6.826—Principles of Computer Systems 2004

21. Distributed Systems

Therest of the course is about distributed computing systems. In the next four lectures we will
characterize distributed systems and study how to specify and code communication among the
components of adistributed system. Later lectures consider higher-level system issues:
distributed transactions, replication, security, management, and caching.

The lectures on communication are organized bottom-up. Here is the plan:
1. Overview.
2. Links. Broadcast networks.
3. Switching networks.
4. Reliable messages.
5. Remote procedure call and network objects.

Overview

An underlying theme in computer systems as awhole, and especialy in distributed systems, is
the tradeoff between performance and complexity. Consider the problem of carrying railroad
traffic across a mountain range.! The minimal system involves a single track through the
mountains. This solves the problem, and no smaller system can do so. Furthermore, trains can
travel from East to West at the full bandwidth of the track. But there is one major drawback: if it
takes 10 hours for atrain to traverse the single track, then it takes 10 hours to switch from E-W
traffic to W—E traffic, and during this 10 hoursthe track isidle. The scheme for switching can be
quite simple: thelast E-W train tells the W—E train that it can go. Thereis a costly failure mode:
the East end forgetsthat it sent a‘last’ E-W train and sends another one; theresult is either a
collision or alot of backing up.

The simplest way to solve both problemsisto put in a second track. Now traffic can flow at full
bandwidth in both directions, and the two-track system is even simpler than the single-track
system, since we can dedicate one track to each direction and don’'t have to keep track of which
way traffic is running. However, the second track is quite expensive. If it has to be retrofitted, it
may be as expensive asthefirst one.

A much cheaper solution isto add sidings: short sections of doubletrack, at which trains can
pass each other. But now the signaling system must be much more complex to ensure that traffic
between sidings flowsin only one direction at atime, and that no siding fills up with trains.

1 This example is due to Mike Schroeder.

Handout 21. Distributed Systems 1

6.826—Principles of Computer Systems 2004

What makes a system distributed?

One man’ s constant is another man’ s variable.
Alan Perlis

A distributed systemis a systemwhere | can’t get my work done because a computer has
failed that I’ ve never even heard of.
Leslie Lamport

Thereisno universally accepted definition of adistributed system. It’ s like pornography: you
recognize one when you seeit. And like everything in computing, it'sin the eye of the beholder.
In the current primitive state of the art, Lamport’ s definition hasalot of truth.

Nonetheless, there are some telltale signs that help us to recognize a distributed system:

It has concurrency, usually because there are multiple general-purpose computing elements.
Distributed systems are closely related to multiprocessors.

Communication costs are an important part of the total cost of solving a problem on the
system, and hence you try to minimize them. Thisis not the same as saying that the cost of
communication is an important part of the system cost. In fact, it is more nearly the opposite:
asystem in which communication is good enough that the programmer doesn’t have to worry
about it (perhaps because the system builder spent alot of money on communication) isless
like adistributed system. Distributed systems are closely related to telephone systems;
indeed, the telephone system is by far the largest example of a distributed system, though its
functionality is much simpler than that of most systems in which computers play a more
prominent role.

It tolerates partial failures. If some parts break, the rest of the system keeps doing useful
work. We usualy don’t think of a system as distributed if every failure causes the entire
system to go down.

It is scaleable: you can add more components to increase capacity without making any
qualitative changes in the system or its clients. Scalability is especially important for many
web servers, since a successful one like eBay or Google sees millions or billions of requests
per day.

It is heterogeneous. This means that you can add components that implement the system’s
internal interfacesin different ways: different telephone switches, different computers
sending and receiving E-mail, different NFS clients and servers, or whatever. It also means
that components may be autonomous, that is, owned by different organizations and managed
according to different policies. It doesn’t mean that you can add arbitrary components with
arbitrary interfaces, because then what you have is chaos, not a system. Hence the useful
reminder: “There's no such thing as a heterogeneous system.”

Handout 21. Distributed Systems 2

6.826—Principles of Computer Systems 2004

U005 Internet O[]0 2500 M / 1 XB
oo 101EL o
100M 100 ms " BM
500/ 250 GB

D oU =) 1o |:|‘
Ug ,,:J:L*—\:EILADN o055

M 1 ms/,/"/ — 500 (uniprocessors)
Multiprocessor ... OOd.;
75 7sns . \ 1K
500 MB RAM %ﬂ%ﬁ% 1/500 MB

1 1ns .~ e . 64

el N

64-bit register

Sowdown How fast? How many? Total

Fig. 1. Scales of interconnection. Relative speed and size areinitalics.

Layers

Any idea in computing is made better by being made recursive.
Brian Randdll

There arethree rules for writing a novel.
Unfortunately, no one knows what they are.
Somerset Maugham

Y ou can look at a computer system at many different scales. At each scale you see the same
basic components: computing, storage, and communications. The bigger system is made up of
smaller ones. Figure 1 illustrates thisidea over about 10 orders of magnitude (we have seen it
before, in the handout on performance).

