
6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 1

14. Practical Concurrency

We begin our study of concurrency by describing how to use it in practice; later, in handout 17
on formal concurrency, we shall study it more formally. First we explain where the concurrency
in a system comes from, and discuss the main ways to express concurrency. Then we describe
the difference between ‘hard’ and ‘easy’ concurrency1: the latter is done by locking shared data
before you touch it, the former in subtle ways that are so error-prone that simple prudence
requires correctness proofs. We give the rules for easy concurrency using locks, and discuss
various issues that complicate the easy life: scheduling, locking granularity, and deadlocks.

Sources of concurrency

Before studying concurrency in detail, it seems useful to consider how you might get
concurrency in your system. Obviously if you have a multiprocessor or a distributed system you
will have concurrency, since in these systems there is more than one CPU executing instructions.
Similarly, most hardware has separate parts that can change state simultaneously and
independently. But suppose your system consists of a single CPU running a program. Then you
can certainly arrange for concurrency by multiplexing that CPU among several tasks, but why
would you want to do this? Since the CPU can only execute one instruction at a time, it isn’t
entirely obvious that there is any advantage to concurrency. Why not get one task done before
moving on to the next one?

There are only two possible reasons:

1. A task might have to wait for something else to complete before it can proceed, for instance
for a disk read. But this means that there is some concurrent task that is going to complete, in
the example an I/O device, the disk. So we have concurrency in any system that has I/O, even
when there is only one CPU.

2. Something else might have to wait for the result of one task but not for the rest of the
computation, for example a human user. But this means that there is some concurrent task
that is waiting, in the example the user. Again we have concurrency in any system that has
I/O.

In the first case one task must wait for I/O, and we can get more work done by running another
task on the CPU, rather than letting it idle during the wait. Thus the concurrency of the I/O
system leads to concurrency on the CPU. If the I/O wait is explicit in the program, the
programmer can know when other tasks might run; this is often called a ‘non-preemptive’
system, because it has sequential semantics except when the program explicitly allows
concurrent activity by waiting. But if the I/O is done at some low level of abstraction, higher
levels may be quite unaware of it. The most insidious example of this is I/O caused by the virtual
memory system: every instruction can cause a disk read. Such a system is called ‘preemptive’;

1 I am indebted to Greg Nelson for this taxonomy, and for the object and set example of deadlock avoidance.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 2

for practical purposes a task can lose the CPU at any point, since it’s too hard to predict which
memory references might cause page faults.

In the second case we have a motivation for true preemption: we want some tasks to have higher
priority for the CPU than others. An important special case is interrupts, discussed below.

A concurrent program is harder to write than a sequential program, since there are many more
possible paths of execution and interactions among the parts of the program. The canonical
example is two concurrent executions of

x := x + 1

Since this command is not atomic (either in Spec, or in C on most computers), x can end up with
either 1 or 2, depending on the order of execution of the expression evaluations and the
assignments. The interleaved order

evaluate x + 1
evaluate x + 1
x := result
x := result

leaves x = 1, while doing both steps of one command before either step of the other leaves
x = 2.

Since concurrent programs are harder to understand, it’s best to avoid concurrency unless you
really needed it for one of the reasons just discussed.2

One good thing about concurrency, on the other hand, is that when you write a program as a set
of concurrent computations, you can defer decisions about exactly how to schedule them.

Ways to package concurrency

In the last section we used the word ‘task’ informally to describe a more-or-less independent,
more-or-less sequential part of a computation. Now we shall be less coy about how concurrency
shows up in a system.

The most general way to describe a concurrent system is in terms of a set of atomic actions with
the property that usually more than one of them can occur (is enabled); we will use this
viewpoint in our later study of formal concurrency. In practice, however, we usually think in
terms of several ‘threads’ of concurrent execution. Within a single thread at most one action is
enabled at a time; in general one action may be enabled from each thread, though often some of
the threads are waiting or ‘blocked’, that is, have no enabled actions.

The most convenient way to do concurrent programming is in a system that allows each thread to
be described as an execution path in an ordinary-looking program with modules, routines,
commands, etc., such as Spec, C, or Java. In this scheme more than one thread can execute the
code of the same procedure; threads have local state that is the local variables of the procedures

2 This is the main reason why threads with RPC or synchronous messages are good, and asynchronous messages are
bad. The latter force you to have concurrency whenever you have communication, while the former let you put in
the concurrency just where you really need it. Of course if the implementation of threads is clumsy or expensive, as
it often is, that may overwhelm the inherent advantages.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 3

they are executing. All the languages mentioned and many others allow you to program in this
way.

In fault-tolerant systems there is a conceptual drawback to this thread model. If a failure can
occur after each atomic command, it is hard to understand the program by following the
sequential flow of control in a thread, because there are so many other paths that result from
failure and recovery. In these systems it is often best to reason strictly in terms of independent
atomic actions. We will see detailed examples of this when we study reliable messages,
consensus, and replication. Applications programmed in a transaction system are another
example of this approach: each application runs in response to some input and is a single atomic
action.

