6.826—Principles of Computer Systems 2004

12. Naming

Any problemin computing can be solved by another level of indirection.
David Wheeler

I ntroduction

This handout is about orderly ways of naming complicated collections of objects in acomputer
system. A basic technique for understanding a big system is to describeit as a collection of
simple parts. Being able to name these parts is a necessary aspect of such adescription, and often
the most important aspect.

The basic idea can be expressed in two ways that are more or less equivalent:

Identify values by variable length names called path names that are sequences of simple
names that are strings. Think of al the names with the same prefix (for instance,
/udir/lampson and /udir/lynch) asbeing grouped together. This grouping induces a tree
structure on the names. Non-leaf nodesin the tree are directories.

Make atree of nodes with simple names on the arcs. The leaf nodes are values and the
internal nodes are directories. A node is named by a path through the tree from the root; such
anameiscaled apath name.

Thus /udir/lampson/pocs/handouts/12 isapath name for avalue (perhaps the text of this
handout), and /udir/lampson/pocs/handouts iSapath name for a directory (other wordsfor
directory are folder, context, closure, environment, binding, and dictionary). The collection of all
the path names that make sense in some situation is called a name space. Viewing a name space
asatree gives usthe standard terminology of parents, children, ancestors, and descendants.

Using path names to name values (or objects, if you prefer) is often called ‘hierarchical naming’
or ‘tree-structured naming’. There are alot of other names for it that are used in specia
situations: mounting, search paths, multiplexing, device addressing, network references. An
important reason for studying naming in general isthat you don’t have to start from scratch in
understanding all those other things.

Path names are good because:

e Thename space can grow indefinitely, and the growth can be managed in a decentralized
way. That is, the authority to create names in one part of the space can be delegated, and
thereafter thereis no need for synchronization. Namesthat start /udir/lampson are
independent of names that start /udir/rinard.

e Many kinds of data can be encapsulated under this interface, with a common set of
operations. Arbitrary operations can be encoded as reads and writes of suitably chosen
names.

Handout 12. Naming 1

6.826—Principles of Computer Systems

Aswe have seen, a path nameis a sequence of simple names. We use thetypesn = string for

asimplenameand pn = seg w for apath name. It is often convenient to write apath name as a

string. The syntax of these strings is not important; it is just a convention for encoding the path

names. Here are some examples:
/udir/lampson/pocs/handouts/12 Unix path name

Internet mail address. The path nameis

{”net","mediaone”,"lampson"}

IP network address (fixed length)

lampson@mediaone.net

16.23.5.193

We will normally write path names as Unix file names, rather than as the sequence constructors
that would be correct Spec. Thusa/b/c/1026 instead of pn{an, "b", ncr, n1026"}.

People often try to distinguish a name (what something is) from an address (whereitis) or a
route (how to find it). Thisis a matter of levels of abstraction and must not be taken as absol ute.
At agiven leve of abstraction we tend to identify objects at that level by names, the lower-level
objects that code them by addresses, and paths at lower levels by routes. Examples:

microsoft.com -> 207.46.130.149 -> SEQ [router output port, LAN address]
a/b/c/1026 -> INode/1026 -> DA/2 -> [cylinder, head, sector, byte 2]

Sometimes peopl e talk about “ descriptive names’, which are queriesin adatabase. We will see
that these are readily encompassed within the framework of path names. That is aformal
relationship, however. Thereis an important practical difference between a designator for a
single entity, such as 1ampsonemediaone . net, and adescription or query such as“ everyone at
MIT’s LCS whose research involves parallel computing”. The differenceisilluminated by the
comparison between the name eecsfacultyeeecs.mit.edu and the query “the faculty members
in MIT’s EECS department”. The former name is probably maintained with some care; it's
anyone' s guess how reliable the answer to the query is. When using a name, it is wise to consider
whether it is a designator or a description.

Thisisnot to say that descriptions or queries are bad. On the contrary, they are very valuable, as
any one knows who has ever used aweb search engine. However, they usually work well only
when a person examines the results with some care.

In the remainder of this handout we examine the specs for the two ways of describing a name
space that we introduced earlier: asamemory addressed by path names, and as atree (or more
generally a graph) of directories. Thetwo ways are closely related, but they giveriseto
somewhat different specs. Then we study the recursive structure of name spaces and various
ways of inducing a name space on acollection of values. Thisleads to a more abstract analysis

of how the spec for a name space can vary, depending on the properties of the underlying values.
We conclude our general treatment by examining how to name a name space. Finaly, we givea
large number of examples of hame spaces; you might want to look at thesefirst to get some more
context.

Name space as memory

We can view a name space as an exampl e of the memory abstraction we studied earlier. Recall
that amemory isapartiadl mapm = A -> v. Herewetakea - pn and replacem with o (for

Handout 12. Naming

2004

6.826—Principles of Computer Systems 2004

directory). This kind of memory differs from the byte-addressable physical memory of a
computer in several ways:

e Themapispartial.
e Thedomain ischanging.
e Thecurrent value of the domain (that is, which names are defined) is interesting.

e pN'swith the same prefix are related (though not as much as in the second view of name
spaces).
Here are some examples of name spaces that can naturally be viewed as memories:

The Simple Network Management Protocol (SNMP) is used to manage components of the
Internet. It uses path names (rooted in |P addresses) to name values, and the basic
operations are to read and write asingle named value.

Several file systems use a single large table to map the path name of afileto the extents
that represent it.

MODULE MemNamesO [V] EXPORT Read, Write, Remove, Enum, Next, Rename =

TYPE N = String % Name
PN = SEQ N WITH {"<<=":=PNLE} % Path Name
D = PN ->V % Directory
VAR d := D{} % the state

FUNC PNLE (pnl, pn2) -> Bool = pnl.LexLE(pn2, N."<=") %pnl <<= pn2

Here are the familiar Read and write procedures; Read raises error if a isundefined at pn, for
consistency with later specs. In this basic spec none of the other proceduresraises error; this
innocence will not persist when things get more complicated. It's common to also have aremove
procedure for making a pn undefined; note that unlike a file system, this remove does not erase
the values of longer names that start with ex. Thisis because, unlike afile system, this spec does
not ensure that every prefix of adefined e is defined.