But Figure 1 is misleading, because it doesn’t suggest that different levels of the system may
have quite different interfaces. When this happens, we call thelevel alayer. Hereisan example
of different interfaces that transport bits or messages from a sender to areceiver. Each layer is
motivated by different functionality or performance than the one below it. This stack isten layers
deep. Note that in most cases the motivation for separate layersis either compatibility or the fact
that alayer has other clients or other code.

Handout 21. Distributed Systems 3

6.826—Principles of Computer Systems 2004
What Why

a) aTcPreiabletransport link function: reliable stream

b) onan Internet packet link function: routing

¢) onthePPP header compression protocol performance: space

d) ontheHDLC datalink protocol function: packet framing

e) onal4d.4Kbit/sec modem line function: byte stream

f) onananaog voice-gradetelephoneline function: 3 KHz low-latency signal

g) onab64Kbit/secdigital linemultiplexed function: bit stream

h) onaT1line multiplexed performance: aggregation
i) onaT3line multiplexed performance: aggregation
i) onanOC-48 fiber. performance: aggregation

On top of TCP we can add four more layers, some of which have interfaces that are significantly
different from simple transport.

What Why
w) mail folders function: organization
X) onamail spooler function: storage
y) on SMTP mail transport function: routing
z) onFTPfiletransport function: reliable char arrays

Now we have 14 layers with two kinds of routing, two kinds of reliable transport, three kinds of
stream, and three kinds of aggregation. Each serves some purpose that isn’t served by other,
similar layers. Of course many other structures could underlie the filing of mail messagesin
folders.
Hereisan entirely different example, code for amachin€ s load instruction:

What Why
a) load from cache function:
b) missto second level cache
c) missto RAM
d) pagefault todisk

data access

performance: space

performance: space

performance: space

Layer (d) could be replaced by a page fault to other machineson aL AN that are sharing the
memory (function: sharing)?, or layer (c) by access to adistributed cache over a multiprocessor’'s

network (function: sharing). Layer (b) could be replaced by access to aPcl 1/0 bus (function:
device access), which at layer (c) is bridged to an 1SA bus (function: compatibility).

2 K. Li and P. Hudak: Memory coherence in shared virtual memory systems. ACM Transactions on Computer
Systems 7, 321-359 (1989)

Handout 21. Distributed Systems 4

6.826—Principles of Computer Systems 2004

Another simple exampleisthe layering of the various facsimile standards for transmitting
images over the standard tel ephone voice channel and signaling. Recently, the sameimage
encoding, though not of course the same anal og encoding of the hits, has been layered on the
internet or e-mail transmission protocols.

Addressing

Another way to classify communication systemsisin terms of the kind of interface they provide:
messages or storage,
the form of addresses,

the kind of data transported,
other properties of the transport.

Message“ Sayrsrtaonc Networked Wide area
passing ys multi-processors networks
Interconnected
multi-processors
Com-

muni- Shared memory
cation multi-computers

Shared memory
multi-processors

Clustered
multi-computers

Shared Vector Distributed
Memory processors shared memory
v

< >
< »

Tightly Integration Loosely
coupled coupled

Here are anumber of examplesto bear in mind as we study communication. Thefirst tableis for
messaging, the second for storage.

System Address Sample address Data value Delivery
Ordered Reliable
Jmachine3 source route 4 north, 2 east 32 bytes yes yes
IEEE 802 LAN 6 byteflat FF F3 6E 23 Al 92 packet no no
P 4 byte hierarchical 16.12.3.134 packet no no
TCP IP + port 16.12.3.134 / 3451 bytestream yes yes
RPC TCP + procedure 16.12.3.134 / 3451 / arg.record yes yes
Open

E-mail host name + user blampsone@microsoft.com String no yes

3W. Dally: A universal parallel computer architecture. New Generation Computing 11(1993), pp 227-249

Handout 21. Distributed Systems

6.826—Principles of Computer Systems 2004

System Address Sample address Data value
Main memory 32-bit flat 04E72A39 2" bytes, n<4
Filesystem* path name /udir/bwl/Mail/inbox/214 0-4 Gbytes
World Wide protocol + http://research.microsoft.com/ LYPE,

Web host name + variable size
path name

lampson/default.html

Layersin a communication system

The standard picture for acommunication system is the 0S| reference model, which shows peer-
to-peer communication at each of seven layers (given here in the opposite order to the examples
above):

physica (volts and photons),

datalink,

network,

transport,

session,

presentation, and

application.
This model is often, and somewhat pejoratively, called the ‘ seven-layer cake' . The peer-to-peer
aspect of the osl mode is not as useful asyou might think, because peer-to-peer communication
means that you are writing a concurrent program, something to be avoided if at al possible. At
any layer peer-to-peer communication is usually replaced with client-server communication (also
known as reguest-response or remote procedure call) as soon as possible.

The examples we have seen should make it clear that real systems cannot be analyzed so neatly.
Still, it is convenient to use thefirst few layers as tags for important ideas, which wewill study
in this order:

Datalink layer: framing and multiplexing.

Network layer: addressing and routing (or switching) of packets.
Transport layer: reliable messages.