The biggest drawback of this kind of ‘official’ thread, however, is the costs of representing the
local state and call stack of each thread and of a general mechanism for scheduling the threads.
There are several alternatives that reduce these costs: interrupts, control blocks, and SIMD
computers. They are all based on restricting the freedom of a thread to block, that is, to yield the
processor until some external condition is satisfied, for example, until there is space in a buffer
or a lock is free, or a page fault has been processed.

Interrupts

An interrupt routine is not the same as a thread, because:

• It always starts at the same point.

• It cannot wait for another thread.

The reason for these restrictions is that the execution context for an interrupt routine is allocated
on someone else’s stack, which means that the routine must complete before the thread that it
interrupted can continue to run. On the other hand, the hardware that schedules an interrupt
routine is efficient and takes account of priority within certain limits. In addition, the interrupt
routine doesn’t pay the cost of its own stack like an ordinary thread.

It’s possible to have a hybrid system in which an interrupt routine that needs to wait turns itself
into an ordinary thread by copying its state. This is tricky if the wait happens in a subroutine of
the main interrupt routine, since the relevant state may be spread across several stack frames. If
the copying doesn’t happen too often, the interrupt-thread hybrid is efficient. The main
drawbacks are that the copying usually has to be done by hand, which is error-prone, and that
without compiler and runtime support it’s not possible to reconstruct the call stack, which means
that the thread has to be structured differently from the interrupt routine.

A simpler strategy that is widely used is to limit the work in the interrupt routine to simple things
that don’t require waits, and to wake up a separate thread to do anything more complicated.

Control blocks and message queues

Another, related strategy is to package all the permanent state of a thread, including its program
counter, in a record (usually called a ‘control block’) and to explicitly schedule the execution of
the threads. When a thread runs, it starts at the saved program counter (usually a procedure entry

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 4

point) and runs until it explicitly gives up control or ‘yields’. During execution it can call
procedures, but when it yields its stack must be empty so that there’s no need to save it, because
all the state has to be in the control block. When it yields, a reference to the control block is
saved where some other thread or interrupt routine can find it and queue the thread for execution
when it’s ready to run, for instance after an I/O operation is complete.3

The advantages of this approach are similar to those of interrupts: there are no stacks to manage,
and scheduling can be carefully tuned to the application. The main drawback is also similar: a
thread must unwind its stack before it can wait. In particular, it cannot wait to acquire a lock at
an arbitrary point in the program.

It is very common to code the I/O system of an operating system using this kind of thread. Most
people who are used to this style do not realize that it is a restricted, though efficient, case of
general programming with threads.

In ‘active messages’, a recent variant of this scheme, you break your computation down into
non-blocking segments; as the end of a segment, you package the state into an ‘active message’
and send it to the agent that can take the next step. Incoming messages are queued until the
receiver has finished processing earlier ones.4

There are lots of other ways to use the control block idea. In ‘scheduler activations’, for example,
kernel operations are defined so that they always run to completion; if an operation can’t do what
was requested, it returns intermediate state and can be retried later.5 In ‘message queuing’
systems, the record of the thread state is stored in a persistent queue whenever it moves from one
module to another, and a transaction is used to take the state off one queue, do some processing,
and put it back onto another queue. This means that the thread can continue execution in spite of
failures in machines or communication links.6

SIMD or data-parallel computing

This acronym stands for ‘single instruction, multiple data’, and refers to processors in which
several execution units all execute the same sequence of instructions on different data values. In
a ‘pure’ SIMD machine every instruction is executed at the same time by all the processors
(except that some of them might be disabled for that instruction). Each processor has its own
memory, and the processors can exchange data as part of an instruction. A few such machines
were built between 1970 and 1993, but they are now out of favor.7 The same programming
paradigm is still used in many scientific problems however, at a coarser grain, and is called
‘data-parallel’ computing. In one step each processor does some computation on its private data.

3 H. Lauer and R. Needham. On the duality of operating system structures. Second Int. Symposium on Operating
Systems, IRIA, Rocquencourt, France, Oct. 1978 (reprinted in Operating Systems Review 13,2 (April 1979), 3-19).
4 T. von Eiken et al., Active messages: A mechanism for integrated communication and computation. Proc.
International Symposium on Computer Architecture, May 1992, pp 256-267.
5 T. Anderson et al., Scheduler activations: Effective kernel support for the user-level management of parallelism.
ACM Transactions on Computer systems 10, 1 (Feb. 1992), pp 54-79.
6 See www.messageq.com or A. Dickman, Designing Applications With Msmq: Message Queuing for Developers,
Addison-Wesley, 1998.
7 The term ‘SIMD’ has been recycled in the Intel MMX instruction set, and similar designs from several other
manufacturers, to describe something much more prosaic: doing 8 8-bit adds in parallel on a 64-bit data path.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 5

When all of them are done, they exchange some data and then take the next step. The action of
detecting that all are done is called ‘barrier synchronization’.

