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18.  Consensus 

Consensus (sometimes called ‘reliable broadcast’ or ‘atomic broadcast’) is a fundamental 
building block for distributed systems. Informally, we say that several processes achieve 
consensus if they all agree on some value. Three obvious applications are: 

Distributed transactions, where all the processes need to agree on whether a transaction 
commits or aborts. Each transaction needs a new consensus on its outcome. 

Membership, where a set of processes cooperating to provide a highly available service need 
to agree on which processes are currently functioning as members of the set. Every time a 
process fails or starts working again there must be a new consensus. 

Electing a leader of a group of processes. 

A less obvious, but much more powerful application is to replicate that state machines, which are 
discussed in detail below and in handout 28.   

There are four important things to learn from this part of the course: 

The idea of replicated state machines as a completely general method for building highly 
available, fault tolerant systems. In handout 28 we will discuss replicated state machines and 
other methods for fault tolerance in more detail. 

The Paxos algorithm for distributed, fault tolerant consensus: how and why it works . 

Paxos as an example of the best style for distributed, fault tolerant algorithms. 

The correctness of Paxos as an example of the abstraction functions and simulation proofs 
applied to a very subtle algorithm.   

Replicated state machines 

There is a much more general way to use consensus, as the mechanism for coding a highly 
available state machine, which is the basic tool for building a highly available system. The way 
to get availability is to have either perfect components or redundancy. Perfect components are 
too hard, which leaves redundancy. The simplest form of redundancy is replication: have several 
copies or replicas of each component, and make sure that all the non-faulty components do the 
same thing. Since any computation can be expressed as a state machine, a replicated state 
machine can make any computation highly available. 

Recall the basic idea of a replicated state machine:  

If the transition relation is deterministic (in other words, is a function from (state, input) to 
(new state, output)), then several copies of the state machine that start in the same state and 
see the same sequence of inputs will do the same thing, that is, end up in the same state and 
produce the same outputs. 
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So if several processes are implementing the same state machine and achieve consensus on the 
values and order of the inputs, they will do the same thing. In this way it’s possible to replicate 
an arbitrary computation and thus make it highly available. Of course we can make the order a 
part of the value of the input by defining some total order on the set of possible inputs;1 the 
easiest way to do this is simply to number them 1, 2, 3, .... We have already seen one application 
of this replicated state machine idea, in the code for transactions; there the replication takes the 
form of redoing a sequence of actions that is remembered in a log. 

Suppose, for example, that we want to build a highly available file system. The transitions are 
read and write operations on the files (and rename, list, … as well). We make several copies of 
the file system and make sure that they process read and write operations in the same order. A 
client sends its operation to some copy, which gets consensus that it is the next operation. Then 
all the copies do the operation, and one of them returns the result to the client.  

In many applications the inputs are requests from clients to the replicated service. Typically 
different clients generate their requests independently, so it’s necessary to agree not only on what 
the requests are, but also on the order in which to serve them. The simplest way to do this is to 
number them with consecutive integers, starting at 1. This is especially easy in the usual 
implementation, ‘primary copy’ replication, since there’s one place (the primary) to assign 
consecutive numbers. As we shall see, however, it’s straightforward in any consensus scheme: 
you get consensus on input 1, then on input 2, etc. 

You might think that a read could be handled by any copy with no need for consensus, since it 
doesn’t change the state of the file system. Without consensus, however, a read might fail to see 
the result of a write that finished before the read started, since the read might be handled by a 
copy whose state is behind the current state of the file system. This result violates “external 
consistency”, which is a formal expression of the usual intuition about state machines. In some 
applications, however, it is acceptable to get a possibly old result from a read, and then any copy 
can satisfy it without consensus. Another possibility is to notice that a given copy will have done 
all the operations up to n, and define a read operation that returns n along with the result value, 
and possibly the real time of operation n as well. Then it’s up to the client to decide whether this 
is recent enough. 

The literature is full of other schemes for achieving consensus on the order of requests when 
their total order is not derived from consecutive integers. These schemes label each input with 
some label from a totally ordered set (for instance, (client UID, timestamp) pairs) and then 
devise some way to be certain that you have seen all the inputs that can ever exist with labels 
smaller than a given value. They are complicated, and of doubtful utility.2 People who do it for 
money use primary copy.3 

                                                  
1 This approach was first proposed in a classic paper by Leslie Lamport: Time, clocks, and the ordering of events in 
a distributed system, Comm. ACM 21, 7, July 1978, pp 558-565. This paper is better known for its analysis of the 
partial ordering of events in a distributed system, which is too bad. 
2 For details, see F. Schneider, Implementing fault-tolerant services using the state-machine approach: A tutorial, 
ACM Computing Surveys 22 (Dec 1990). This paper is reprinted in the book Distributed Systems, 2nd edition, ed. S. 
Mullender, Addison-Wesley, 1993, pp 169-197. 
3 Jim Gray said this about using locks for concurrency control; see handout 20. 
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Unfortunately, consensus is expensive. The section on optimizations at the end of this handout 
explains a variety of ways to make a replicated state machine run efficiently: leases, transactions, 
and batching.  

Spec for consensus 

Here is the spec for consensus; we have seen it already in handout 8 on history and prophecy 
variables. The idea is that the outcome of consensus should be one and only one of the allowed 
values. In the spec there is an outcome variable initialized to nil, and an action Allow(v) that 
can be invoked any number of times. There is also an action Outcome to read the outcome 
variable; it must return either nil or a v which was the argument of some Allow action, and if it 
doesn’t return nil it must always return the same v. 

 More precisely, we have two requirements: 

Agreement: Every non-nil result of Outcome is the same. 

Validity: A non-nil outcome equals some allowed value. 

Validity means that the outcome can’t be any arbitrary value, but must be a value that was 
allowed. Consensus is reached by choosing some allowed value and assigning it to outcome. 
This spec makes the choice on the fly as the allowed values arrive. 

