the important metrics. Bandwidth tells you how much work
gets done per second (or per year), and latency tells you how long something takes from start to
finish: to send a message, process atransaction, or referee a paper. In some contextsit’s
customary to call these things by different names: throughput and response time, or capacity and
delay. The ideas are exactly the same.

1Try R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991, 720 pp.
2The best one | know is J. Bentley, Writing Efficient Programs, Prentice-Hall, 1982, 170 pp.

Handout 10. Performance 1

6.826—Principles of Computer Systems 2004

Here are some examples of communication bandwidth and latency on asingle link.

Medium Link Bandwidth Latency Width

AlphaEV7 on-chip bus 10 GBI/s 8 ns 64

chip

PC board Rambus bus 16 GB/s 75 ns 16
PCI 1/O bus 266 MBI/s 250 ns 32

Wires Fibrechannel 125 MBIs 200 ns 1
scsl 40 MB/s 500 ns 32

LAN Gigabit Ethernet 125 MB/s 100 + ps 1
Fast Ethernet 125 MBI/s 100 + ps 1
Ethernet 125 MBI/s 100 + ps 1

Here are examples of communication bandwidth and latency through a switch that interconnects
multiplelinks.

Medium Switch Bandwidth Latency Links
Alphachip register file 60 GBI/s 8 ns 6
Wires Cray T3E 122 GB/s 1 ps 2K
LAN Ethernet switch 4 GB/s 4-100 ps 32
Copper pair Central office 80 MB/s 125 ps 50K

Finally, here are some examples of other kinds of work, different from simple communication.

Medium Bandwidth Latency

Disk 40 MB/s 10 ms
RPC on Giganet with VIA 30 calgms 30 ps
RPC 3 calsms 1 ms
Airline reservation transactions 10000 trangds 1 Sec
Published papers 20 paperslyr 2 years

Soecs for performance

How can we put performance into our specs? In other words, how can we specify the amount of
real time or other resources that an operation consumes? For resources like disk space that are
controlled by the system, it’ s quite easy. Add avariable space1nuse that records the amount of
disk spacein use, and to specify that an operation consumes no more than max space, write

<< VAR used: Space | used <= max => spaceInUse := spacelnUse + used >>

Thisisusualy what you want, rather than saying exactly how much space is consumed, which
would restrict the code too much.

Doing the same thing for real timeisabit trickier, since we don't usually think of the advance of
real time as being under the control of the system. The spec, however, hasto put alimit on how
much time can pass before an operation is complete. Suppose we have a procedure . We can
specify Timedp that takes no more than maxpLatency to complete as follows. The variable now

Handout 10. Performance 2

6.826—Principles of Computer Systems 2004

records the current time, and deadlines records a set of latest completion times for operationsin
progress. The thread c1ock advances now, but not past adeadline. An operation like Timedp sets
adeadline beforeit startsto run and clearsit when it is done.

VAR now : Time
deadlines: SET Time

THREAD Clock() = DO now < deadlines.min => now + := 1 [] SKIP OD
PROC TimedP() = VAR t : Time
<< now < t /\ t < now + maxPLatency /\ ~ t IN deadlines =>
deadlines := deadlines + {t} >>;
P();
<< deadlines := deadlines - {t}; RET >>

This may seem like an odd way of doing things, but it does allow exactly the sequences of
transitions that we want. The aternativeisto construct p so that it completes within
maxPLatency, but there's no straightforward way to do this.

Often we would like to write a probabilistic performance spec; for example, servicetimeis
drawn from anormal distribution with given mean and variance. There€ sno way to do this
directly in Spec, because the underlying model of non-deterministic state machines has no notion
of probability. What we can do is to keep track of actua service times and declare afalure if
they get too far from the desired form. Then you can interpret the spec to say: either the observed
performance is areasonably likely consequence of the desired distribution, or the systemis
malfunctioning.

How to get performance: Methodology

First you have to choose the right scale for looking at the system. Then you have to model or
analyze the system, bresking it down into afew partsthat add up to the whole, and measure the
performance of the parts.

