6.826—Principles of Computer Systems 2004

18. Consensus

Consensus (sometimes called ‘reliable broadcast’ or ‘atomic broadcast’) is a fundamental
building block for distributed systems. Informally, we say that several processes achieve
consensus if they all agree on some value. Three obvious applications are:

Distributed transactions, where all the processes need to agree on whether a transaction
commits or aborts. Each transaction needs a new consensus on its outcome.

Membership, where a set of processes cooperating to provide a highly available service need
to agree on which processes are currently functioning as members of the set. Every time a
processfails or starts working again there must be a new consensus.

Electing aleader of agroup of processes.

A less obvious, but much more powerful application isto replicate that state machines, which are
discussed in detail below and in handout 28.

There are four important things to learn from this part of the course:

Theidea of replicated state machines as a completely general method for building highly
available, fault tolerant systems. In handout 28 we will discuss replicated state machines and
other methods for fault tolerance in more detail.

The Paxos agorithm for distributed, fault tolerant consensus: how and why it works .
Paxos as an example of the best style for distributed, fault tolerant algorithms.

The correctness of Paxos as an example of the abstraction functions and simulation proofs
applied to avery subtle agorithm.

Replicated state machines

Thereis amuch more general way to use consensus, as the mechanism for coding a highly
available state machine, which isthe basic tool for building a highly available system. The way
to get availability isto have either perfect components or redundancy. Perfect components are
too hard, which leaves redundancy. The simplest form of redundancy is replication: have several
copies or replicas of each component, and make sure that al the non-faulty components do the
same thing. Since any computation can be expressed as a state machine, areplicated state
machine can make any computation highly available.

Recall the basic idea of areplicated state machine:

If the transition relation is deterministic (in other words, is a function from (state, input) to
(new state, output)), then several copies of the state machine that start in the same state and
see the same sequence of inputs will do the same thing, that is, end up in the same state and
produce the same outputs.

Handout 18. Consensus 1

6.826—Principles of Computer Systems 2004

So if severa processes are implementing the same state machine and achieve consensus on the
values and order of theinputs, they will do the same thing. In thisway it’'s possible to replicate
an arbitrary computation and thus make it highly available. Of course we can make the order a
part of the value of the input by defining some total order on the set of possible inputs;! the
easiest way to do thisis simply to number them 1, 2, 3, We have already seen one application
of thisreplicated state machine idea, in the code for transactions; there the replication takes the
form of redoing a sequence of actionsthat is remembered in alog.

Suppose, for example, that we want to build a highly availablefile system. The transitions are
read and write operations on the files (and rename, list, ... aswell). We make several copies of
the file system and make sure that they process read and write operations in the same order. A
client sendsiits operation to some copy, which gets consensus that it is the next operation. Then
al the copies do the operation, and one of them returns the result to the client.

In many applications the inputs are requests from clients to the replicated service. Typically
different clients generate their requests independently, so it's necessary to agree not only on what
the requests are, but also on the order in which to serve them. The simplest way to do thisisto
number them with consecutive integers, starting at 1. Thisis especialy easy in the usual
implementation, ‘ primary copy’ replication, since there’ s one place (the primary) to assign
consecutive numbers. Aswe shall see, however, it's straightforward in any consensus scheme:
you get consensus on input 1, then on input 2, etc.

Y ou might think that aread could be handled by any copy with no need for consensus, since it
doesn’t change the state of the file system. Without consensus, however, aread might fal to see
theresult of awrite that finished before the read started, since the read might be handled by a
copy whose state is behind the current state of the file system. Thisresult violates “ external
consistency”, which isaformal expression of the usual intuition about state machines. In some
applications, however, it is acceptable to get a possibly old result from aread, and then any copy
can satisfy it without consensus. Another possibility isto notice that a given copy will have done
all the operations up to n, and define aread operation that returns n along with the result value,
and possibly therea time of operation n aswell. Then it’'s up to the client to decide whether this
isrecent enough.

Theliteratureis full of other schemes for achieving consensus on the order of requests when
their total order is not derived from consecutive integers. These schemes label each input with
some label from atotally ordered set (for instance, (client UID, timestamp) pairs) and then
devise some way to be certain that you have seen all the inputs that can ever exist with labels
smaller than a given value. They are complicated, and of doubtful utility.2 People who do it for
money use primary copy.3

1 This approach was first proposed in a classic paper by Leslie Lamport: Time, clocks, and the ordering of eventsin
adistributed system, Comm. ACM 21, 7, July 1978, pp 558-565. This paper is better known for its analysis of the
partia ordering of eventsin adistributed system, which istoo bad.

2 For details, see F. Schneider, Implementing fault-tolerant services using the state-machine approach: A tutorial,
ACM Computing Surveys 22 (Dec 1990). This paper is reprinted in the book Distributed Systems, 2nd edition, ed. S.
Mullender, Addison-Wesley, 1993, pp 169-197.

3 Jim Gray said this about using locks for concurrency control; see handout 20.

Handout 18. Consensus 2

6.826—Principles of Computer Systems 2004

Unfortunately, consensus is expensive. The section on optimizations at the end of this handout
explains avariety of ways to make areplicated state machine run efficiently: leases, transactions,
and batching.

Spec for consensus

Here isthe spec for consensus, we have seen it already in handout 8 on history and prophecy
variables. Theideaisthat the outcome of consensus should be one and only one of the allowed
values. In the spec thereis an out come variableinitialized toni1, and an action a11ow (v) that
can be invoked any number of times. Thereis also an action outcome to read the out come
variable; it must return either ni1 or av which was the argument of some a11ow action, and if it
doesn’t return ni1 it must always return the same v.

More precisely, we have two requirements:
Agreement: Every non-nil result of outcome isthe same.
Validity: A non-nil outcome egquals some allowed value.

Validity means that the outcome can’t be any arbitrary value, but must be a value that was
alowed. Consensusis reached by choosing some alowed value and assigning it to out come.
This spec makes the choice on the fly as the allowed values arrive.

