
6.826—Principles of Computer Systems 2004

Handout 18. Consensus 1

18. Consensus

Consensus (sometimes called ‘reliable broadcast’ or ‘atomic broadcast’) is a fundamental
building block for distributed systems. Informally, we say that several processes achieve
consensus if they all agree on some value. Three obvious applications are:

Distributed transactions, where all the processes need to agree on whether a transaction
commits or aborts. Each transaction needs a new consensus on its outcome.

Membership, where a set of processes cooperating to provide a highly available service need
to agree on which processes are currently functioning as members of the set. Every time a
process fails or starts working again there must be a new consensus.

Electing a leader of a group of processes.

A less obvious, but much more powerful application is to replicate that state machines, which are
discussed in detail below and in handout 28.

There are four important things to learn from this part of the course:

The idea of replicated state machines as a completely general method for building highly
available, fault tolerant systems. In handout 28 we will discuss replicated state machines and
other methods for fault tolerance in more detail.

The Paxos algorithm for distributed, fault tolerant consensus: how and why it works .

Paxos as an example of the best style for distributed, fault tolerant algorithms.

The correctness of Paxos as an example of the abstraction functions and simulation proofs
applied to a very subtle algorithm.

Replicated state machines

There is a much more general way to use consensus, as the mechanism for coding a highly
available state machine, which is the basic tool for building a highly available system. The way
to get availability is to have either perfect components or redundancy. Perfect components are
too hard, which leaves redundancy. The simplest form of redundancy is replication: have several
copies or replicas of each component, and make sure that all the non-faulty components do the
same thing. Since any computation can be expressed as a state machine, a replicated state
machine can make any computation highly available.

Recall the basic idea of a replicated state machine:

If the transition relation is deterministic (in other words, is a function from (state, input) to
(new state, output)), then several copies of the state machine that start in the same state and
see the same sequence of inputs will do the same thing, that is, end up in the same state and
produce the same outputs.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 2

So if several processes are implementing the same state machine and achieve consensus on the
values and order of the inputs, they will do the same thing. In this way it’s possible to replicate
an arbitrary computation and thus make it highly available. Of course we can make the order a
part of the value of the input by defining some total order on the set of possible inputs;1 the
easiest way to do this is simply to number them 1, 2, 3, We have already seen one application
of this replicated state machine idea, in the code for transactions; there the replication takes the
form of redoing a sequence of actions that is remembered in a log.

Suppose, for example, that we want to build a highly available file system. The transitions are
read and write operations on the files (and rename, list, … as well). We make several copies of
the file system and make sure that they process read and write operations in the same order. A
client sends its operation to some copy, which gets consensus that it is the next operation. Then
all the copies do the operation, and one of them returns the result to the client.

In many applications the inputs are requests from clients to the replicated service. Typically
different clients generate their requests independently, so it’s necessary to agree not only on what
the requests are, but also on the order in which to serve them. The simplest way to do this is to
number them with consecutive integers, starting at 1. This is especially easy in the usual
implementation, ‘primary copy’ replication, since there’s one place (the primary) to assign
consecutive numbers. As we shall see, however, it’s straightforward in any consensus scheme:
you get consensus on input 1, then on input 2, etc.

You might think that a read could be handled by any copy with no need for consensus, since it
doesn’t change the state of the file system. Without consensus, however, a read might fail to see
the result of a write that finished before the read started, since the read might be handled by a
copy whose state is behind the current state of the file system. This result violates “external
consistency”, which is a formal expression of the usual intuition about state machines. In some
applications, however, it is acceptable to get a possibly old result from a read, and then any copy
can satisfy it without consensus. Another possibility is to notice that a given copy will have done
all the operations up to n, and define a read operation that returns n along with the result value,
and possibly the real time of operation n as well. Then it’s up to the client to decide whether this
is recent enough.

The literature is full of other schemes for achieving consensus on the order of requests when
their total order is not derived from consecutive integers. These schemes label each input with
some label from a totally ordered set (for instance, (client UID, timestamp) pairs) and then
devise some way to be certain that you have seen all the inputs that can ever exist with labels
smaller than a given value. They are complicated, and of doubtful utility.2 People who do it for
money use primary copy.3

1 This approach was first proposed in a classic paper by Leslie Lamport: Time, clocks, and the ordering of events in
a distributed system, Comm. ACM 21, 7, July 1978, pp 558-565. This paper is better known for its analysis of the
partial ordering of events in a distributed system, which is too bad.
2 For details, see F. Schneider, Implementing fault-tolerant services using the state-machine approach: A tutorial,
ACM Computing Surveys 22 (Dec 1990). This paper is reprinted in the book Distributed Systems, 2nd edition, ed. S.
Mullender, Addison-Wesley, 1993, pp 169-197.
3 Jim Gray said this about using locks for concurrency control; see handout 20.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 3

Unfortunately, consensus is expensive. The section on optimizations at the end of this handout
explains a variety of ways to make a replicated state machine run efficiently: leases, transactions,
and batching.

Spec for consensus

Here is the spec for consensus; we have seen it already in handout 8 on history and prophecy
variables. The idea is that the outcome of consensus should be one and only one of the allowed
values. In the spec there is an outcome variable initialized to nil, and an action Allow(v) that
can be invoked any number of times. There is also an action Outcome to read the outcome
variable; it must return either nil or a v which was the argument of some Allow action, and if it
doesn’t return nil it must always return the same v.

 More precisely, we have two requirements:

Agreement: Every non-nil result of Outcome is the same.

Validity: A non-nil outcome equals some allowed value.

Validity means that the outcome can’t be any arbitrary value, but must be a value that was
allowed. Consensus is reached by choosing some allowed value and assigning it to outcome.
This spec makes the choice on the fly as the allowed values arrive.