MODULE Consensus [V] EXPORT Allow, Outcome = % data value to agree on 

VAR outcome   : (V + Null) := nil 

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >> 
APROC Outcome() -> (V + Null) = << RET outcome [] RET nil >> 

END Consensus 

Note that Outcome is allowed to return nil even after the choice has been made. This reflects the 
fact that in code with several replicas, Outcome is often coded by talking to just one of the 
replicas, and that replica may not yet have learned about the choice.  

If only one Allow action occurs, there’s no need to choose a v, and the code’s only problem is to 
ensure termination. An algorithm that does so is said to implement ‘reliable’ or ‘atomic’ 
broadcast; there is only one sender, and either everyone or no one gets the message. The single 
Allow might not set outcome, which corresponds to failure of the sender of the broadcast 
message; in this case no one gets the message. 

Here is an equivalent spec, slightly more complicated but perhaps more intuitive, and certainly 
closer to an implementation. It accumulates the allowed values and then chooses one of them in 
the internal action Agree. 

MODULE LateConsensus [V] EXPORT Allow, Outcome = 

VAR outcome : (V + Null) := nil 
allowed : SET V := {} 
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APROC Allow(v) = << allowed \/ := {v} >> 

APROC Outcome() -> (V + Null) = << RET outcome [] RET nil >>  
% Only outcome is visible 

APROC Decide() = << VAR v :IN allowed | outcome = nil => outcome := v >> 

END LateConsensus 

It should be fairly clear that LateConsensus implements Consensus. An abstraction function to 
prove this, however, requires a prophecy variable, because Consensus decides on the outcome 
(in the Allow action) before LateConsensus does (in the Decide action). We saw these specs in 
handout 8 on generalized abstraction functions, where prophecy variables are explained. 

In the code we have in mind, there are some processes, each with its own outcome variable 
initialized to nil. The outcome variables are supposed to reach consensus, that is, become equal 
to the argument of some Allow action. An Outcome can be directed to any process, which returns 
the value of its outcome variable. The tricky part is to ensure that two non-nil outcome variables 
are always equal, so that the agreement property is satisfied. 

We would also like to have the property that eventually Outcome stops returning nil. In the 
code, this happens when every process’ outcome variable is non-nil. However, this could take a 
long time if some process is very slow (or down for a long time).  

We can change Consensus to express this with an internal action Done: 

MODULE TerminatingConsensus [V] EXPORT Allow, Outcome = 

VAR outcome : (V + Null) := nil 
done : Bool := false 

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >> 
APROC Outcome() -> (V + Null) = << RET outcome [] ~ done => RET nil >> 

THREAD Done() = << outcome # nil => done := true >> 

END TermConsensus 

Note that this spec does not say anything about the processes in the assumed code; the 
abstraction function will say that done is true when all the processes have outcome �����.   

An even stronger spec returns an outcome only when it’s done: 

APROC Outcome() -> (V + Null) = << done => RET outcome [] ~ done => RET nil >> 

This is usually too strong for distributed code. It means that a process may not be able to respond 
to an Outcome request, since it can’t return a value if it doesn’t know the outcome yet, and it 
can’t return nil if anyone else has already returned a value. If either the processes or the 
communication are asynchronous, it won’t be possible in general for one process to know 
whether another one no longer matters because it has failed, or is just slow. 
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Facts about consensus 

In this section we summarize the most important facts about when consensus is possible and 
what it costs. You can learn more about this in Nancy Lynch’s course on distributed algorithms, 
6.852J, or in her book cited in handout 2. 

Fault models 

To devise code for Consensus we need a precise model for the general setting of processes 
connected by links that can communicate messages from one process to another. In particular, 
the model must define what faults are possible. There are lots of ways to do this, and we have 
space to describe only the models that are most popular and closest to reality.  

There are two broad classes of models: 

• Synchronous, in which a non-faulty component makes its state transitions within a known 
amount of time. Usually this is coded by using a timeout, and declaring a component faulty if 
it fails to perform within the specified time. 

• Asynchronous, in which nothing is known about the relative rate of progress of different 
components. In particular, a process can take an arbitrary amount of time to make a 
transition, and a link can take an arbitrary amount of time to deliver a message. 

In general a process can send a message only to certain other processes; this “can send message” 
relation defines a graph whose edges are the links. The graph may be directed (it’s possible that 
A can talk to B but B can’t talk to A), but we will assume that communication is full-duplex so 
that the graph is undirected. Links are either working or faulty; a faulty link delivers no 
messages. Even a working link may lose messages, and in some models may lose any number of 
messages; it’s helpful to think of such a system as one with totally asynchronous communication. 

Processes are either working or faulty. There are two models for a faulty process:  

• Stopping faults: a faulty process stops making transitions and doesn’t start again. In an 
asynchronous model there’s no way for another process to distinguish a stopped process or 
link from one that is simply very slow. 

• Byzantine faults: a faulty process makes arbitrary transitions; these are named after the 
Byzantine Empire, famous for treachery. The motivation for this model is usually not fear of 
treachery, but ignorance of the ways in which a process might fail. Clearly Byzantine failure 
is an upper bound on how bad things can be. 

Is consensus possible (will it terminate)? 

A consensus algorithm terminates when the outcome variables of all non-faulty processes equal 
some allowed value. Here are the basic facts about consensus in some of these models. 

• There is no consensus algorithm that is guaranteed to terminate in an asynchronous system 
with perfect links and even one process that has a stopping fault. This startling result is due to 
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Fischer, Lynch, and Paterson.4 It holds even if the communication system provides reliable 
broadcast that delivers each message either to all the non-faulty processes or to none of them. 
Real systems get around it by using timeout to make the system synchronous, or by using 
randomness.  

• Even in a synchronous system with perfect processes there is no consensus algorithm that is 
guaranteed to terminate if an unbounded number of messages can be lost (that is, if 
communication is effectively asynchronous). The reason is that the last message sent must be 
pointless, since it might be lost. So it can be dropped to get a shorter algorithm. Repeat this 
argument to drop all the messages. But clearly an algorithm with no messages can’t achieve 
consensus. The simplest case of this problem, with just two processes, is called the “two 
generals problem”. 