Choosing the scale

Thefirst step in understanding the performance of a system isto find the right scale on which to
analyzeit. The figure shows the scales from the processor clock to an Internet access; thereisa
range of at least 50 million in speed and 50 million in quantity. Usually thereis ascale that isthe
right one for understanding what’ s going on. For the performance of an inner loop it might be the
system clock, for a simple transaction system the number of disk references, and for aWeb
browser the number of IP packets.

In practice, systems are not deterministic. Even if there isn’t inherent non-determinism caused by
unsynchronized clocks, the system is usually too complex to analyze in complete detail. The way
to simplify it isto approximate. First find the right scale and the right primitives to count,
ignoring all the fine detail. Then find the critical parameters that govern performance at that
scale: number of RPC's per transaction, cache miss rate, clock ticks per instruction, or whatever.
In thisway you should be able to find a simple formula that comes within 20% of the observed
performance, and usually thisis plenty good enough.

Handout 10. Performance 3

6.826—Principles of Computer Systems

U0 Internet O[]0 2500 M / 1 XB
oo J01lrl 0o
100M 100ms T BM
500/ 250 GB

[= p— o —
Hn /D\\EILADN ogo0 %l

7

M 1 ms .~ 500 (uniprocessors)
Multiprocessor ...][]][]
75 75 ns ,4 \\\ 1K
500 MB RAM ﬁ%ﬁ%ﬁ% 1/500 MB
1 lns e \\\64
64-bit register

Sowdown How fast? How many? Total

Scales of interconnection. Relative speed and size arein italics.

For example, in the 1994 e ection DEC ran aWeb server that provided data on the California
election. It got about 80k hits/hour, or 20/sec, and it ran on a 200 MIPS machine. The data was
probably all in memory, so there were no disk references. A hit typically returns about 2 KB of
data. So the cost was about 10M instructions/hit, or 5K instructiong/byte returned. Clearly this
was not an optimized system.

By comparison, a simple debit-credit transaction (the TPC-A benchmark) when carefully coded
does slightly more than two disk i/0’ s per transaction (these are to read and write per-account
datathat won't fit in memory). If carefully coded it takes about 100K instructions. So on a 1000
MIPS machine it will consume 100 s of compute time. Since two disk i/0’sis20 ms, it takes
200 disks to keep up with this CPU for this application.

Asathird example, consider sorting 10 million 64 bit numbers; the numbers start on disk and
must end up there, but you have room for the whole 80 MB in memory. So there’'s 160 MB of
disk transfer plus the in-memory sort time, which isn log n comparisons and about half that
many swaps. A single comparison and half swap might take 10 instructions with a good code for
Quicksort, so thisisatotal of 10* 10 M * 24 = 2.4 G instructions. Suppose the disk system can
transfer 20 MB/sec and the processor runs at 500 MIPS. Then thetotal timeis 8 sec for the disk
plus 5 sec for the computing, or 13 sec, less any overlap you can get between the two phases.

Handout 10. Performance

6.826—Principles of Computer Systems 2004

With considerable care this performance can be achieved. On a parallel machine you can do
perhaps 30 times better.3

Here are some examples of parameters that might determine the performance of a system to first
order: cache hit rate, fragmentation, block size, message overhead, message latency, peak
message bandwidth, working set size, ratio of disk reference time to message time.

Modeling

Once you have chosen theright scale, you have to break down the work at that scaleinto its
component parts. The reason thisis useful is the following principle:

If atask x has parts a and b, the cost of x is the cost of a plus the cost of b, plus
asystem effect (caused by contention for resources) which isusually small.

Most people who have been to school in thelast 20 years seem not to believe this. They think the
system effect is so large that knowing the cost of a and b doesn't help at al in understanding the
cost of x. But they arewrong. Y our goa should be to break down the work into a small number
of parts, between two and ten. Adding up the cost of the parts should give aresult within 10% of
the measured cost for the whole.

