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Abstract1 

A semantic file system is an information storage system 
that provides flexible associative access to the system’s 
contents by automatically extracting attributes from files 
with file type specific transducers. Associative access is 
provided by a conservative extension to existing tree-
structured file system protocols, and by protocols that are 
designed specifically for content based access. Compatibil-
ity with existing file system protocols is provided by intro-
ducing the concept of a virtual directory. Virtual directory 
names are interpreted as queries, and thus provide flexible 
associative access to files and directories in a manner com-
patible with existing software. Rapid attribute-based access 
to file system contents is implemented by automatic extrac-
tion and indexing of key properties of file system objects. 
The automatic indexing of files and directories is called 
“semantic” because user programmable transducers use 
information about the semantics of updated file system ob-
jects to extract the properties for indexing. Experimental 
results from a semantic file system implementation support 
the thesis that semantic file systems present a more effec-
tive storage abstraction than do traditional tree structured 
file systems for information sharing and command level 
programming. 

1 Introduction 

We would like to develop an approach for information 
storage that both permits users to share information more 
effectively, and provides reductions in programming effort 
and program complexity. To be effective this new approach 
must be used, and thus an approach that provides a transi-
tion path from existing file systems is desirable. 

In this paper we explore the thesis that semantic file 
systems present a more effective storage abstraction than do 
traditional tree structured file systems for information shar-
ing and command level programming. A semantic file sys-
tem is an information storage system that provides flexible 
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associative access to the system’s contents by automatically 
extracting attributes from files with file type specific trans-
ducers. Associative access is provided by a conservative 
extension to existing tree-structured file system protocols, 
and by protocols that are designed specifically for content 
based access. Automatic indexing is performed when files 
or directories are created or updated. 

The automatic indexing of files and directories is called 
“semantic” because user programmable transducers use 
information about the semantics of updated file system ob-
jects to extract the properties for indexing. Through the use 
of specialized transducers, a semantic file system “under-
stands” the documents, programs, object code, mail, im-
ages, name service databases, bibliographies, and other files 
contained by the system. For example, the transducer for a 
C program could extract the names of the procedures that 
the program exports or imports, procedure types, and the 
files included by the program. A semantic file system can 
be extended easily by users through the addition of special-
ized transducers. 

Associative access is designed to make it easier for us-
ers to share information by helping them discover and lo-
cate programs, documents, and other relevant objects. For 
example, files can be located based upon transducer gener-
ated attributes such as author, exported or imported proce-
dures, words contained, type, and title. 

A semantic file system provides both a user interface 
and an application programming interface to its associative 
access facilities. User interfaces based upon browsers 
[Inf90, Ver90] have proven to be effective for query based 
access to information, and we expect browsers to be offered 
by most semantic file system implementations. Application 
programming interfaces that permit remote access include 
specialized protocols for information retrieval [NIS91], and 
remote procedure call based interfaces [GCS87]. 

It is also possible to export the facilities of a semantic 
file system without introducing any new interfaces. This 
can be accomplished by extending the naming semantics of 
files and directories to support associative access. A benefit 
of this approach is that all existing applications, including 
user interfaces, immediately inherit the benefits of associa-
tive access. 

A semantic file system integrates associative access 
into a tree structured file system through the concept of a 
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virtual directory. Virtual directory names are interpreted as 
queries and thus provide flexible associative access to files 
and directories in a manner compatible with existing soft-
ware. 

For example,  in the following session with a semantic 
file system we first locate within a library all of the files 
that export the procedure lookup_f ault, and then fur-
ther restrict this set of files to those that have the extension 
c: 

% cd /sfs/exports:/lookup_fault 
% Is -F 
virtdir_query.c@       virtdir_query.o@ 
% cd ext:/c 
% Is -F 
virtdir_query. c@ 
% 

Semantic file systems can provide associative access to 
a group of file servers in a distributed system. This distrib-
uted search capability provides a simplified mechanism for 
locating information in large nationwide file systems. 

Semantic file systems should be of use to both indi-
viduals and groups. Individuals can use the query facility of 
a semantic file system to locate files and to provide alterna-
tive views of data. Groups of users should find semantic file 
systems an effective way to learn about shared files and to 
keep themselves up to date about the status of group pro-
jects. As workgroups increasingly use file servers as shared 
library resources we expect that semantic file system tech-
nology will become even more useful. 