• In a system with both synchronous processes and synchronous communication, terminating 
consensus is possible. If f faults are allowed, then: 

For processes with stopping faults, consensus requires f+1 processes and an f+1-
connected5 network (that is, at least one good process and a connected subnet of good 
processes after all the allowed faults have happened). Even if the network is fully 
connected, it takes f+1 rounds to reach consensus in the worst case. 

For processors with Byzantine faults, consensus requires 3f+1 processes, a 2f+1-
connected network, at least f+1 rounds of communication, and 2f bits of data 
communicated. 

For processors with Byzantine faults and digital signatures (so that a process can present 
unforgeable evidence that another process sent it a message), consensus requires f+1 
processes. Even if the network is fully connected, it takes f+1 rounds to reach consensus 
in the worst case. 

The amount of communication required depends on the number of faults, the complexity of the 
algorithm, etc. Randomized algorithms can achieve better results with arbitrarily high 
probability.  

Warning: In many applications the model of no more than f faults may not be realistic if the 
system is allowed to do the wrong thing when the number of faults exceeds f. It’s often more 
important to do either the right thing or nothing. 

The simplest consensus algorithms 

There are two simple and popular algorithms for consensus. Both have the problem that they are 
not very fault-tolerant. 

                                                  
4 Fischer, M., Lynch, N., and Paterson, M., Impossibility of distributed consensus with one faulty process, J. ACM 
32, 2, April 1985, pp 374-382. 
5 A graph is connected if there is a path (perhaps traversing several links) between any two nodes, and disconnected 
otherwise. It is k-connected if k is the smallest number such that removing k links can leave it disconnected.  
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• A fixed ‘leader’, ‘master’, or ‘coordinator’ process that works like the Consensus spec: it 
gets all the Allow actions, chooses the outcome, and tells everyone. If it fails, you are out of 
luck. The abstraction function is just the identity on the leader’s state; 
TerminatingConsensus.done is true iff everyone has gotten the outcome (or failed 
permanently). Standard two-phase commit for distributed transactions works this way. 

• Simple majority voting. The abstraction function for outcome is the value that has a majority, 
or nil if there isn’t one. This fails if you don’t get a majority, or if enough members of a 
majority fail that it isn’t a majority any more. In the latter case you can’t determine the 
outcome. Example: a votes for 11, b and c vote for 12, and b fails. Now all you can see is 
one vote for 11 and one for 12, so you can’t tell that 12 had a majority. 

The Paxos algorithm: The idea 

In the rest of this handout, we describe Lamport’s Paxos algorithm for coding asynchronous 
consensus; Liskov and Oki independently invented this algorithm as part of a replicated data 
storage system.6 Its heart is the best asynchronous algorithm known, which is  

run by a set of proposer processes that guide a set of acceptor processes to achieve 
consensus,  

correct no matter how many simultaneous proposers there are and no matter how often 
proposer or acceptor processes fail and recover or how slow they are, and 

guaranteed to terminate if there is a single proposer for a long enough time during which 
each member of a majority of the acceptor processes is up for long enough, but 

possibly non-terminating if there are always too many proposers (fortunate, since we know 
that guaranteed termination is impossible). 

To get a complete consensus algorithm we combine this with a sloppy timeout-based algorithm 
for choosing a single proposer. If the sloppy algorithm leaves us with no proposer or more than 
one proposer for a time, the consensus algorithm may not terminate during that time. But if the 
sloppy algorithm ever produces a single proposer for long enough the algorithm will terminate, 
no matter how messy things were earlier. 

Paxos is the way to do consensus if you want a high degree of fault-tolerance, don’t have any 
real-time requirements, and can’t tightly control the time to transmit and process a message. 
There isn’t any simpler algorithm that has the same fault-tolerance. There is lots of code for 
consensus that doesn’t work. 

                                                  
6 L. Lamport, The part-time parliament, Technical report 49, Systems Research Center, Digital Equipment Corp, 
Palo Alto, Sep. 1989, finally published in ACM Transactions on Computer Systems 16, 2 (May 1998), pp 133-169. 
Unfortunately, the terminology of this paper is confusing. B. Liskov and B. Oki, Viewstamped replication: A new 
primary copy method to support highly available distributed systems, Proc. 7th ACM Conference on Principles of 
Distributed Computing, Aug. 1988. In this paper the consensus algorithm is intertwined with the replication 
algorithm. See also B. Lampson, The ABCDs of Paxos, at http://research.microsoft.com/lampson/65-
ABCDPaxos/Abstract.html. 
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The grand plan of the algorithm is to have a sequence of rounds, each with a single proposer. 
This attacks the problem with simple majority voting, which is that a single attempt to get a 
majority may fall victim to failure. Each Paxos round is a distinct attempt to get a majority. Each 
acceptor has a state variable s(a) that is a function of the round; that is, there’s a state value 
s(a)(n) for each round n. To reduce clutter, we write this sna. In each round the proposer: 

queries the acceptors to learn their state for past rounds, 

chooses a safe value v,  

commands the acceptors, trying to get a majority to accept v, and  

if it gets a majority, that’s a decision, and it distributes v as the outcome to everyone. 

The outcome is the value accepted by a majority in some round. The tricky part of the algorithm 
is to ensure that there is only one such value, even though there may be lots of rounds. 

Most descriptions of Paxos call the acceptors ‘voters’. This is unfortunate, because the acceptors 
do not make any decisions; they do whatever a proposer requests, unless they have already done 
something inconsistent with that. In fact, an acceptor can be coded by a memory that has a 
compare-and-swap operation, as we shall see later. Of course, the proposers and acceptors can 
run on the same machine, and even in the same process. This is usually the way it’s coded, but 
the algorithm with separate proposers and acceptors is easier to explain.  

It takes a total of 21/2 round trips for a deciding round. If there’s only one proposer that doesn’t 
fail, Paxos reaches consensus in one round. If the proposer fails repeatedly, or several proposers 
fight it out, it may take arbitrarily many rounds to reach consensus. This may seem bad, but 
actually it is a good thing, since we know from Fischer-Lynch-Paterson that we can’t have an 
algorithm that is guaranteed to terminate. 