MODULE Consensus [V] EXPORT Allow, Outcome = % data value to agree on

VAR outcome (V + Null) := nil
APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >>
APROC Outcome () -> (V + Null) = << RET outcome [] RET nil >>

END Consensus

Notethat outcome isalowed to return ni1 even after the choice has been made. Thisreflectsthe
fact that in code with several replicas, outcome isoften coded by talking to just one of the
replicas, and that replica may not yet have learned about the choice.

If only one a110w action occurs, there’ s no need to choose a v, and the code’ s only problemisto
ensure termination. An agorithm that does so is said to implement ‘reliable’ or ‘atomic’
broadcast; there is only one sender, and either everyone or no one gets the message. The single
Allow might not set outcome, Which corresponds to failure of the sender of the broadcast
message; in this case no one gets the message.

Hereisan equivalent spec, dightly more complicated but perhaps more intuitive, and certainly
closer to an implementation. It accumulates the allowed values and then chooses one of them in
theinterna action agree.

MODULE LateConsensus [V] EXPORT Allow, Outcome =

VAR outcome (V + Null) := nil
[allowed : SET V := {}

Handout 18. Consensus 3

6.826—Principles of Computer Systems 2004

APROC Allow(v) = << [allowed \/ := {v}] >>

APROC Outcome () -> (V + Null) = << RET outcome [] RET nil >>
% Only out come isvisible

APROC Decide() = << VAR v :IN allowed | outcome = nil => outcome := Vv >>

END LateConsensus

It should befairly clear that Lateconsensus implements consensus. An abstraction function to
prove this, however, requires a prophecy variable, because consensus decides on the outcome
(inthe a110w action) before .ateconsensus does (in the pecide action). We saw these specsin
handout 8 on generalized abstraction functions, where prophecy variables are explained.

In the code we have in mind, there are some processes, each with its own outcome variable
initialized toni1. The outcome variables are supposed to reach consensus, that is, become equal
to the argument of some a11ow action. An outcome can be directed to any process, which returns
the value of its outcome variable. Thetricky part isto ensure that two non-nil outcome variables
are always equal, so that the agreement property is satisfied.

We would also like to have the property that eventually out come stopsreturning nil. Inthe
code, this happens when every process’ outcome variableisnon-ni1. However, this could take a
long time if some processis very slow (or down for along time).

We can change consensus to express thiswith an internal action pone:

MODULE TerminatingConsensus [V] EXPORT Allow, Outcome =

VAR outcome (V + Null) := nil
[done : Bool := false
APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >>
APROC Outcome () -> (V + Null) = << RET outcome [] |~ done => RET nil >>
[THREAD Done() = << outcome # nil => done := true >>

END TermConsensus

Note that this spec does not say anything about the processes in the assumed code; the
abstraction function will say that done istrue when all the processes have outcome # nil.

An even stronger spec returns an out come only when it’s done:

APROC Outcome() -> (V + Null) = << [done => RET outcome [] |~ done => RET nil >>

Thisisusualy too strong for distributed code. It means that a process may not be able to respond
to an out come request, sinceit can't return avalueif it doesn’t know the outcome yet, and it
can't return nil if anyone else has aready returned avalue. If either the processes or the
communication are asynchronous, it won't be possible in general for one process to know
whether another one no longer matters because it hasfailed, or isjust slow.

Handout 18. Consensus 4

6.826—Principles of Computer Systems 2004

Facts about consensus

In this section we summarize the most important facts about when consensusis possible and
what it costs. Y ou can learn more about thisin Nancy Lynch’s course on distributed a gorithms,
6.852J, or in her book cited in handout 2.

Fault models

To devise codefor consensus We need a precise model for the general setting of processes
connected by links that can communi cate messages from one process to another. In particular,
the model must define what faults are possible. There are lots of waysto do this, and we have
space to describe only the models that are most popular and closest to reality.

There are two broad classes of modds:

e Synchronous, in which a non-faulty component makes its state transitions within aknown
amount of time. Usually thisis coded by using atimeout, and declaring a component faulty if
it fail s to perform within the specified time.

e Asynchronous, in which nothing is known about the relative rate of progress of different
components. In particular, a process can take an arbitrary amount of time to make a
transition, and alink can take an arbitrary amount of time to deliver a message.

In general a process can send a message only to certain other processes; this* can send message’
relation defines a graph whose edges are the links. The graph may be directed (it’s possible that
A can talk to B but B can’t talk to A), but we will assume that communication is full-duplex so
that the graph is undirected. Links are either working or faulty; afaulty link delivers no
messages. Even aworking link may |ose messages, and in some models may |ose any number of
messages; it's helpful to think of such a system as one with totally asynchronous communication.

Processes are either working or faulty. There are two models for a faulty process:

e Stopping faults: afaulty process stops making transitions and doesn't start again. In an
asynchronous model there’ s no way for another process to distinguish a stopped process or
link from one that is ssimply very slow.

e Byzantinefaults: afaulty process makes arbitrary transitions; these are named after the
Byzantine Empire, famous for treachery. The motivation for this model is usualy not fear of
treachery, but ignorance of the ways in which a process might fail. Clearly Byzantine failure
is an upper bound on how bad things can be.

Is consensus possible (will it terminate)?

A consensus algorithm terminates when the outcome variables of al non-faulty processes equal
some allowed value. Here are the basic facts about consensus in some of these models.

e Thereisno consensus algorithm that is guaranteed to terminate in an asynchronous system
with perfect links and even one process that has a stopping fault. This startling result is due to

Handout 18. Consensus 5

6.826—Principles of Computer Systems 2004

Fischer, Lynch, and Paterson.# It holds even if the communication system provides reliable
broadcast that delivers each message either to al the non-faulty processes or to none of them.
Real systems get around it by using timeout to make the system synchronous, or by using
randomness.

e Even in asynchronous system with perfect processes there is no consensus algorithm that is
guaranteed to terminate if an unbounded number of messages can be lost (that is, if
communication is effectively asynchronous). The reason is that the last message sent must be
pointless, since it might belost. So it can be dropped to get a shorter a gorithm. Repeat this
argument to drop all the messages. But clearly an algorithm with no messages can’t achieve
consensus. The simplest case of this problem, with just two processes, is called the “two
generals problem”.