If it doesn’t then either you got the parts wrong (very likely), or there actually is an important
system effect. Thisis not common, but it does happen. Such effects are always caused by
contention for resources, but this takes two rather different forms:

e Thrashing in a cache, because the sum of the working sets of the parts exceeds the size of the
cache. The important parameter is the cache missrate. If thisislarge, then the cache miss
time and the working set are the things to look at. For example, SQL server on Windows NT
running on a DEC Alpha 21164 in 1997 executes .25 instructions/cycle, even though the
processor chip is capable of 2 instructions/cycle. The reason turns out to be that the
instruction working set is much larger than the instruction cache, so that essentially every
block of 4 instructions (16 bytes or one cache line) causes a cache miss, and the miss takes
64 ns, which is 16 4 ns cycles, or 4 cycles/instruction.

e Clashing or queuing for aresource that serves one customer at atime (unlike a cache, which
can take away the resource before the customer is done). The important parameter isthe
queue length. It simportant to realize that a resource need not be a physical object like a
CPU, amemory block, adisk drive, or aprinter. Any lock in the system is aresource on
which queuing can occur. Typicaly the physical resources are instrumented so that it's fairly
easy to find the contention, but thisis often not true for locks. In the Alta Vistaweb search
engine, for example, CPU and disk utilization were fairly low but the system was saturated. It
turned out that queries were acquiring alock and then page faulting; during the page fault
time lots of other queries would pile up waiting for the lock and unable to make progress.

3 Andrea Arpaci-Dusseau et al., High-performance sorting on networks of workstations. SigMod 97, Tucson,
Arizona, May, 1999, http://now.cs.berkel ey.edu/NowSort/nowSort.ps .

Handout 10. Performance 5

6.826—Principles of Computer Systems

In the section on techniques we discuss how to analyze both of these situations.
Measuring

The basic strategy for measuring is to count the number of times things happen and observe how
long they take. This can be done by sampling (what most profiling tools do) or by logging
significant events such as procedure entries and exits. Once you have collected the data, you can
use statistics or graphsto present it, or you can formulate a model of how it should be (for
example, timein this procedureis alinear function of thefirst parameter) and look for
disagreements between the model and reality.4 The latter techniqueis especially vauable for
continuous monitoring of arunning system. Without it, when a system starts performing badly in
serviceit's very difficult to find out why.

Measurement is usually not useful without a model, because you don’t know what to do with the
data. Sometimes an appropriate model just jumps out at you when you look at raw profile data,
but usually you have to think about it and try afew things. Thisisjust like any branch of science:
without atheory you can’'t make sense of the data.

How to get performance: Techniques

There are three main ways to make your program run faster: use a better algorithm, find a
common case that can be made to run fast, or use concurrency to work on several things at once.

Algorithms

There are two interesting things about an algorithm: the ‘ complexity’ and the ‘ constant factor’.
An agorithm that works on n inputs can take roughly k (constant) time, or k log n (logarithmic),
or kn (linear), or k n2 (quadratic), or k 2n (exponential). The k is the constant factor, and the
function of n isthe complexity. Usualy these are ‘asymptotic’ results, which means that their
percentage error gets smaller as n gets bigger. Often a mathematical analysis gives aworst-case
complexity; if what you care about is the average case, beware. Sometimes a ‘ randomized’
algorithm that flips coins internally can make the average case overwhelmingly likely.

For practical purposes the difference between k log n time and constant time is not too important,
since the range over which n variesislikely to be 10 to 1M, so that log n varies only from 3 to
20. Thisfactor of 6 may be much less than the change in k when you change algorithms.
Similarly, the difference between k n and k n log n is usually not important. But the differences
between constant and linear, between linear and quadratic, and between quadratic and
exponential are very important. To sort a million numbers, for example, aquadratic insertion sort
takes atrillion operations, while the n log n Quicksort takes only 20 million in the average case
(unfortunately the worst case for Quicksort is also quadratic). On the other hand, if nisonly 100,
then the difference among the various complexities (except exponential) may be less important
than the values of k.

4 See Perl and Weihl, Performance assertion checking. Proc. 14th ACM Symposium on Operating Systems
Principles, Dec. 1993, pp 134-145.

Handout 10. Performance

2004

6.826—Principles of Computer Systems 2004

Another striking example of the value of a better algorithm is ‘ multi-grid’ methods for solving
the n-body problem: lots of particles (atoms, molecules or asteroids) interacting according to
some force law (electrostatics or gravity). By aggregating distant particles into asingle virtual
particle, these methods reduce the complexity from n2to nlog n, so that it is feasible to solve
systems with millions of particles. This makesit practical to compute the behavior of complex
chemical reactions, of currents flowing in an integrated circuit package, or of the solar system.