Easy concurrency

Concurrency is easy when you program with locks. The rules are simple:

• Every shared variable must be protected by a lock. A variable is shared if it is touched by
more than one thread. Alternatively, you can say that every variable must be protected b y a
lock, and think of data that is private to a thread as being protected by an implicit lock that is
always held by the thread.

• You must hold the lock for a shared variable before you touch the variable. The essential
property of a lock is that two threads can’t hold the same lock at the same time. This property
is called ‘mutual exclusion’; the abbreviation ‘mutex’ is another name for a lock.

• If you want an atomic operation on several shared variables that are protected by different
locks, you must not release any locks until you are done. This is called ‘two-phase locking’,
because there is a phase in which you only acquire locks and don’t release any, followed by a
phase in which you only release locks and don’t acquire any.

Then your computation between the point that you acquire a lock and the point that you release it
is equivalent to a single atomic action, and therefore you can reason about it sequentially. This
atomic part of the computation is called a ‘critical section’. To use this method reliably, you
should annotate each shared variable with the name of the lock that protects it, and clearly
bracket the regions of your program within which you hold each lock. Then it is a mechanical
process to check that you hold the proper lock whenever you touch a shared variable.8 It’s also
possible to check a running program for violations of this discipline.9

Why do locks lead to big atomic actions? Intuitively, the reason is that no other well-behaved
thread can touch any shared variable while you hold its lock, because a well-behaved thread
won’t touch a shared variable without itself holding its lock, and only one thread can hold a lock
at a time. We will make this more precise in handout 17 on formal concurrency, and give a proof
of atomicity. Another way of saying this is that locking ensures that concurrent operations
commute. Concurrency means that we aren’t sure what order they will run in, but commuting
says that the order doesn’t matter because the result is the same in either order.

Actually locks give you a bit more atomicity than this. If a well-behaved thread acquires a
sequence of locks (acquiring each one before touching the data it protects) and then releases
them (not necessarily in the same order, but releasing each one after touching the data it
protects), the entire computation from the first acquire to the last release is atomic. Once you
have done a release, however, you can’t do another acquire without losing atomicity. This is
called two-phase locking.

8 This process is mechanized in ESC; see http://www.research.digital.com/SRC/esc/Esc.html.
9 S. Savage et al. Eraser: A dynamic data race detector for multithreaded programs. ACM Transactions on Computer
Systems 15, 4 (Dec 1997), pp 391-411.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 6

The simple locks we have been describing are also called ‘mutexes’; this is short for “mutual
exclusion”. As we shall see, more complicated kinds of locks are often useful.

Here is the spec for a mutex. It maintains mutual exclusion by allowing the mutex to be acquired
only when no one already holds it. If a thread other than the current holder releases the mutex,
the result is undefined. If you try to do an Acquire when the mutex is not free, you have to wait,
since Acquire has no transition from that state because of the m = nil guard.

MODULE Mutex EXPORT acq, rel = % Acquire and Release

VAR m: (Thread + Null) := nil
% A mutex is either nil or the thread holding the mutex.
% The variable SELF is defined to be the thread currently making a transition.

APROC acq() = << m = nil => m := SELF; RET >>
APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >>

END Mutex

The thing we care about is that only one thread can be between acq and rel at a time. It’s pretty
obvious from the spec that this is true as long as we never get to HAVOC in rel. We can make it
explicit with an invariant:

INVARIANT (ALL h, h’ | h in critical section ==> ~ h’ in critical section)

Here we have treated the PC’s very informally; see handout 17 for the precise details. This
invariant follows from

INVARIANT (ALL h | h in critical section ==> m = h)

which in turn follows by induction on the actions of h that don’t include rel, plus the fact that no
thread h’ does m.rel unless m = h’. An invariant like this on the spec is sometimes called a
property. The model-checking proof of an implementation of Mutex at the end of handout 17
shows how to establish a property directly from the implementation. This is contrary to the
religion of this course, which is to always do simulation proofs, but it can be effective
nonetheless.

We usually need lots of mutexes, not just one, so we change MODULE to CLASS (see section 7 of
handout 4, the Spec reference manual). This creates a module with a function variable in which
to store the state of lots of mutexes, and a Mutex type with new, acq, and rel methods whose
value indexes the variable.

If m is a mutex that protects the variable x, you use it like this:
 m.acq; touch x; m.rel

That is, you touch x only while m is acquired.

You may be familiar with this style of programming from Java, where a synchronized object has
an implicit lock that is automatically acquired at the start of every method and released at the
end. This means that all the private fields are protected by the implicit lock. Another way to
think about this style of programming is that the private fields are internal state of an isolated
system. Only actions of this system can touch the fields, and only one such action runs at a time.
As long as the actions don’t touch any other objects, they are obviously atomic. When an action

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 7

needs to touch more than one object this simple view is no longer adequate. We explore some of
the complications below.