FUNC Read (pn) -> V RAISES {error} = RET d(pn) [*] RAISE error

APROC Write(pn, v) = << d := d{pn -> v} >>
APROC Remove (pn) = << d :=d{pn -> } >>
Thebody of write isusualy written d (pn) := v.

I’ simportant that the map is partial, and that the domain changes. This means that we need
operations to find out what the domain is. Simply returning the entire domain is not practical,
since it may betoo big, and usualy only part of it is of interest. There are two schools of thought

1 1t differs much less from the virtual memory, in which the map may be partial and the domain may change as new
virtual memory is assigned or files are mapped. Actually these things can happen to physical memory as well,
especially in the part of it implemented by 1/0 devices.

Handout 12. Naming 3

6.826—Principles of Computer Systems

about what form these operations should take, represented by the functions Enum and next; only
one of theseis needed.

Enum returns al the simple names that can lead to a value starting from pn; another way of
saying thisisthat it returns all the names bound in the directory named pn. By recursively
applying Enum topn + n for each simple name n that Enum returns, you can explore the
entiretree.

On the other hand, if you keep feeding next its own output, starting with {}, it walksthe tree
of defined names depth-first, returning in turn each px that is bound to av. It finishes with

{}-

Note that what next doesis not the same as returning the results of Enum One a atime, since
Next exploresthe entire tree, not just one directory. Thus Enum takes the organization of the
name space into directories more seriously than does Next.

FUNC Enum(pn) -> SET N = RET {pnl | d!(pn + pnl) | pnl.head}

FUNC Next (pn) -> PN = VAR later := {pn’ | d!pn’ /\ pn <= pn'}
RET later.fmin(PN."<<=") [*] RET {} % {} if later isempty

A separateissueis arranging to get areasonable number of results from one of these procedures.
If the directory islarge, Enum as defined here may return an inconveniently large set, and we may
haveto call next inconveniently many times. In real life we would make either routine return a
sequence of N'sor px’s, usually called a‘buffer’. Thisisa standard use of batching to reduce the
overhead of invoking an operation, without allowing the batches to get too large. Wewon’t add
this complication to our specs.

Finally, thereis arename procedure that takes directories quite serioudly. It reflects the idea that
all the names which start the same way are related, by changing all the names that start with
from SO that they start with to. Because directories are not very rea in the representation, this
procedure has to do alot of work. It erases everything that starts with either argument, and then
copies everything in the original d that starts with £rom to the corresponding path name that
startswith to. Read x <= y as“x isaprefix of y".

APROC Rename (from: PN, to: PN) RAISES {error} = << VAR d0 := 4 |
IF from <= to => RAISE error % can’t rename to a descendant
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD;

2004

DO VAR pn | d(to + pn) # do(from + pn) => d(to + pn) := do0(from + pn) OD

FI >>

END MemNamesO0

Hereisadifferent version of rename that makes explicit the relation between the initial state d
and thefinal statea’. Read x >= y as“x isasuffix of y”.

APROC Rename (from: PN, to: PN) RAISES {error} = <<

IF VAR 4’ |
(ALL x: PN, y: PN | (x >= from => ~ d’!x
[*] x = to + y /\ d!l (from + y) => d’' (x) = d(from + y)
[*] ~ x >= to /\ d!x => d’ (x) = d(x)
[*] ~d"ix)

Handout 12. Naming

6.826—Principles of Computer Systems 2004

=>d := d’
[*] RAISE error FI >>

Thereis often arule that a name can be bound to a directory or to avalue, but not both. For this
we need adightly different spec that marks a name as bound to adirectory by giving it the
special value isp, with a separate procedure for making an empty directory. To enforce the new
rule every routine can now raise error, and remove erases the whole sub-tree. As usual, boxeg
mark the changes from MemNameso.

MODULE MemNames [V] EXPORT Read, Write, MakeD, Remove, Enum, Rename =

TYPE Dir = ENUM[isDir]|
D = PN -> (V [+ Dir) [SUCHTHAT (\d| d({}) IS Dir)] %rootaDir
VAR d := D{|{} -> isDix}
% INVARIANT (ALL pn, pn’ d!pn’ /\ pn’ > pn => d(pn) = isDir
\ pn, p D D D D

FUNC Read (pn) -> V RAISES {error} = [d(pn) IS V => RET d(pn) [*] RAISE error

FUNC Enum (pn) -> SET N RAISES {error} =
d(pn) IS Dir =>| RET {pnl | d!(pn + pnl) | pnl.head} [*] RAISE error

APROC Write(pn, v) RAISES {error} = << [Set(pn, v)| >>
[APROC MakeDir (pn) RAISES {error] = << Set(pn, isDir) >>|

APROC Remove (pn) = % Erase everything with pn prefix.
<< [pO VAR pn’ :IN d.dom | (pn <= pn’) =>/ d := d{pn’ -> } oD >>

APROC Rename (from: PN, to: PN) RAISES {error} = << VAR d0 := 4 |
IF from <= to => RAISE error % can’t rename to a descendant
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD;
DO VAR pn | d(to + pn) # d0(from + pn) =>
d(to + pn) := d0(from + pn) OD
FI >>

IAPROC Set (pn, y: (V + D) RAISES {error} =
<< pn # {} /\ d(pn.reml) IS D => d(pn) := y [*] RAISE error >>

END MemNames

A file system usually forbids overwriting afile with adirectory (for no obvious reason) or
overwriting a non-empty directory with anything (because a directory is precious and should not
be clobbered wantonly), but these rules are rather arbitrary, and we omit them here.

Exercise: write aversion of rRename that makes explicit the relation between the initial state a and
thefina statea’, in the style of the second Rename Of MemNameso0.

The MenNames spec is basically the same as the simple memory spec. Complications arise because
the domain can change, and because of the distinction between directories and values. The specs
in the next section take this distinction much more seriously.

Handout 12. Naming 5

6.826—Principles of Computer Systems 2004

Name space as gr aph of directory objects

These specs are reasonably simple, but they are clumsy for operations on directories such as
rRename. More fundamentally, they don’t handle aliasing, where the same object has more than
one name. The other (and more usual) way to look at a hierarchica name space isto think of
each directory as afunction that maps a simple name (not a path name) to a value or another
directory, rather than thinking of the entiretree asasinglern -~ v map. Thistree (or general
graph) structure maps a pn by mapping each ~ in turn, traversing a path through the graph of
directories; hence the term ‘ path name’. We continue to use the type o for adirectory.