MODULE Consensus [V] EXPORT Allow, Outcome = % data value to agree on

VAR outcome : (V + Null) := nil

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >>
APROC Outcome() -> (V + Null) = << RET outcome [] RET nil >>

END Consensus

Note that Outcome is allowed to return nil even after the choice has been made. This reflects the
fact that in code with several replicas, Outcome is often coded by talking to just one of the
replicas, and that replica may not yet have learned about the choice.

If only one Allow action occurs, there’s no need to choose a v, and the code’s only problem is to
ensure termination. An algorithm that does so is said to implement ‘reliable’ or ‘atomic’
broadcast; there is only one sender, and either everyone or no one gets the message. The single
Allow might not set outcome, which corresponds to failure of the sender of the broadcast
message; in this case no one gets the message.

Here is an equivalent spec, slightly more complicated but perhaps more intuitive, and certainly
closer to an implementation. It accumulates the allowed values and then chooses one of them in
the internal action Agree.

MODULE LateConsensus [V] EXPORT Allow, Outcome =

VAR outcome : (V + Null) := nil
allowed : SET V := {}

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 4

APROC Allow(v) = << allowed \/ := {v} >>

APROC Outcome() -> (V + Null) = << RET outcome [] RET nil >>
% Only outcome is visible

APROC Decide() = << VAR v :IN allowed | outcome = nil => outcome := v >>

END LateConsensus

It should be fairly clear that LateConsensus implements Consensus. An abstraction function to
prove this, however, requires a prophecy variable, because Consensus decides on the outcome
(in the Allow action) before LateConsensus does (in the Decide action). We saw these specs in
handout 8 on generalized abstraction functions, where prophecy variables are explained.

In the code we have in mind, there are some processes, each with its own outcome variable
initialized to nil. The outcome variables are supposed to reach consensus, that is, become equal
to the argument of some Allow action. An Outcome can be directed to any process, which returns
the value of its outcome variable. The tricky part is to ensure that two non-nil outcome variables
are always equal, so that the agreement property is satisfied.

We would also like to have the property that eventually Outcome stops returning nil. In the
code, this happens when every process’ outcome variable is non-nil. However, this could take a
long time if some process is very slow (or down for a long time).

We can change Consensus to express this with an internal action Done:

MODULE TerminatingConsensus [V] EXPORT Allow, Outcome =

VAR outcome : (V + Null) := nil
done : Bool := false

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >>
APROC Outcome() -> (V + Null) = << RET outcome [] ~ done => RET nil >>

THREAD Done() = << outcome # nil => done := true >>

END TermConsensus

Note that this spec does not say anything about the processes in the assumed code; the
abstraction function will say that done is true when all the processes have outcome �����.

An even stronger spec returns an outcome only when it’s done:

APROC Outcome() -> (V + Null) = << done => RET outcome [] ~ done => RET nil >>

This is usually too strong for distributed code. It means that a process may not be able to respond
to an Outcome request, since it can’t return a value if it doesn’t know the outcome yet, and it
can’t return nil if anyone else has already returned a value. If either the processes or the
communication are asynchronous, it won’t be possible in general for one process to know
whether another one no longer matters because it has failed, or is just slow.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 5

Facts about consensus

In this section we summarize the most important facts about when consensus is possible and
what it costs. You can learn more about this in Nancy Lynch’s course on distributed algorithms,
6.852J, or in her book cited in handout 2.

Fault models

To devise code for Consensus we need a precise model for the general setting of processes
connected by links that can communicate messages from one process to another. In particular,
the model must define what faults are possible. There are lots of ways to do this, and we have
space to describe only the models that are most popular and closest to reality.

There are two broad classes of models:

• Synchronous, in which a non-faulty component makes its state transitions within a known
amount of time. Usually this is coded by using a timeout, and declaring a component faulty if
it fails to perform within the specified time.

• Asynchronous, in which nothing is known about the relative rate of progress of different
components. In particular, a process can take an arbitrary amount of time to make a
transition, and a link can take an arbitrary amount of time to deliver a message.

In general a process can send a message only to certain other processes; this “can send message”
relation defines a graph whose edges are the links. The graph may be directed (it’s possible that
A can talk to B but B can’t talk to A), but we will assume that communication is full-duplex so
that the graph is undirected. Links are either working or faulty; a faulty link delivers no
messages. Even a working link may lose messages, and in some models may lose any number of
messages; it’s helpful to think of such a system as one with totally asynchronous communication.

Processes are either working or faulty. There are two models for a faulty process:

• Stopping faults: a faulty process stops making transitions and doesn’t start again. In an
asynchronous model there’s no way for another process to distinguish a stopped process or
link from one that is simply very slow.

• Byzantine faults: a faulty process makes arbitrary transitions; these are named after the
Byzantine Empire, famous for treachery. The motivation for this model is usually not fear of
treachery, but ignorance of the ways in which a process might fail. Clearly Byzantine failure
is an upper bound on how bad things can be.

Is consensus possible (will it terminate)?

A consensus algorithm terminates when the outcome variables of all non-faulty processes equal
some allowed value. Here are the basic facts about consensus in some of these models.

• There is no consensus algorithm that is guaranteed to terminate in an asynchronous system
with perfect links and even one process that has a stopping fault. This startling result is due to

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 6

Fischer, Lynch, and Paterson.4 It holds even if the communication system provides reliable
broadcast that delivers each message either to all the non-faulty processes or to none of them.
Real systems get around it by using timeout to make the system synchronous, or by using
randomness.

• Even in a synchronous system with perfect processes there is no consensus algorithm that is
guaranteed to terminate if an unbounded number of messages can be lost (that is, if
communication is effectively asynchronous). The reason is that the last message sent must be
pointless, since it might be lost. So it can be dropped to get a shorter algorithm. Repeat this
argument to drop all the messages. But clearly an algorithm with no messages can’t achieve
consensus. The simplest case of this problem, with just two processes, is called the “two
generals problem”.