The rounds are numbered (not necessarily consecutively) with numbers of type N, and the 
numbers determine a total ordering on the rounds. Each round has a single value, which starts out 
nil and then may change to one of the allowed values; we write vn for the value of round n. In 
each round an acceptor starts out neutral, and it can only change to vn or no. A vn or no state 
can’t change. Note that different rounds can have different values. A round is dead if a majority 
has state no, and decides if a majority has state vn. If a round decides, that round’s value is the 
outcome. 

The state of Paxos that contributes to the abstraction function to LateConsensus is  

MODULE Paxos[  % implements Consensus 
 V,  % data Value to decide on 
 P WITH {"<=": (P, P)->Bool}, % Proposer; <= a total order 
 A WITH {majority : SET A->Bool} ] % Acceptor; majorities must intersect 

TYPE I       = Int 
N       = [i, p] WITH {"<=":=LEqN} % round Number; <= is total 
Z       = (ENUM[no, neutral] + V) % one acceptor’s state in one round 
S       = A -> N -> Z % Acceptors’ states 

VAR s       : S             := {*->{*->neutral} % acceptor working States 
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outcome : A -> (V+Null) := {*->nil} % acceptor outcome values 
allowed : P -> SET V    := {*->{}} % proposer states 

% Agreement: (outcome.rng – {nil}).size <= 1 

% Validity:        (outcome.rng – {nil}) <= (\/ : allowed.rng) 

Paxos ensures that a round has a single value by having at most one proposer process per round, 
and making the proposer’s identity part of the round number. So N = [i, p], and proposer p 
proposes (i, p) for n, where i is an I that p has not used before, for instance, a local clock. The 
proposer keeps vn in a volatile variable; rather than resuming an old round after a crash, it just 
starts a new one. 

To understand why the algorithm works, it’s useful to have the notion of a stable predicate on the 
state, a predicate that once true, remains true henceforth. Since the non-nil value of a round 
can’t change, “vn = v” is stable. Since a state value in an acceptor once set can’t change, sna = 
v and are stable; hence “round n is dead” and “round n decides” are stable as well. Note that sna 
= neutral is not stable, since it can change to v or to no. Stable predicates are important, since 
they are the only kind of information that can usefully be passed from one process to another in a 
distributed system. If you get a message from another process telling you that p is true, and p is 
stable, then you know that p is true now (assuming that the other process is trustworthy). 

We would like to have the idea of a safe value at round n: v is safe at n if any previous round that 
decided, decided on n. Unfortunately, this is not stable as it stands, since a previous round might 
decide later. In order to make it stable, we need to prevent this. Here is a more complex stable 
predicate that does the job: 
 v is safe at n = (ALL n’ | n’ <= n ==> n’ is dead \/ vn’ = v) 
In other words, if you look back at rounds before n, skipping dead rounds, you see vn. If all 
preceding rounds are dead, any vn makes n safe. For this to be well-defined, we need an ordering 
on N's, and for it to be useful we need a total ordering. We get this as the lexicographic ordering 
on the N = [i, p] pairs. This means that we must assume a total ordering on the proposers P. 

With these preliminaries, we can give the abstraction function from Paxos to LateConsensus. 
For allowed it is just the union of the proposers’ allowed sets. For outcome it is the value of a 
deciding round. 

ABSTRACTION FUNCTION 
LateConsensus.allowed = \/ : allowed.rng 
LateConsensus.outcome = {n | Decides(n) | Value(n)}.choose  

FUNC Decides(n) -> Bool = RET {a | sn
a IS V}.majority 

FUNC Value(n) -> (V + Null) = IF VAR a, v | sn
a = v => RET v [*] RET nil FI 

For this to be an abstraction function, we need an invariant:  

(I1)  Every deciding round has the same value. 

It’s easy to see that this follows from a stronger invariant: If round n’ decides, then any later 
round’s value is the same or nil.  
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(I2) (ALL n’, n | n’ <= n /\ n’ deciding ==> vn = nil \/ vn = vn’) 

This in turn follows easily from something with a weaker antecedent: 

(I3) (ALL n’, n | n’ <= n /\ n’ is not dead ==> vn = nil \/ vn = vn’) 
=  (ALL n’, n | vn = nil \/ (n’ <= n ==> n’ is dead \/ vn = vn’) 

=  (ALL n | vn = nil \/ (ALL n’ | n’ <= n ==> n’ is dead \/ vn = vn’)) 

= (ALL n | vn = nil \/ vn is safe) 

For validity, we also need to know that every round’s value is allowed: 

(I4) (ALL n | vn = nil \/ vn IN (\/ : allowed.rng)) 

Initially all the vn are nil so that (I3) and (I4) hold trivially. The Paxos algorithm maintains (I3) 
by choosing a safe value for a round. To accomplish this, the proposer chooses a new n and 
queries all the acceptors to learn their state in all rounds with numbers less than n. Before an 
acceptor responds, it closes a round earlier than n by setting any neutral state to no. Responses 
to this query from a majority of acceptors give the proposer enough information to find a safe 
value at round n, as follows: 

It looks back from n, skipping over rounds with no V state, since these must be dead 
(remember that the reported state is a V or no). When it comes to a round n’ with sn’a = v 
for some acceptor a, it takes v as safe. Since vn’ is safe by (I3), and all the rounds between 
n’ and n are dead, v is also safe. 

If all previous rounds are dead, any allowed value is safe.  

Because ‘safe’ and ‘dead’ are stable properties, no state change can invalidate this choice. 

Another way of looking at this is that because a deciding round is not dead and can never 
become dead, it forms a barrier that the proposer can’t get past in choosing a safe value for a 
later round. Thus the deciding round forces any later safe value to be the same. A later round can 
propose differently from an earlier one only if the earlier one is dead. 