Because semantic file systems are compatible with ex-
isting tree structured file systems, implementations of se-
mantic file systems can be fully compatible with existing 
network file system protocols such as NFS [SGK+85, 
Sun88] and AFS [Kaz88]. NFS compatibility permits exist-
ing client machines to use the indexing and associative ac-
cess features of a semantic file system without modifica-
tion. Files stored in a semantic file system via NFS will be 
automatically indexed, and query result sets will appear as 
virtual directories in the NFS name space. This approach 
directly addresses the “dusty data” problem of existing 
UNIX file systems by allowing existing UNIX file servers 
to be converted transparently to semantic file systems. 

We have built a prototype semantic file system and run 
a series of experiments to test our thesis that semantic file 
systems present a more effective storage abstraction than do 
traditional tree structured file systems for information shar-
ing and command level programming. We tried to locate 
various documents and programs in the file system using 
unmodified NFS clients. The results of these experiments 
suggest that semantic file systems can be used to find in-
formation more quickly than is possible using ordinary file 
systems, and add expressive power to command level pro-
gramming languages. 

In the remainder of the paper we discuss previous re-
search (Section 2), introduce the interface and a semantics 
for a semantic file system (Section 3), review the design 

and implementation of a semantic file system (Section 4), 
present our experimental results (Section 5) and conclude 
with observations on other applications of virtual directo-
ries (Section 6). 

2 Previous Work 

Associative access to on-line information was pio-
neered in early bibliographic retrieval systems where it was 
found to be of great value in locating information in large 
databases [Sal83]. The utility of associative access moti-
vated its subsequent application to file and document man-
agement. The previous research we build upon includes 
work on personal computer indexing systems, information 
retrieval systems, distributed file systems, new naming 
models for file systems, and wide-area naming systems: 
• Personal computer indexing systems such as On Loca-

tion [Tec90], Magellan [Cor], and the Digital Librarian 
[NC89b, NC89a] provide window-based file system 
browsers that permit word-based associative access to 
file system contents. Magellan and the Digital Librar-
ian permit searches based upon boolean combinations 
of words, while On Location is limited to conjunctions 
of words. All three systems rank matching files using a 
relevance score. These systems all create indexes to re-
duce search time. On Location automatically indexes 
files in the background, while Magellan and the Digital 
Librarian require users to explicitly create indexes. 
Both On Location and the Digital Librarian permit us-
ers to add appropriate keyword generation programs 
[Cla90, NC89b] to index new types of files. However, 
Magellan, On Location, and the Digital Librarian are 
limited to a list of words for file description. 

• Information  retrieval systems such  as  Basis  [Inf90], 
Verity [Ver90], and Boss DMS [Log91] extend the se-
mantics  of personal  computer  indexing  systems  by 
adding field specific queries. Fields that can be queried 
include document category, author, type, title, identi-
fier, status, date, and text contents. Many of these 
document relationships and attributes can be stored in 
relational database systems that provide a general 
query language and support application program ac-
cess. The WAIS system permits information at remote 
sites to be queried, but relies upon the user to choose 
an appropriate remote host from a directory of services 
[KM91, Ste91]. Distributed information retrieval sys-
tems [GCS87, DANO91] perform query routing based 
upon database content labels to ensure that all relevant 
hosts are contacted in response to a query. 