• In a system with both synchronous processes and synchronous communication, terminating
consensus is possible. If f faults are allowed, then:

For processes with stopping faults, consensus requires f+1 processes and an f+1-
connected5 network (that is, at least one good process and a connected subnet of good
processes after all the allowed faults have happened). Even if the network is fully
connected, it takes f+1 rounds to reach consensus in the worst case.

For processors with Byzantine faults, consensus requires 3f+1 processes, a 2f+1-
connected network, at least f+1 rounds of communication, and 2f bits of data
communicated.

For processors with Byzantine faults and digital signatures (so that a process can present
unforgeable evidence that another process sent it a message), consensus requires f+1
processes. Even if the network is fully connected, it takes f+1 rounds to reach consensus
in the worst case.

The amount of communication required depends on the number of faults, the complexity of the
algorithm, etc. Randomized algorithms can achieve better results with arbitrarily high
probability.

Warning: In many applications the model of no more than f faults may not be realistic if the
system is allowed to do the wrong thing when the number of faults exceeds f. It’s often more
important to do either the right thing or nothing.

The simplest consensus algorithms

There are two simple and popular algorithms for consensus. Both have the problem that they are
not very fault-tolerant.

4 Fischer, M., Lynch, N., and Paterson, M., Impossibility of distributed consensus with one faulty process, J. ACM
32, 2, April 1985, pp 374-382.
5 A graph is connected if there is a path (perhaps traversing several links) between any two nodes, and disconnected
otherwise. It is k-connected if k is the smallest number such that removing k links can leave it disconnected.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 7

• A fixed ‘leader’, ‘master’, or ‘coordinator’ process that works like the Consensus spec: it
gets all the Allow actions, chooses the outcome, and tells everyone. If it fails, you are out of
luck. The abstraction function is just the identity on the leader’s state;
TerminatingConsensus.done is true iff everyone has gotten the outcome (or failed
permanently). Standard two-phase commit for distributed transactions works this way.

• Simple majority voting. The abstraction function for outcome is the value that has a majority,
or nil if there isn’t one. This fails if you don’t get a majority, or if enough members of a
majority fail that it isn’t a majority any more. In the latter case you can’t determine the
outcome. Example: a votes for 11, b and c vote for 12, and b fails. Now all you can see is
one vote for 11 and one for 12, so you can’t tell that 12 had a majority.

The Paxos algorithm: The idea

In the rest of this handout, we describe Lamport’s Paxos algorithm for coding asynchronous
consensus; Liskov and Oki independently invented this algorithm as part of a replicated data
storage system.6 Its heart is the best asynchronous algorithm known, which is

run by a set of proposer processes that guide a set of acceptor processes to achieve
consensus,

correct no matter how many simultaneous proposers there are and no matter how often
proposer or acceptor processes fail and recover or how slow they are, and

guaranteed to terminate if there is a single proposer for a long enough time during which
each member of a majority of the acceptor processes is up for long enough, but

possibly non-terminating if there are always too many proposers (fortunate, since we know
that guaranteed termination is impossible).

To get a complete consensus algorithm we combine this with a sloppy timeout-based algorithm
for choosing a single proposer. If the sloppy algorithm leaves us with no proposer or more than
one proposer for a time, the consensus algorithm may not terminate during that time. But if the
sloppy algorithm ever produces a single proposer for long enough the algorithm will terminate,
no matter how messy things were earlier.

Paxos is the way to do consensus if you want a high degree of fault-tolerance, don’t have any
real-time requirements, and can’t tightly control the time to transmit and process a message.
There isn’t any simpler algorithm that has the same fault-tolerance. There is lots of code for
consensus that doesn’t work.

6 L. Lamport, The part-time parliament, Technical report 49, Systems Research Center, Digital Equipment Corp,
Palo Alto, Sep. 1989, finally published in ACM Transactions on Computer Systems 16, 2 (May 1998), pp 133-169.
Unfortunately, the terminology of this paper is confusing. B. Liskov and B. Oki, Viewstamped replication: A new
primary copy method to support highly available distributed systems, Proc. 7th ACM Conference on Principles of
Distributed Computing, Aug. 1988. In this paper the consensus algorithm is intertwined with the replication
algorithm. See also B. Lampson, The ABCDs of Paxos, at http://research.microsoft.com/lampson/65-
ABCDPaxos/Abstract.html.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 8

The grand plan of the algorithm is to have a sequence of rounds, each with a single proposer.
This attacks the problem with simple majority voting, which is that a single attempt to get a
majority may fall victim to failure. Each Paxos round is a distinct attempt to get a majority. Each
acceptor has a state variable s(a) that is a function of the round; that is, there’s a state value
s(a)(n) for each round n. To reduce clutter, we write this sna. In each round the proposer:

queries the acceptors to learn their state for past rounds,

chooses a safe value v,

commands the acceptors, trying to get a majority to accept v, and

if it gets a majority, that’s a decision, and it distributes v as the outcome to everyone.

The outcome is the value accepted by a majority in some round. The tricky part of the algorithm
is to ensure that there is only one such value, even though there may be lots of rounds.

Most descriptions of Paxos call the acceptors ‘voters’. This is unfortunate, because the acceptors
do not make any decisions; they do whatever a proposer requests, unless they have already done
something inconsistent with that. In fact, an acceptor can be coded by a memory that has a
compare-and-swap operation, as we shall see later. Of course, the proposers and acceptors can
run on the same machine, and even in the same process. This is usually the way it’s coded, but
the algorithm with separate proposers and acceptors is easier to explain.

It takes a total of 21/2 round trips for a deciding round. If there’s only one proposer that doesn’t
fail, Paxos reaches consensus in one round. If the proposer fails repeatedly, or several proposers
fight it out, it may take arbitrarily many rounds to reach consensus. This may seem bad, but
actually it is a good thing, since we know from Fischer-Lynch-Paterson that we can’t have an
algorithm that is guaranteed to terminate.