Fast path

If you can find acommon case, you can try to do it fast. Here are some examples.

Caching is the most important: memory, disk (virtual memory, database buffer pool), web
cache, memo functions (also called ‘ dynamic programming’), ...

Receiving a message that is an expected ack or the next message in sequence.
Acquiring alock when no one else holdsiit.

Normal arithmetic vs. overflow.

Inserting anode in atree at aleaf, vs. splitting a node or rebalancing the tree.

Hereisthebasic anaysisfor afast path.
1=fasttime, 1 << 1+ s=dow time, m= missrate = probability of taking the slow path.

‘t = time = 1 + m * s

There are two waysto look at it:
The slowdown from the fast case (time 1). If m=1/sthent =2, a2 x slowdown.
The speedup from the slow case (time s). If m=50% thent= g2 + 1, nearly a2 x speedup,

Y ou can seethat it makes abig difference. For s = 100, amissrate of 1% yields a2 x slowdown,
but amiss rate of 50% yieldsa 2 x speedup.

The analysis of fast paths is most highly developed in the study of computer architecture.

Batching has the same structure:
1 = unit cost, s = startup (per-batch) cost, b = batch size.

\t = time = (b + 8) / b =1 + s/b

So bislike 1/m. Amdahl’ s law for concurrency (discussed below) also has the same structure.

Concurrency with lots of small jobs

Usually concurrency is used to increase bandwidth. It is easiest when there are lots and lots
‘independent’ requests, such as web queries or airline reservation transactions. Some examples:
customers buying books at Amazon, web searches on Google, or DNS name lookups. In this

5 Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2nd ed., Morgan Kaufmann, 1995. The
second edition has a great deal of new material.

Handout 10. Performance 7

6.826—Principles of Computer Systems 2004

kind of problem there is no trouble getting enough concurrent work to do, and the challenge is
getting it done efficiently. The main obstacleis bottlenecks.

Getting more and more concurrency to work is called scaling a system. Scaling is increasingly
important because the internet allows demand for a popular service to grow almost without
bound, and because commodity components are so much cheaper per unit of raw performance
than any other kind of component. For a system to scale:

e It must not have any algorithms with complexity worse than log n, where n is the number of
components.

e |t must not have bottlenecks.

Both of these are easy when there is no shared data, and get harder as you increase the amount of
shared data, the rate at which it changes, and the requirement for consistency.

For example, in the Domain Name System (DNS) that maps aname like 1cs.mit.eduintoan IP
address, theroot is potentially a bottleneck, sincein principle every lookup must start at the root.
If the root were a single machine, DNS would be in big trouble. Two techniques relax this
bottleneck in the real DNS:

Caching theresult of lookupsin the root, on the theory that the IP address for mit . edu
changes very seldom. The price, of course, is that when it does change there is adelay before
everyone notices.

Many copies of theroot that are loosely consistent, on the theory that when aname is added
or changed, it’s not essential for al the copiesto find out about it atomically.

Returning to concurrency for bandwidth, there can be multiple identical resources or several
distinct resources. In the former casethe main issueisload balancing (thereis also the cost of
switching atask to aparticular resource). The most common exampleis multiple disks. If the
load if perfectly balanced, thei/o rate from n disksis n times the rate from one disk. The debit-
credit example above showed how this can be important. Getting the load perfectly balanced is
hard; in practice it usually requires measuring the system and moving work among the resources.
It's best to do this automatically, since the human cost of doing it manualy islikely to dwarf the
savingsin hardware.

When the resources are distinct, we have a‘ queuing network’ in which jobs ‘visit’ different
resources in some sequence, or in various sequences with different probabilities. Things get
complicated very quickly, but the most important caseis quite simple. Suppose thereisasingle
resource and tasks arrive independently of each other (‘ Poisson arrivals'). If the resource can
handle asingle request in aservice time s, and its utilization (the fraction of timeit isbusy) isu,
then the average request gets handled in aresponse time

r=s/(1 -)]
Thereason is that anew request needs to get s amount of service beforeit’s done, but the
resourceis only freefor 1 - u of the time. For example, if u=.9, only 10% of thetimeisfree, so
it takes 10 seconds of real time to accumulate 1 second of free time.