• Distributed file systems [Sun89, Kaz88] provide re-
mote access to files with tree structured names. These 
systems have enabled file sharing among groups of 
people and over wide geographic areas. Existing UNIX 
tools such as grep and find [Gro86] are often used to 
perform associative searches in distributed file systems. 
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• New naming models for file systems include the Port-
able Common  Tool Environment  (PCTE)  [GMT86],  
the Property  List  DIRectory  system  (PLDIR)   
[Mog86], Virtual Systems [Neu90] and Sun’s Network 
Software Environment (NSE) [SC88]. PCTE provides 
an entity-relationship  database that  models  the  at-
tributes  of objects including files. PCTE has been im-
plemented as a compatible extension to UNIX. How-
ever, PCTE users must use specialized tools to query 
the PCTE database, and thus do not receive the benefits 
of associative access via a file system interface. The 
Property List DIRectory system implements a file sys-
tem model designed around file properties and offers a 
Unix front-end user interface. Similarly, Virtual Sys-
tems permit users to hand-craft customized views of 
services, files, and directories. However, neither sys-
tem provides automatic attribute extraction (although 
[Mog86] alludes to it as a possible extension) or attrib-
ute-based access to their contents. NSE is a network 
transparent software development tool that allows dif-
ferent views of a file system hierarchy called environ-
ments to be defined. Unlike virtual directories, these 
views must be explicitly created before being accessed. 

• Wide-area naming systems such as X.500 [CCI88], 
Profile  [Pet88],  and the Networked Resource  Discov-
ery Project [Sch89] provide attribute-based access to a 
wide variety of objects, but they are not integrated into 
a file system nor do they provide automatic attribute-
based access to the contents of a file system. 

Key advances offered by the present work include: 

• Virtual directories integrate associative access into 
existing tree structured file systems in a manner that is 
compatible with existing applications. 

• Virtual directories permit unmodified remote hosts to 
access the facilities of a semantic file system with ex-
isting network file system protocols. 

• Transducers can be programmed by users to perform 
arbitrary interpretation of file and directory contents in 
order to produce a desired set of field-value pairs for 
later retrieval. The use of fields allows transducers to 
describe many aspects of a file, and thus permits sub-
sequent sophisticated associative access to computed 
properties. In addition, transducers can identify entities 
within files as independent objects for retrieval. For 
example, individual mail messages within a mail file 
can be treated as independent entities. 

Previous research supports our view that overloading 
file system semantics can improve system uniformity and 
utility when compared with the alternative of creating a 
new interface that is incompatible with existing applica-
tions. Examples of this approach include: 

• Devices in UNIX appear as special files [RT74] in the 
/dev directory, enabling them to be used as ordinary 
files from UNIX applications. 

• UNIX System III named pipes [Roc85, p. 159f] appear 
as special files, enabling programs to rendezvous using 
file system operations. 

• File systems appear as special directories in Automount 
daemon directories [CL89, Pen90, PW90], enabling the 
binding of a name to a file system to be computed at 
the time of reference. 

• Processes appear as special directories in Killian’s 
process file system [Kil84], enabling process observa-
tion and control via file operations. 

• Services   appear   as   special   directories   in   Plan   9 
[PPTT90], enabling service access in a distributed sys-
tem through file  system  operations in  the service’s 
name space. 

• Arbitrary semantics can be associated with files and 
directories using Watchdogs [BP88], Pseudo Devices 
[WO88], and Filters [Neu90], enabling file system ex-
tensions such as terminal drivers, network protocols, X 
servers, file access control, file compression, mail noti-
fication, user specific directory views, heterogeneous 
file access, and service access. 

• The ATTIC system [CG91] uses a modified NFS 
server to provide transparent access to automatically 
compressed files. 
 

3 Semantic File System Semantics 

Semantic file systems can implement a wide variety of 
semantics. In this section we present one such semantics 
that we have implemented. Section 6 describes some other 
possibilities. 

Files stored in a semantic file system are interpreted by 
file type specific transducers to produce a set of descriptive 
attributes that enable later retrieval of the files. An attribute 
is a field-value pair, where a field describes a property of a 
file (such as its author, or the words in its text), and a value 
is a string or an integer. A given file can have many attrib-
utes that have the same field name. For example, a text file 

 

Figure 1: Sample Transducer Output 
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would have as many text: attributes as it has unique 
words. By convention, field names end with a colon. 

A user extensible transducer table is used to determine 
the transducer that should be used to interpret a given file 
type. One way of implementing a transducer table is to 
permit users to store subtree specific transducers in the sub-
tree’s parent directory, and to look for an appropriate trans-
ducer at indexing time by searching up the directory hierar-
chy. 

To accommodate files (such as mail files) that contain 
multiple objects we have generalized the unit of associative 
access beyond whole files. We call the unit of associative 
access an entity. An entity can consist of an entire file, an 
object within a file, or a directory. Directories are assigned 
attributes by directory transducers. 