The rounds are numbered (not necessarily consecutively) with numbers of type N, and the
numbers determine a total ordering on the rounds. Each round has a single value, which starts out
nil and then may change to one of the allowed values; we write vn for the value of round n. In
each round an acceptor starts out neutral, and it can only change to vn or no. A vn or no state
can’t change. Note that different rounds can have different values. A round is dead if a majority
has state no, and decides if a majority has state vn. If a round decides, that round’s value is the
outcome.

The state of Paxos that contributes to the abstraction function to LateConsensus is

MODULE Paxos[% implements Consensus
 V, % data Value to decide on
 P WITH {"<=": (P, P)->Bool}, % Proposer; <= a total order
 A WITH {majority : SET A->Bool}] % Acceptor; majorities must intersect

TYPE I = Int
N = [i, p] WITH {"<=":=LEqN} % round Number; <= is total
Z = (ENUM[no, neutral] + V) % one acceptor’s state in one round
S = A -> N -> Z % Acceptors’ states

VAR s : S := {*->{*->neutral} % acceptor working States

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 9

outcome : A -> (V+Null) := {*->nil} % acceptor outcome values
allowed : P -> SET V := {*->{}} % proposer states

% Agreement: (outcome.rng – {nil}).size <= 1

% Validity: (outcome.rng – {nil}) <= (\/ : allowed.rng)

Paxos ensures that a round has a single value by having at most one proposer process per round,
and making the proposer’s identity part of the round number. So N = [i, p], and proposer p
proposes (i, p) for n, where i is an I that p has not used before, for instance, a local clock. The
proposer keeps vn in a volatile variable; rather than resuming an old round after a crash, it just
starts a new one.

To understand why the algorithm works, it’s useful to have the notion of a stable predicate on the
state, a predicate that once true, remains true henceforth. Since the non-nil value of a round
can’t change, “vn = v” is stable. Since a state value in an acceptor once set can’t change, sna =
v and are stable; hence “round n is dead” and “round n decides” are stable as well. Note that sna
= neutral is not stable, since it can change to v or to no. Stable predicates are important, since
they are the only kind of information that can usefully be passed from one process to another in a
distributed system. If you get a message from another process telling you that p is true, and p is
stable, then you know that p is true now (assuming that the other process is trustworthy).

We would like to have the idea of a safe value at round n: v is safe at n if any previous round that
decided, decided on n. Unfortunately, this is not stable as it stands, since a previous round might
decide later. In order to make it stable, we need to prevent this. Here is a more complex stable
predicate that does the job:
 v is safe at n = (ALL n’ | n’ <= n ==> n’ is dead \/ vn’ = v)
In other words, if you look back at rounds before n, skipping dead rounds, you see vn. If all
preceding rounds are dead, any vn makes n safe. For this to be well-defined, we need an ordering
on N's, and for it to be useful we need a total ordering. We get this as the lexicographic ordering
on the N = [i, p] pairs. This means that we must assume a total ordering on the proposers P.

With these preliminaries, we can give the abstraction function from Paxos to LateConsensus.
For allowed it is just the union of the proposers’ allowed sets. For outcome it is the value of a
deciding round.

ABSTRACTION FUNCTION
LateConsensus.allowed = \/ : allowed.rng
LateConsensus.outcome = {n | Decides(n) | Value(n)}.choose

FUNC Decides(n) -> Bool = RET {a | sn
a IS V}.majority

FUNC Value(n) -> (V + Null) = IF VAR a, v | sn
a = v => RET v [*] RET nil FI

For this to be an abstraction function, we need an invariant:

(I1) Every deciding round has the same value.

It’s easy to see that this follows from a stronger invariant: If round n’ decides, then any later
round’s value is the same or nil.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 10

(I2) (ALL n’, n | n’ <= n /\ n’ deciding ==> vn = nil \/ vn = vn’)

This in turn follows easily from something with a weaker antecedent:

(I3) (ALL n’, n | n’ <= n /\ n’ is not dead ==> vn = nil \/ vn = vn’)
= (ALL n’, n | vn = nil \/ (n’ <= n ==> n’ is dead \/ vn = vn’)

= (ALL n | vn = nil \/ (ALL n’ | n’ <= n ==> n’ is dead \/ vn = vn’))

= (ALL n | vn = nil \/ vn is safe)

For validity, we also need to know that every round’s value is allowed:

(I4) (ALL n | vn = nil \/ vn IN (\/ : allowed.rng))

Initially all the vn are nil so that (I3) and (I4) hold trivially. The Paxos algorithm maintains (I3)
by choosing a safe value for a round. To accomplish this, the proposer chooses a new n and
queries all the acceptors to learn their state in all rounds with numbers less than n. Before an
acceptor responds, it closes a round earlier than n by setting any neutral state to no. Responses
to this query from a majority of acceptors give the proposer enough information to find a safe
value at round n, as follows:

It looks back from n, skipping over rounds with no V state, since these must be dead
(remember that the reported state is a V or no). When it comes to a round n’ with sn’a = v
for some acceptor a, it takes v as safe. Since vn’ is safe by (I3), and all the rounds between
n’ and n are dead, v is also safe.

If all previous rounds are dead, any allowed value is safe.

Because ‘safe’ and ‘dead’ are stable properties, no state change can invalidate this choice.

Another way of looking at this is that because a deciding round is not dead and can never
become dead, it forms a barrier that the proposer can’t get past in choosing a safe value for a
later round. Thus the deciding round forces any later safe value to be the same. A later round can
propose differently from an earlier one only if the earlier one is dead.

An example may help to clarify the idea. Assume the allowed set is {x, y, w}. Given the
following two sets of states in rounds 1 through 3, with three acceptors a, b, and c, the safe
values for round 4 are as indicated. In the middle column the proposer can see a majority of
acceptors in each round without seeing any V’s, because all the rounds are dead. In the right-hand
column there is a majority for w in round 2.