¢ Inasystem with both synchronous processes and synchronous communication, terminating
consensus is possible. If f faults are alowed, then:

For processes with stopping faults, consensus requires f+1 processes and an f+1-
connecteds network (that is, at least one good process and a connected subnet of good
processes after all the allowed faults have happened). Even if the network is fully
connected, it takes f+1 rounds to reach consensus in the worst case.

For processors with Byzantine faults, consensus requires 3f+1 processes, a 2f+1-
connected network, at least f+1 rounds of communication, and 2' bits of data
communicated.

For processors with Byzantine faults and digital signatures (so that a process can present
unforgeabl e evidence that another process sent it a message), consensus requires f+1
processes. Even if the network is fully connected, it takes f+1 rounds to reach consensus
in the worst case.

The amount of communication required depends on the number of faults, the complexity of the
algorithm, etc. Randomized al gorithms can achieve better results with arbitrarily high
probability.

Warning: In many applications the model of no more than f faults may not be redlistic if the
system is allowed to do the wrong thing when the number of faults exceedsf. It's often more
important to do either the right thing or nothing.

Thesimplest consensus algorithms

There are two simple and popular a gorithms for consensus. Both have the problem that they are
not very fault-tolerant.

4 Fischer, M., Lynch, N., and Paterson, M., Impossibility of distributed consensus with one faulty process, J. ACM
32, 2, April 1985, pp 374-382.

5 A graph is connected if there is a path (perhaps traversing several links) between any two nodes, and disconnected
otherwise. It is k-connected if k is the smallest number such that removing k links can leave it disconnected.

Handout 18. Consensus 6

6.826—Principles of Computer Systems 2004

o A fixed ‘leader’, ‘master’, or ‘coordinator’ process that works like the consensus Spec: it
getsall the a110w actions, chooses the outcome, and tells everyone. If it fails, you are out of
luck. The abstraction function is just the identity on the leader’s state;
TerminatingConsensus.done iStrueiff everyone has gotten the outcome (or failed
permanently). Standard two-phase commit for distributed transactions works this way.

e Simple mgjority voting. The abstraction function for outcome is the value that has a mgjority,

ornil if thereisn’t one. Thisfailsif you don't get amagjority, or if enough members of a
majority fail that it isn't amajority any more. In the latter case you can't determine the
outcome. Example: a votesfor 11, b and ¢ votefor 12, and b fails. Now al you can seeis
onevotefor 11 and onefor 12, so you can't tell that 12 had amgjority.

The Paxos algorithm: Theidea

In the rest of this handout, we describe Lamport’ s Paxos a gorithm for coding asynchronous
consensus; Liskov and Oki independently invented this algorithm as part of areplicated data
storage system.© Its heart is the best asynchronous algorithm known, which is

run by a set of proposer processes that guide a set of acceptor processes to achieve
Consensus,

correct no matter how many simultaneous proposers there are and no matter how often
proposer or acceptor processes fail and recover or how slow they are, and

guaranteed to terminate if thereis asingle proposer for along enough time during which
each member of amgjority of the acceptor processesis up for long enough, but

possibly non-terminating if there are always too many proposers (fortunate, since we know
that guaranteed termination isimpossible).

To get acomplete consensus a gorithm we combine this with a sloppy timeout-based algorithm
for choosing asingle proposer. If the sloppy agorithm leaves us with no proposer or more than
one proposer for atime, the consensus algorithm may not terminate during that time. But if the
sloppy agorithm ever produces a single proposer for long enough the a gorithm will terminate,
no matter how messy things were earlier.

Paxosis the way to do consensus if you want a high degree of fault-tolerance, don’t have any
real-time requirements, and can’t tightly control the time to transmit and process a message.
Thereisn’t any simpler agorithm that has the same fault-tolerance. Thereislots of code for
consensus that doesn’t work.

6 L. Lamport, The part-time parliament, Technical report 49, Systems Research Center, Digital Equipment Corp,
Palo Alto, Sep. 1989, finally published in ACM Transactions on Computer Systems 16, 2 (May 1998), pp 133-169.
Unfortunately, the terminology of this paper is confusing. B. Liskov and B. Oki, Viewstamped replication: A new
primary copy method to support highly available distributed systems, Proc. 7th Acm Conference on Principles of
Distributed Computing, Aug. 1988. In this paper the consensus algorithm isintertwined with the replication
agorithm. See also B. Lampson, The ABCDs of Paxos, at http://research.microsoft.com/|lampson/65-
ABCDPaxos/Abstract.html.

Handout 18. Consensus

6.826—Principles of Computer Systems 2004

The grand plan of the algorithm is to have a sequence of rounds, each with asingle proposer.
This attacks the problem with simple mgjority voting, which isthat a single attempt to get a
majority may fall victim to failure. Each Paxos round is a distinct attempt to get a mgjority. Each
acceptor hasa state variable s (a) that isafunction of theround; that is, there’ sa state value

s (a) (n) for each round n. To reduce clutter, we write this s,2. In each round the proposer:

queriesthe acceptors to learn their state for past rounds,

chooses a safe value v,

commands the acceptors, trying to get a majority to accept v, and

if it getsamgjority, that’s adecision, and it distributes v as the outcome to everyone.

The outcome is the value accepted by a majority in some round. Thetricky part of the algorithm
isto ensure that there is only one such value, even though there may be lots of rounds.

Most descriptions of Paxos call the acceptors ‘voters'. Thisis unfortunate, because the acceptors
do not make any decisions; they do whatever a proposer requests, unless they have already done
something inconsistent with that. In fact, an acceptor can be coded by a memory that has a
compare-and-swap operation, as we shall see later. Of course, the proposers and acceptors can
run on the same machine, and even in the same process. Thisisusually theway it's coded, but
the a gorithm with separate proposers and acceptorsis easier to explain.

It takes atotal of 21/2 round trips for a deciding round. If there's only one proposer that doesn’t
fail, Paxos reaches consensus in one round. If the proposer fails repeatedly, or several proposers
fight it out, it may take arbitrarily many rounds to reach consensus. This may seem bad, but
actually it isagood thing, since we know from Fischer-Lynch-Paterson that we can’'t have an
agorithm that is guaranteed to terminate.

