
6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 1

13. Paper: Semantic File Systems

The attached paper by David Gifford, Pierre Jouvelot, Mark Sheldon, and James O’Toole was pre-
sented at the 13th ACM Symposium on Operating Systems Principles, 1991, and appeared in its
proceedings, ACM Operating Systems Review, Oct. 1991, pp 16-25.

Read it as an adjunct to the lecture on naming

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 2

Semantic File Systems

David K. Gifford, Pierre Jouvelot1,
Mark A. Sheldon, James W. O’Toole, Jr.

Programming Systems Research Group

MIT Laboratory for Computer Science

Abstract1

A semantic file system is an information storage system
that provides flexible associative access to the system’s
contents by automatically extracting attributes from files
with file type specific transducers. Associative access is
provided by a conservative extension to existing tree-
structured file system protocols, and by protocols that are
designed specifically for content based access. Compatibil-
ity with existing file system protocols is provided by intro-
ducing the concept of a virtual directory. Virtual directory
names are interpreted as queries, and thus provide flexible
associative access to files and directories in a manner com-
patible with existing software. Rapid attribute-based access
to file system contents is implemented by automatic extrac-
tion and indexing of key properties of file system objects.
The automatic indexing of files and directories is called
“semantic” because user programmable transducers use
information about the semantics of updated file system ob-
jects to extract the properties for indexing. Experimental
results from a semantic file system implementation support
the thesis that semantic file systems present a more effec-
tive storage abstraction than do traditional tree structured
file systems for information sharing and command level
programming.

1 Introduction

We would like to develop an approach for information
storage that both permits users to share information more
effectively, and provides reductions in programming effort
and program complexity. To be effective this new approach
must be used, and thus an approach that provides a transi-
tion path from existing file systems is desirable.

In this paper we explore the thesis that semantic file
systems present a more effective storage abstraction than do
traditional tree structured file systems for information shar-
ing and command level programming. A semantic file sys-
tem is an information storage system that provides flexible

This research was funded by the Defense Advanced Research Pro-

jects Agency of the U.S. Department of Defense and was monitored by the
Office of Naval Research under grant number N00014-89-J-1988.

1 Also with CRI. Ecole des Mines de Paris. France.

associative access to the system’s contents by automatically
extracting attributes from files with file type specific trans-
ducers. Associative access is provided by a conservative
extension to existing tree-structured file system protocols,
and by protocols that are designed specifically for content
based access. Automatic indexing is performed when files
or directories are created or updated.

The automatic indexing of files and directories is called
“semantic” because user programmable transducers use
information about the semantics of updated file system ob-
jects to extract the properties for indexing. Through the use
of specialized transducers, a semantic file system “under-
stands” the documents, programs, object code, mail, im-
ages, name service databases, bibliographies, and other files
contained by the system. For example, the transducer for a
C program could extract the names of the procedures that
the program exports or imports, procedure types, and the
files included by the program. A semantic file system can
be extended easily by users through the addition of special-
ized transducers.

Associative access is designed to make it easier for us-
ers to share information by helping them discover and lo-
cate programs, documents, and other relevant objects. For
example, files can be located based upon transducer gener-
ated attributes such as author, exported or imported proce-
dures, words contained, type, and title.

A semantic file system provides both a user interface
and an application programming interface to its associative
access facilities. User interfaces based upon browsers
[Inf90, Ver90] have proven to be effective for query based
access to information, and we expect browsers to be offered
by most semantic file system implementations. Application
programming interfaces that permit remote access include
specialized protocols for information retrieval [NIS91], and
remote procedure call based interfaces [GCS87].

It is also possible to export the facilities of a semantic
file system without introducing any new interfaces. This
can be accomplished by extending the naming semantics of
files and directories to support associative access. A benefit
of this approach is that all existing applications, including
user interfaces, immediately inherit the benefits of associa-
tive access.

A semantic file system integrates associative access
into a tree structured file system through the concept of a

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 3

virtual directory. Virtual directory names are interpreted as
queries and thus provide flexible associative access to files
and directories in a manner compatible with existing soft-
ware.

For example, in the following session with a semantic
file system we first locate within a library all of the files
that export the procedure lookup_f ault, and then fur-
ther restrict this set of files to those that have the extension
c:

% cd /sfs/exports:/lookup_fault
% Is -F
virtdir_query.c@ virtdir_query.o@
% cd ext:/c
% Is -F
virtdir_query. c@
%

Semantic file systems can provide associative access to
a group of file servers in a distributed system. This distrib-
uted search capability provides a simplified mechanism for
locating information in large nationwide file systems.

Semantic file systems should be of use to both indi-
viduals and groups. Individuals can use the query facility of
a semantic file system to locate files and to provide alterna-
tive views of data. Groups of users should find semantic file
systems an effective way to learn about shared files and to
keep themselves up to date about the status of group pro-
jects. As workgroups increasingly use file servers as shared
library resources we expect that semantic file system tech-
nology will become even more useful.