 State

Value, acceptors value a b c value a b c

round 1
round 2
round 3

x x no no

x x no no

y no no y

y y no no

w w no w

w no no w

safe values for round 4 x, y, or w w

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 11

Note that only the latest V state from each acceptor is of interest, so only that state actually has to
be transmitted.

Now in a second round trip the proposer commands everyone for round n. Each acceptor that is
still neutral in round n (because it hasn’t answered the query of a round later than n) accepts by
changing its state to vn in round n; in any case it reports its state to the proposer. If the proposer
collects vn reports from a majority of acceptors, then it knows that round n has succeeded, takes
vn as the agreed outcome of the algorithm, and sends this fact to all the processes in a final half
round. Thus the entire process takes five messages or 2½ round trips.

p

 c

a

a

a

a

a

Closea Accept a Finish p ;

activev

r
a

c
p rv

a

OUTPUT
INPUT

1→n* n*→1

1→n*

n*→1
 1→1

1→1

a

a

a

a

a

a

Acceptp
STEP

p

 c

Safep

a

a

a

Closep

Actions

Transmit

a

p p p

a

a

a

Finisha;
STEP

a

1→n*

rev
p

normal operation view change

Choosep ; Start p ;
Inputp ;

Message flow in Paxos

 Proposer p Message Acceptor a

 Choose a new np, n

 Query a majority of
acceptors for their status

query(n)
��report(a, sa)

for all n’ < n,
 if sn’a = neutral
 then sn’a:= no

 Find a safe v at n. If all
n’ < n are dead, any v
in allowedp is safe

 Command a majority
of acceptors to accept v

command(n, v)
��report(a, sa)

if sna = neutral
then sna:= v

 If a majority accepts,
publish the outcome v

outcome(v)

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 12

When does a round succeed, that is, what action simulates the Decide action of the spec? It
succeeds at the instant that some acceptor forms a majority by accepting its value, even though
no acceptor or proposer knows at the time that this has happened. In fact, it’s possible for the
round to succeed without the proposer knowing this fact, if some acceptors fail after accepting
but before getting their reports to the proposer, or if the proposer fails. In this case, some
proposer will have to run another round, but it will have the same value as the invisibly deciding
round.

When does Paxos terminate? If no proposer starts another round until after an existing one
decides, then the algorithm definitely terminates as soon as the proposer succeeds in both
querying and commanding a majority. It doesn’t have to be the same majority for both, and the
acceptors don’t all have to be up at the same time. Therefore we want a single proposer, who
runs one round at a time. If there are several proposers, the one running the biggest round will
eventually succeed, but if new proposers keep starting bigger rounds none may ever succeed.
This is fortunate, since we know from the Fischer-Lynch-Paterson result that there is no
algorithm that is guaranteed to terminate.

It’s easy to keep from having two proposers at once if there are no failures for a while, the
processes have clocks, and the maximum time to send, receive, and process a message is known:

Every potential proposer that is up broadcasts its name.

You become the proposer one round-trip time after doing a broadcast unless you have
received the broadcast of a bigger name.

The algorithm makes minimal demands on the properties of the network: lost, duplicated, or
reordered messages are OK. Because nodes can fail and recover, a better network doesn’t make
things much simpler. We model the network as a broadcast medium from proposer to acceptors;
in practice this is usually coded by individual messages to each acceptor. We describe continu-
ous retransmission; in practice acceptors retransmit only in response to the proposer’s retrans-
mission.

A process acting as a proposer uses messages to communicate with the same process acting as an
acceptor, so we describe the two roles of each process completely independently. In fact, the
proposer need not be an acceptor at all.

Note the structure of the algorithm as a collection of independent atomic actions, each taking
place at a single process. There are no non-atomic procedures except for the top-level scheduler,
which simply chooses an enabled atomic action to run next. This structure makes it much easier
to reason about the algorithm in the presence of concurrency and failures.

The next section gives the algorithm in detail. You can skip this, but be sure to read the
following section on optimizations, which has important remarks about using Paxos in practice.

The Paxos algorithm: The details

We give a straightforward version of the algorithm in detail, and then describe encodings that
reduce the information stored and transmitted to small fixed-size amounts. The first set of types
and variables is copied from the earlier declarations.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 13

MODULE Paxos[% implements Consensus
V, % data Value to decide on
P WITH {"<=": (P, P)->Bool SUCHTHAT IsTotal}, % Proposer; <= a total order
A WITH {majority: SET A->Bool} SUCHTHAT IsMaj] % Acceptor

TYPE I = Int
N = [i, p] WITH {"<=":=LEqN} % round Number; <= total
Z = (ENUM[no, neutral] + V) % one acceptor’s state in one round
S = A -> N -> Z % Acceptors’ states

VAR outcome : A -> (V+Null) :={*->nil} % the acceptors’ state, in
s : S :={*->{*->neutral}} % two parts.
allowed : P -> SET V :={*->{}} % the proposers’ state
% The rest of the proposers’ state is the variables of ProposerActions(p).
% All volatile except for n, which we make stable for simplicity.

TYPE K = ENUM[query,command,outcome,report] % Kind of message
M = [k, % Message; kind of message,
 n, % about round n
 x: (Null + S + V)] % acceptor state or outcome.
 % S defined for just one a
Phase = ENUM[idle, querying, commanding] % of a proposer process

CONST n0 := N{i:=0, p:={p | true}.min} % smallest N

% Actions for handling messages

APROC Send(k, n, x: ANY) = << UnreliableCh.Put({M{k, n, x}}) >>
APROC Receive(k) -> M = << VAR m | m := UnreliableCh.Get(); m.k = k => RET m >>

% External actions. Can happen at any proposer or acceptor.