A transducer is a filter that takes as input the contents 
of a file, and outputs the file’s entities and their correspond-
ing attributes. A simple transducer could treat an input file 
as a single entity, and use the file’s unique words as attrib-
utes. A complex transducer might perform type reconstruc-
tion on an input file, identify each procedure as an inde-
pendent entity and use attributes to record their recon-
structed types. Figure 1 shows examples of an object file 
transducer, a mail file transducer, and a TeX file transducer. 

The semantics of a semantic file system can be readily 
extended because users can write new transducers. Trans-
ducers are free to use new field names to describe special 
attributes. For example, a CAD file transducer could intro-
duce a drawing: field to describe a drawing identifier. 

The associative access interface to a semantic file sys-
tem is based upon queries that describe desired attributes of 
entities. A query is a description of desired attributes that 
permits a high degree of selectivity in locating entities of 
interest. The result of a query is a set of files and/or directo-
ries that contain the entities described. Queries are boolean 
combinations of attributes, where each attribute describes 
the desired value of a field. It is also possible to ask for all 
of the values of a given field in a query result set. The val-
ues of a field can be useful when narrowing a query to 
eliminate entities that are not of interest. 

A semantic file system is query consistent when it 
guarantees query results that correspond to its current con-
tents. If updates cease to the contents of a semantic file sys-
tem it will eventually be query consistent. This property is 
known as convergent consistency. The rate at which a given 
implementation converges is administratively determined 
by balancing the user benefits of fast convergence when 
compared with the higher processing cost of indexing rap-
idly changing entities multiple times. It is of course possible 
to guarantee that a semantic file system is always query 
consistent with appropriate use of atomic actions. 

In the remainder of this section we will explore how 
conjunctive queries can be mapped into tree-structured path 
names. As we mentioned earlier, this is only one of the pos-
sible interfaces to the query capabilities of a semantic file 
system. It is also possible to map disjunction and negation 

into tree-structured names, but they have not been imple-
mented in our prototype and we will not discuss them. 

Queries are performed in a semantic file system 
through use of virtual directories to describe a desired view 
of file system contents. A virtual directory is computed on 
demand by a semantic file system. From the point of view 
of a client program, a virtual directory is indistinguishable 
from an ordinary directory. However, unlike ordinary direc-
tories, virtual directories do not have to be explicitly created 
to be accessed. 

The query facilities of a semantic file system appear as 
virtual directories at each level of the directory tree. A field 
virtual directory is named by a field, and has one entry for 
each possible value of its corresponding field. Thus in 
/sfs, the virtual directory /sfs/owner: corresponds to 
the owner: field. The field virtual directory /sfs/owner: 
would have one entry for each owner that has written a file 
in /sfs. For example: 

% ls -F /sfs/owner: 
jones/        root/         smith/ 
% 

The entries in a field virtual directory are value virtual 
directories. A value virtual directory has one entry for each 
entity described by a field-value pair. Thus the value virtual 
directory /sfs/owner:/smith contains entries for files in 
/sfs that are owned by Smith. Each entry is a symbolic 
link to the file. For example: 

% ls -F /sfs/owner:/smith 
bio.txt@       paper.tex@     prop.tex@ 
% 

When an entity is smaller than an entire file, a view of 
the file can be presented by extending file naming seman-
tics to include view specifications. To permit the conjunc-
tion of attributes in a query, value virtual directories contain 
field virtual directories. For example: 

% ls -F /sfs/owner:/smith/text:/resume 
bio.txt@ 
% 

A pleasant property of virtual directories is their syner-
gistic interaction with existing file system facilities. For 
example, when a symbolic link names a virtual directory 
the link describes a computed view of a file system. It is 
also possible to use file save programs, such as tar, on 
virtual directories to save a computed subset of a file sys-
tem. It would be possible also to generalize virtual directo-
ries to present views of file systems with respect to a certain 
time in the past. 