Because semantic file systems are compatible with ex-
isting tree structured file systems, implementations of se-
mantic file systems can be fully compatible with existing
network file system protocols such as NFS [SGK+85,
Sun88] and AFS [Kaz88]. NFS compatibility permits exist-
ing client machines to use the indexing and associative ac-
cess features of a semantic file system without modifica-
tion. Files stored in a semantic file system via NFS will be
automatically indexed, and query result sets will appear as
virtual directories in the NFS name space. This approach
directly addresses the “dusty data” problem of existing
UNIX file systems by allowing existing UNIX file servers
to be converted transparently to semantic file systems.

We have built a prototype semantic file system and run
a series of experiments to test our thesis that semantic file
systems present a more effective storage abstraction than do
traditional tree structured file systems for information shar-
ing and command level programming. We tried to locate
various documents and programs in the file system using
unmodified NFS clients. The results of these experiments
suggest that semantic file systems can be used to find in-
formation more quickly than is possible using ordinary file
systems, and add expressive power to command level pro-
gramming languages.

In the remainder of the paper we discuss previous re-
search (Section 2), introduce the interface and a semantics
for a semantic file system (Section 3), review the design

and implementation of a semantic file system (Section 4),
present our experimental results (Section 5) and conclude
with observations on other applications of virtual directo-
ries (Section 6).

2 Previous Work

Associative access to on-line information was pio-
neered in early bibliographic retrieval systems where it was
found to be of great value in locating information in large
databases [Sal83]. The utility of associative access moti-
vated its subsequent application to file and document man-
agement. The previous research we build upon includes
work on personal computer indexing systems, information
retrieval systems, distributed file systems, new naming
models for file systems, and wide-area naming systems:
• Personal computer indexing systems such as On Loca-

tion [Tec90], Magellan [Cor], and the Digital Librarian
[NC89b, NC89a] provide window-based file system
browsers that permit word-based associative access to
file system contents. Magellan and the Digital Librar-
ian permit searches based upon boolean combinations
of words, while On Location is limited to conjunctions
of words. All three systems rank matching files using a
relevance score. These systems all create indexes to re-
duce search time. On Location automatically indexes
files in the background, while Magellan and the Digital
Librarian require users to explicitly create indexes.
Both On Location and the Digital Librarian permit us-
ers to add appropriate keyword generation programs
[Cla90, NC89b] to index new types of files. However,
Magellan, On Location, and the Digital Librarian are
limited to a list of words for file description.

• Information retrieval systems such as Basis [Inf90],
Verity [Ver90], and Boss DMS [Log91] extend the se-
mantics of personal computer indexing systems by
adding field specific queries. Fields that can be queried
include document category, author, type, title, identi-
fier, status, date, and text contents. Many of these
document relationships and attributes can be stored in
relational database systems that provide a general
query language and support application program ac-
cess. The WAIS system permits information at remote
sites to be queried, but relies upon the user to choose
an appropriate remote host from a directory of services
[KM91, Ste91]. Distributed information retrieval sys-
tems [GCS87, DANO91] perform query routing based
upon database content labels to ensure that all relevant
hosts are contacted in response to a query.

• Distributed file systems [Sun89, Kaz88] provide re-
mote access to files with tree structured names. These
systems have enabled file sharing among groups of
people and over wide geographic areas. Existing UNIX
tools such as grep and find [Gro86] are often used to
perform associative searches in distributed file systems.

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 4

• New naming models for file systems include the Port-
able Common Tool Environment (PCTE) [GMT86],
the Property List DIRectory system (PLDIR)
[Mog86], Virtual Systems [Neu90] and Sun’s Network
Software Environment (NSE) [SC88]. PCTE provides
an entity-relationship database that models the at-
tributes of objects including files. PCTE has been im-
plemented as a compatible extension to UNIX. How-
ever, PCTE users must use specialized tools to query
the PCTE database, and thus do not receive the benefits
of associative access via a file system interface. The
Property List DIRectory system implements a file sys-
tem model designed around file properties and offers a
Unix front-end user interface. Similarly, Virtual Sys-
tems permit users to hand-craft customized views of
services, files, and directories. However, neither sys-
tem provides automatic attribute extraction (although
[Mog86] alludes to it as a possible extension) or attrib-
ute-based access to their contents. NSE is a network
transparent software development tool that allows dif-
ferent views of a file system hierarchy called environ-
ments to be defined. Unlike virtual directories, these
views must be explicitly created before being accessed.

• Wide-area naming systems such as X.500 [CCI88],
Profile [Pet88], and the Networked Resource Discov-
ery Project [Sch89] provide attribute-based access to a
wide variety of objects, but they are not integrated into
a file system nor do they provide automatic attribute-
based access to the contents of a file system.

Key advances offered by the present work include:

• Virtual directories integrate associative access into
existing tree structured file systems in a manner that is
compatible with existing applications.

• Virtual directories permit unmodified remote hosts to
access the facilities of a semantic file system with ex-
isting network file system protocols.

• Transducers can be programmed by users to perform
arbitrary interpretation of file and directory contents in
order to produce a desired set of field-value pairs for
later retrieval. The use of fields allows transducers to
describe many aspects of a file, and thus permits sub-
sequent sophisticated associative access to computed
properties. In addition, transducers can identify entities
within files as independent objects for retrieval. For
example, individual mail messages within a mail file
can be treated as independent entities.