Our eventud goal is a spec for aname space as graph that is ‘ object-oriented’ in the sense that
you can supply different code for each directory in the name space. We will begin, however,
with asimpler spec that is equivalent to MemNames, evolve this to amore general spec that allows
aliases, and finally add the object orientation.

The obviousthing to doisto makeap beafunction~ -> z,wherez = (p + v) asbefore, and
have a state variable a which isthe root of the tree. Unfortunately this completely functional
structure doesn’t work smoothly, because there' s no way to change the value of a/b/c/a without
changing the value of a/b/c so that it contains the new value of a/b/c/d, and similarly for a/b
and a aswell.2

grades

S T
~ [files |35

We solve this problem in the usual way with another level of indirection, so that the value of a
directory nameisnot an -> z but somekind of reference or pointer toan -> z, asshownin
thefigure. Thisreferenceisan ‘internal name’ for adirectory. We use the name oo for the actual

2 The method of explicitly changing all the functions up to the root has some advantages. In particular, we can make
several changes to different parts of the name space appear atomically by waiting to rewrite the root until al the
changes are made. It is not very practical for afile system, though at least one has been built thisway: H.E. Sturgis,
A Post-Mortem for a Time-sharing System, PhD thesis, University of California, Berkeley, and Report CSL 74-1,
Xerox Research Center, Palo Alto, Jan 1974. It has a so been used in database systems to atomically change the
entire database state; in this context it is called ‘ shadowing’. See Gray and Reuter, pp 728-732.

Handout 12. Naming 6

6.826—Principles of Computer Systems 2004

function~ -> z and introduce a state variable s that holds all the pp values; itstypeisp->pp. A
D isjust theinternal name of adirectory, that is, anindex into s. Wetakep - 1nt for simplicity,
but any type with enough valueswould do; in Unix o = 1no. You may find it helpful to think of
D asapointer and s asamemory, or of p asan inode number and s as theinodes. Later sections

explorethe meaning of ap in more detail, and in particular the meaning of root.

Once we have introduced this extraindirection the name space does not have to be a tree, since
two pN’s can have the same p value and hence refer to the same directory. In aUnix file system,
for example, every directory with the path name pn also has the path namespn/ ., pn/./ ., ec.,
and if pn/a isasubdirectory, then the parent also hasthenamespn/a/. ., pn/a/../a/. ., €tC.
Thus the name space is not atree or even a DAG, but a graph with cycles, though the cycles are
constrained to certain stylized formsinvolving *." and * . .". This means, of course, that there are
defined e’ s of unbounded length; in real life thereis usually an arbitrary upper bound on the
length of adefined px.

The spec below does not expose o’ sto the client, but deals entirely in pn’s. Redl systems often
do expose the p pointers, usually as some kind of capability (for instance in afile system that
allows you to open adirectory and obtain afile descriptor for it), but sometimes just as a naked
pointer (for instance in many distributed name servers). The spec uses an internal function cet,
defined near the end, that looks up apx in adirectory; cetp isavariation that raises error if it
can't return ap.

MODULE ObjNamesO [V] EXPORT Read, Write, MakeD, Remove, Enum, Rename =

TYPE D = Int % just an internal name
Z = (V + D) % the value of aname
DD = N -> 2 % a Directory

CONST root : D :=0

VAR s := (D -> DD){}{root -> DD{}} % initially empty root

FUNC Read(pn) -> V RAISES {error} = VAR z := Get (root, pn) |

IF z IS V => RET z [*] RAISE error FI

FUNC Enum(pn) -> SET PN RAISES {error} = RET s(GetD(root, pn)).dom
% Raiseserror if pn isn't adirectory, like MemNames.

A write operation on the name a/b/c hasto change the a component of the directory a/b; it does
this through the procedure set pn, which gets its hands on that directory by invoking
GetD (root, pn.reml).

APROC Write(pn, v) RAISES {error} = << SetPN(pn, v) >>

APROC MakeD(pn) RAISES {error} = << VAR d := NewD() | SetPN(pn, d) >>
APROC Remove (pn) RAISES {error} =
<< VAR d := GetD(root, pn.reml) | >>

APROC Rename (from: PN, to: PN) RAISES {error} = <<

IF (to = {}) \/ (from <= to) => RAISE error % can't rename to a descendant

[*] VAR fd := GetD(root, from.reml), %know from, to # {}
td := GetD(root, to .reml) |
s(fd) ! (from.last) =>

Handout 12. Naming 7

6.826—Principles of Computer Systems 2004
s(td) := s(td) (to .last -> s(fd) (from.last));
s(fd) := s(fd) {from.last -> }

[*] RAISE error

FI >>

The remaining routines areinternal. The main oneiscet (d, pn), which returnsthe result of
starting at 4 and following the path pn. getp raises error if it doesn’t get adirectory. NewD
creates a new, empty directory.

FUNC Get(d, pn) -> Z RAISES {error} =
% Return the value of pn looked up starting at z.
IF pn = {} => RET d

[*] VAR z :=s(d) (pn.head) | z IS D => RET Get(z, pn.tail)
[*] RAISE error
FI

FUNC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) |

IF z IS D => RET z [*] RAISE error FI

APROC SetPN(pn, z) RAISES {error} =
<< VAR d := GetD(root, pn.reml) | s(d) (pn.last) := z >>

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := DD{}; RET d >>

END ObjNamesO

Aswe did with the second version of MemNames0 . Rename, We can give adefinition of et in
terms of apredicate. It saysthat there' s a sequence p of directories starting at 4 and ending at the
result of cet, such that the components of pn select the corresponding components of p; if

there' s no such sequence, raise error.

FUNC Child(zl, z2) -> Bool = z1 IS D /\ s!zl /\ z2 IN s(zl).rng

FUNC Get (d, pn) -> Z RAISES {error} = <<
IF VAR p :IN Child.paths |

p-head = d /\ (ALL i :IN pn.dom | p(i+1l) = s(p(i) (pn(i))) => RET p.last
[*] RAISE error
FI >>

ObjNamesO iS equivalent to MemNames. The abstraction function from objNameso0 t0 MemNames iS

MemNames.d = (\ pn | G(pn) IS V => G(pn) [*] G(pn) IS D => isD)

where we define a function ¢ which islike get on root except that it is undefined where et
raiseSerror:

FUNC G(pn) -> Z = RET Get(root, pn) EXCEPT error => IF false => SKIP FI
The ExcepT turnsthe error exception from get into an undefined result for c.