A semantic file system can be overlaid on top of an or-
dinary file system, allowing all file system operations to go 
through the SFS server. The overlaid approach has the ad-
vantage that it provides the power of a semantic file system 
to a user at all times without the need to refer to a distin-
guished directory for query processing. It also allows the 
server to do indexing in response to file system mutation 
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operations. Alternatively, a semantic file system may create 
virtual directories that contain links to the files in the under-
lying file system. This means that subsequent client opera-
tions bypass the semantic file system server. 

When an overlaid approach is used field virtual direc-
tories must be invisible to preserve the proper operation of 
tree traversal applications. A directory is invisible when it is 
not returned by directory enumeration requests, but can be 
accessed via explicit lookup. If field virtual directories were 
visible, the set of trees under /sfs in our above example 
would be infinite. Unfortunately making directories invisi-
ble causes the UNIX command pwd to fail when the current 
path includes an invisible directory. It is possible to fix this 
through inclusion of unusual .. entries in invisible directo-
ries. 

The distinguished field: virtual directory makes field 
virtual directories visible. This permits users to enumerate 
possible search fields. The field: directory is itself invisible. 
For example: 

% ls  -F /sfs/field: 
author:/   exports:/  owner:/       text:/ 
category:/ ext:/      priority:/    title:/ 
date:/     imports:/  subject:/     type:/ 
dir:/      name:/ 
% ls -F 
/sfs/field:/text:/semantic/owner:/jones 
mail.txt@       paper.tex@    prop.tex@ 
% 

The syntax of semantic file system path names is: 

<sfs-path> ::= /<pn> | <pn> 
<pn> ::= <name> | <attribute> 
     <field-name> | <name>/<pn> 
     <attribute>/<pn> 
<attribute> ::= field: | <field-name>/<value>  
<field-name> ::= <string>:  
<value> ::= <string> 
<name>  ::= <string> 

The semantics of semantic file system path names is: 
• The universe of entities is defined by the path name 

prefix before the first virtual directory name. 
• The contents of a field virtual directory is a set of value 

virtual directories, one for each value that the field de-
scribes in the universe. 

• The contents of a value virtual directory is a set of en-
tries, one for each entity in the universe that has the at-
tribute described by the name of the value virtual direc-
tory and its parent field virtual directory. The contents 
of a value virtual directory defines the universe of enti-
ties for its subdirectories. In the absence of name con-
flicts,  the name of an entry in a value virtual directory 
is its original entry name. Entry name conflicts are re-
solved by assigning nonce names to entries. 

• The contents of a field: virtual directory is the set of 
fields in use. 

4 Semantic File System Implementation 

We have built a semantic file system that implements 
the NFS [SGK+85, Sun89] protocol as its external inter-
face. To use the search facilities of our semantic file sys-
tem, an Internet client can simply mount our file system at a 
desired point and begin using virtual directory names. Our 
NFS server computes the contents of virtual directories as 
necessary in response to NFS lookup and readdir re-
quests. 

A block diagram of our implementation is shown in 
Figure 2. The dashed lines in the figure describe process 
boundaries. The major processes are: 
• The client process is responsible for generating file 

system requests using normal NFS style path names. 
• The file server process is responsible for creating vir-

tual directories in response to path name based queries. 
The SFS Server module implements a user level NFS 
server and is responsible for implementing the NFS in-
terface to the system. The SFS Server uses directory 
faults to request computation of needed entries by the 
Virtual Directory module. A faulting mechanism is 
used because the SFS Server caches virtual directory 
results, and will only fault when needed information is 
requested the first time or is no longer cached. The Vir-
tual Directory module in turn calls the Query Process-
ing module to actually compute the contents of a vir-
tual directory. 

 

Figure 2: SFS Block Diagram 
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The file server process records file system modification 
events in a write-behind log. The modification log 
eliminates duplicate modification events. 

• The indexing process is responsible for keeping the 
index of file system contents up-to-date. The Index 
Master module examines the modification log gener-
ated by the file server process every two minutes. The 
indexing process responds to a file system modification 
event by choosing an appropriate transducer for the 
modified object. An appropriate transducer is selected 
by determination of the type of the object (e.g. C 
source file, object file, directory). If no special trans-
ducer is found a default transducer is used. The output 
of the transducer is fed to the Indexer module that in-
serts the computed attributes into the index. Indexing 
and retrieval are based upon Peter Weinberger’s BTree 
package [Wei] and an adapted version of the refer 
[Les] software to maintain the mappings between at-
tributes and objects. 