The rounds are numbered (not necessarily consecutively) with numbers of typew, and the
numbers determine atotal ordering on the rounds. Each round has a single value, which starts out
nil and then may change to one of the allowed values, we write v, for the value of round n. In
each round an acceptor starts out neutral, and it can only changeto v, or no. A vy, Or no State
can't change. Note that different rounds can have different values. A round is dead if amajority
has state no, and decides if amgjority has state v,,. If around decides, that round’ svalue isthe
outcome.

The state of Paxos that contributes to the abstraction function to Lateconsensus IS

MODULE Paxos [% implements Consensus

v, % data Value to decide on
P WITH {"<=": (P, P)->Bool}, % Proposer; <= atota order
A WITH {majority : SET A->Bool}] % Acceptor; majorities must intersect
TYPE I = Int
N = [i, p] WITH {"<=":=LEQN} % round Number; <= istotal
Z = (ENUM[no, neutral] + V) % one acceptor’s state in one round
S =A ->N -> 2 % Acceptors’ states
VAR s : S := {*->{*->neutral} % acceptor working States

Handout 18. Consensus 8

6.826—Principles of Computer Systems 2004

outcome : A -> (V+Null) := {*->nil}
allowed : P -> SET V i= {*->{}}

% acceptor outcome values
% proposer states

% Agreement: (outcome.rng - {nil}).size <= 1
% Validity: (outcome.rng - {nil}) <= (\/ : allowed.rng)

Paxos ensures that a round has asingle value by having at most one proposer process per round,
and making the proposer’ sidentity part of the round number. Son = [i, p], and proposer p
proposes (i, p) forn, where i isan 1 that p has not used before, for instance, alocal clock. The
proposer keeps vy, in avolatile variable; rather than resuming an old round after acrash, it just
starts anew one.

To understand why the algorithm works, it's useful to have the notion of a stable predicate on the
state, a predicate that once true, remains true henceforth. Since the non-ni1 value of around
can't change, “v, = v” isstable. Since a state value in an acceptor once set can’t change, s,® =
v and are stable; hence “round n isdead” and “round n decides’ are stable aswell. Note that s,
= neutral isnot stable, sinceit can changeto v or to no. Stable predicates are important, since
they are the only kind of information that can usefully be passed from one process to another in a
distributed system. If you get a message from another processtelling you that p istrue, and p is
stable, then you know that p is true now (assuming that the other processis trustworthy).

Wewould like to have the idea of asafe value at round n: v issafe at n if any previous round that
decided, decided on n. Unfortunately, thisis not stable as it stands, since a previous round might
decidelater. In order to make it stable, we need to prevent this. Here is a more complex stable
predicate that does the job:

vissafeatn= (ALL n’ | n’ <= n ==>n’ is dead \/ vpr = V)
In other words, if you look back at rounds before n, skipping dead rounds, you see v,. If all
preceding rounds are dead, any v, makesn safe. For this to be well-defined, we need an ordering
onn's, and for it to be useful we need atotal ordering. We get this as the lexicographic ordering
onthexn = [i, p] pairs. This meansthat we must assume atotal ordering on the proposers p.

With these preliminaries, we can give the abstraction function from paxos t0 LateConsensus.
For al1owed it isjust the union of the proposers’ a1lowed Sets. For outcome it isthe value of a
deciding round.

ABSTRACTION FUNCTION
LateConsensus.allowed
LateConsensus.outcome

\/ : allowed.rng
{n | Decides(n) | Value(n)}.choose

FUNC Decides(n) -> Bool = RET {a | sp® IS V}.majority
FUNC Value(n) -> (V + Null) = IF VAR a, Vv | sna = v => RET v [*] RET nil FI

For this to be an abstraction function, we need an invariant:
(11) Every deciding round has the same value.

It's easy to see that this follows from a stronger invariant: If round n’ decides, then any later
round’svalueisthesameor nil.

Handout 18. Consensus 9

6.826—Principles of Computer Systems 2004

(12) (ALL n’, n \ n’ <=n /\ n’ deciding ==> vp = nil \/ vn = vp')
Thisin turn follows easily from something with aweaker antecedent:

(|3) (==> vp = nil \/ vp = vp')
= (ALL n’, n | vp = nil \/ (n’ <=n ==> n’ isdead \/ vy = vn’')
(
(

ALL n | vy = nil \/ (ALL n’ | n’ <= n ==> n’ isdead \/ vy = vn'))
ALL n | vy = nil \/ vyissafe)

For validity, we also need to know that every round's valueis allowed:
(14 (ALL n | vy = nil \/ vy IN (\/ : allowed.rng))

Initially al thev, areni1 sothat (I3) and (14) hold trivially. The Paxos algorithm maintains (13)
by choosing a safe value for around. To accomplish this, the proposer chooses a new n and
queries al the acceptorsto learn their state in all rounds with numbers less than n. Before an
acceptor responds, it closes around earlier than n by setting any neutral state to no. Responses
to this query from a mgjority of acceptors give the proposer enough information to find a safe
value at round n, as follows:

It looks back from n, skipping over rounds with no v state, since these must be dead
(remember that the reported stateisav or no). When it comesto aroundn’ withs, @ = v
for some acceptor a, it takes v as safe. Since vy, issafeby (13), and all the rounds between
n’ and n aredead, v is also safe.

If al previous rounds are dead, any alowed valueis safe.
Because ‘safe’ and ‘dead’ are stable properties, no state change can invalidate this choice.

Another way of looking at thisis that because a deciding round is not dead and can never
become dead, it forms a barrier that the proposer can’t get past in choosing a safe valuefor a
later round. Thus the deciding round forces any later safe value to be the same. A later round can
propose differently from an earlier one only if the earlier oneis dead.

An example may help to clarify theidea. Assumethe allowed setis {x, y, w}.Giventhe
following two sets of statesin rounds 1 through 3, with three acceptors a, b, and ¢, the safe
valuesfor round 4 areasindicated. In the middle column the proposer can see a majority of
acceptorsin each round without seeing any v's, because all the rounds are dead. In the right-hand
column thereisamagjority for w in round 2.