Previous research supports our view that overloading
file system semantics can improve system uniformity and
utility when compared with the alternative of creating a
new interface that is incompatible with existing applica-
tions. Examples of this approach include:

• Devices in UNIX appear as special files [RT74] in the
/dev directory, enabling them to be used as ordinary
files from UNIX applications.

• UNIX System III named pipes [Roc85, p. 159f] appear
as special files, enabling programs to rendezvous using
file system operations.

• File systems appear as special directories in Automount
daemon directories [CL89, Pen90, PW90], enabling the
binding of a name to a file system to be computed at
the time of reference.

• Processes appear as special directories in Killian’s
process file system [Kil84], enabling process observa-
tion and control via file operations.

• Services appear as special directories in Plan 9
[PPTT90], enabling service access in a distributed sys-
tem through file system operations in the service’s
name space.

• Arbitrary semantics can be associated with files and
directories using Watchdogs [BP88], Pseudo Devices
[WO88], and Filters [Neu90], enabling file system ex-
tensions such as terminal drivers, network protocols, X
servers, file access control, file compression, mail noti-
fication, user specific directory views, heterogeneous
file access, and service access.

• The ATTIC system [CG91] uses a modified NFS
server to provide transparent access to automatically
compressed files.

3 Semantic File System Semantics

Semantic file systems can implement a wide variety of
semantics. In this section we present one such semantics
that we have implemented. Section 6 describes some other
possibilities.

Files stored in a semantic file system are interpreted by
file type specific transducers to produce a set of descriptive
attributes that enable later retrieval of the files. An attribute
is a field-value pair, where a field describes a property of a
file (such as its author, or the words in its text), and a value
is a string or an integer. A given file can have many attrib-
utes that have the same field name. For example, a text file

Figure 1: Sample Transducer Output

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 5

would have as many text: attributes as it has unique
words. By convention, field names end with a colon.

A user extensible transducer table is used to determine
the transducer that should be used to interpret a given file
type. One way of implementing a transducer table is to
permit users to store subtree specific transducers in the sub-
tree’s parent directory, and to look for an appropriate trans-
ducer at indexing time by searching up the directory hierar-
chy.

To accommodate files (such as mail files) that contain
multiple objects we have generalized the unit of associative
access beyond whole files. We call the unit of associative
access an entity. An entity can consist of an entire file, an
object within a file, or a directory. Directories are assigned
attributes by directory transducers.

A transducer is a filter that takes as input the contents
of a file, and outputs the file’s entities and their correspond-
ing attributes. A simple transducer could treat an input file
as a single entity, and use the file’s unique words as attrib-
utes. A complex transducer might perform type reconstruc-
tion on an input file, identify each procedure as an inde-
pendent entity and use attributes to record their recon-
structed types. Figure 1 shows examples of an object file
transducer, a mail file transducer, and a TeX file transducer.

The semantics of a semantic file system can be readily
extended because users can write new transducers. Trans-
ducers are free to use new field names to describe special
attributes. For example, a CAD file transducer could intro-
duce a drawing: field to describe a drawing identifier.

The associative access interface to a semantic file sys-
tem is based upon queries that describe desired attributes of
entities. A query is a description of desired attributes that
permits a high degree of selectivity in locating entities of
interest. The result of a query is a set of files and/or directo-
ries that contain the entities described. Queries are boolean
combinations of attributes, where each attribute describes
the desired value of a field. It is also possible to ask for all
of the values of a given field in a query result set. The val-
ues of a field can be useful when narrowing a query to
eliminate entities that are not of interest.

A semantic file system is query consistent when it
guarantees query results that correspond to its current con-
tents. If updates cease to the contents of a semantic file sys-
tem it will eventually be query consistent. This property is
known as convergent consistency. The rate at which a given
implementation converges is administratively determined
by balancing the user benefits of fast convergence when
compared with the higher processing cost of indexing rap-
idly changing entities multiple times. It is of course possible
to guarantee that a semantic file system is always query
consistent with appropriate use of atomic actions.

In the remainder of this section we will explore how
conjunctive queries can be mapped into tree-structured path
names. As we mentioned earlier, this is only one of the pos-
sible interfaces to the query capabilities of a semantic file
system. It is also possible to map disjunction and negation

into tree-structured names, but they have not been imple-
mented in our prototype and we will not discuss them.

Queries are performed in a semantic file system
through use of virtual directories to describe a desired view
of file system contents. A virtual directory is computed on
demand by a semantic file system. From the point of view
of a client program, a virtual directory is indistinguishable
from an ordinary directory. However, unlike ordinary direc-
tories, virtual directories do not have to be explicitly created
to be accessed.