• The mount daemon is contacted to determine the root 
file handle of the underlying UNIX file system. The 
file server process exports its NFS service using the 
same root file handle on a distinct port number. 

• The kernel implements a standard file system that is 
used to store the shared index. The file server process 
could be integrated into the kernel by a VFS based im-
plementation [Kle86] of an semantic file system. We 
chose to implement our prototype using a user level 
NFS server to simplify development. 

Instead of computing all of the virtual directories that 
are present in a path name, our implementation only com-
putes a virtual directory if it is enumerated by a client 
readdir request or a lookup is performed on one of its 
entries. This optimization allows the SFS Server to post-
pone query processing in the hope that further attribute 
specifications will reduce the amount of work necessary for 
computation of the result set. This optimization is imple-
mented as follows: 

• The SFS Server responds to a lookup request on a 
virtual directory with a lookup_not_found fault to 
the Virtual Directory module. The Virtual Directory 
module checks to make sure that the virtual directory 
name is syntactically well formed according to the 
grammar in Section 3. If the name is well formed, the 
directory fault is immediately satisfied by calling the 
create_dir procedure in the SFS Server. This pro-
cedure creates a placeholder directory that is used to 
satisfy the client’s original lookup request. 

• The SFS Server responds to a readdir request on a 
virtual directory or a lookup on one of its entries with 
a fill_directory fault to the Virtual Directory 
module. The Virtual Directory module collects all of 
the attribute specifications in the virtual directory path 

• name and passes them to the Query Processing module. 
The Query Processing module uses simple heuristics to 
reorder the processing of attributes to optimize query 
performance. The matching entries are then material-
ized in the placeholder directory by the Virtual Direc-
tory module that calls the create_Link procedure in 
the SFS Server for each matching file or directory. 

The transducers that are presently supported by our 
semantic file system implementation include: 

• A transducer that describes New York Times articles 
with type:, priority:, date:, category:, 
subject:, title:, author:, and text: attributes. 

• A transducer that describes object files with exports: 
and  imports: attributes for procedures  and global 
variables. 

• A transducer that describes C,  Pascal,  and Scheme 
source files with exports: and imports: attributes 
for procedures. 

• A transducer that describes mail files with from:, to:, 
subject:, and text: attributes. 

• A transducer that describes text files with text: at-
tributes. The text file transducer is the default trans-
ducer for ASCII files. 

In addition to the specialized attributes listed above, all 
files and directories are further described by owner, group, 
dir, name, and ext attributes. 

At present, we only index publicly readable files. We 
are investigating indexing protected files as well, and limit-
ing query results to entities that can be read by the re-
quester. We are in the process of making a number of im-
provements to our prototype implementation. These en-
hancements include 1) full support for multi-host queries 
using query routing, 2) an enhanced query language, 3) 
better support for file deletion and renaming, and 4) integra-
tion of views for entities smaller than files. Our present 
implementation deals with deletions by keeping a table of 
deleted entities and removing them from the results of 
query processing. Entities are permanently removed from 
the database when a full reindexing of the system is per-
formed. We are investigating performing file and directory 
renames without reindexing the underlying files. 

5     Results 

We ran a series of experiments using our semantic file 
system implementation to test our thesis that semantic file 
systems present a more effective storage abstraction than do 
traditional tree structured file systems for information shar-
ing and command level programming. All of the experi-
mental data we report are from our research group’s file 
server using a semantic file system. The server is a Micro-
vax-3 running UNIX version 4.3bsd. The server indexes all 
of its publicly readable files and directories. 
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To compact the indexes our prototype system recon-
structs a full index of the file system contents every week. 
On 23 July 1991, full indexing of our user file system proc-
essed 68 MBytes in 7,771 files (Table 1).2 Indexing the 
resulting 1 million attributes took 1 hour and 36 minutes 
(Table 2). This works out to an indexing rate of 712 
KBytes/minute. 