Sate
Value, acceptors vdue a b ¢ vaue a b ¢
round 1 x X no no Y Y no no
round 2 x X no no w \ no
round 3 v no no y w no no w
safevauesforround4 x, vy, or w w
Handout 18. Consensus 10

6.826—Principles of Computer Systems 2004

p

p p p
a a a a a a
a a a a a a
a a a a a a

Actions Input®;

Sart®; Choose’;

Close” Close®™ safe® Accept” Accept® FinishP; Finish?,
STEP® STEP?

Transmit

active, r@ INPUT o r\,a ra,p

OUTPUT
1-n* n*>l1 1-n* n*>1 1-n*
11
| viewchange || normal operation |
Message flow in Paxos
Proposer p M essage Acceptor a

Choose anew ng, n

Query amgjority of query (n) — foralln’ < n,

acceptorsfor their status « report (a, s?) if sp/® = neutral
then s, 2:= no

Find asafev at n. If all

n’ < naredead, any v

in allowedpissafe

Command a majority command (n, v) — if sp® = neutral
of acceptorstoaccept v < report (a, s?) then sp®:= v

If amajority accepts,
publish the outcome v

outcome (v) —

Note that only the latest v state from each acceptor is of interest, so only that state actually hasto
be transmitted.

Now in asecond round trip the proposer commands everyone for round n. Each acceptor that is

till neutral in round n (because it hasn’t answered the query of around later than n) accepts by

changing its state to v, in round n; in any case it reports its state to the proposer. If the proposer
collects v, reports from amajority of acceptors, then it knows that round n has succeeded, takes
vy, asthe agreed outcome of the algorithm, and sends this fact to al the processesin afinal half

round. Thus the entire process takes five messages or 2% round trips.

Handout 18. Consensus 11

6.826—Principles of Computer Systems 2004

When does around succeed, that is, what action simulates the pecide action of the spec? It
succeeds at the instant that some acceptor forms a majority by accepting its value, even though
no acceptor or proposer knows at the time that this has happened. In fact, it's possible for the
round to succeed without the proposer knowing this fact, if some acceptors fail after accepting
but before getting their reports to the proposer, or if the proposer fails. In this case, some
proposer will have to run another round, but it will have the same value as the invisibly deciding
round.

When does Paxos terminate? If no proposer starts another round until after an existing one
decides, then the algorithm definitely terminates as soon as the proposer succeedsin both
querying and commanding a majority. It doesn’t have to be the same majority for both, and the
acceptorsdon’t al have to be up at the same time. Therefore we want a single proposer, who
runsoneround at atime. If there are several proposers, the one running the biggest round will
eventually succeed, but if new proposers keep starting bigger rounds none may ever succeed.
Thisisfortunate, since we know from the Fischer-Lynch-Paterson result that thereis no
algorithm that is guaranteed to terminate.

It's easy to keep from having two proposers at onceif there are no failures for awhile, the
processes have clocks, and the maximum time to send, receive, and process a message is known:

Every potential proposer that is up broadcasts its name.

Y ou become the proposer one round-trip time after doing a broadcast unless you have
received the broadcast of a bigger name.

The algorithm makes minimal demands on the properties of the network: lost, duplicated, or
reordered messages are OK. Because nodes can fail and recover, abetter network doesn’t make
things much simpler. We model the network as a broadcast medium from proposer to acceptors;
in practice thisis usually coded by individual messages to each acceptor. We describe continu-
ous retransmission; in practice acceptors retransmit only in response to the proposer’ s retrans-
mission.

A process acting as a proposer uses messages to communicate with the same process acting as an
acceptor, so we describe the two roles of each process completely independently. In fact, the
proposer need not be an acceptor at all.

Note the structure of the algorithm as a collection of independent atomic actions, each taking
place at asingle process. There are no non-atomic procedures except for the top-level scheduler,
which simply chooses an enabled atomic action to run next. This structure makes it much easier
to reason about the algorithm in the presence of concurrency and failures.

The next section gives the algorithm in detail. Y ou can skip this, but be sureto read the
following section on optimizations, which has important remarks about using Paxosin practice.

The Paxos algorithm: The details
We give a straightforward version of the algorithm in detail, and then describe encodings that

reduce the information stored and transmitted to small fixed-size amounts. The first set of types
and variablesis copied from the earlier declarations.

Handout 18. Consensus 12

6.826—Principles of Computer Systems 2004

MODULE Paxos | % implements Consensus
v, % data Value to decide on

P WITH {"<=": (P, P)->Bool SUCHTHAT IsTotal}, % Proposer; <= atotal order
A WITH {majority: SET A->Bool} SUCHTHAT IsMaj] % Acceptor
TYPE I = Int
N = [i, p] WITH {"<=":=LEQN} % round Number; <= total
Z = (ENUM[no, neutral] + V) % one acceptor’ s state in one round
S = A ->N -> 2 % Acceptors’ states
VAR outcome : A -> (V+Null) :={*->nil} % the acceptors’ state, in
s : S :={*->{*->neutral}} %two parts.
allowed P -> SET V c={*->{}} % the proposers’ state

% The rest of the proposers’ state is the variables of ProposerActions (p).
% All volatile except for n, which we make stable for simplicity.

TYPE K = ENUM[query, command, outcome, report] % Kind of message
M = [k, % Message; kind of message,
n, % about round n
x: (Null + S + V)] % acceptor state or outcome.
% s defined for just one a
Phase = ENUM[idle, querying, commanding] % of aproposer process
CONST no0 := N{i:=0, p:={p | true}.min} % smallest N
% Actions for handling messages
APROC Send(k, n, x: ANY) = << UnreliableCh.Put ({M{k, n, x}}) >>
APROC Receive(k) -> M = << VAR m \ m := UnreliableCh.Get(); m.k = k => RET m >>

% External actions. Can happen at any proposer or acceptor.