Exercise: What is the abstraction function from MemNames t0 0bjNameso.

Objects, aliases, and atomicity

This spec makes clear the basic idea of interpreting a path name as a path through a graph of
directories, but it is unredlistic in several ways:

Handout 12. Naming

6.826—Principles of Computer Systems 2004

The operations for changing the value of the oo functionsin s may be very different from the
write and MakeD operations of objNameso. This happens when we impose the naming
abstraction on adata structure that changes according to its own rules. SNMP is a good
example; the values of names changes because of the operation of the network. Later in this
handout we will explore a number of these variations.

Thereisoften an ‘aias or ‘symbolic link’ mechanism which allows the value of anamen in
context a to bealink (a’, pn). Themeaningisthat d (n) isasynonymfor cet (d’, pn).

The operations are specified as atomic, but thisis often too strong.

Our next spec, objNames, reflects al these considerations. It is rather complicated, but the
complexity is the result of the many demands placed on it; ideas for simplifying it would be
gratefully received. objnames isafairly realistic spec for a naming system that allows for both
symbolic links and extensible code for directories.

A oObjNames.D hasget and set methodsto allow for different code, though for now we don't
take any advantage of this, but use the fixed code cet Froms and set1ns. In the section on
object-oriented directories below, we will see how to plug in other versions of o with different
get and set methods. The section on coherence below explains why get isaprocedure rather
than afunction. These methods map undefined valuesto nil because it’s tricky to program with
undefined in this general setting; this meansthat z needsxu11 asan extra case.

Link iSanother case of z (theinternal value of aname), and thereis code in cet to follow links;
therules for doing this are somewhat arbitrary, but follow the Unix conventions. Because of the
complications introduced by links, we usually use cet by instead of cet to follow paths; this
procedure converts a px relative to root into adirectory d and anamen in that directory. Then
the external procedures read or write the value of that name.

Because cet isno longer atomic, it'sno longer possible to define it in terms of a path through
thedirectories that exists at asingle instant. The section on atomicity below discusses this point
in more detail .

MODULE ObjNames [V] EXPORT ... =

TYPE D = Int % Just an internal name
WITH {get:=GetFromS, set:=SetInS}| % get returnsnil if undefined

Link = [d: (D + Null), pnl] % d=nil for ‘relative’: the containing D
b4 = (V + D[+ Link + Null) % nil means undefined
DD = N -> 2

CONST root : D :=0

VAR s := (D -> DD) {}{root -> DD{}} % initially empty root

APROC GetFromS(d, n) -> Z = %d.get (n)

<< RET s(d) (n) [*] RET nil >>

APROC SetInS (d, n, z) =
%If z = nil, SetInSleavesn undefinedins (d).
<< IF z # nil => s(d) (n) := 2z [*] s(d) := s(d){n -> } FI >>

%d.set (n, z)

Handout 12. Naming 9

6.826—Principles of Computer Systems 2004

PROC Read (pn) -> v RAISES {error} = VAR z := Get(root, pn) |
IF z IS V => RET z [*] RAISE error FI

PROC Enum (pn) -> SET N RAISES {error} =
% Can't just write RET GetD (root, pn).get.domasin ObjNamesO0, because get isn’t afunction.
% The lack of atomicity is on purpose.

VAR d := GetD(root, pn), ns: SET N := {}, z |
DO VAR n | << z := d.get(n); ~n IN ns /\ z # nil => ns + := {n} >> OD;
RET ns

PROC Write (pn, V)

RAISES {error} = SetPN (pn,v, [true)

PROC MakeD (pn) RAISES {error} = VAR d := NewD() | SetPN(pn,d, |[false|)

PROC Rename (from: PN, to: PN) RAISES {error} = VAR d, n, d’, n’'| |
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant

[*] (d, n) := GetDN(from, false); (d’, n’) := GetDN(to, false);
<< d.get!n => d’.set(n’, d.get(n)); d.set(n, nil) >>

[*] RAISE error

FI

This version of rRename imposes a different restriction on renaming to a descendant than real file
systems, which usually have a notion of a distinguished parent for each directory and disallow
ParentPN(d) <= ParentPN(d’). They also usualy required and a’ to bein the same ‘file
system’, anotion which we don’t have. Note that Rename does its two writes atomically, like
many real file systems.

Theremaining routines are internal. cet follows every link it sees; alink can appear at any point,
not just at the end of the path. cetpw would be just

IF pn = {} => RAISE error [*] RET (GetD(root, pn.reml), pn.last) FI
except for the question of what to do when the value of this (4, n) isalink. The
followLastLink parameter says whether to follow such alink or not. Because this can happen
more than once, the body of cetpw needs to be aloop.

PROC Get (d, pn) -> Z RAISES {error} = VAR z := d |
% Return the value of pn looked up starting at d..
DO << pn # {} => VAR n := pn.head, [z'] |
IF z IS D =>

z’ := z.get(n);

IF z' # nil =>
% If there'salink, follow it. Otherwise just look up n.
IF (z, pn') FollowLink(z, n); pn :=
z' ; pn o:= pn.tail

% must have avalueforn.

pn’ + pn.tail

[*] =z
FI
[*] RAISE error
FI
[*] RAISE error
FI
>> OD; RET z
PROC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) |

IF z IS D => RET z AS D [*] RAISE error FI

Handout 12. Naming 10

6.826—Principles of Computer Systems 2004

PROC GetDN (pn, followLastLink: Bool) -> (D, N) RAISES {error} = VAR d := root
% Convert pn into (d, n) suchthat d.get (n) istheitemthat pn refersto.
DO IF pn = {} => RAISE error

[*] VAR n := pn.last, z |
d := Get(d, pn.reml);
% If there'salink, follow it and loop. Otherwise return.
<< followLastLink => (d, pn) := FollowLink(d, n) [*] RET (d, n) >>
FI
OD
APROC FollowLink(d, n) -> (D, PN) = <<

% Fall if d.get (n) notLink. Used asthe context if the link lacks one.
VAR 1 := d.get(n) | 1 IS Link => RET ((1.d IS D => 1.4 [*] d), l.pn) >>

PROC SetPN(pn, z, followLastLink: Bool) RAISES {error} =
VAR d, n | (4, n) := GetDN(pn, followLastLink); d.set(n, z)

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := D{}; RET d >>

END ObjNames

Object-oriented directories

Although b in objNames hasget and set methods, they are the same for al p’s. To encompass
the full range of applications of path names, we need to make ap into afull-fledged ‘object’, in
which different instances can have different get and set operations (yet another level of
indirection). Thisisthe essential meaning of ‘ object-oriented’: the type of an object isarecord of
routine types which defines asingle interface to all objects of that type, but every object hasits
own values for the routines, and hence its own code.