                                                           
2 The 162 MBytes in publicly readable files that were not processed 

were in files for which transducers have not yet been written: executable 
files, PostScript files, DVI files, tar files, image data, etc. 

File system mutation operations trigger incremental in-
dexing. In update tests simulating typical user editing and 
compiling, incremental indexing is normally completed in 
less than 5 minutes. In these tests, only 2 megabytes of 
modified file data were reindexed. Incremental indexing is 
slower than full indexing in the prototype system because 
the incremental indexer does not make good use of real 
memory for caching. The full indexer uses 10 megabytes of 
real memory for caching; the incremental indexer uses less 
than 1 megabyte. 

The indexing operations of our prototype are I/O 
bound. The CPU is 60% idle during indexing. Our meas-
urements show that transducers generate approximately 30 
disk transfers per second, thereby saturating the disk. Index-
ing the resulting attributes also saturates the disk. Although 
the transducers and the indexer use different disk drives, the 
transducer-indexer pipeline does not allow I/O operations to 
proceed in parallel on the two disks. Thus, we feel that we 
could double the throughput by improving the pipeline’s 
structure. 

We expect our indexing strategy to scale to larger file 
systems because indexing is limited by the update rate to a 
file system rather than its total storage capacity. Incre-
mental processing of updates will require additional read 
bandwidth approximately equal to the write traffic that ac-
tually occurs. Past studies of Unix file system activity 
[OCH+85] indicate that update rates are low, and that most 
new data is deleted or overwritten quickly; thus, delaying 
slightly the processing of updates might reduce the addi-
tional bandwidth required by indexing. 

To determine the increased latency of overlaid NFS 
operations introduced by interposing our SFS server be-
tween the client and the native file system, we used the 

                                                                                                 
3 in parallel with Transduce 

Total file system size  326  MBytes 
Amount publicly readable  230 MBytes 
Amount with known transducer  68 MBytes 
Number of distinct attributes  173,075  
Number of attributes indexed  1,042,832   
Type  Number of Files  KBytes  
Object 871 8,503 
Source  2,755  17,991  
Text  1,871  20,638  
Other 2,274  21,187  
Total 7,771 68,319  

Table 1: User File System Statistics for 23 July 1991 

Part of index  Size in 
KBytes 

Index Tables 6,621 
Index Trees 3,398 
Total 10,019  

Phase  Time (hh:mm)  
Directory Enumeration 0:07 
Determine File Types  0:01  
Transduce Directory  0:01  
Transduce Object  0:08  
Transduce Source  0:23  
Transduce Text  0:23  
Transduce Other  0:24  
Build Index Tables3  1:22  
Build Index Trees  0:06 
Total 1:36  

Table 2: User FS Indexing Statistics on 23 July 1991 
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nhfsstone benchmark [Leg89] at low loads. The delays ob-
served from an unmodified client machine were smaller 
than the variation in latencies of the native NFS operations. 
Preliminary measurements show that lookup operations 
are delayed by 2 ms on average, and operations that gener-
ate update notifications incur a larger delay. 

The following anecdotal evidence supports our thesis 
that a semantic file system is more effective than traditional 
file systems for information sharing: 
• The typical response time for the first ls command on 

a virtual directory is approximately 2 seconds. This re-
sponse time reflects a substantial time savings over lin-
ear search through our entire file system with existing 
tools. In addition, subsequent ls commands respond 
immediately with cached results. 
We ran a series of experiments to test how the number 
of attributes in a virtual directory name altered the ob-
served performance of the Is command on a virtual di-
rectory. Attributes were added one at a time to arrive at 
the final path name: 

/sfs/text:/virtual/ 
text:/directory/ text:/semantic/ 
ext:/tex/ owner:/gifford 

The two properties of a query that affect its response 
time are the number of attributes in the query and the 
number of objects in the result set. The effect of an in-
crease in either of these factors is additional disk ac-
cesses. Figure 3 illustrates the interplay of these fac-
tors. Each point on the response time graph is the aver-
age of three experiments. In a separate experiment we 
measured an average response time of 5.4 seconds 
when the result set grew to 545 entities. 