APROC Allow (V) = << VAR p | allowed(p) := allowed(p) \/ {v} >>
APROC Outcome() -> V = << VAR a | RET outcome(a) >>

THREAD ProposerActions (p) =

VAR % proposer state (volatile except n)
n := N{i := 1, p := p}, % last round started
phase ;= idle, % proposer’s phase
pS := s{}, % Proposer info about acceptor State
v: (V+Null) := nil % used iff phase = commanding

DO << % Pick an enabled action and doit.
% Crash. We don’t care about the values of ps or v.
phase := idle; allowed := {}; pS := {}; v := nil

[1 % New round. Hope n becomes largest N in use so this round succeeds.
phase = idle => VAR 1 | i > n.i => n.i := i; pS := {}; phase := querying

[1 % Send query message.
phase = querying => Send(query, n, nil)

[1 % Receive report message for the current round.

<< phase = querying => VAR m := Receive (report) |
m.n =n =>pPS + := M.X >>

Handout 18. Consensus 13

6.826—Principles of Computer Systems

[1 % Start command. Note that Dead can't be t rue unlesspS hasamajority .
<< phase = querying =>
IF VAR nl | (ALL n’ | n1 < n’ /\ n’ < n ==> Dead(pS, n’))
/\ val(pS, nl) # nil => v := Val(pS, nl)

[*] (ALL n’\ n’ < n ==> Dead(pS, n’)) => VAR v’ :IN allowed(p)
FI;
pS := S{}; phase := commanding >>

[1 % Send command message.

phase = commanding => Send(command, n, V)

[1 % Receive report message for the current round with non-neutral state.
<< phase = commanding => VAR m := Receive(report), sl := m.x, a
m.n = n /\ slta /\ s1p® # neutral => pSp®:= s1® >>

[1 % Send outcome message if amajority has v state.
Decides (pS, n) => Send(outcome, n, V)

[1 % Thisround isdead if amajority has no state. Try another round.

Dead (pS, n) => phase := idle
>> OD
THREAD AcceptorActions(a) = % Stateisins® and outcome?, which are stable.

DO << % Pick an enabled action and doit.

% Recelve query message, change neutral state to no for al beforem. n, and
% send report. Note that this action is repeated each time a query message arrives.
VAR m := Receive (query) |
DO VAR n | n < m.n /\ sp® = neutral => sp®:= no OD;
Send (report, m.n, s.restrict({a}))

[1 % Receive command message, changeneutral stateto vy, and send state message.
% Note that this action is repeated each time a command message arrives.
VAR m := Receive (command) |
IF sp.n® = neutral => sy p%:= m.x [*] SKIP FI;
Send (report, m.n, s.restrict({a}).restrict({n})}

[1 % Receive outcome message.

VAR m := Receive (outcome) | outcome®:= m.x

>> OD

FUNC LEgN(nl, n2) -> Bool =
RET nl.i < n2.i \/ (n1.i = n2.i /\ nl.a <= n2.a)

FUNC Dead(s’, n) -> Bool = RET {a | s’!a /\ s’(a)(n) = no}.major
FUNC Decides(s’, n) -> Bool = RET {a | s’!a /\ s’(a)(n) IS V}.majority

FUNC Val(s’, n) -> (V+Null) = IF VAR a, v | s’(a)(n) = v => RET v [*]
% The value of round n accordingto s’ : if anyonehasv then v elsenil.

Handout 18. Consensus

2004

% lexicographic ordering

v o= v’
ity
RET nil FI
14

6.826—Principles of Computer Systems 2004

% We write x; for ProposerActions (p) .x to make the formulas more readable.

FUNC IsTotal(le: (P, P) -> Bool) -> Bool = % s 1le atotal order?

RET (ALL pl, p2, p3 | (le (pl, p2) \/ le(p2, pl))
/\ (le(pl, p2) /\ le(p2, p3) ==> le(pl, p3)))
IsMaj (m: SET A->Bool) -> Bool = % any two must intersect
RET (ALL aal: SET A, aa2: SET A | (m(aal) /\ m(aa2) ==> aal /\ aa2 # {})
FUNC Allowed() -> SET V = RET \/ : allowed.rng

FUNC Decides(n) -> Bool = RET Decides(s, n)

FUNC Value(n) -> (V+Null) = RET Val(s, n) % The value of round n

FUNC ValAnywhere(n) -> SET V =
% Any trace of the value of round n, in messages, in s, or in a proposer.
RET {m, a, s1 | m IN UnreliableCh.g /\ m.x = sl /\ slla /\ sl(a)!n
| s1n® }
\/ {value(n)}
\/ (phasep.1 = commanding => {vn. 1} [*] {})

FUNC Safevals(n) -> SET V =
% The safev’sat n.
RET {v | (ALL n’ | n’ < n ==> Dead(s, n’) \/ v = Val(s, n'))}

FUNC GoodVals(n) -> SET V =
% The good values for round o : if there'sno v yet, the ones that satisfy
% (13) and validity. If thereisav, thenv.
RET (Value(n) = nil => SafeVals(n) /\ Allowed() [*] {Value(n)})

———=——=————=—=—=—==—=—=—==—==—==========_|[lVallaNlS ==========—=—=———————————=————=—=-=

% Proofs are straightforward except as noted. Observe that s changes only when an acceptor receives query
% (when it may add no state) or when an acceptor receives command (when it may add v state).

% (1) A proposer’sn . p isaways the proposer itself.

(AL p | np.p = p)

% (2) Ensure that there's no value yet for any round that a proposer might start.

(ALL p, n | n.p=p/\ (n>n,\/ (n=n, /\ phase, = querying))
==> Value(n) = nil)

% once p has taken an action

% (3) s aways hasamost one value per round, because a only changes s# (when a receives query or command)
% from neutral, and either to no (query) or to agree with the proposer (command).
(AL n | {a | sta /\ sp® IS V | sp®}.size <= 1)

% (4) All the s'sinthe channel or in any pS agree with s.
(ALL s1 :IN ({m | m IN UnreliableCh.q /\ m.x IS S | m.x} \/ {p | pSp}) |
(ALL a, n | slta /\ sl(a)!n /\ slp® # neutral ==> s1p® = sp%))

% (5) Every round value is alowed
(ALL n | Value(n) IN (Allowed()\/ {nil}))

% (6) If anyone thinksv isthe value of around, it isagood round vaue.
(ALL n | ValAnywhere(n) <= v IN GoodVals(n)))

% (7) A round has only one non-nil value.