An example may help to clarify the idea. Assume the allowed set is {x, y, w}. Given the 
following two sets of states in rounds 1 through 3, with three acceptors a, b, and c, the safe 
values for round 4 are as indicated. In the middle column the proposer can see a majority of 
acceptors in each round without seeing any V’s, because all the rounds are dead. In the right-hand 
column there is a majority for w in round 2. 

 
 State 

Value, acceptors value   a   b   c value   a   b   c 

round 1 
round 2 
round 3 

x      x   no  no 

x      x   no  no 

y      no  no  y 

y      y   no  no 

w      w   no  w   

w      no  no  w 

safe values for round 4 x, y, or w w 
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Note that only the latest V state from each acceptor is of interest, so only that state actually has to 
be transmitted.  

Now in a second round trip the proposer commands everyone for round n. Each acceptor that is 
still neutral in round n (because it hasn’t answered the query of a round later than n) accepts by 
changing its state to vn in round n; in any case it reports its state to the proposer. If the proposer 
collects vn reports from a majority of acceptors, then it knows that round n has succeeded, takes 
vn as the agreed outcome of the algorithm, and sends this fact to all the processes in a final half 
round. Thus the entire process takes five messages or 2½ round trips.  
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Message flow in Paxos 

 Proposer p Message Acceptor a  

 Choose a new np, n    

 Query a majority of 
acceptors for their status 

query(n)   
��report(a, sa) 

for all n’ < n,  
    if      sn’a = neutral  
    then sn’a:= no 

 

 Find a safe v at n. If all 
n’ < n are dead, any v 
in allowedp is safe 

   

 Command a majority  
of acceptors to accept v 

command(n, v)   
��report(a, sa) 

if      sna = neutral  
then sna:= v 

 

 If a majority accepts, 
publish the outcome v 

outcome(v)     
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When does a round succeed, that is, what action simulates the Decide action of the spec? It 
succeeds at the instant that some acceptor forms a majority by accepting its value, even though 
no acceptor or proposer knows at the time that this has happened. In fact, it’s possible for the 
round to succeed without the proposer knowing this fact, if some acceptors fail after accepting 
but before getting their reports to the proposer, or if the proposer fails. In this case, some 
proposer will have to run another round, but it will have the same value as the invisibly deciding 
round. 

When does Paxos terminate? If no proposer starts another round until after an existing one 
decides, then the algorithm definitely terminates as soon as the proposer succeeds in both 
querying and commanding a majority. It doesn’t have to be the same majority for both, and the 
acceptors don’t all have to be up at the same time. Therefore we want a single proposer, who 
runs one round at a time. If there are several proposers, the one running the biggest round will 
eventually succeed, but if new proposers keep starting bigger rounds none may ever succeed. 
This is fortunate, since we know from the Fischer-Lynch-Paterson result that there is no 
algorithm that is guaranteed to terminate. 

It’s easy to keep from having two proposers at once if there are no failures for a while, the 
processes have clocks, and the maximum time to send, receive, and process a message is known: 

Every potential proposer that is up broadcasts its name. 

You become the proposer one round-trip time after doing a broadcast unless you have 
received the broadcast of a bigger name. 

The algorithm makes minimal demands on the properties of the network: lost, duplicated, or 
reordered messages are OK. Because nodes can fail and recover, a better network doesn’t make 
things much simpler. We model the network as a broadcast medium from proposer to acceptors; 
in practice this is usually coded by individual messages to each acceptor. We describe continu-
ous retransmission; in practice acceptors retransmit only in response to the proposer’s retrans-
mission. 

A process acting as a proposer uses messages to communicate with the same process acting as an 
acceptor, so we describe the two roles of each process completely independently.  In fact, the 
proposer need not be an acceptor at all. 

Note the structure of the algorithm as a collection of independent atomic actions, each taking 
place at a single process. There are no non-atomic procedures except for the top-level scheduler, 
which simply chooses an enabled atomic action to run next. This structure makes it much easier 
to reason about the algorithm in the presence of concurrency and failures. 

The next section gives the algorithm in detail. You can skip this, but be sure to read the 
following section on optimizations, which has important remarks about using Paxos in practice. 

The Paxos algorithm: The details 

We give a straightforward version of the algorithm in detail, and then describe encodings that 
reduce the information stored and transmitted to small fixed-size amounts. The first set of types 
and variables is copied from the earlier declarations. 
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MODULE Paxos[  % implements Consensus 
V,    % data Value to decide on 
P WITH {"<=": (P, P)->Bool SUCHTHAT IsTotal}, % Proposer; <= a total order 
A WITH {majority: SET A->Bool} SUCHTHAT IsMaj ] % Acceptor  

TYPE I = Int 
N = [i, p] WITH {"<=":=LEqN} % round Number; <= total 
Z = (ENUM[no, neutral] + V) % one acceptor’s state in one round 
S = A -> N -> Z % Acceptors’ states 

VAR outcome : A -> (V+Null) :={*->nil} % the acceptors’ state, in 
s  : S             :={*->{*->neutral}} % two parts. 
allowed : P -> SET V    :={*->{}} % the proposers’ state 
% The rest of the proposers’ state is the variables of ProposerActions(p).  
% All volatile except for n, which we make stable for simplicity. 

TYPE K = ENUM[query,command,outcome,report] % Kind of message  
M = [k, % Message; kind of message, 
   n, % about round n  
   x: (Null + S + V) ] % acceptor state or outcome. 
   % S defined for just one a 
Phase = ENUM[idle, querying, commanding] % of a proposer process 

CONST n0 := N{i:=0, p:={p | true}.min} % smallest N 

% Actions for handling messages 

APROC Send(k, n, x: ANY) = << UnreliableCh.Put({M{k, n, x}}) >> 
APROC Receive(k) -> M = << VAR m | m := UnreliableCh.Get(); m.k = k => RET m >> 

% External actions. Can happen at any proposer or acceptor. 