• We began to use the semantic file system as soon as it 
was operable to help coordinate the production of this 

paper and for a variety of other everyday tasks. We 
have found the virtual directory interface to be easy to 
use. (We were immediately able to use the GNU 
Emacs directory editor DIRED [Sta87] to submit que-
ries and browse the results. No code modification was 
required.)   At least two users in our group reex-amined 
their file protections in view of the ease with which 
other users could locate interesting files in the system. 

• Users outside our research group have successfully 
used the query interface to locate information,  includ-
ing newspaper articles, in our file system. 

• Users outside our research group have failed to find 
files for which no transducer had yet been installed. 
We are developing new transducers in response to 
these failed queries. 

The following anecdotal evidence supports our thesis 
that a semantic file system is more effective than traditional 
file systems for command level programming: 

• The UNIX shell pathname expansion facilities inte-
grate well with virtual directories. For example, it is 
possible to query the file system for all dvi files owned 
by a particular user, and to print those whose names 
begin with a certain sequence of characters. 

• Symbolic links have proven to be an effective way to 
describe file system views. The result of using such a 
symbolic link as a directory is a dynamically computed 
set of files. 

6     Conclusions 

We have described how a semantic file system can pro-
vide associative attribute-based access to the contents of an 
information storage system with the help of file type spe-
cific transducers. We have also discussed how this access 
can be integrated into the file system itself with virtual di-
rectories. Virtual directories are directories that are com-
puted upon demand. 

The results to date are consistent with our thesis that 
semantic file systems present a more effective storage ab-
straction than do traditional tree structured file systems for 
information sharing and command level programming. We 
plan to conduct further experiments to explore this thesis in 
further detail. We plan also to examine how virtual directo-
ries can directly benefit application programmers. 

Our experimental system has tested one semantics for 
virtual directories, but there are many other possibilities. 
For example: 
• The virtual directory syntax can be extended to support 

a richer query language. Disjunctive queries would 
permit users to use “or” in their queries, and would also 
offer the ability to search on multiple network semantic 
file systems concurrently. 

 

Figure 3: Plot of Number of Attributes vs. Response Time 
and Number of Results 
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• Users could assign attributes to file system entities in 
addition to the attributes that are automatically as-
signed by transducers. 

• Transducers could be created for audio and video files. 
In principle this would permit access by time, frame 
number, or content [Nee91]. 

• The data model underlying a semantic file system 
could be enhanced. For example, an entity-relationship 
model [Cat83] would provide more expressive power 
than simple attribute based retrieval. 

• The entities indexed by a semantic file system could 
include a wide variety of object types, including I/O 
devices and file servers. Wide-area naming systems 
such as X.500 [CCI88] could be presented in terms of 
virtual directories. 

• A confederation of semantic file systems, possibly 
numbering in the thousands, can be organized into an 
semantic library system. A semantic library system ex-
ports the same interface as an individual semantic file 
system,  and thus a semantic library system permits as-
sociative  access to the contents of its constituent serv-
ers with existing file system protocols as well as with 
protocols that are designed specifically for content 
based access. A semantic library system is imple-
mented by servers that use content based routing 
[GLB85] to direct a single user request to one or more 
relevant semantic file systems. 
We have already completed the implementation of an 
NFS compatible query processing system that forwards 
requests to multiple hosts and combines the results. 

• Virtual directories can be used as an interface to other 
systems, such as information retrieval systems and 
programming environment support systems, such as 
PCTE. We are exploring also how existing applications 
could access object repositories via a virtual directory 
interface. It is possible to extend the semantics of a se-
mantic file system to include access to individual enti-
ties in a manner suitable for an object repository 
[GO91]. 

• Relevance feedback and query results could be added 
by introducing new virtual directories. 

The implementation of real-time indexing may require 
a substantial amount of computing power at a semantic file 
server. We are investigating how to optimize the task of 
real-time indexing in order to minimize this load. Another 
area of research is exploring how massive parallelism 
[SK86] might replace indexing. 

An interesting limiting case of our design is a system 
that makes an underlying tree structured naming system 
superfluous. In such a system all directories would be com-
puted upon demand, including directories that correspond to 
traditional tree structured file names. Such a system might 
help us share information more effectively by encouraging 
query based access that would lead to the discovery of un-
expected but useful information. 
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