Invariants

In fact things are not so simple, since a computation seldom consists of a single atomic action. A
thread should not hold a lock forever (except on private data) because that will prevent any other
thread that needs to touch the data from making progress. Furthermore, it often happens that a
thread can’t make progress until some other thread changes the data protected by a lock. A
simple example of this is a FIFO buffer, in which a consumer thread doing a Get on an empty
buffer must wait until some other producer thread does a Put. In order for the producer to get
access to the data, the consumer must release the lock. Atomicity does not apply to code like this
that touches a shared variable x protected by a mutex m:

m.acq; touch x; m.rel; private computation; m.acq; touch x; m.rel

This code releases a lock and later re-acquires it, and therefore isn’t atomic. So we need a
different way to think about this situation, and here it is.

After the m.acq the only thing you can assume about x is an invariant that holds whenever m
is unlocked.

As usual, the invariant must be true initially. While m is locked you can modify x so that the
invariant doesn’t hold, but you must re-establish it before unlocking m. While m is locked, you
can also poke around in x and discover facts that are not implied by the invariant, but you cannot
assume that any of these facts are still true after you unlock m.

To use this methodology effectively, of course, you must write the invariant down.

The rule about invariants sheds some light on why the following simple locking strategy doesn’t
help with concurrent programming:

Every time you touch a shared variable x, acquire a lock just before and release the lock just
after.

The reason is that once you have released the lock, you can’t assume anything about x except
what is implied by the invariant. The whole point of holding the lock is that it allows you to
know more about x as long as you continue to hold the lock.

Here is a more picturesque way of describing this method. To do easy concurrent programming:

first you put your hand over some shared variables, say x and y, so that no one else can
change them,

then you look at them and perhaps do something with them, and

finally you take your hand away.

The reason x and y can’t change is that the rest of the program obeys some conventions; in
particular, it acquires locks before touching shared variables. There are other, trickier
conventions that can keep x and y from changing; we will see some of them later on.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 8

This viewpoint sheds light on why fault-tolerant programming is hard: Crash is no respecter of
conventions, and the invariant must be maintained even though a Crash may stop an update in
mid-flight and reset all or part of the volatile state.

Scheduling: Condition variables

If a thread can’t make progress until some condition is established, and therefore has to release a
lock so that some other thread can establish the condition, the simplest idiom is

m.acq; DO ~ condition(x) involving x => m.rel; m.acq OD; touch x; m.rel

That is, you loop waiting for condition(x) to be true before touching x. This is called “busy
waiting”, because the thread keeps computing, waiting for the condition to become true. It tests
condition(x) only with the lock held, since condition(x) touches x, and it keeps releasing the
lock so that some other thread can change x to make condition(x) true.

This code is correct, but reacquiring the lock immediately makes it more difficult for another
thread to get it, and going around the loop while the condition remains false wastes processor
cycles. Even if you have your own processor, this isn’t a good scheme because of the system-
wide cost of repeatedly acquiring the lock.

The way around these problems is an optimization that replaces m.rel; m.acq in the box with
c.wait(m), where c is a ‘condition variable’. The c.wait(m) releases m and then blocks the
thread until some other thread does c.signal. Then it reacquires m and returns. If several threads
are waiting, signal picks one or more to continue in a fair way. The variation c.broadcast
continues all the waiting threads.

Here is the spec for condition variables. It says that the state is the set of threads waiting on the
condition, and it allows for lots of C’s because it’s a class. The wait method is especially
interesting, since it’s the first procedure we’ve seen in a spec that is not atomic (except for the
clumsy non-atomic specs for disk and file writes, and ObjNames). This is because the whole
point is that during the wait other threads have to run, access the variables protected by the
mutex, and signal the condition variable. Note that wait takes an extra parameter, the mutex to
release and reacquire.

The spec doesn’t say anything about blocking or suspending the thread. The blocking happens at
the semi-colon between the two atomic actions of wait. An implementation works by keeping a
queue of blocked threads in the condition variable; signal takes a thread off this queue and
makes it ready to run again. Of course the code must take care to make the queuing and blocking
of the thread effectively atomic, so that the thread doesn’t get unqueued and scheduled to run
again before it has been suspended. It must also take care not to miss a signal that occurs
between queuing SELF on c and blocking the thread. This is usually done with a ‘wakeup-waiting
switch’, a bit in the thread state that is set by signal and checked atomically with blocking the
thread. See MutexImpl and ConditionImpl in handout 17 for an example of how to do this
implementation.

CLASS Condition EXPORT wait, signal, broadcast =

TYPE M = Mutex

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 9

VAR c : SET Thread := {}
% Each condition variable is the set of waiting threads.

PROC wait(m) =
<< c \/ := {SELF}; m.rel >>; % m.rel=HAVOC unless SELF IN m
<< ~ (SELF IN c) => m.acq >>

APROC signal() = <<
% Remove at least one thread from c. In practice, usually just one.

IF VAR t: SET Thread | t <= c /\ t # {} => c - := t [*] SKIP FI >>

APROC broadcast() = << c := {} >>

END Condition

For this scheme to work, a thread that changes x so that the condition becomes true must do a
signal or broadcast, in order to allow some waiting thread to continue. A foolproof but
inefficient strategy is to have a single condition variable for x and to do broadcast whenever x
changes at all. More complicated schemes can be more efficient, but are more likely to omit a
signal and leave a thread waiting indefinitely. The paper by Birrell in handout 1510 gives many
examples and some good advice.