APROC Allow(v)       = << VAR p | allowed(p) := allowed(p) \/ {v} >> 
APROC Outcome() -> V = << VAR a | RET outcome(a) >> 

THREAD ProposerActions(p) =  
VAR % proposer state (volatile except n) 

n           := N{i := 1, p := p},  % last round started 
phase       := idle,   % proposer’s phase 
pS          := S{}, % Proposer info about acceptor State 
v: (V+Null) := nil % used iff phase = commanding 
|  

DO << % Pick an enabled action and do it. 
% Crash. We don’t care about the values of pS or v. 
phase := idle; allowed := {}; pS := {}; v := nil 

 
[] % New round. Hope n becomes largest N in use so this round succeeds. 

phase = idle => VAR i | i > n.i => n.i := i; pS := {}; phase := querying 

[] % Send query message. 
phase = querying => Send(query, n, nil) 

[] % Receive report message for the current round. 
<< phase = querying => VAR m := Receive(report) |  

  m.n = n => pS + := m.x >> 
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[] % Start command. Note that Dead can't be true unless pS has a majority. 
 << phase = querying =>  

  IF  VAR n1 |   (ALL n’ | n1 < n’ /\ n’ < n ==> Dead(pS, n’)) 
              /\ Val(pS, n1) # nil => v := Val(pS, n1) 
  [*] (ALL n’| n’ < n ==> Dead(pS, n’)) => VAR v’ :IN allowed(p) | v := v’  
  FI;  
  pS := S{}; phase := commanding >> 

[] % Send command message. 
 phase = commanding => Send(command, n, v) 

[] % Receive report message for the current round with non-neutral state. 
<< phase = commanding => VAR m := Receive(report), s1 := m.x, a |  

m.n = n /\ s1!a /\ s1n
a # neutral => pSn

a:= s1n
a >> 

 
[] % Send outcome message if a majority has V state. 

Decides(pS, n) => Send(outcome, n, v) 

[] % This round is dead if a majority has no state. Try another round. 
Dead(pS, n) => phase := idle 

>> OD 

 

THREAD AcceptorActions(a) = % State is in sa and outcomea, which are stable. 

DO << % Pick an enabled action and do it. 

   % Receive query message, change neutral state to no for all before m.n, and  
   % send report. Note that this action is repeated each time a query message arrives. 

VAR m := Receive(query) |   
DO VAR n | n < m.n /\ sn

a = neutral => sn
a:= no OD;  

Send(report, m.n, s.restrict({a})) 

[] % Receive command message, change neutral state to vn, and send state message. 
   % Note that this action is repeated each time a command message arrives. 

VAR m := Receive(command) | 
IF sm.n

a = neutral => sm.n
a:= m.x [*] SKIP FI; 

Send(report, m.n, s.restrict({a}).restrict({n})} 

[] % Receive outcome message. 
VAR m := Receive(outcome) | outcomea:= m.x 

>> OD 

=============Useful functions for the proposer choosing a value============= 

FUNC LEqN(n1, n2) -> Bool =  % lexicographic ordering 
RET n1.i < n2.i \/ (n1.i = n2.i /\ n1.a <= n2.a) 

FUNC Dead(s’, n)       -> Bool = RET {a | s’!a /\ s’(a)(n) = no}.majority 
FUNC Decides(s’, n) -> Bool = RET {a | s’!a /\ s’(a)(n) IS V}.majority 

FUNC Val(s’, n) -> (V+Null) = IF VAR a, v | s’(a)(n) = v => RET v [*] RET nil FI 
% The value of round n according to s’: if anyone has v then v else nil. 
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===================Useful functions for the invariants=================== 

% We write xl for ProposerActions(p).x to make the formulas more readable. 

FUNC IsTotal(le: (P, P) -> Bool) -> Bool = % Is le a total order? 
    RET ( ALL p1, p2, p3 |   (le(p1, p2) \/ le(p2, p1))   
                          /\ (le(p1, p2) /\ le(p2, p3) ==> le(p1, p3)) )  

IsMaj(m: SET A->Bool) -> Bool = % any two must intersect 
    RET (ALL aa1: SET A, aa2: SET A | (m(aa1) /\ m(aa2) ==> aa1 /\ aa2 ����� 

FUNC Allowed() -> SET V = RET \/ : allowed.rng 

FUNC Decides(n) -> Bool = RET Decides(s, n) 
FUNC Value(n) -> (V+Null)  = RET Val(s, n) % The value of round n 

FUNC ValAnywhere(n) -> SET V =  
% Any trace of the value of round n, in messages, in s, or in a proposer. 

RET    {m, a, s1 | m IN UnreliableCh.q /\ m.x = s1 /\ s1!a /\ s1(a)!n  
               | s1n

a }   
    \/ {Value(n)} 
    \/ (phasen.l = commanding => {vn.l} [*] {}) 

FUNC SafeVals(n) -> SET V =  
% The safe v’s at n. 

RET {v | ( ALL n’ | n’ < n ==> Dead(s, n’) \/ v = Val(s, n’) )} 

FUNC GoodVals(n) -> SET V =  
% The good values for round n: if there's no v yet, the ones that satisfy  
% (I3) and validity. If there is a v, then v. 

RET ( Value(n) = nil => SafeVals(n) /\ Allowed() [*] {Value(n)} ) 

============================== Invariants ============================== 

% Proofs are straightforward except as noted. Observe that s changes only when an acceptor receives query  
% (when it may add no state) or when  an acceptor receives command (when it may add V state). 