The query facilities of a semantic file system appear as
virtual directories at each level of the directory tree. A field
virtual directory is named by a field, and has one entry for
each possible value of its corresponding field. Thus in
/sfs, the virtual directory /sfs/owner: corresponds to
the owner: field. The field virtual directory /sfs/owner:
would have one entry for each owner that has written a file
in /sfs. For example:

% ls -F /sfs/owner:
jones/ root/ smith/
%

The entries in a field virtual directory are value virtual
directories. A value virtual directory has one entry for each
entity described by a field-value pair. Thus the value virtual
directory /sfs/owner:/smith contains entries for files in
/sfs that are owned by Smith. Each entry is a symbolic
link to the file. For example:

% ls -F /sfs/owner:/smith
bio.txt@ paper.tex@ prop.tex@
%

When an entity is smaller than an entire file, a view of
the file can be presented by extending file naming seman-
tics to include view specifications. To permit the conjunc-
tion of attributes in a query, value virtual directories contain
field virtual directories. For example:

% ls -F /sfs/owner:/smith/text:/resume
bio.txt@
%

A pleasant property of virtual directories is their syner-
gistic interaction with existing file system facilities. For
example, when a symbolic link names a virtual directory
the link describes a computed view of a file system. It is
also possible to use file save programs, such as tar, on
virtual directories to save a computed subset of a file sys-
tem. It would be possible also to generalize virtual directo-
ries to present views of file systems with respect to a certain
time in the past.

A semantic file system can be overlaid on top of an or-
dinary file system, allowing all file system operations to go
through the SFS server. The overlaid approach has the ad-
vantage that it provides the power of a semantic file system
to a user at all times without the need to refer to a distin-
guished directory for query processing. It also allows the
server to do indexing in response to file system mutation

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 6

operations. Alternatively, a semantic file system may create
virtual directories that contain links to the files in the under-
lying file system. This means that subsequent client opera-
tions bypass the semantic file system server.

When an overlaid approach is used field virtual direc-
tories must be invisible to preserve the proper operation of
tree traversal applications. A directory is invisible when it is
not returned by directory enumeration requests, but can be
accessed via explicit lookup. If field virtual directories were
visible, the set of trees under /sfs in our above example
would be infinite. Unfortunately making directories invisi-
ble causes the UNIX command pwd to fail when the current
path includes an invisible directory. It is possible to fix this
through inclusion of unusual .. entries in invisible directo-
ries.

The distinguished field: virtual directory makes field
virtual directories visible. This permits users to enumerate
possible search fields. The field: directory is itself invisible.
For example:

% ls -F /sfs/field:
author:/ exports:/ owner:/ text:/
category:/ ext:/ priority:/ title:/
date:/ imports:/ subject:/ type:/
dir:/ name:/
% ls -F
/sfs/field:/text:/semantic/owner:/jones
mail.txt@ paper.tex@ prop.tex@
%

The syntax of semantic file system path names is:

<sfs-path> ::= /<pn> | <pn>
<pn> ::= <name> | <attribute>
 <field-name> | <name>/<pn>
 <attribute>/<pn>
<attribute> ::= field: | <field-name>/<value>
<field-name> ::= <string>:
<value> ::= <string>
<name> ::= <string>

The semantics of semantic file system path names is:
• The universe of entities is defined by the path name

prefix before the first virtual directory name.
• The contents of a field virtual directory is a set of value

virtual directories, one for each value that the field de-
scribes in the universe.

• The contents of a value virtual directory is a set of en-
tries, one for each entity in the universe that has the at-
tribute described by the name of the value virtual direc-
tory and its parent field virtual directory. The contents
of a value virtual directory defines the universe of enti-
ties for its subdirectories. In the absence of name con-
flicts, the name of an entry in a value virtual directory
is its original entry name. Entry name conflicts are re-
solved by assigning nonce names to entries.

• The contents of a field: virtual directory is the set of
fields in use.

4 Semantic File System Implementation

We have built a semantic file system that implements
the NFS [SGK+85, Sun89] protocol as its external inter-
face. To use the search facilities of our semantic file sys-
tem, an Internet client can simply mount our file system at a
desired point and begin using virtual directory names. Our
NFS server computes the contents of virtual directories as
necessary in response to NFS lookup and readdir re-
quests.

A block diagram of our implementation is shown in
Figure 2. The dashed lines in the figure describe process
boundaries. The major processes are:
• The client process is responsible for generating file

system requests using normal NFS style path names.
• The file server process is responsible for creating vir-

tual directories in response to path name based queries.
The SFS Server module implements a user level NFS
server and is responsible for implementing the NFS in-
terface to the system. The SFS Server uses directory
faults to request computation of needed entries by the
Virtual Directory module. A faulting mechanism is
used because the SFS Server caches virtual directory
results, and will only fault when needed information is
requested the first time or is no longer cached. The Vir-
tual Directory module in turn calls the Query Process-
ing module to actually compute the contents of a vir-
tual directory.

Figure 2: SFS Block Diagram

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 7

The file server process records file system modification
events in a write-behind log. The modification log
eliminates duplicate modification events.

• The indexing process is responsible for keeping the
index of file system contents up-to-date. The Index
Master module examines the modification log gener-
ated by the file server process every two minutes. The
indexing process responds to a file system modification
event by choosing an appropriate transducer for the
modified object. An appropriate transducer is selected
by determination of the type of the object (e.g. C
source file, object file, directory). If no special trans-
ducer is found a default transducer is used. The output
of the transducer is fed to the Indexer module that in-
serts the computed attributes into the index. Indexing
and retrieval are based upon Peter Weinberger’s BTree
package [Wei] and an adapted version of the refer
[Les] software to maintain the mappings between at-
tributes and objects.