APROC Allow(v) = << VAR p | allowed(p) := allowed(p) \/ {v} >>
APROC Outcome() -> V = << VAR a | RET outcome(a) >>

THREAD ProposerActions(p) =
VAR % proposer state (volatile except n)

n := N{i := 1, p := p}, % last round started
phase := idle, % proposer’s phase
pS := S{}, % Proposer info about acceptor State
v: (V+Null) := nil % used iff phase = commanding
|

DO << % Pick an enabled action and do it.
% Crash. We don’t care about the values of pS or v.
phase := idle; allowed := {}; pS := {}; v := nil

[] % New round. Hope n becomes largest N in use so this round succeeds.

phase = idle => VAR i | i > n.i => n.i := i; pS := {}; phase := querying

[] % Send query message.
phase = querying => Send(query, n, nil)

[] % Receive report message for the current round.
<< phase = querying => VAR m := Receive(report) |

 m.n = n => pS + := m.x >>

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 14

[] % Start command. Note that Dead can't be true unless pS has a majority.
 << phase = querying =>

 IF VAR n1 | (ALL n’ | n1 < n’ /\ n’ < n ==> Dead(pS, n’))
 /\ Val(pS, n1) # nil => v := Val(pS, n1)
 [*] (ALL n’| n’ < n ==> Dead(pS, n’)) => VAR v’ :IN allowed(p) | v := v’
 FI;
 pS := S{}; phase := commanding >>

[] % Send command message.
 phase = commanding => Send(command, n, v)

[] % Receive report message for the current round with non-neutral state.
<< phase = commanding => VAR m := Receive(report), s1 := m.x, a |

m.n = n /\ s1!a /\ s1n
a # neutral => pSn

a:= s1n
a >>

[] % Send outcome message if a majority has V state.

Decides(pS, n) => Send(outcome, n, v)

[] % This round is dead if a majority has no state. Try another round.
Dead(pS, n) => phase := idle

>> OD

THREAD AcceptorActions(a) = % State is in sa and outcomea, which are stable.

DO << % Pick an enabled action and do it.

 % Receive query message, change neutral state to no for all before m.n, and
 % send report. Note that this action is repeated each time a query message arrives.

VAR m := Receive(query) |
DO VAR n | n < m.n /\ sn

a = neutral => sn
a:= no OD;

Send(report, m.n, s.restrict({a}))

[] % Receive command message, change neutral state to vn, and send state message.
 % Note that this action is repeated each time a command message arrives.

VAR m := Receive(command) |
IF sm.n

a = neutral => sm.n
a:= m.x [*] SKIP FI;

Send(report, m.n, s.restrict({a}).restrict({n})}

[] % Receive outcome message.
VAR m := Receive(outcome) | outcomea:= m.x

>> OD

=============Useful functions for the proposer choosing a value=============

FUNC LEqN(n1, n2) -> Bool = % lexicographic ordering
RET n1.i < n2.i \/ (n1.i = n2.i /\ n1.a <= n2.a)

FUNC Dead(s’, n) -> Bool = RET {a | s’!a /\ s’(a)(n) = no}.majority
FUNC Decides(s’, n) -> Bool = RET {a | s’!a /\ s’(a)(n) IS V}.majority

FUNC Val(s’, n) -> (V+Null) = IF VAR a, v | s’(a)(n) = v => RET v [*] RET nil FI
% The value of round n according to s’: if anyone has v then v else nil.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 15

===================Useful functions for the invariants===================

% We write xl for ProposerActions(p).x to make the formulas more readable.

FUNC IsTotal(le: (P, P) -> Bool) -> Bool = % Is le a total order?
 RET (ALL p1, p2, p3 | (le(p1, p2) \/ le(p2, p1))
 /\ (le(p1, p2) /\ le(p2, p3) ==> le(p1, p3)))

IsMaj(m: SET A->Bool) -> Bool = % any two must intersect
 RET (ALL aa1: SET A, aa2: SET A | (m(aa1) /\ m(aa2) ==> aa1 /\ aa2 �����

FUNC Allowed() -> SET V = RET \/ : allowed.rng

FUNC Decides(n) -> Bool = RET Decides(s, n)
FUNC Value(n) -> (V+Null) = RET Val(s, n) % The value of round n

FUNC ValAnywhere(n) -> SET V =
% Any trace of the value of round n, in messages, in s, or in a proposer.

RET {m, a, s1 | m IN UnreliableCh.q /\ m.x = s1 /\ s1!a /\ s1(a)!n
 | s1n

a }
 \/ {Value(n)}
 \/ (phasen.l = commanding => {vn.l} [*] {})

FUNC SafeVals(n) -> SET V =
% The safe v’s at n.

RET {v | (ALL n’ | n’ < n ==> Dead(s, n’) \/ v = Val(s, n’))}

FUNC GoodVals(n) -> SET V =
% The good values for round n: if there's no v yet, the ones that satisfy
% (I3) and validity. If there is a v, then v.

RET (Value(n) = nil => SafeVals(n) /\ Allowed() [*] {Value(n)})

============================== Invariants ==============================

% Proofs are straightforward except as noted. Observe that s changes only when an acceptor receives query
% (when it may add no state) or when an acceptor receives command (when it may add V state).