% (1) A proposer’s n.p is always the proposer itself. 
( ALL p | np.p = p )  % once p has taken an action 
% (2) Ensure that there's no value yet for any round that a proposer might start. 
( ALL p, n |    n.p = p /\ (n > np \/ (n = np /\ phasep = querying))  
            ==> Value(n) = nil ) 

% (3) s always has a most one value per round, because a only changes sa (when a receives query or command) 
% from neutral, and either to no (query) or to agree with the proposer (command). 
(ALL n | {a | s!a /\ sn

a IS V | sn
a}.size <= 1) 

% (4) All the S's in the channel or in any pS agree with s. 
( ALL s1 :IN ({m | m IN UnreliableCh.q /\ m.x IS S | m.x} \/ {p | pSp}) | 
    (ALL a, n | s1!a /\ s1(a)!n /\ s1n

a # neutral ==> s1n
a = sn

a)) 

% (5) Every round value is allowed 
( ALL n | Value(n) IN (Allowed()\/ {nil}) ) 

% (6) If anyone thinks v is the value of a round, it is a good round value. 
( ALL n | ValAnywhere(n) <= v IN GoodVals(n)) ) 
% (7) A round has only one non-nil value. 
( ALL n | ValAnywhere(n).size <= 1 ) 
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% Major invariant (I3). 
( ALL n | Value(n) IN ({nil} \/ SafeVals(n)) ) 
% Easy consequence (I2) 
( ALL n1, n2 | n1 < n2 /\ Decides(n1) ==> Value(n2) IN {nil, Value(n1)} ) 
% Further easy consequence (I1) 
( ALL a | outcome(a) # nil ==> (EXISTS n | Decides(n) /\ outcome(a) = Value(n)) 

END Paxos 

Optimizations 

It’s possible to reduce the size of the proposer and acceptor state and the messages transmitted to 
a few bytes, and in many cases to reduce the latency and the number of messages sent by 
combining rounds of the algorithm. 

Reducing state and message sizes 

It’s not necessary to store or transmit the complete acceptor state sa. Instead, everything can be 
encoded in a small fixed number of N’s, A’s, and V’s, as follows. 

The relevant part of S in an acceptor or in a report message consists of vlast in some round 
last, plus no in all rounds strictly between last and some later round next, and neutral in any 
round after last and at or after next. Hence S can be encoded simply as (vlast, last, next). 
The part of S before last is just history and is not needed for the algorithm to run, because we 
know that vlast is safe. Making this precise, we have  

VAR y: [z, last: N, next: N] := {no, n0, n0} 

and sa is just 
(\ n | (n <= y.last => y.z [*] n < y.next => no [*] neutral)) 

Note that this encoding loses the details of the state for rounds before last, but the algorithm 
doesn’t need this information Here is a picture of this coding scheme.  

n0 last next

some mixture of V’s and no vlast   all no neutral from here on

  Round

  Agent state

. . . . . .

last

next

vlast neutral from here on

. . .

. . .

or just after accepting:

                

In a proposer, there are two cases for pS.  

• If phase = querying, pS consists of the sa’s, for rounds less than n, transmitted by a set of 
acceptors a. Hence it can be encoded as a set of ‘last state’ tuples (a, lasta, v). From this 
we care only about the number of a’s (assuming that A.majority just counts acceptors), the 
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biggest last, and its corresponding v. So the whole thing can be coded as (count of A’s, 
lastmax, v). 

• If phase = commanding, pS consists of a set of vn or no in round n, so it can be encoded as 
the set of acceptors responding. We only care about a majority, so we only need to count the 
number of acceptors responding. 

The proposers need not be the same processes as the acceptors. A proposer doesn’t really need 
any stable state, though in the algorithm as given it has n. Instead, it can poll for the next’s from 
a majority after a failure and choose an n with a bigger n.i. This will yield an n that’s larger than 
any n from this proposer that has appeared in a command message so far (because n can’t get into 
a command message without having once been the value of next in a majority of acceptors), and 
this is all we need to keep s good. In fact, if a proposer ever sees a report with a next bigger than 
its own n, it should either stop being a proposer or immediately start another round with a new, 
larger n, because the current round is unlikely to succeed. 

Combining rounds 

In the most important applications of Paxos, we can combine the first round trip (query/report) 
with something else. For a commit algorithm, we can combine the first round-trip with the 
prepare message and its response; see handout 27 on distributed transactions.  

The most important application is a state machine that needs to decide on a sequence of actions. 
We can number the actions a0, a1, …, ak, run a separate instance of the algorithm for each 
action, and combine the query/report messages for all the actions. Note that these action 
numbers, which we are calling K’s, are not the same as the Paxos round numbers, the N’s; each 
action has its own instance of Paxos and therefore its own set of round numbers. In this 
application, the proposer is usually called the primary. The following trick allows us to do the 
first round trip only once after a new primary starts up: interpret the report messages for action 
k as applying not just to consensus on ak, but to consensus on aj for all j >= k.  

As long as the same process continues to be proposer, it can keep track of the current K in its 
private state. A new proposer needs to learn the first unused K. If it tries to get consensus using a 
number that’s too small, it will discover that there’s already an outcome for that action. If it uses 
a number k that’s too big, however, it can get consensus. This is tricky, since it leads to a gap in 
the action numbers. Hence you can’t apply the decided action k, since you don’t know the state 
at k because you don’t know all of the preceding actions that are applied to make that state. So a 
new proposer must find the first unused K for its first action a. A clumsy way to do this is to start 
at k = 0 and try to get consensus on successive ak’s until you get consensus on a. 

You might think that this is silly. Why not just poll the acceptors for the largest K for which one 
of them knows the outcome? This is a good start, but it’s possible that consensus was reached on 
the last ak (that is, there’s a majority for it among the acceptors) but the outcome was not 
published before the proposer crashed. Or it was not published to a majority of the acceptors, and 
all the ones that saw it have also failed. So after finding that k is the largest K with an outcome, 
the proposer may still discover that the consensus on ak+1 is not for its action a, but for some 
earlier action whose deciding outcome was never broadcast. If proposers follow the rule of not 
starting consensus on k+1 until a majority knows the outcome for k, then this can happen at most 
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once. It may be convenient for a new proposer to start by getting consensus on a SKIP action in 
order to get this complication out of the way before trying to do real work. 

Further optimizations are possible in distributing the actions already decided, and handout 28 on 
primary copy replication describes some of them. 

Note that since a state machine is completely general, one of the things it can do is to change the 
set of acceptors. So acceptors can be added or dropped by getting consensus among the existing 
acceptors. This means that no special algorithm is needed to change the set of acceptors. Of 
course this must be done with care, since once you have gotten consensus on a new set of 
acceptors you have to get a majority of them in order to make any further changes. 