• The mount daemon is contacted to determine the root
file handle of the underlying UNIX file system. The
file server process exports its NFS service using the
same root file handle on a distinct port number.

• The kernel implements a standard file system that is
used to store the shared index. The file server process
could be integrated into the kernel by a VFS based im-
plementation [Kle86] of an semantic file system. We
chose to implement our prototype using a user level
NFS server to simplify development.

Instead of computing all of the virtual directories that
are present in a path name, our implementation only com-
putes a virtual directory if it is enumerated by a client
readdir request or a lookup is performed on one of its
entries. This optimization allows the SFS Server to post-
pone query processing in the hope that further attribute
specifications will reduce the amount of work necessary for
computation of the result set. This optimization is imple-
mented as follows:

• The SFS Server responds to a lookup request on a
virtual directory with a lookup_not_found fault to
the Virtual Directory module. The Virtual Directory
module checks to make sure that the virtual directory
name is syntactically well formed according to the
grammar in Section 3. If the name is well formed, the
directory fault is immediately satisfied by calling the
create_dir procedure in the SFS Server. This pro-
cedure creates a placeholder directory that is used to
satisfy the client’s original lookup request.

• The SFS Server responds to a readdir request on a
virtual directory or a lookup on one of its entries with
a fill_directory fault to the Virtual Directory
module. The Virtual Directory module collects all of
the attribute specifications in the virtual directory path

• name and passes them to the Query Processing module.
The Query Processing module uses simple heuristics to
reorder the processing of attributes to optimize query
performance. The matching entries are then material-
ized in the placeholder directory by the Virtual Direc-
tory module that calls the create_Link procedure in
the SFS Server for each matching file or directory.

The transducers that are presently supported by our
semantic file system implementation include:

• A transducer that describes New York Times articles
with type:, priority:, date:, category:,
subject:, title:, author:, and text: attributes.

• A transducer that describes object files with exports:
and imports: attributes for procedures and global
variables.

• A transducer that describes C, Pascal, and Scheme
source files with exports: and imports: attributes
for procedures.

• A transducer that describes mail files with from:, to:,
subject:, and text: attributes.

• A transducer that describes text files with text: at-
tributes. The text file transducer is the default trans-
ducer for ASCII files.

In addition to the specialized attributes listed above, all
files and directories are further described by owner, group,
dir, name, and ext attributes.

At present, we only index publicly readable files. We
are investigating indexing protected files as well, and limit-
ing query results to entities that can be read by the re-
quester. We are in the process of making a number of im-
provements to our prototype implementation. These en-
hancements include 1) full support for multi-host queries
using query routing, 2) an enhanced query language, 3)
better support for file deletion and renaming, and 4) integra-
tion of views for entities smaller than files. Our present
implementation deals with deletions by keeping a table of
deleted entities and removing them from the results of
query processing. Entities are permanently removed from
the database when a full reindexing of the system is per-
formed. We are investigating performing file and directory
renames without reindexing the underlying files.

5 Results

We ran a series of experiments using our semantic file
system implementation to test our thesis that semantic file
systems present a more effective storage abstraction than do
traditional tree structured file systems for information shar-
ing and command level programming. All of the experi-
mental data we report are from our research group’s file
server using a semantic file system. The server is a Micro-
vax-3 running UNIX version 4.3bsd. The server indexes all
of its publicly readable files and directories.

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 8

To compact the indexes our prototype system recon-
structs a full index of the file system contents every week.
On 23 July 1991, full indexing of our user file system proc-
essed 68 MBytes in 7,771 files (Table 1).2 Indexing the
resulting 1 million attributes took 1 hour and 36 minutes
(Table 2). This works out to an indexing rate of 712
KBytes/minute.

2 The 162 MBytes in publicly readable files that were not processed

were in files for which transducers have not yet been written: executable
files, PostScript files, DVI files, tar files, image data, etc.

File system mutation operations trigger incremental in-
dexing. In update tests simulating typical user editing and
compiling, incremental indexing is normally completed in
less than 5 minutes. In these tests, only 2 megabytes of
modified file data were reindexed. Incremental indexing is
slower than full indexing in the prototype system because
the incremental indexer does not make good use of real
memory for caching. The full indexer uses 10 megabytes of
real memory for caching; the incremental indexer uses less
than 1 megabyte.

The indexing operations of our prototype are I/O
bound. The CPU is 60% idle during indexing. Our meas-
urements show that transducers generate approximately 30
disk transfers per second, thereby saturating the disk. Index-
ing the resulting attributes also saturates the disk. Although
the transducers and the indexer use different disk drives, the
transducer-indexer pipeline does not allow I/O operations to
proceed in parallel on the two disks. Thus, we feel that we
could double the throughput by improving the pipeline’s
structure.