Look at the Slowdowns for different utilizations.

Handout 10. Performance 8

6.826—Principles of Computer Systems 2004

2 x at 50%
10 x at 90%
Infinite at 100% (‘ saturation’)

Notethat this rule applies only for Poisson (memoryless or ‘random’ arrivals). At the opposite
extreme, if you have periodic arrivals and the period is synchronized with the service time, then
you can do pipelining, drop each request into a service slot that arrives soon after the request,
and get r = swith u = 1. One name for thisis*“ systolic computing”.

A high u has two costs: increased r, as we saw above, and increased sensitivity to changing load.
Doubling the load when u = .2 only slows things down by 30%; doubling fromu = .8isa
catastrophe. High uis OK if you can tolerate increased r and you know the load. The latter could
be because of predictability, for example, a perfectly scheduled pipeline. It could also be because
of aggregation and statistics: there are enough random requests that the total load varies very
little. Unfortunately, many loads are “bursty”, which means that requests are more likely to
follow other requests; this makes aggregation less effective.

When there are multiple requests, usually oneis the bottleneck, the most heavily loaded
component, and you only have to ook at that one (of course, if you make it better then
something el se might become the bottleneck).

Serverswith finite load

Many papers on queuing theory analyze a different situation, in which there is a fixed number of
customers that alternate between thinking (for time z) and waiting for service (for the response
time Z). Suppose the system in steady state (also called ‘equilibrium’ or ‘flow balance’), that is,
the number of customers that demand service equals the number served, so that customers don’t
pile up in the server or drain out of it. Y ou can find out alot about the system by just counting
the number of customers that pass by various pointsin the system

A customer isin the server if it has entered the server (requested service) and not yet come out
(received dl its service). If there are n customersin the server on the average and the throughput
(customers served per second) is x, then the average time to serve a customer (the response time)
must ber = n/x. Thisis“Little'slaw”, usualy written n =rx. It is obvious if the customers come
out in the same order they come in, but true in any case. Here n is called the “ queue length”,
though it includes the time the server is actually working as well.

If there are N customers atogether and each oneisin aloop, thinking for z seconds before it
enters the server, and the throughput is x as before, then we can use the same argument to
compute the total time around the loop r + z= N/x. Solving for r we get r = N/x - z. Thisformula
doesn’t say anything about the service time s or the utilization u, but we also know that the
throughput x = u/s (1/s degraded by the utilization). Plugging this into the equation for r we get

r = Ns/u - z, which is quite different from the equation r = /(1 - u) that we had for the case of
uniform arrivals. The reason for the differenceis that the population isfinite and hence the
maximum number of customersthat can be in the server is N.

Handout 10. Performance 9

6.826—Principles of Computer Systems

Concurrency in a single job

In using concurrency on asingle job, the goal isto reduce latency—the time to get the job done.
Thisrequires a parallel agorithm, and runsinto Amdahl’s law, which is another kind of fast path
analysis. In this case the fast path isthe part of the program that can run in parallel, and the slow
path is the part that runs serially. The conclusion is the same: if you have 100 processors, then
your program can run 100 times faster if it al runsin paralle, but if 1% of it runs serialy then it
can only run 50 times faster, and if half runs serially then it can only run twice as fast. Usually
we take the slowdown view, because theided is that we are paying for all the processors and so
every one should be fully utilized. Then a99% parallel / 1% seria program, which achieves a
speedup of 50, isonly half asfast as our ideal. Y ou can seethat it will be difficult to make
efficient use of 100 processors on asinglejob.

Another way of looking at concurrency in asingle job isthe following law (actualy aform of
Little' slaw, discussed above from adifferent point of view):

lconcurrency = latency x bandwidth

Aswith Ohm’s law, the way you look at this equation depends on what you think are the
independent variables. In a CPU/memory system, for example, the latency of acache missis
fixed at about 100 ns. Suppose the CPU has a floating-point unit that can do 3 multiply-add
operations per ns (typical for 2004). In alarge job each such operation will require one operand
from main memory because al the datawon'’t fit into the cache; multiplying two large matrices
isasimple example. So the required memory bandwidth to keep the floating point unit busy is
300 reads/100 ns. With latency and bandwidth fixed, the required concurrency is 300.