(ALL n | ValAnywhere(n) .size <= 1)

Handout 18. Consensus 15

6.826—Principles of Computer Systems 2004

% Magjor invariant (13).
(ALL n | Value(n) IN ({nil} \/ Safevals(n)))
% Easy consequence (I2)

(ALL nl, n2 | nl < n2 /\ Decides(nl) ==> Value(n2) IN {nil, Value(nl)})

% Further easy consequence (I1)

(ALL a | outcome(a) # nil ==> (EXISTS n | Decides(n) /\ outcome(a) = Value(n))
END Paxos

Optimizations

It's possible to reduce the size of the proposer and acceptor state and the messages transmitted to
afew bytes, and in many cases to reduce the latency and the number of messages sent by
combining rounds of the algorithm.

Reducing state and message sizes

It's not necessary to store or transmit the complete acceptor state s2. Instead, everything can be
encoded in asmall fixed number of x's, a’s, and v's, as follows.

Therelevant part of s in an acceptor or in areport message consists of v1 45+ iN some round
last, plusno in al rounds strictly between 1ast and some later round next, and neutral in any
round after 1ast and at or after next. Hence s can be encoded smply as (viast, last, next).
The part of s before 1ast isjust history and is not needed for the algorithm to run, because we
know that v1 5t is safe. Making this precise, we have

VAR y: [z, last: N, next: N] := {no, n0, no}
and s? isjust

(\n | (n <=y.last => y.z [*] n < y.next => no [*] neutral))

Note that this encoding |oses the details of the state for rounds before 1ast, but the algorithm
doesn’t need thisinformation Here is a picture of this coding scheme.

Round ng e last P next
Agent state some mixture of v'sand no Viast @lno neutral fromhereon
last
.) next ..
or just after accepting: l l

Viast neutral fromhereon

In a proposer, there are two cases for ps.

e If phase = querying, ps congsts of the s®'s, for rounds less than n, transmitted by a set of
acceptors a. Hence it can be encoded as aset of ‘last state’ tuples (a, lasty, v).Fromthis
we care only about the number of a’s (assuming that a.majority just counts acceptors), the

Handout 18. Consensus 16

6.826—Principles of Computer Systems 2004

biggest 1ast, and its corresponding v. So the whole thing can be coded as (count of a’s,

lastmpaxs V) -

e |f phase = commanding, ps consists of aset of v, or no in round n, S0 it can be encoded as
the set of acceptors responding. We only care about a majority, so we only need to count the
number of acceptors responding.

The proposers need not be the same processes as the acceptors. A proposer doesn’t really need
any stable state, though in the algorithm as given it hasn. Instead, it can poll for thenext’sfrom
amajority after afailure and choose an n with abigger n. i. Thiswill yidd an n that’s larger than
any n from this proposer that has appeared in a command message so far (because n can’t get into
a command Message without having once been the value of next in amajority of acceptors), and
thisisall we need to keep s good. In fact, if aproposer ever sees areport with anext bigger than
itsown n, it should either stop being a proposer or immediately start another round with anew,
larger n, because the current round is unlikely to succeed.

Combining rounds

In the most important applications of Paxos, we can combine thefirst round trip (query/report)
with something else. For acommit agorithm, we can combine the first round-trip with the
prepare message and its response; see handout 27 on distributed transactions.

The most important application is a state machine that needs to decide on a sequence of actions.
We can number the actions ag, a, ..., ax, run aseparate instance of the algorithm for each
action, and combine the query/report messages for al the actions. Note that these action
numbers, which we are calling x’s, are not the same as the Paxos round numbers, then’s; each
action has its own instance of Paxos and thereforeits own set of round numbers. In this
application, the proposer isusually called the primary. The following trick allows us to do the
first round trip only once after anew primary starts up: interpret the report messages for action
k as applying not just to consensus on ay, but to consensus on a5 for all § >= k.

Aslong as the same process continues to be proposer, it can keep track of the current x in its
private state. A new proposer needsto learn thefirst unused . If it triesto get consensus using a
number that's too small, it will discover that there' s already an outcome for that action. If it uses
anumber k that’stoo big, however, it can get consensus. Thisistricky, sinceit leadsto agap in
the action numbers. Hence you can’t apply the decided action k, since you don’'t know the state
at x because you don’t know all of the preceding actions that are applied to make that state. So a
new proposer must find the first unused x for itsfirst action a. A clumsy way to do thisisto start
a kx - oandtry to get consensus on successive ay’ s until you get consensus on a.

Y ou might think that thisis silly. Why not just poll the acceptors for the largest x for which one
of them knows the outcome? Thisisagood start, but it's possible that consensus was reached on
thelast ay (that is, there’samajority for it among the acceptors) but the outcome was not
published before the proposer crashed. Or it was not published to a majority of the acceptors, and
al the ones that saw it have also failed. So after finding that x isthe largest k with an outcome,
the proposer may still discover that the consensus on ay,; isnot for itsaction a, but for some
earlier action whose deciding outcome was never broadcast. If proposers follow the rule of not
starting consensus on k-1 until amajority knows the outcome for x, then this can happen a most

Handout 18. Consensus 17

6.826—Principles of Computer Systems 2004

once. It may be convenient for a new proposer to start by getting consensus on ask1p action in
order to get this complication out of the way before trying to do real work.

Further optimizations are possible in distributing the actions aready decided, and handout 28 on
primary copy replication describes some of them.

Notethat since a state machine is completely general, one of the thingsit can do isto change the
set of acceptors. So acceptors can be added or dropped by getting consensus among the existing
acceptors. This means that no special agorithm is needed to change the set of acceptors. Of
course this must be done with care, since once you have gotten consensus on anew set of
acceptors you haveto get amajority of themin order to make any further changes.