Leases 

In a synchronous system, if you want to avoid running a full-blown consensus algorithm for 
every action that reads the state, you can instead run consensus to issue a lease on some 
component of the state. The lease guarantees that the state component won’t change (unless you 
have an exclusive lease and change it yourself) until some expiration time, a point in real time. 
Thus a lease is just like a lock, except that it times out. Provided you have a clock that has a 
known maximum difference from real time, you can be confident that the value of a leased state 
component hasn’t changed (that is, that you still hold the lock). To keep control of the state 
component (that is, to keep holding the lock), you can renew the lease before it expires. If you 
can’t talk to all the processes that have the lease, you have to wait for it to expire before 
changing the leased state component. So there is a tradeoff between the cost of renewing a lease 
and the time you have to wait for it to expire after a (possible) failure. 

There are several variations: 

• If you issue the lease to some known set of processes, you can revoke it provided they all 
acknowledge the revocation. 

• If you know the maximum transmission time for a message, you can get by with clocks that 
have known differences in running rate rather than known differences in absolute time. 

• Since a lease is a kind of lock, it can have different lock modes, for instance, ‘read’ and 
‘write’. 

The most common application is to give some set of processes the right to cache some part of the 
state, for instance the contents of a cache line or of a file, without having to worry about the 
possibility that it might change. If you don’t have a lease, you have to do an expensive state 
machine action to get a current result; otherwise you might get an old result from some replica 
that isn’t up to date. (Of course, you could settle for a result as of action k, rather than a current 
one. Then you would need neither a lease nor a state machine action, but the client has to 
interpret the k that it gets back along with the result it wanted. Usually this is too complicated for 
the client.) 

If the only reason for running consensus is to issue a lease, you don’t need stable state in the 
acceptors. If an acceptor fails, it can recover with empty state after waiting long enough that any 
previous lease has expired. This means that the consensus algorithm can’t reliably tell you the 
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owner of such a lease, but you don’t care because it has expired anyway. Schemes for electing a 
proposer usually depend on this observation to avoid disk writes.  

You might think that an exclusive lease allows the process that owns it to change the leased state 
as well, as with ‘owner’ access to a cache line or ownership of a multi-ported disk. This is not 
true in general, however, because the state is replicated, and at least a majority of the replicas 
have to be changed. There’s no reliable way to do this without running consensus. 

In spite of this, leases are not completely irrelevant to updates. With a lease you can use a simple 
read-write memory as an acceptor for consensus, rather than a fancier one that can do compare-
and-swap, since the lease allows you do the necessary read-modify-write operation atomically 
under the lease’s mutual exclusion. For this to work, you have to be able to bound the time that 
the write takes, so you can be sure that it completes before the lease expires. Actually, the 
requirement is weaker: a read must see the atomic effect of any write that is started earlier than 
the read. This ensures that if the write is started before the lease expires, a reader that starts after 
the lease expires will see the write. 

This observation is of great practical importance, since it lets you run a replicated state machine 
where the acceptors are ‘dual-ported’ disk drives that can be accessed from more than one 
machine. One of the machines becomes the master by taking out a lease, and it can then write 
state changes to the disks.  

Compare-and-swap acceptors 

An alternative to using simple memory and leases is to use memory that implements a compare-
and-swap or conditional store operation. The spec for compare-and-swap is  

APROC CAS(a, old: V, new: V) -> V =  
<< IF m(a) = old => m(a) := new; RET old [*] RET m(a) FI >> 

Many machines, including the IBM 370 and the DEC Alpha, have such an operation (for the 
Alpha, you have to program it with Load Locked and Store Conditional, but this is easy and 
cheap). 

To use a CAS memory as an acceptor, we have to code the state so that we can do the query and 
command actions as single CAS operations. Recall that the coded state of an acceptor is y = 
(vlast, last, next), representing the value vlast for round last, no for all rounds strictly 
between last and next, and neutral for all rounds starting at next. A query for round n 
changes the state to (vlast, last, n) provided next <= n. A command for round n changes 
the state to (vn, n, n) provided next = n. So we need a representation that allows us to 
atomically test the current value of next and change the state in one of these ways. This is 
possible if an N fits in a single memory cell that CAS can read and update atomically. We can 
store the rest of the triple in a data structure on the side that is indexed by next. If each possible 
proposer has its own piece of this data structure, they won’t interfere with each other when they 
are updating it. 

Since this is hard concurrency, the details of such a representation are tricky. 
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Complex updates 

The actions of a state machine can be arbitrarily complex. For example, they can be complete 
transactions. In a replicated state machine the replicas must decide on the sequence of actions, 
and then each replica must do each action atomically. In handouts 19 and 20, on sequential and 
concurrent transactions, we will see how to make arbitrary actions atomic using redo recovery 
and locking. So in a general state machine each acceptor will write a redo log, in which each 
committed transaction corresponds to one action of the state machine. The acceptors must reach 
consensus on the complete sequence of actions that makes up the transaction. In practice, this 
means that each acceptor logs all the updates, and then they reach consensus on committing the 
transaction. When an acceptor recovers from a failure, it runs redo recovery in the usual way. 
Then it has to find out from other acceptors about any actions that they agreed on while it was 
down. 

Of course, if several proposers are trying to run transactions at the same time, you have to make 
sure that the log entries don’t get mixed up. Usually this is done by funneling everything through 
a single master called the primary; this master also acts as the proposer for consensus. 

Another way of doing this is to use a single master with passive acceptors that just implement 
simple memory; usually these are disk drives that record redundant copies of the log. The 
previous section on leases explains how to run Paxos with such passive acceptors. When a 
master fails, the new one has to sort out the consensus on the most recent transaction as part of 
recovery. 

Batching 

Another way to avoid paying for consensus each time the state machine does an action is to 
batch several actions, possibly from different clients, into one super-action. They you get 
consensus on the super-action, and each replica can apply the individual actions of the super-
action. You still have to pay to send the information that describes all the actions to each replica, 
but all the per-message overhead, plus the cost of the acknowledgements, is paid only once. 