We expect our indexing strategy to scale to larger file
systems because indexing is limited by the update rate to a
file system rather than its total storage capacity. Incre-
mental processing of updates will require additional read
bandwidth approximately equal to the write traffic that ac-
tually occurs. Past studies of Unix file system activity
[OCH+85] indicate that update rates are low, and that most
new data is deleted or overwritten quickly; thus, delaying
slightly the processing of updates might reduce the addi-
tional bandwidth required by indexing.

To determine the increased latency of overlaid NFS
operations introduced by interposing our SFS server be-
tween the client and the native file system, we used the

3 in parallel with Transduce

Total file system size 326 MBytes
Amount publicly readable 230 MBytes
Amount with known transducer 68 MBytes
Number of distinct attributes 173,075
Number of attributes indexed 1,042,832
Type Number of Files KBytes
Object 871 8,503
Source 2,755 17,991
Text 1,871 20,638
Other 2,274 21,187
Total 7,771 68,319

Table 1: User File System Statistics for 23 July 1991

Part of index Size in
KBytes

Index Tables 6,621
Index Trees 3,398
Total 10,019

Phase Time (hh:mm)
Directory Enumeration 0:07
Determine File Types 0:01
Transduce Directory 0:01
Transduce Object 0:08
Transduce Source 0:23
Transduce Text 0:23
Transduce Other 0:24
Build Index Tables3 1:22
Build Index Trees 0:06
Total 1:36

Table 2: User FS Indexing Statistics on 23 July 1991

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 9

nhfsstone benchmark [Leg89] at low loads. The delays ob-
served from an unmodified client machine were smaller
than the variation in latencies of the native NFS operations.
Preliminary measurements show that lookup operations
are delayed by 2 ms on average, and operations that gener-
ate update notifications incur a larger delay.

The following anecdotal evidence supports our thesis
that a semantic file system is more effective than traditional
file systems for information sharing:
• The typical response time for the first ls command on

a virtual directory is approximately 2 seconds. This re-
sponse time reflects a substantial time savings over lin-
ear search through our entire file system with existing
tools. In addition, subsequent ls commands respond
immediately with cached results.
We ran a series of experiments to test how the number
of attributes in a virtual directory name altered the ob-
served performance of the Is command on a virtual di-
rectory. Attributes were added one at a time to arrive at
the final path name:

/sfs/text:/virtual/
text:/directory/ text:/semantic/
ext:/tex/ owner:/gifford

The two properties of a query that affect its response
time are the number of attributes in the query and the
number of objects in the result set. The effect of an in-
crease in either of these factors is additional disk ac-
cesses. Figure 3 illustrates the interplay of these fac-
tors. Each point on the response time graph is the aver-
age of three experiments. In a separate experiment we
measured an average response time of 5.4 seconds
when the result set grew to 545 entities.

• We began to use the semantic file system as soon as it
was operable to help coordinate the production of this

paper and for a variety of other everyday tasks. We
have found the virtual directory interface to be easy to
use. (We were immediately able to use the GNU
Emacs directory editor DIRED [Sta87] to submit que-
ries and browse the results. No code modification was
required.) At least two users in our group reex-amined
their file protections in view of the ease with which
other users could locate interesting files in the system.

• Users outside our research group have successfully
used the query interface to locate information, includ-
ing newspaper articles, in our file system.

• Users outside our research group have failed to find
files for which no transducer had yet been installed.
We are developing new transducers in response to
these failed queries.

The following anecdotal evidence supports our thesis
that a semantic file system is more effective than traditional
file systems for command level programming:

• The UNIX shell pathname expansion facilities inte-
grate well with virtual directories. For example, it is
possible to query the file system for all dvi files owned
by a particular user, and to print those whose names
begin with a certain sequence of characters.

• Symbolic links have proven to be an effective way to
describe file system views. The result of using such a
symbolic link as a directory is a dynamically computed
set of files.

6 Conclusions

We have described how a semantic file system can pro-
vide associative attribute-based access to the contents of an
information storage system with the help of file type spe-
cific transducers. We have also discussed how this access
can be integrated into the file system itself with virtual di-
rectories. Virtual directories are directories that are com-
puted upon demand.

The results to date are consistent with our thesis that
semantic file systems present a more effective storage ab-
straction than do traditional tree structured file systems for
information sharing and command level programming. We
plan to conduct further experiments to explore this thesis in
further detail. We plan also to examine how virtual directo-
ries can directly benefit application programmers.

Our experimental system has tested one semantics for
virtual directories, but there are many other possibilities.
For example:
• The virtual directory syntax can be extended to support

a richer query language. Disjunctive queries would
permit users to use “or” in their queries, and would also
offer the ability to search on multiple network semantic
file systems concurrently.

Figure 3: Plot of Number of Attributes vs. Response Time
and Number of Results

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 10

• Users could assign attributes to file system entities in
addition to the attributes that are automatically as-
signed by transducers.

• Transducers could be created for audio and video files.
In principle this would permit access by time, frame
number, or content [Nee91].

• The data model underlying a semantic file system
could be enhanced. For example, an entity-relationship
model [Cat83] would provide more expressive power
than simple attribute based retrieval.