% (1) A proposer’s n.p is always the proposer itself.
(ALL p | np.p = p) % once p has taken an action
% (2) Ensure that there's no value yet for any round that a proposer might start.
(ALL p, n | n.p = p /\ (n > np \/ (n = np /\ phasep = querying))
 ==> Value(n) = nil)

% (3) s always has a most one value per round, because a only changes sa (when a receives query or command)
% from neutral, and either to no (query) or to agree with the proposer (command).
(ALL n | {a | s!a /\ sn

a IS V | sn
a}.size <= 1)

% (4) All the S's in the channel or in any pS agree with s.
(ALL s1 :IN ({m | m IN UnreliableCh.q /\ m.x IS S | m.x} \/ {p | pSp}) |
 (ALL a, n | s1!a /\ s1(a)!n /\ s1n

a # neutral ==> s1n
a = sn

a))

% (5) Every round value is allowed
(ALL n | Value(n) IN (Allowed()\/ {nil}))

% (6) If anyone thinks v is the value of a round, it is a good round value.
(ALL n | ValAnywhere(n) <= v IN GoodVals(n)))
% (7) A round has only one non-nil value.
(ALL n | ValAnywhere(n).size <= 1)

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 16

% Major invariant (I3).
(ALL n | Value(n) IN ({nil} \/ SafeVals(n)))
% Easy consequence (I2)
(ALL n1, n2 | n1 < n2 /\ Decides(n1) ==> Value(n2) IN {nil, Value(n1)})
% Further easy consequence (I1)
(ALL a | outcome(a) # nil ==> (EXISTS n | Decides(n) /\ outcome(a) = Value(n))

END Paxos

Optimizations

It’s possible to reduce the size of the proposer and acceptor state and the messages transmitted to
a few bytes, and in many cases to reduce the latency and the number of messages sent by
combining rounds of the algorithm.

Reducing state and message sizes

It’s not necessary to store or transmit the complete acceptor state sa. Instead, everything can be
encoded in a small fixed number of N’s, A’s, and V’s, as follows.

The relevant part of S in an acceptor or in a report message consists of vlast in some round
last, plus no in all rounds strictly between last and some later round next, and neutral in any
round after last and at or after next. Hence S can be encoded simply as (vlast, last, next).
The part of S before last is just history and is not needed for the algorithm to run, because we
know that vlast is safe. Making this precise, we have

VAR y: [z, last: N, next: N] := {no, n0, n0}

and sa is just
(\ n | (n <= y.last => y.z [*] n < y.next => no [*] neutral))

Note that this encoding loses the details of the state for rounds before last, but the algorithm
doesn’t need this information Here is a picture of this coding scheme.

n0 last next

some mixture of V’s and no vlast all no neutral from here on

 Round

 Agent state

.

last

next

vlast neutral from here on

. . .

. . .

or just after accepting:

In a proposer, there are two cases for pS.

• If phase = querying, pS consists of the sa’s, for rounds less than n, transmitted by a set of
acceptors a. Hence it can be encoded as a set of ‘last state’ tuples (a, lasta, v). From this
we care only about the number of a’s (assuming that A.majority just counts acceptors), the

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 17

biggest last, and its corresponding v. So the whole thing can be coded as (count of A’s,
lastmax, v).

• If phase = commanding, pS consists of a set of vn or no in round n, so it can be encoded as
the set of acceptors responding. We only care about a majority, so we only need to count the
number of acceptors responding.

The proposers need not be the same processes as the acceptors. A proposer doesn’t really need
any stable state, though in the algorithm as given it has n. Instead, it can poll for the next’s from
a majority after a failure and choose an n with a bigger n.i. This will yield an n that’s larger than
any n from this proposer that has appeared in a command message so far (because n can’t get into
a command message without having once been the value of next in a majority of acceptors), and
this is all we need to keep s good. In fact, if a proposer ever sees a report with a next bigger than
its own n, it should either stop being a proposer or immediately start another round with a new,
larger n, because the current round is unlikely to succeed.

Combining rounds

In the most important applications of Paxos, we can combine the first round trip (query/report)
with something else. For a commit algorithm, we can combine the first round-trip with the
prepare message and its response; see handout 27 on distributed transactions.

The most important application is a state machine that needs to decide on a sequence of actions.
We can number the actions a0, a1, …, ak, run a separate instance of the algorithm for each
action, and combine the query/report messages for all the actions. Note that these action
numbers, which we are calling K’s, are not the same as the Paxos round numbers, the N’s; each
action has its own instance of Paxos and therefore its own set of round numbers. In this
application, the proposer is usually called the primary. The following trick allows us to do the
first round trip only once after a new primary starts up: interpret the report messages for action
k as applying not just to consensus on ak, but to consensus on aj for all j >= k.

As long as the same process continues to be proposer, it can keep track of the current K in its
private state. A new proposer needs to learn the first unused K. If it tries to get consensus using a
number that’s too small, it will discover that there’s already an outcome for that action. If it uses
a number k that’s too big, however, it can get consensus. This is tricky, since it leads to a gap in
the action numbers. Hence you can’t apply the decided action k, since you don’t know the state
at k because you don’t know all of the preceding actions that are applied to make that state. So a
new proposer must find the first unused K for its first action a. A clumsy way to do this is to start
at k = 0 and try to get consensus on successive ak’s until you get consensus on a.

You might think that this is silly. Why not just poll the acceptors for the largest K for which one
of them knows the outcome? This is a good start, but it’s possible that consensus was reached on
the last ak (that is, there’s a majority for it among the acceptors) but the outcome was not
published before the proposer crashed. Or it was not published to a majority of the acceptors, and
all the ones that saw it have also failed. So after finding that k is the largest K with an outcome,
the proposer may still discover that the consensus on ak+1 is not for its action a, but for some
earlier action whose deciding outcome was never broadcast. If proposers follow the rule of not
starting consensus on k+1 until a majority knows the outcome for k, then this can happen at most

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 18

once. It may be convenient for a new proposer to start by getting consensus on a SKIP action in
order to get this complication out of the way before trying to do real work.

Further optimizations are possible in distributing the actions already decided, and handout 28 on
primary copy replication describes some of them.

Note that since a state machine is completely general, one of the things it can do is to change the
set of acceptors. So acceptors can be added or dropped by getting consensus among the existing
acceptors. This means that no special algorithm is needed to change the set of acceptors. Of
course this must be done with care, since once you have gotten consensus on a new set of
acceptors you have to get a majority of them in order to make any further changes.