Note that you are not entitled to assume that the condition is true just because wait returns. That
would be a little more efficient for the waiter, but it would be much more error prone, and it
would require a tighter spec for wait and signal that is often less efficient to code. You are
supposed to think of c.wait(m) as just an optimization of m.rel; m.acq. This idiom is very
robust. Warning: many people don’t agree with this argument, and define stronger condition
variables; when reading papers on this subject, make sure you know what religion the author
embraces.

More generally, after c.wait(m) you cannot assume anything about x beyond its invariant, since
the wait unlocks m and then locks it again. After a wait, only the invariant is guaranteed to hold,
not anything else that was true about x before the wait.

Really easy concurrency

An even easier kind of concurrency uses buffers to connect independent modules, each with its
own set of variables disjoint from those of any other module. Each module consumes data from
some predecessor modules and produces data for some successor modules. In the simplest case
the buffers are FIFO, but they might be unordered or use some other ordering rule. A little care is
needed to program the buffers’ Put and Get operations, but that’s all. This is often called
‘pipelining’. The fancier term ‘data flow’ is used if the modules are connected not linearly but by
a more general DAG.

Another really easy kind of concurrency is provided by transaction processing or TP systems, in
which an application program accepts some input, reads and updates a shared database, and
generates some output. The transaction mechanism makes this entire operation atomic, using
techniques that we will describe later. The application programmer doesn’t have to think about

10 Andrew Birrell, An Introduction to Programming with Threads, research report 35, Systems Research Center,
Digital Equipment Corporation, January 1989.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 10

concurrency at all. In fact, the atomicity usually includes crash recovery, so she doesn’t have to
think about fault-tolerance either.

In the pure version of TP, there is no state preserved outside the transaction except for the shared
database. This means that the only invariants are invariants on the database; the programmer
doesn’t have to worry about mistakenly keeping private state that records something about the
shared state after locks are released. Furthermore, it means that a transaction can run on any
machine that can access the database, so the TP system can take care of launching programs and
doing load balancing as well as locking and fault tolerance. How easy can it get?

Hard concurrency

If you don’t program according to the rules for locks, then you are doing hard concurrency, and
it will be hard. Why bother? There are three reasons:

You may have to code mutexes and condition variables on top of something weaker, such as
the atomic reads and writes of memory that a basic processor or file system gives you. Of
course, only the low-level runtime implementer will be in this position.

It may be cheaper to use weaker primitives than mutexes. If efficiency is important, hard
concurrency may be worth the trouble. But you will pay for it, either in bugs or in careful
proofs of correctness.

It may be important to avoid waiting for a lock to be released. Even if a critical section is
coded carefully so that it doesn’t do too much computing, there are still ways for the lock to
be held for a long time. If the thread holding the lock can fail independently (for example, if
it is in a different address space or on a different machine), then the lock can be held
indefinitely. If the thread can get a page fault while holding the lock, then the lock can be
held for a disk access time. A concurrent algorithm that prevents one slow (or failed) thread
from delaying other threads too much is called ‘wait-free’.11

In fact, the “put out your hand” way of looking at things applies to hard concurrency as well. The
difference is that instead of preventing x and y from changing at all, you do something to ensure
that some predicate p(x, y) will remain true. The convention that the rest of the program obeys
may be quite subtle. A simple example is the careful write solution to keeping track of free space
in a file system (handout 7 on formal concurrency, page 16), in which the predicate is

free(da) ==> ~ Reachable(da).

The special case of locking maintains the strong predicate x = x0 /\ y = y0 (unless you
change x or y yourself).

We postpone a detailed study of hard concurrency to handout 17.

11 M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13, 1 (Jan.
1991), pp 124-149. There is a general method for implementing wait-free concurrency, given a primitive at least as
strong as compare-and-swap; it is described in M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM Transactions on Programming Languages and Systems 15, 9 (Nov. 1993), pp 745-770. The idea is the
same as optimistic concurrency control (see handout 20): do the work on a separate version of the state, and then
install it atomically with compare-and-swap, which detects when someone else has gotten ahead of you.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 11

Problems in easy concurrency: Deadlock

The biggest problem for easy concurrency is deadlock, in which there is a cycle of the form

Lock a is held by thread 1.
Thread 1 is waiting for lock b.
Lock b is held by thread 2.
...
Lock h is held by thread 8.
Thread 8 is waiting for lock a.

All the locks and threads are nodes in a lock graph with the edges “lock a is held by thread 1”,
“thread 1 is waiting for lock b”, etc.

waiting

a 1

b

2 h

8

holds

holds holds

waiting

The way to deal with this that is simplest for the application programmer is to detect a deadlock12
and automatically roll back one of the threads, undoing any changes it has made and releasing its
locks. Then the rolled-back thread retries; in the meantime, the others can proceed.
Unfortunately, this approach is only practical when automatic rollback is possible, that is, when
all the changes are done as part of a transaction. Handout 19 on sequential transactions explains
how this works.