• The entities indexed by a semantic file system could
include a wide variety of object types, including I/O
devices and file servers. Wide-area naming systems
such as X.500 [CCI88] could be presented in terms of
virtual directories.

• A confederation of semantic file systems, possibly
numbering in the thousands, can be organized into an
semantic library system. A semantic library system ex-
ports the same interface as an individual semantic file
system, and thus a semantic library system permits as-
sociative access to the contents of its constituent serv-
ers with existing file system protocols as well as with
protocols that are designed specifically for content
based access. A semantic library system is imple-
mented by servers that use content based routing
[GLB85] to direct a single user request to one or more
relevant semantic file systems.
We have already completed the implementation of an
NFS compatible query processing system that forwards
requests to multiple hosts and combines the results.

• Virtual directories can be used as an interface to other
systems, such as information retrieval systems and
programming environment support systems, such as
PCTE. We are exploring also how existing applications
could access object repositories via a virtual directory
interface. It is possible to extend the semantics of a se-
mantic file system to include access to individual enti-
ties in a manner suitable for an object repository
[GO91].

• Relevance feedback and query results could be added
by introducing new virtual directories.

The implementation of real-time indexing may require
a substantial amount of computing power at a semantic file
server. We are investigating how to optimize the task of
real-time indexing in order to minimize this load. Another
area of research is exploring how massive parallelism
[SK86] might replace indexing.

An interesting limiting case of our design is a system
that makes an underlying tree structured naming system
superfluous. In such a system all directories would be com-
puted upon demand, including directories that correspond to
traditional tree structured file names. Such a system might
help us share information more effectively by encouraging
query based access that would lead to the discovery of un-
expected but useful information.

Acknowledgments

We would like to thank Doug Grundman, Andrew
Myers, and Raymie Stata, for their various contributions to
the paper and the implementation. The referees provided
valuable feedback and concrete suggestions that we have
endeavored to incorporate into the paper. In particular, we
very much appreciate the useful and detailed comments
provided by Mike Burrows.

References

[BP88] Brian N. Bershad and C. Brian Pinkerton.
Watchdogs: Extending the UNIX file system.
In USENIX Association 1988 Winter Confer-
ence Proceedings, pages 267-275, Dallas,
Texas, February 1988.

[Cat83] R. G. G. Cattell. Design and implementation of
a relationship-entity-datum data model. Tech-
nical Report CSL-83-4, Xerox PARC, Palo
Alto, California, May 1983.

[CCI88] CCITT. The Directory - Overview of Con-
cepts, Models and Services. Recommendation
X.500, 1988.

[CG91] Vincent Gate and Thomas Gross. Combining
the concepts of compression and caching for a
two-level filesystem. In Fourth International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems,
pages 200-211, Santa Clara, California, April
1991. ACM.

[CL89] Brent Callaghan and Tom Lyon. The auto-
mounter. In USENIX Association 1989 Winter
Conference Proceedings, 1989.

[Cla90] Claris Corporation, Santa Clara, California,
January 1990. News Release.

[Cor] Lotus Corporation. Lotus Magellan: Quick
Launch. Product tutorial, Lotus Corporation,
Cambridge, Massachusetts. Part number
35115.

[DANO91] Peter B. Danzig, Jongsuk Ahn, John Noll, and
Katia Obraczka. Distributed indexing: A scal-
able mechanism for distributed information re-
trieval. Technical Report USC-TR 91-06, Uni-
versity of Southern California, Computer Sci-
ence Department, 1991.

[GCS87] David K. Gifford, Robert G. Cote, and David
A. Segal. Walter user’s manual. Technical Re-
port MIT/LCS/TR-399, M.I.T. Laboratory for
Computer Science, September 1987.

[GLB85] David K. Gifford, John M. Lucassen, and
Stephen T. Berlin. An architecture for large
scale information systems. In 10th Symposium
on Operating System Principles, pages 161—
170. ACM, December 1985.

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 11

[GMT86] Ferdinando Gallo, Regis Minot, and Ian Tho-
mas. The object management system of PCTE
as a software engineering database manage-
ment system. In Second ACM SIG-
SOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Envi-
ronments, pages 12-15. ACM, December 1986.

[GO91] David K. Gifford and James W. O’Toole. Intel-
ligent file systems for object repositories. In
Operating Systems of the 90s and Beyond,
Saarbriicken, Germany, July 1991. Internation-
ales Begegnales- und Forschungs-zentrum fiir
Informatik, Schloss Dagstuhl-Geschaftsstelle.
To be published by Springer-Verlag.

[Gro86] Computer Systems Research Group. UNIX
User’s Reference Manual. 4.3 Berkeley Soft-
ware Distribution, Berkeley, California, April
1986. Virtual VAX-11 Version.

[Inf90] Information Dimensions, Inc. BASISplus. The
Key To Managing The World Of Information.
Information Dimensions, Inc., Dublin, Ohio,
1990. Product description.

[Kaz88] Michael Leon Kazar. Synchronization and
caching issues in the Andrew File System. In
USENIX Association 1988 Winter Conference
Proceedings, pages 31-43, 1988.

[Kil84] T. J. Killian. Processes as files. In USENIX
Association 1984 Summer Conference Pro-
ceedings, Salt Lake City, Utah, 1984.