To do this, we change the type to:

TYPE D [get: APROC (n) -> Z, set: PROC (n, z) RAISES {error}]
DR Int % what D used to be; R for reference
keeping the other types from objNames unchanged:
Z

(V + D + Link 4+ Null)
N -> Z

% nil means undefined

DD

We also need to change the state to:

CONST root := NewD ()

VAR s := (DR -> DD) {root -> DD{}} % initially empty root

and to provide a new version of the Newp procedure for creating a new standard directory. The
routinesthat NewD assigns to get and set have the same bodies as the cet Froms and set 1ns
routines.

A technical point: Thereason for not writing get : =s (dr) in Newd below is that this would
capturethevalue of s (ar) at thetime newn isinvoked; we want the value at thetime get is
invoked, and thisis what we get because of the fact that Spec functions are functions on the
globa state, rather than pure functions.

APROC NewD() -> D = << VAR dr | ~ s!dr =>
s(dr) := DD{};
RET D{ get := (\ n | s(dr) (n)),

Handout 12. Naming 11

6.826—Principles of Computer Systems

set := (PROC (n, z) = IF z # nil => s(dr) (n) := z
[*] s(dr) := s(dr){n -> } FI) }

PROC SetErr(n, z) RAISES {error} = RAISE error
% For later use asa set proc if the directory is read-only

We don't need to change anything elsein objNames.

We will see many other examples of get and set routines. Notethat it's easy to define ap that
disallows updates, by making set be setErr.

Views and recursive structure

In this section we examine ways of constructing name spaces, and in particular ways of building
up directories out of existing directories. We adready have a basic recursive scheme that makes a
set of existing directories the children of a parent directory. The generalization of thisideaisto
define afunction on some state that returnsap, that is, apair of get and set procedures. There
arevarious terms for this:

‘encapsulating’ the state,

‘embedding’ the state in a name space,

‘making the state compatible’ with a name space interface,
defining a‘view’ on the state.

Wewill usually call it aview. The spec for aview defines how the result of get depends on the
state and how set affects the state.

All of these terms express the same idea: make the state behave like ap, that is, abstract it asa
pair of get and set procedures. Once packaged in thisway, it can be used wherever ap can be
used. In particular, it can be an argument to one of the recursive views that make ap out of other
p's. aparent directory, alink, or the others discussed below. It can aso be the argument of tools
like the Unix commands that list, search, and manipulate directories.

The read operations are much the same for al views, but updates vary a great deal. The two
simplest cases are the one we have already seen, where you can set the value of anamejust as
you write into a memory location, and the even simpler one that disallows updates entirely; the
latter is only interesting if get looks at global state that can change in other ways, asit doesin
theunion and rFilter operations below. Each time we introduce a view, wewill discuss the spec
for updating it.

In the rest of this section we describe views that are based on directories: links, mounting,
unions, and filters. The final section of the handout gives many examples of views based on
other kinds of data.

Links and mounting

Theidea behind links (called ‘ symbolic links" in Unix, ‘shortcuts’ in Windows, and ‘aliases’ in
the Macintosh) isthat of an alias (another level of indirection): we can define the value of aname
in adirectory by saying that it is the same as the value of some other name in some other

Handout 12. Naming

2004

12

6.826—Principles of Computer Systems 2004

directory. If the value is adirectory, another way of saying thisis that we can represent a
directory a by thelink (a’, pn’),withd(pn) = d’ (pn’) (pn), or moregraphicaly d/pn =
d’ /pn’ /pn. When put in thisform it is usually called mounting thedirectory 4’ (pn’) on pno, if
pno isthe name of 4. In thislanguage, pno iscalled a‘mount point’. Another namefor itis
‘junction’.

We have aready seen code in objnames to handlelinks. Y ou might wonder why this code was
needed. Why isn’t our wonderful object-oriented interface enough? The reason isthat people
expect more from aliases than this interface can deliver: there can be an aias for avalue, not
only for adirectory, and there are complicated rules for when the alias should be followed
silently and when it should be an object in its own right that can be enumerated or changed

Links and mounting make it possible to give objects the names you want them to have, rather
than the ones they got because of defectsin the system or other peopl€' s bad taste. A very down-
to-earth exampleis the problems caused by the restriction in standard Unix that afile system
must fit on asingle disk. This meansthat in an installation with 4 disks and 12 users, the name
space contains /disk1/john and /disk2/mary rather than the /udir/john and /udir/mary that
wewant. By making /udir/john bealink to /disk1/john, and similarly for the other users, we
can hide this annoyance.

Sincealink isnot just ap, we need extrainterface procedures to read the value of alink (without
following it automatically, asread does), and to install alink. We call theinstall procedure
Mount to emphasize that a mount point and a symbolic link are essentially the same thing. The
Mount procedureisjust likewrite except for the second argument’ s type and the fact that it
doesn't follow afina link in pn.

PROC ReadLink (pn) -> Link RAISES {error} = VAR d, n |
(d, n) := GetDN(pn, false);
VAR z | z := d.get(n); IF z IS Link => RET z [*] RAISE error FI

PROC Mount (pn, link) -> DD = SetPN(pn, link, false)

The section on roots below discusses where we might get the o in the 1ink argument of Mount.
In the common case of alink to someplace in the same name space, we have:

PROC MakeLink(pn, pn’, local: Bool) =
Mount (pn, Link{d := (local => nil [*] root), pn := pn’})

Updating (with write, for instance) makes sense when there are links, but there are two
possibilities. If every link isfollowed then alink never gets updated, since cetpn never returns a
referenceto alink. If afinal link is not followed then it can be replaced by something else.