Note that from inside a module, absence of deadlock is a safety property: something bad doesn’t
happen. The “bad” thing is a loop of the kind just described, which is a well-defined property of
certain states, indeed, one that is detected by systems that do deadlock detection. From the
outside, however, you can’t see the internal state, and the deadlock manifests itself as the failure
of the module to make any progress.

The main alternative to deadlock detection and rollback is to avoid deadlocks by defining a
partial order on the locks, and abiding by a rule that you only acquire a lock if it is greater than
every lock you already hold. This ensures that there can’t be any cycles in the graph of threads
and locks. Note that there is no requirement to release the locks in order, since a release never
has to wait.

To implement this idea you

12 For ways of detecting deadlocks, see Gray and Reuter, pp 481-483 and A. Thomasian, Two phase locking
performance and its thrashing behavior. ACM Transactions on Database Systems 18, 4 (Dec. 1993), pp. 579-625.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 12

annotate each shared variable with its protecting lock (which you are supposed to do anyway
when practicing easy concurrency),

state the partial order on the locks, and

annotate each procedure or code block with its ‘locking level’ ll, the maximum lock that can
be held when it is entered, like this: ll <= x.

Then you always know textually the biggest lock that can be held (by starting at the procedure
entry with the annotation, and adding locks that are acquired), and can check whether an acq is
for a bigger lock as required, or not. With a stronger annotation that tells exactly what locks are
held, you can subtract those that are released as well. You also have to check when you call a
procedure that the current locking level is consistent with the procedure’s annotation. This check
is very similar to type checking.

Having described the basic method, we look at some examples of how it works and where it runs
into difficulties.

If resources are arranged in a tree and the program always traverses the tree down from root to
leaves, or up from leaves to root (in the usual convention, which draws trees upside down, with
the root at the top), then the tree defines a suitable lock ordering. Examples are a strictly
hierarchical file system or a tree of windows. If the program sometimes goes up and sometimes
goes down, there are problems; we discuss some solutions shortly. If instead of a tree we have a
DAG, it still defines a suitable lock ordering.

Often, as in the file system example, this graph is actually a data structure whose links determine
the accessibility of the nodes. In this situation you can choose when to release locks. If the graph
is static, it’s all right to release locks at any time. If you release each lock before acquiring the
next one, there is no danger of deadlock regardless of the structure of the graph, because a flat
ordering (everything unordered) is good enough as long as you hold at most one lock at a time. If
the graph is dynamic and a node can disappear when it isn’t locked, you have to hold on to one
lock at least until after you have acquired the next one. This is called ‘lock coupling’, and a
cyclic graph can cause deadlock. We will see an example of this when we study hierarchical file
systems in handout 15.

Here is another common locking pattern. Consider a program that manipulates objects named by
handles and maintains a set of these objects. For example, the objects might be buffers, and the
set the buffers that are non-empty. One thread works on an object and sometimes needs to mess
with the set, for instance when a buffer changes from empty to non-empty. Another thread
processes the set and needs to mess with some of the objects, for instance to empty out the
buffers at regular intervals. It’s natural to have a lock h.m on each object and a lock ms on the set.
How should they be ordered? We work out a solution in which the ordering of locks is every
h.m < ms.

TYPE H = Int WITH {acq:=(\h|ot(h).m.acq), % Handle (index in ot)
 rel:=(\h|ot(h).m.rel),
 y :=(\h|ot(h).y), empty:=...}

VAR s : SET H % ms protects the set s

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 13

ms : Mutex
ot : H -> [m: Mutex, y: Any] % Object Table. m protects y,
 % which is the object’s data

Note that each piece of state that is not a mutex is annotated with the lock that protects it: s with
ms and y with m. The ‘object table’ ot is fixed and therefore doesn’t need a lock.

We would like to maintain the invariant “object is non-empty” = “object in set”: ~ h.empty =
h IN s. This requires holding both h.m and ms when the emptiness of an object changes.
Actually we maintain “h.m is locked \/ (~ h.empty = h IN s)”, which is just as good. The
Fill procedure that works on objects is very straightforward; Add and Drain are functions that
compute the new state of the object in some unspecified way, leaving it non-empty and empty
respectively. Note that Fill only acquires ms when it becomes non-empty, and we expect this to
happen on only a small fraction of the calls.

PROC Fill(h, x: Any) =
% Update the object h using the data x

h.acq;
IF h.empty => ms.acq; s \/ := {h}; ms.rel [*] SKIP FI;
ot(h).y := Add(h.y, x);
h.rel

The Demon thread that works on the set is less straightforward, since the lock ordering keeps it
from acquiring the locks in the order that is natural for it.

THREAD Demon() = DO
ms.acq;
IF VAR h | h IN s =>

ms.rel;
h.acq; ms.acq; % acquire locks in order
IF h IN s => % is h still in s?

s - := {h}; ot(h).y := Drain(h.y)
[*] SKIP
FI;
ms.rel; h.rel

[*] ms.rel
FI

 OD

Drain itself does no locking, so we don’t show its body.