[Kle86] S. R. Kleiman. Vnodes: An architecture for
multiple file system types in Sun UNIX. In
USENIX Association 1986 Winter Conference
Proceedings, pages 238-247, 1986.

[KM91] Brewster Kahle and Art Medlar. An informa-
tion system for corporate users: Wide area in-
formation servers. Technical Report TMC-199,
Thinking Machines, Inc., April 1991. Version
3.

[Leg89] Legato Systems, Inc. Nhfsstone. Software
package. Legato Systems, Inc., Palo Alto, Cali-
fornia, 1989.

[Les] M. E. Lesk. Some applications of inverted in-
dexes on the UNIX system. UNIX Supplemen-
tary Document, Section 30.

[Log91] Boss Logic, Inc. Boss DMS development
specification. Technical documentation, Boss
Logic, Inc., Fairfield, IA, February 1991.

[Mog86] Jeffrey C. Mogul. Representing information
about files. Technical Report 86-1103, Stan-
ford Univ. Department of CS, March 1986.
Ph.D. Thesis.

[NC89a] NeXT Corporation. 1.0 release notes: Indexing.
NeXT Corporation, Palo Alto, California,
1989.

[NC89b] NeXT Corporation. Text indexing facilities on
the NeXT computer. NeXT Corporation, Palo
Alto, California, 1989. from 1.0 Release Notes.

[Nee91] Roger Needham, 1991. Personal communica-
tion.

[Neu90] B. Clifford Neuman. The virtual system model:
A scalable approach to organizing large sys-
tems. Technical Report 90-05-01, Univ. of
Washington CS Department, May 1990. Thesis
Proposal.

[NIS91] Ansi z39.50 version 2. National Information
Standards Organization, Bethesda, Maryland,
January 1991. Second Draft.

[OCH+85] John K. Ousterhout, Herve Da Costa, David
Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. A trace-driven analysis of
the unix 4.2bsd file system. In Symposium on
Operating System Principles, pages 15—24.
ACM, December 1985.

[Pen90] Jan-Simon Pendry. Amd — an automounter.
Department of Computing, Imperial College,
London, May 1990.

[Pet88] Larry Peterson. The Profile Naming Service.
ACM Transactions on Computer Systems,
6(4):341-364, November 1988.

[PPTT90] Rob Pike, Dave Presotto, Ken Thompson, and
Howard Trickey. Plan 9 from Bell Labs. UK
UUG proceedings, 1990.

[PW90] Jan-Simon Pendry and Nick Williams. Amd:
The 4.4 BSD automounter reference manual,
December 1990. Documentation for software
revision 5.3 Alpha.

[Roc85] Marc J. Rochkind. Advanced UNIX Program-
ming. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1985.

[RT74] D. M. Ritchie and K. Thompson. The UNIX
Time-Sharing System. Comm. ACM,
17(7):365-375, July 1974.

[Sal83] Gerard Salton. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, New York,
1983.

[SC88] Sun Corporation. The Network Software Envi-
ronment. Technical report, Sun Computer Cor-
poration, Mountain View, California, 1988.

[Sch89] Michael F. Schwartz. The Networked Resource
Discovery Project. In Proceedings of the IFIP
XI World Congress, pages 827-832. IFIP, Au-
gust 1989.

[SGK+85] R. Sandberg, D. Goldberg, S. Kleiman, D.
Walsh, and B. Lyon. Design and implementa-
tion of the Sun Network Filesystem. In
USENIX Association 1985 Summer Conference
Proceedings, pages 119-130, 1985.

[SK86] C. Stanfill and B. Kahle. Parallel Free-Text
Search on the Connection Machine System.

6.826—Principles of Computer Systems 2004

Handout 13. Paper: Semantic File Systems 12

Comm. ACM, pages 1229-1239, December
1986.

[Sta87] Richard Stallman. GNU Emacs Manual. Free
Software Foundation, Cambridge, MA, March
1987. Sixth Edition, Version 18.

[Ste91] Richard Marlon Stein. Browsing through tera-
bytes: Wide-area information servers open a
new frontier in personal and corporate informa-
tion services. Byte, pages 157-164, May 1991.

[Sun88] Sun Microsystems, Sunnyvale, California. Net-
work Programming, May 1988. Part Number
800-1779-10.

[Sun89] NFS: Network file system protocol specifica-
tion. Sun Microsystems, Network Working
Group, Request for Comments (RFC 1094),
March 1989. Version 2.

[Tec90] ON Technology. ON Technology, Inc. an-
nounces On Location for the Apple Macintosh
computer. News Release ON Technology, Inc.,
Cambridge, Massachusetts, January 1990.

[Ver90] Verity. Topic. Product description, Verity,
Mountain View, California, 1990.

[Wei] Peter Weinberger. CBT Program documenta-
tion. Bell Laboratories.

[WO88] Brent B. Welch and John K. Ousterhout.
Pseudo devices: User-level extensions to the
Sprite file system. In USENIX Association
1988 Summer Conference Proceedings, pages
37-49, San Francisco, California, June 1988.