What is the relation between these links and what Unix calls ‘hard links ? A Unix hard link isan
inode number, which you can think of as adirect pointer to afile; it correspondstoap in
objNames. Several directory entries can have the same inode number. Another way to look at
thisisthat theinodes are just another kind of name of the form inoderoot /2387754, SO that a
hard link isjust alink that happens to be an inode number rather than an ordinary path name.
Thereisno provision for making the value of an inode number be alink (or indeed anything
except afile), so that’sthe end of theline.

Handout 12. Naming 13

6.826—Principles of Computer Systems

Unions

Since adirectory isafunction~ -» z, itisnatural to combine two directories with the n+»
overlay operator on functions3. If we do this repeatedly, writingd1 + d2 + 43, we get the effect
of a‘search path’ that looks at a3 first, then a2, and finally 41 (in that order because "+ gives
preference to its second argument, unlike a search path which gives preferenceto itsfirst
argument). The differenceisthat thisruleis part of the name space, while a search path must be
coded separately in each program that cares. It's unclear whether an update of a union should
change the first argument, change the second argument, do something more complicated, or raise
an error. Wetake thelast view for smplicity.

FUNC Union(dl, d2) -> D = RET D{get := dl.get + d2.get, set := SetErr}*

Another kind of union combines the name spaces at every level, not just at thetop level, by
merging directories recursively. Thisis the most general way to combine two trees that have
evolved independently.

FUNC DeepUnion(dl, d2) -> D = RET D{
get := (\ n |

2004

(dl.get(n) IS D /\ d2.get(n) IS D => DeepUnion(dl.get(n), d2.get (n))

[*] (dl.get + d2.get) (n))),
set := SetErr}

Thisisa spec, of course, not efficient code.

Union(x, y)

Y)

Filtersand queries

Given adirectory g, we can make a smaller one by selecting some of a's children. We can use
any predicate for this purpose, so we get:

FUNC Filter(d, p: (D, N) -> Bool) -> D =
RET D{get := (\ n | (p(d, n) => d.get(n)) [*] nil), set := SetErr}

3 See section 9 of the Spec reference manual.
4 Thisis abit oversimplified, since get isan aproc and hence doesn’'t have " + "defined. But the idea should be
clear. Plan 9 (see the examples at the end) implements unions.

Handout 12. Naming

14

6.826—Principles of Computer Systems 2004

Examples:
Pattern match in adirectory: a/b/*.ps. The predicate istrueif n matches * . ps.

Querying atable: payroll/salary>25000/name. The predicateistrueif
Get (d, n/salary) > 25000. Seethe example of viewing atablein thefina section of
examples.

Full text indexi Ng: bwl/papers/word:naming. The predicate istrueif a.get (n) isatext file
that contains the word naming. The code could just search al the text files, but a practical
onewill probably involve an auxiliary index structure that maps words to the files that
contain them, and will probably not be perfectly coherent.

See the ‘ semantic file system’ example below for more details and areference.

Variations

It is useful to summarize the ways in which a spec for a name space might vary. The variations
amost all have to do with the exact semantics of updates:

What operations are updates, that is, can change the results of read?
Aretherealiases, so that an update to one object can affect the value of others?

Arethe updates atomic, or it is possible for reads to see intermediate states? Can an update be
lost, or partly logt, if thereis acrash?

Viewed as amemory, is the name space coherent? That is, does every read that follows an
update see the update, or isit possible for the old state to hang around for awhile?

How much can the set of defined px’s change? In other words, isit useful to think about a
schema for the name space that is separate from the current state?

Updates

If the directories are ‘real’, then there will be non-trivial write, Makeb, and Rename Operations. If
they are not, these operations will alwaysraise error, therewill be operations to update the
underlying data, and the view function will determine the effects of these updates on read and
Enum. [N many systems, read and write cannot be modeled as operations on memory because
Write(a, r) doesnotjust changethevauereturned by read (a). Instead they must be
understood as methods of (or messages sent to) some object.

The earliest example of thiskind of system isthe DEC Unibus, the prototype for modern 1/0
systems. Devices on such an 1/0 bus have ‘ device registers that are named as locationsin
memory. Y ou can read and write them with ordinary load and store instructions. Each device,
however, isfreeto interpret these reads and writes as it seesfit. For example, adisk controller
may have a set of registers into which you can write acommand which isinterpreted as “read n
disk blocks starting at address da into memory starting at address a”. This might take three
writes, for the parametersn, da, and a, and the third write has the side effect of starting execution
of the command.

Handout 12. Naming 15

6.826—Principles of Computer Systems 2004

The most recent well-known incarnation of thisideaisthe World Wide Web, in which read and
write actions (called cet and post in the protocol) are treated as messages to servers that can
search databases, accept orders for pizza, or whatever.

Aliases

We have aready discussed this topic at some length. Links and unions both introduce aliases.
There can also be ‘hard links', which are several occurrences of the samep. In aUnix file
system, for example, it is possible to have several directory entries that point to the samefile. A
hard link differs from a soft link because the connection it establishes between aname and afile
cannot be broken by changing the binding of some other name. And of course aview can
introduce arbitrarily complicated aliasing. For example, it’s fairly common for an 1/0 device that
hasinternal memory to make that memory addressable with two control registersa and v, and
therulethat aread or write of v refers to theinternal memory location addressed by the current
contents of a.

Atomicity

The MenNames and objNames0 Specs made al the update operations atomic. For code to satisfy
these specs, it must hold some kind of lock on every directory touched by cetpy, or at least on
the name looked up in each such directory. This can involve alot of directories, and since the
name space is agraph it aso introduces the danger of deadlock. It’s therefore common for
systems to satisfy only the weaker atomicity spec of objNames, which says that looking up a
simple name is atomic, but the entire lookup process is not.

This meansthat rRead (/a/x) can return 3 even though there was never any instant at which the
path name /a/x had the value 3, or indeed was defined at al. To see how this can happen,
SUppPOSsE;

initialy /a isthedirectory 41 and /b is undefined;
initialy x isundefined in a1;
concurrently with read (/a/x) wWe do Rename (/a, /b); Write(/b/x, 3).

Thefollowing sequence of actionsyieldsread (/a/x) = 3:
Intheread , Get (root, a) = di
Rename (/a, /b) makes /a undefined and d1 thevalue of /b
write(/b/x, 3) makess thevalueof xinadi

Intheread, RET d1.get (x) refurnss.