The general idea, for parts of the program like Demon that can’t acquire locks in the natural order,
is to collect the information you need, one mutex at a time, without making any state changes.
Then reacquire the locks according to the lock ordering, check that things haven’t changed (or at
least that your conclusions still hold), and do the updates. If it doesn’t work out, retry. Version
numbers can make the ‘didn’t change’ check cheap. This scheme is closely related to optimistic
concurrency control, which we discuss later in connection with concurrent transactions.

An alternative approach in the hybrid scheme allows you to make state changes while acquiring
locks, but then you must undo all the changes before releasing the locks. This is called
‘compensation’. It makes the main line code path simpler, and it may be more efficient on
average, but coding the compensating actions and ensuring that they are always applied can be
tricky.

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 14

It’s possible to use a hybrid scheme in which you keep locks as long as you can, rather than
preparing to acquire a lock by always releasing any larger locks. This works if you can acquire a
lower lock ‘cautiously’, that is, with a failure indication rather than a wait if you can’t get it. If
you fail in getting a lower lock, fall back to the conservative scheme of the last paragraph. This
doesn’t simplify the code (in fact, it makes the code more complicated), but it may be faster.

Deadlock with condition variables: Nested monitors

Since a thread can wait on a condition variable as well as on a lock, it’s possible to have a
deadlock that involves condition variables as well as locks. Usually this isn’t a problem because
there are many fewer conditions than locks, and the thread that signals a condition is coupled to
the thread that waits on it only through the single lock that the waiting thread releases. This is
fortunate, because there is no simple rule like the ordering rule for locks that can avoid this kind
of deadlock. The lock ordering rule depends on the fact that a thread must be holding a lock in
order to keep another thread waiting for that lock. In the case of conditions, the thread that will
signal can’t be distinguished in such a simple way.

The canonical example of deadlock involving conditions is known as “nested monitors”. It
comes up when there are two levels of abstraction, H and M (for high and medium; low would be
confused with the L of locks), each with its own lock lH and lM. M has a condition variable cM.
The code that deadlocks looks like this, if two threads 1 and 2 are using H, 1 needs to wait on cM,
and 2 will signal cM.

H1: lH.lock; call M1
M1: lM.lock; cM.wait(lM)

H2: lH.lock; call M2
M2: lM.lock; cM.signal

This will deadlock because the wait in M1 releases lM but not lH, so that H2 can never get past
lH.lock to reach M2 and do the signal. This is not a lock-lock deadlock because it involves the
condition variable cM, so a straightforward deadlock detector will not find it. The picture below
illustrates the point.

1

held waiting

waiting

2

signal

cM lH

To avoid this deadlock, don’t wait on a condition with any locks held, unless you know that the
signal can happen without acquiring any of these locks. The ‘don’t wait’ is simple to check,
given the annotations that the methodology requires, but the ‘unless’ may not be simple.

People have proposed to solve this problem by generalizing wait so that it takes a set of mutexes
to release instead of just one. Why is this a bad idea? Aside from the problems of passing the

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 15

right mutexes down from H to M, it means that any call on M might release lH. The H programmer
must to be careful not to depend on anything more than the lH invariant across any call to M. This
style of programming is very error-prone.

Problems in easy concurrency: Scheduling

If there is a shortage of processor resources, there are various ways in which the simple easy
concurrency method can go astray. In this situation we may want some threads to have priority
over others, but subject to this constraint we want the processor resources allocated fairly. This
means that the amount of time a task takes should be roughly proportional to the amount of work
it does; in particular, we don’t want short tasks to be blocked by long ones.

Priority inversion

When there are priorities there can be “priority inversion”. This happens when a low-priority
thread A acquires a lock and then loses the CPU, either to a higher-priority thread or to round-
robin scheduling. Now a high-priority thread B tries to acquire the lock and ends up waiting for
A. Clearly the priority of A should be temporarily increased to that of B until A completes its
critical section, so that B can continue. Otherwise B may wait for a long time while threads with
priorities between A and B run, which is not what we had in mind when we set up the priority
scheme. Unfortunately, many thread systems don’t raise A’s priority in this situation.

Granularity of locks

A different issue is the ‘granularity’ of the locks: how much data each lock protects. A single
lock is simple and cheap, but doesn’t allow any concurrency. Lots of fine-grained locks allow
lots of concurrency, but the program is more complicated, there’s more overhead for acquiring
locks, and there’s more chance for deadlock (discussed earlier). For example, a file system might
have a single global lock, one lock on each directory, one lock on each file, or locks only on byte
ranges within a file. The goal is to have fine enough granularity that the queue of threads waiting
on a mutex is empty most of the time. More locks than that don’t accomplish anything.

It’s possible to have an adaptive scheme in which locks start out fine-grained, but when a thread
acquires too many locks they are collapsed into fewer coarser ones that cover larger sets of
variables. This process is called ‘escalation’. It’s also possible to go the other way: a process
keeps track of the exact variables it needs to lock, but takes out much coarser locks until there is
contention. Then the coarse locks are ‘de-escalated’ to finer ones until the contention disappears.