L eases

In a synchronous system, if you want to avoid running a full-blown consensus algorithm for
every action that reads the state, you can instead run consensus to issue alease on some
component of the state. The | ease guarantees that the state component won't change (unless you
have an exclusive lease and change it yourself) until some expiration time, a point in real time.
Thusaleaseisjust like alock, except that it times out. Provided you have a clock that has a
known maximum difference from real time, you can be confident that the value of aleased state
component hasn’t changed (that is, that you <till hold the lock). To keep control of the state
component (that is, to keep holding the lock), you can renew the lease before it expires. If you
can't talk to all the processes that have the lease, you have to wait for it to expire before
changing the leased state component. So there is a tradeoff between the cost of renewing alease
and thetime you have to wait for it to expire after a (possible) failure.

There are several variations:

o If youissuethelease to some known set of processes, you can revoke it provided they all
acknowledge the revocation.

o If you know the maximum transmission time for a message, you can get by with clocks that
have known differences in running rate rather than known differences in absolute time.

e Sincealeaseisakind of lock, it can have different lock modes, for instance, ‘read’ and
‘write' .

The most common application is to give some set of processes the right to cache some part of the
state, for instance the contents of a cache line or of afile, without having to worry about the
possibility that it might change. If you don’t have alease, you have to do an expensive state
machine action to get a current result; otherwise you might get an old result from some replica
that isn't up to date. (Of course, you could settle for aresult as of action x, rather than a current
one. Then you would need neither alease nor a state machine action, but the client hasto
interpret the x that it gets back along with the result it wanted. Usually thisis too complicated for
theclient.)

If the only reason for running consensus isto issue a lease, you don’t need stable state in the
acceptors. If an acceptor fails, it can recover with empty state after waiting long enough that any
previous |ease has expired. This means that the consensus algorithm can’t reliably tell you the

Handout 18. Consensus 18

6.826—Principles of Computer Systems 2004

owner of such alease, but you don't care because it has expired anyway. Schemes for electing a
proposer usually depend on this observation to avoid disk writes.

Y ou might think that an exclusive lease allows the process that owns it to change the leased state
aswell, aswith ‘owner’ access to a cache line or ownership of amulti-ported disk. Thisis not
truein general, however, because the stateis replicated, and at |east a mgjority of the replicas
have to be changed. There' s no reliable way to do this without running consensus.

In spite of this, leases are not completely irrelevant to updates. With alease you can use asimple
read-write memory as an acceptor for consensus, rather than afancier one that can do compare-
and-swap, since the lease allows you do the necessary read-modify-write operation atomically
under the lease’ s mutual exclusion. For thisto work, you have to be able to bound the time that
the write takes, so you can be sure that it completes before the lease expires. Actualy, the
requirement isweaker: aread must see the atomic effect of any writethat is started earlier than
theread. This ensures that if thewriteis started before the |lease expires, areader that starts after
the lease expires will seethewrite.

This observation is of great practical importance, sinceit lets you run areplicated state machine
where the acceptors are ‘dua-ported’ disk drives that can be accessed from more than one
machine. One of the machines becomes the master by taking out alease, and it can then write
state changes to the disks.

Compar e-and-swap acceptors

An alternative to using simple memory and leases is to use memory that implements a compare-
and-swap or conditional store operation. The spec for compare-and-swap is

APROC CAS(a, old: V, new: V) -> V =
<< IF m(a) = old => m(a) := new; RET old [*] RET m(a) FI >>

Many machines, including the IBM 370 and the DEC Alpha, have such an operation (for the
Alpha, you have to program it with Load Locked and Store Conditional, but thisis easy and

cheap).

To useacas memory as an acceptor, we have to code the state so that we can do the query and
command actions as single cas operations. Recall that the coded state of an acceptor isy =
(viast, last, next),representingthevauewv;,s. for round 1ast, no for al rounds strictly
between 1ast and next, and neutral for al rounds starting at next. A query for round n
changesthe stateto (viast, last, n) provided next <= n. A command for round n changes
thestateto (v, n, n) provided next = n. Soweneed arepresentation that allows usto
atomically test the current value of next and change the state in one of these ways. Thisis
possibleif an v fitsin asingle memory cell that cas can read and update atomically. We can
storetherest of thetriplein a data structure on the side that isindexed by next. If each possible
proposer has its own piece of this data structure, they won't interfere with each other when they
are updating it.

Sincethisis hard concurrency, the details of such arepresentation are tricky.

Handout 18. Consensus 19

6.826—Principles of Computer Systems 2004

Complex updates

The actions of a state machine can be arbitrarily complex. For example, they can be complete
transactions. In areplicated state machine the replicas must decide on the sequence of actions,
and then each replica must do each action atomically. In handouts 19 and 20, on sequential and
concurrent transactions, we will see how to make arbitrary actions atomic using redo recovery
and locking. So in ageneral state machine each acceptor will write aredo log, in which each
committed transaction corresponds to one action of the state machine. The acceptors must reach
consensus on the compl ete sequence of actions that makes up the transaction. In practice, this
means that each acceptor logs all the updates, and then they reach consensus on committing the
transaction. When an acceptor recovers from afailure, it runs redo recovery in the usual way.
Then it has to find out from other acceptors about any actions that they agreed on while it was
down.

Of course, if several proposers are trying to run transactions at the same time, you have to make
surethat thelog entries don’t get mixed up. Usually thisis done by funneling everything through
asingle master called the primary; this master also acts as the proposer for consensus.

Another way of doing thisisto use a single master with passive acceptors that just implement
simple memory; usualy these are disk drives that record redundant copies of thelog. The
previous section on leases explains how to run Paxos with such passive acceptors. When a
master fails, the new one has to sort out the consensus on the most recent transaction as part of
recovery.

Batching

Another way to avoid paying for consensus each time the state machine does an action isto
batch several actions, possibly from different clients, into one super-action. They you get
consensus on the super-action, and each replica can apply the individua actions of the super-
action. You still have to pay to send the information that describes all the actions to each replica,
but all the per-message overhead, plus the cost of the acknowledgements, is paid only once.

Handout 18. Consensus 20