Handout 12. Naming 16

6.826—Principles of Computer Systems 2004

a b

Rename Write

@1) (/a, /b) @) (/b/x, 3)

Get (root, a) = dil Get (d1, a) = 3

Obviously, whether this possibility isimportant or not depends on how clients are using the
name space.

Coherence

Other things being equal, everyone prefers a coherent or ‘ sequentially consistent’ memory, in
which thereisasingle order of al the concurrent operations with the property that the result of
every read isthe result that a simple memory would return after it has done all the preceding
writesin order. Maintaining coherence has costs, however, in the amount of synchronization that
isrequired if parts of the memory are cached, or in the amount of availability if the memory is
replicated. We will discuss thefirst issuein detail at the end of the course. Here we consider the
availability of areplicated memory.

Recall the majority register from the beginning of the course. It writes a majority of thereplicas
and reads from a majority, thus ensuring that every read must see the most recent write.
However, this means that you can’t do either aread or awrite unless you can talk to a mgjority.
Therewe used a general notion of majority in which the only requirement is that every two
majorities have a non-empty intersection. Applying thisidea, we can define separate read and
write quorums, with the property that every read quorum intersects every write quorum. Then we
can make reads more avail able by making every replicaaread quorum, at the price of having the
only write quorum be the set of all replicas, so that we have to do every writeto al thereplicas.

An aternative approach is to weaken the spec so that it's possible for aread to see old vaues.
We have seen aversion of this already in connection with crashes and write buffering, where it
was possible for the system to revert to an old state after a crash. Now we propose to make the
spec even more non-deterministic: you can read an old value at any time, and the only restriction
isthat you won't read a value older than the most recent sync. In return, we can now have much
more availability in the code, since both aread and awrite can be doneto asinglereplica This
meansthat if youdowrite (/a, 3) and immediately read a, you may not get 3 because the reaa
might use adifferent replicathat hasn’t seen thewrite yet. Only sync requires communication
among thereplicas.

We give the spec for this as avariation on objNames. We alow nil tobein dad (n), representing
the fact that n has been undefined in aa.

Handout 12. Naming 17

6.826—Principles of Computer Systems 2004

TYPE DD = N -> [SEQ Z % remember old values

APROC GetFromS(d, n) -> Z = <<

% The non-determinism wouldn’t be allowed if this were afunction
VAR z | z IN s(d) (n) => [RET z [*] RET nil >>

% wewrited.get (n)

% return any old value

% wewrited.set (n, z)
% add z to the state

PROC SetToS(d, n, z) =
s(d) (n) :=[((s(@!n => s(@) (m) [*] {}) + {z}]

PROC Sync (pn) RAISES {error} =
VAR 4, n, z |
(d, n) := GetDN(pn, true); z := s(d) (n).last;
IF z # nil => s(d) (n) := {z} [*] s(d) := s(@){n -> } FI

This spec iscommon in the naming service for a distributed system, for instancein the Internet’s
DNS or Microsoft’s Active Directory. The name space changes slowly, it isn't critical to seethe

very latest value, and it is critical to have high availability. In particular, it' s critical to be ableto

look up names even when network partitions make some working replicas unreachable.

Schemas

In the database world, a schema s the definition of what names are defined (and usually also of
the type of each name' s value).5 Network management calls this a‘ management information
base’ or MIB. Depending on the application there are very different rules about how the schema
isdefined.

In afile system, for example, thereisusually no official schema written down. Nonetheless, each
operating system has conventions that in practice have the force of law. A Unix system without
/bin and /etc will not get very far. But other parts of the name space, especialy in users
private directories, are completely variable.

By contrast, a database system takes the schema very seriously, and a management system takes
at least some parts of it seriously. The choice has mainly to do with whether it is people or
programs that are using the name space. Programs tend to be much lessflexible; it'salot of
work to make them adapt to missing data or pay attention to unexpected additional data

Minor issues

We mention in passing some other, less fundamental, ways in which the specs for name spaces
differ.
Rules about overwriting. Some systems allow any name to be overwritten, others treat

directories, or non-empty directories, specially to reduce the consequences of careless
errors.

Access control. Many systems enforce rules about which users or programs are alowed to
read or write various parts of the name space.

5 Gray and Reuter, Transaction Processing, Morgan Kaufmann, 1993, pp 768-786.

Handout 12. Naming 18

6.826—Principles of Computer Systems 2004

Resource control. Writes often consume resources that are expensive or in fixed supply,
such as disk blocks. This means that they can fail if the resources are exhausted, and there
may also be a quota system that limits the resource consumption of users or programs.

Roots

It's not turtles all the way down.
Anonymous

So far we have ducked the question of how the root isrepresented, or thep in alink that playsa
similar role. In objNameso wesaid D = 1Int, leavingitsinterpretation entirely to the s
component of the state. In objNames We said p isapair of procedures, begging the question of
how the procedures are represented. The representation of a root depends entirely on the
implementation. In afile system, for instance, aroot names a disk, a disk partition, avolume, a
file system exported from a server, or something like that. Thus there is another name space for
theroots (another level of indirection). It works in awide variety of ways. For example:

In MS-DOS. you name a physically connected disk drive. If the drive has removable media
and you insert the wrong one, too bad.

On the Macintosh. you use the string name of adisk. If the system doesn’t know where to
find this disk, it asks the user. If you give the same name to two removabl e disks, too bad.

On Digital VMS. disks have unique identifiers that are used much like the string names on
the Macintosh.

For the NFS network file system, aroot is named by ahost name or IP address, plusafile
system name or handle on that host. If that name or address gets assigned to another
machine, too bad.

In anetwork directory aroot is named by aunique identifier. Thereis also a set of servers
that might store replicas of that directory.

In the securefile system, aroot is named by the hash of apublic encryption key. There's
aso anetwork address to help you find the file system, but that’s only a hint.6

In generdl it isagood idea to have absolute names (unique identifiers) for directories. This at
least ensures that you won't use the wrong directory if the information about whereto find it
turns out to be wrong. A UID doesn’t give much help in locating a directory, however. The
possibilities are:
Store a set of placesto look along with the UID. The problem is keeping this set up to date.
K eep another name space that maps UID’sto locations (yet another level of indirection).
The problem is keeping this name space up to date, and making it sufficiently available.
For the former, every location can register itself periodically. For the latter, replication is
good. Wewill talk about replication in detail |ater in the course.