Leases

In a synchronous system, if you want to avoid running a full-blown consensus algorithm for
every action that reads the state, you can instead run consensus to issue a lease on some
component of the state. The lease guarantees that the state component won’t change (unless you
have an exclusive lease and change it yourself) until some expiration time, a point in real time.
Thus a lease is just like a lock, except that it times out. Provided you have a clock that has a
known maximum difference from real time, you can be confident that the value of a leased state
component hasn’t changed (that is, that you still hold the lock). To keep control of the state
component (that is, to keep holding the lock), you can renew the lease before it expires. If you
can’t talk to all the processes that have the lease, you have to wait for it to expire before
changing the leased state component. So there is a tradeoff between the cost of renewing a lease
and the time you have to wait for it to expire after a (possible) failure.

There are several variations:

• If you issue the lease to some known set of processes, you can revoke it provided they all
acknowledge the revocation.

• If you know the maximum transmission time for a message, you can get by with clocks that
have known differences in running rate rather than known differences in absolute time.

• Since a lease is a kind of lock, it can have different lock modes, for instance, ‘read’ and
‘write’.

The most common application is to give some set of processes the right to cache some part of the
state, for instance the contents of a cache line or of a file, without having to worry about the
possibility that it might change. If you don’t have a lease, you have to do an expensive state
machine action to get a current result; otherwise you might get an old result from some replica
that isn’t up to date. (Of course, you could settle for a result as of action k, rather than a current
one. Then you would need neither a lease nor a state machine action, but the client has to
interpret the k that it gets back along with the result it wanted. Usually this is too complicated for
the client.)

If the only reason for running consensus is to issue a lease, you don’t need stable state in the
acceptors. If an acceptor fails, it can recover with empty state after waiting long enough that any
previous lease has expired. This means that the consensus algorithm can’t reliably tell you the

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 19

owner of such a lease, but you don’t care because it has expired anyway. Schemes for electing a
proposer usually depend on this observation to avoid disk writes.

You might think that an exclusive lease allows the process that owns it to change the leased state
as well, as with ‘owner’ access to a cache line or ownership of a multi-ported disk. This is not
true in general, however, because the state is replicated, and at least a majority of the replicas
have to be changed. There’s no reliable way to do this without running consensus.

In spite of this, leases are not completely irrelevant to updates. With a lease you can use a simple
read-write memory as an acceptor for consensus, rather than a fancier one that can do compare-
and-swap, since the lease allows you do the necessary read-modify-write operation atomically
under the lease’s mutual exclusion. For this to work, you have to be able to bound the time that
the write takes, so you can be sure that it completes before the lease expires. Actually, the
requirement is weaker: a read must see the atomic effect of any write that is started earlier than
the read. This ensures that if the write is started before the lease expires, a reader that starts after
the lease expires will see the write.

This observation is of great practical importance, since it lets you run a replicated state machine
where the acceptors are ‘dual-ported’ disk drives that can be accessed from more than one
machine. One of the machines becomes the master by taking out a lease, and it can then write
state changes to the disks.

Compare-and-swap acceptors

An alternative to using simple memory and leases is to use memory that implements a compare-
and-swap or conditional store operation. The spec for compare-and-swap is

APROC CAS(a, old: V, new: V) -> V =
<< IF m(a) = old => m(a) := new; RET old [*] RET m(a) FI >>

Many machines, including the IBM 370 and the DEC Alpha, have such an operation (for the
Alpha, you have to program it with Load Locked and Store Conditional, but this is easy and
cheap).

To use a CAS memory as an acceptor, we have to code the state so that we can do the query and
command actions as single CAS operations. Recall that the coded state of an acceptor is y =
(vlast, last, next), representing the value vlast for round last, no for all rounds strictly
between last and next, and neutral for all rounds starting at next. A query for round n
changes the state to (vlast, last, n) provided next <= n. A command for round n changes
the state to (vn, n, n) provided next = n. So we need a representation that allows us to
atomically test the current value of next and change the state in one of these ways. This is
possible if an N fits in a single memory cell that CAS can read and update atomically. We can
store the rest of the triple in a data structure on the side that is indexed by next. If each possible
proposer has its own piece of this data structure, they won’t interfere with each other when they
are updating it.

Since this is hard concurrency, the details of such a representation are tricky.

6.826—Principles of Computer Systems 2004

Handout 18. Consensus 20

Complex updates

The actions of a state machine can be arbitrarily complex. For example, they can be complete
transactions. In a replicated state machine the replicas must decide on the sequence of actions,
and then each replica must do each action atomically. In handouts 19 and 20, on sequential and
concurrent transactions, we will see how to make arbitrary actions atomic using redo recovery
and locking. So in a general state machine each acceptor will write a redo log, in which each
committed transaction corresponds to one action of the state machine. The acceptors must reach
consensus on the complete sequence of actions that makes up the transaction. In practice, this
means that each acceptor logs all the updates, and then they reach consensus on committing the
transaction. When an acceptor recovers from a failure, it runs redo recovery in the usual way.
Then it has to find out from other acceptors about any actions that they agreed on while it was
down.

Of course, if several proposers are trying to run transactions at the same time, you have to make
sure that the log entries don’t get mixed up. Usually this is done by funneling everything through
a single master called the primary; this master also acts as the proposer for consensus.

Another way of doing this is to use a single master with passive acceptors that just implement
simple memory; usually these are disk drives that record redundant copies of the log. The
previous section on leases explains how to run Paxos with such passive acceptors. When a
master fails, the new one has to sort out the consensus on the most recent transaction as part of
recovery.

Batching

Another way to avoid paying for consensus each time the state machine does an action is to
batch several actions, possibly from different clients, into one super-action. They you get
consensus on the super-action, and each replica can apply the individual actions of the super-
action. You still have to pay to send the information that describes all the actions to each replica,
but all the per-message overhead, plus the cost of the acknowledgements, is paid only once.