Closely related to the choice of granularity is the question of how long locks are held. If a lock
that protects a lot of data is held for a long time (for instance, across a disk reference or an
interaction with the user) concurrency will obviously suffer. Such a lock should protect the
minimum amount of data that is in flux during the slow operation. The concurrent buffered disk
example in handout 15 illustrates this point.

On the other hand, sometimes you want to minimize the amount of communication needed for
acquiring and releasing the same lock repeatedly. To do this, you hold onto the lock for longer
than is necessary for correctness. Another thread that wants to acquire the lock must somehow
signal the holder to release it. This scheme is commonly used in distributed coherent caches, in

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 16

which the lock only needs to be held across a single read, write, or test-and-set operation, but one
thread may access the same location (or cache line) many times before a different thread touches
it.

Lock modes

Another way to get more concurrency at the expense of complexity is to have many lock
‘modes’. A mutex has one mode, usually called ‘exclusive’ since ‘mutex’ is short for ‘mutual
exclusion’. A reader/writer lock has two modes, called exclusive and ‘shared’. It’s possible to
have as many modes as there are different kinds of commuting operations. Thus all reads
commute and therefore need only shared mode (reader) locks. But a write commutes with
nothing and therefore needs an exclusive mode (write) lock. The commutativity of the operations
is reflected in a ‘conflict relation’ on the locks. For reader/writer or shared/exclusive locks this
matrix is:

 None Shared (read) Exclusive (write)
None OK OK OK
Shared (read) OK OK Conflict
Exclusive (write) OK Conflict Conflict

Just as different granularities bring a need for escalation, different modes bring a need for ‘lock
conversion’, which upgrades a lock to a higher mode, for instance from shared to exclusive, or
downgrades it to a lower mode.

Explicit scheduling

In simple situations, queuing for locks is an adequate way to schedule threads. When things are
more complicated, however, it’s necessary to program the scheduling explicitly because the
simple first-come first-served queuing of a lock isn’t what you want. A set of printers with
different properties, for example, can be optimized across a set of jobs with different priorities,
requirements for paper handling, paper sizes, color, etc. There have been many unsuccessful
attempts to build general resource allocation systems to handle these problems. They fail because
they are too complicated and expensive for simple cases, and not flexible enough for
complicated ones. A better strategy is to program the scheduling as part of the application, using
as many condition variables as necessary to queue threads that are waiting for resources.
Application-specific data structures can keep track of the various resource demands and
application-specific code, perhaps written on top of a library, can do the optimization.

Just as you must choose the granularity of locks, you must also choose the granularity of
conditions. With just a few conditions (in the limit, only one), it’s easy to figure out which one to
wait on and which ones to signal. The price you pay is that a thread (or many threads) may wake
up from a wait only to find that it has to wait again, and this is inefficient. On the other hand,
with many conditions you can make useless wakeups very rare, but more care is needed to
ensure that a thread doesn’t get stuck because its condition isn’t signaled.

Simple vs. fancy locks

We have described a number of features that you might want in a locking system:

6.826—Principles of Computer Systems 2004

Handout 14. Practical Concurrency 17

• multiple modes with conversion, for instance from shared to exclusive;

• multiple granularities with escalation from fine to coarse and de-escalation from coarse to
fine;

• deadlock detection.

Database systems typically provide these features. In addition, they acquire locks automatically
based on how an application transaction touches data, choosing the mode based on what the
operation is, and they can release locks automatically when a transaction commits. For a
thorough discussion of database locking see Jim Gray and Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan Kaufmann, 1993, Chapter 8, pages 449-492.

The main reason that database systems have such elaborate locking facilities is that the
application programmers are quite naive and can’t be expected to understand the subtleties of
concurrent programming. Instead, the system does almost everything automatically, and the
programmers can safely assume that execution is sequential. Automatic mechanisms that work
well across a wide range of applications need to adapt in the ways listed above.

By contrast, a simple mutex has only one mode (exclusive), only one granularity, and no
deadlock detection. If these features are needed, the programmer has to provide them using the
mutex and condition primitives. We will study one example of this in detail in handout 17 on
formal concurrency: building a reader/writer lock from a simple mutex. Many others are
possible.

Summary of easy concurrency

There are four simple steps:

1. Protect each shared data item with a lock, and acquire the lock before touching the data.

2. Write down the invariant which holds on shared data when a lock isn’t held, and don’t
depend on any property of the shared unless it follows from the invariant.

3. If you have to wait for some other thread to do something before you can continue, avoid
busy waiting by waiting on a condition; beware of holding any locks when you do this. When
you take some action that might allow a waiting thread to continue, signal the proper
condition variable.

4. To avoid deadlock, define a partial order on the locks, and acquire a lock only if it is greater
in the order than any lock you already hold. To make this work with procedures, annotate a
procedure with a pre-condition: the maximum set of locks that are held whenever it’s called.