Search some ad-hoc set of placesin the hope of finding a copy. This search is often called a
‘broadcast’ .

6 Maziéres, Kaminsky, Kaashoek, and Witchel, Separating key management from file system security. Proc. 17th
ACM Symposium on Operating Systems Principles, Dec. 1999. www.pdos.|cs.mit.edu/papers/sfs:sosp99.pdf.

Handout 12. Naming 19

6.826—Principles of Computer Systems 2004

We defined the interface routines to start from afixed root. Some systems, such as Unix, have
provisions for changing the root; the chroot system call does thisfor a process. In addition, it is
common to have amore local context (called a‘working directory’ for afile system), and to have
syntax to specify whether to start from the root or the working directory (presence or absence of
aninitia ‘/’ for aUnix file system).

Examples

These are to expand your mind and to help you recognize a name space when you come across it
under some disguise.

Filesysstem Example: /udir/lampson/pocs/handouts/12-naming

director
y Not atree, becauseof . and . ., hard links, and soft links.

Devices, named pipes, and other things can appear aswell asfiles.

Links and mounting are important for assembling the name space you want.
Files may have attributes, which are alittle directory attached to thefile.
Sometimes resources, fonts, and other OS rigmarol e are stored this way.

inodes Thereisasingleinode directory, usualy coded as afunction rather than atable:
you compute the location of theinode on the disk from the number.
For system-wideinodes, prefix a system-wide file system or volume name.

Plan 97 This operating system puts all its objects into a single name space: files, devices,
pipes, processes, display servers, and search paths (as union directories).

Semantic Not restricted to relational databases.

file system8 . .
Free-text lndexmg: ~lampson/Mail/inbox/ (word="compiler")
Program cross-reference; /project/sources/ (calls:"DeleteFile")
Table Example: ID no (key) Name Salary Married?
(relational 1432 Smith 21,000 Yes
data base) 44563 Jones 35,000 No

8456 Brown 17,000 Yes

We can view this as anaming tree in several ways:
#44563 /Name = Jones key’'svaueisab that definesName, Salary, €etc.
Name/#44563 = Jones key'svaueisthe Name field of itsrow

Thesecond way, cat Name/* Yields
Smith Jones Brown

7 Pike et a., The use of name spaces in Plan 9, ACM Operating Systems Review 27, 2, Apr. 1993, pp 72-76.
8 Gifford et al., Semantic file systems, Proc. 13th ACM Symposium on Operating System Principles, Oct. 1991, pp
16-25 (handout 13).

Handout 12. Naming 20

6.826—Principles of Computer Systems 2004

Network
naming?®

E-mail
addresses

SNMP20

Pagetables

1/0 device
addressing

Multiplexing
achannel

LAN
addresses

Example: theory.lcs.mit.edu

Distributed code. Can share responsibility for following the path between client
and server in many ways.

A directory handleis a machine address (interpreted by some communication
network), plus someid for the directory on that machine.

Attractive astop levels of complete naming hierarchy.

Example: rinardelcs.mit.edu

This syntax patches together the network name space and the user name space of a
single host. Often there are links (called forwarding) and directories full of links
(called distribution lists).

Example: Router with circuits, packetsin circuits, headersin packets, etc.

Internet Simple Network Management Protocol

Roughly, view the state of the managed entity as atable, treating it as aname
space the way we did earlier. Y ou can read or write table entries.

Thenext action alows a client to explore the name space, whose structure is
read-only. Ad hoc write actions are sometimes used to modify the structure, for
instance by adding arow to atable.

Divide up the virtua address, using the first chunk to index afirst level page table,
later chunks for lower level tables, and the last chunk for the byte in the page.

Example: Memory bus.

SCSI controller, by device register addresses.

SCSI device, by device number 0. .7 on SCSI bus.

Disk sector, by disk address on unit.

Usually there is a pure read/write interface to the part of the 1/0 system that is
named by memory addresses (the device registers in the example), and a message
interface to therest (the disk in the example).

Examples: Node-node network channel — n process-process channels.
Process-kernel channel — n inter-process channels.

ATM virtua path — nvirtua circuits.

Given a channel, you can multiplex it to get sub-channels.
Sub-channels are identified by addresses in messages on the main channel.
Thisidea can be applied recursively, asin al good name spaces.

48-bit ethernet address. Thisisflat: the addressisjust aUID.

9 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed
Computing, Minaki, Ontario, 1986, pp 1-10. RFC 1034/5 for DNS.
10 M. Rose, The Simple Book, Prentice-Hall, 1990.

Handout 12. Naming

21

6.826—Principles of Computer Systems

Hierarchical
network
addressest!!

Network
referencel?

Abbrevia-
tions

World
Wide Web

Spec names

Telephone
numbers

Postal
addresses

Example: 16.24.116.42 (an |P address).

An addressin abig network is hierarchical.

A router knows its parents and children, like afile directory, and also its siblings
(because the parent might be missing)

To route, traverse up the name space to least common ancestor of current place
and destination, then down to destination.

Example: 6.24.116.42/11234/1223:44 9 Jan 1995/item 21

Network address + port or processid + incarnation + more multiplexing + address
or export index.
Some applications are remote procedure binding, network pointer, network object

A, talking to B, wantsto passa big value v, say afont or security credentials.

A makes up ashort namen for v (sometimes called a‘ cooki€e', though it’s not the
same as a Web cookie) and passes that.

If B doesn’'t know n’svaluev, it calls back to A to get it, and caches the result.
Sometimes A tells v to B when it chooses v, and B is expected to remember it.
Thisis not as good because B might run out of space or fail and restart.

Exampl € http://ds.internic.net/ds/rfc-index.html
Thisisthe URL (Uniform Resource Locator) for Internet RFCs.
The Web has aread/write interface.

Example: objNames . Enum

Example: 1-617-253-6182

Example: prof. Butler Lampson
Room 43-535
MIT
Cambridge, MA 02139

11 R, Perlman, Connections, Prentice-Hall, 1993.
12 Andrew Birrell et al., Network objects, Proc. 14th ACM Symposium on Operating Systems Principles, Asheville,
NC, Dec. 1993 (handout 25).

Handout 12. Naming

2004

22