On the other hand, the available concurrency is determined by the program and its execution
engine. For this example, you must have 300 outstanding memory reads (nearly) al thetime. A
read is outstanding if it has been issued by the CPU, but the data has not yet been consumed.
This could be accomplished by having 300 threads, each with one outstanding read, or 30 threads
each with 10 reads, or 1 thread with 300 reads.

How can you have a read outstanding? In a modern CPU with out-of-order execution and
register renaming, this means that the FETCH operation has been issued and aregister assigned to
hold the result. Before the result returns, the CPU can keep going, issue an ADD that uses the
memory result, assign the result register for the ADD, and continue issuing instructions. If there's
abranch on the result, however, the CPU must guess the branch result, since proceeding down
both paths quickly becomes too expensive; the polite name for thisis ‘branch prediction’. It can
continue down the predicted path ‘ speculatively’, which means that it hasto back up if the guess
turns out to be wrong. On typical jobs of this kind prediction errors are < 1%, so speculative
execution can continue for quite awhile. More registers are needed, however, to hold the data
needed for backing up. Eventually either the CPU runs out of registers, or the chances of a bad
prediction are large enough that it doesn’t pay to keep speculating.

You can seethat it's hard to keep all these ballsin the air long enough to get 300 reads
outstanding nearly all the time, and no existing CPU does so. Some CPUs get hundreds of
outstanding reads by using ‘vector’ instructions that call for many reads or addsin asingle
instruction, for example, “read 50 values from addresses a, a+100, a+200, ... into vector register

Handout 10. Performance

2004

10

6.826—Principles of Computer Systems 2004 6.826—Principles of Computer Systems 2004

7" or “add vector register 7 to vector register 9 and put the result in vector register 13”. Such
instructions are much less flexible than scalar reads, but they can use many fewer CPU resources
to make aread outstanding. Somewhat more flexible operations like “read from the addressesin
vector register 7 and put the resultsinto vector register 9" are possible; they help with sparse
matrices.

Multiple threads reduce the coupling among outstanding operations. In fact, with 300 threads,
each one would need only one outstanding operation, so there would be no need for speculative
execution and backup. Scheduling must be done by the hardware, however, since you haveto
switch threads after every memory operation. Keeping so many threads running requires | ots of
hardware resources. In fact, it requires many of the same hardware resources required for a
single thread with lots of outstanding operations. High-volume CPUs currently can run 2 threads
at atime, so we are some distance from the goal.

Thisformulation of Littl€' slaw is useful for understanding not just CPU/memory systems, but
any system in which you are trying to get high bandwidth with afixed latency. It tells you how
much concurrency you need. Then you must ask whether there' s a source for that much
concurrency, and whether there are enough resources to maintain the internal state that it
requires. In the ‘embarrassingly parallel’ applications of the previous section there are plenty of
requests, and ajob that’ swaiting just consumes some memory, which isusually in ample supply.
This means that you only have to worry about the costs of the data structures for scheduling.

Summary

Here are the most important points about performance.

e Moore'slaw: The performance of computer systems at constant cost doubles every 18
months, or increases by ten times every five years.

e Tounderstand what a system is doing, first do a back-of-the-envel ope calculation that takes
account only of the most important one or two things, and then measure the system. The hard
part is figuring out what the most important things are.

o If atask x has partsa and b, the cost of x isthe cost of a plus the cost of b, plus a system
effect (caused by contention for resources) which isusually small.

e For asystemto scale, its algorithms must have complexity no worse than log n, and it must
have no bottlenecks. More shared data makes this harder, unlessit’s read-only.

e Thetimefor atask which hasafast path and aslow pathis1 + m* s, where the fast path
takestime 1, the slow path takestime 1 + s, and the probability of taking the slow path ism
(the missrate). This formulaworks for batching aswell, where the batch sizeis I/m.

o If ashared resource has service time sto serve one request and utilization u, and requests
arrive independently of each other, then the responsetimeis §/(1 - u). It tends to infinity asu
approaches 1.

e concurrency = latency x bandwidth

Handout 10. Performance 11 Handout 10. Performance 12