Session layer: naming and encoding of network objects.

We are not concerned with volts and photons, and the presentation and application layers are
very poorly defined. Presentation is supposed to deal with how things look on the screen, but it's
unclear, for example, which of the following it includes: the X display protocol, the Macintosh
PicT format and the PostScript language for representing graphical objects, or the Microsoft RTF
format for editable documents. In any event, all of these topics are beyond the scope of this
course.

Figure 2 illustrates the structure of communication and code for a fragment of the Internet.

4 M. Satyanarayanan: Distributed file systems. In S. Mullender (ed.) Distributed Systems, Addison-Wesley, 1993, pp
353-384

Handout 21. Distributed Systems 6

6.826—Principles of Computer Systems 2004

Peer-peer or client-server
communication

HTTP
: Implements
Send/receive /
bytes

—E Y

Send/receive

packets
\ \

| | | P (network) | |

Fig. 2: Protocol stacks for peer-to-peer communication

Principles

There are afew important ideas that show up again and again at the different levels of distributed
systems: recursion, addresses, end-to-end reliability, broadcast vs. point-to-point, real time, and
fault-tolerance.

Recursion

The 14-layer example of coding E-mail gives many examples of encapsulating a message and
transmitting it over alower-level channdl. It also showsthat it can be reasonable to code a
channel using the same kind of channel severa levelslower.

Another name for encapsulation is ‘multiplexing'.

Addresses

Multi-party communication requires addresses, which can be flat or hierarchical. A flat address
has no structure: the only meaningful operation (other than communication) is equality. A
hierarchical address, sometimes called a path name, is a sequence of flat addresses or smple
names, and if one addressis a prefix of another, then in some sense the party with the shorter
address contains, or isthe parent of, the party with thelonger one. Usudly thereis an operation
to enumerate the children of an address. Flat addresses are usually fixed size and hierarchical
ones variable, but there are exceptions. An address may be hierarchical in the code but flat at the
interface, for instance an Internet address or a URL in the World Wide Web. The examples of
addressing that we saw earlier should clarify these points; for more examples see handout 12 on
naming.

Peopl e often make a distinction between names and addresses. What it usually boilsdown to is
that an addressis something that a network can use to deliver a packet. Another way to look t it,

5 My thanks to Alex Shvartsman for some of the figuresin this section.

Handout 21. Distributed Systems 7

6.826—Principles of Computer Systems 2004

more philosophical and less operational: an addressis anamethat isinterpreted at alower level
of abstraction.

End-to-end reliability

A simple way to obtain reliable communication isto rely on the end points for every aspect of
reliability, and to depend on the lower level communication system only to deliver bitswith
some reasonabl e probability. The end points check the transmission for correctness, and retry if
the check fails.6

For example, an end-to-end file transfer system reads thefile, sendsit, and writesit on the disk
in the usual way. Then the sender computes a strong checksum of the file contents and sends
that. The receiver reads the file copy from its disk, computes a checksum using the same
function, and compares it with the sender’s checksum. If they don’t agree, the check fails and the
transmission must beretried.

In such an end-to-end system, the total cost to send amessageis 1 + rp, wherer = cost of retry
(if the cost to send a simple messageis 1) and p = probability of retry. Thisisjust like fast path
(see handout 10 on performance). Theretry itself may involve further retries, but if p << 1we
can ignore this complication. For good performance (near to 1) rp must be small. Since usualy r
> 1, we need asmall probability of failure: p << 1/r < 1. This means that the link, though it need
not have any guaranteed properties, must transmit messages without error most of thetime. To
get this property, it may be necessary to do forward error correction on thelink, or to do retry at
alower level wherethe cost of retry isless.

Note that p applies to the entire transmission that is retried. The TCP protocol, for example,
retransmits awhole packet if it doesn’'t get apositive ack. If the packet travels over an ATM
network, it is divided into small ‘cells', and ATM may discard individual cellswhenitis
overloaded. If it takes 100 cellsto carry a packet, ppacket = 100 peeil- Thisis a big difference.

Of courser can be measured in different ways. Often the work that is done for aretry is about
the same as the work that is donejust to send, so if we count r asjust thework it is about 1.
However, the retry is often invoked by atimeout that may be long compared to the time to send.
If latency isimportant, r should measure the time rather than the work done, and may thus be
much greater than 1.

Broadcast vs. point-to-point transmission

It's usually much cheaper to broadcast the same information to n places than to send it
individually to each of the n places. Thisis especially true when the physical communication
medium is a broadcast medium. An extreme example is direct digital satellite broadcast, which
can send a megabyte to everyonein the US for about $.05; compare this with about $.0025 to
send a megabyte to one place on alocal cheap DSL telephone link. But even when the physical
medium is point to point and switches are needed to connect n places, asis the case with
telephony or ATM, it’s still much cheaper to broadcast because the switches can be configured in

6 J. Saltzer, D. Reed, and D. Clark: End-to-end arguments in system design. ACM Transactions on Computer
Systems 2, 277-288 (1984).

Handout 21. Distributed Systems 8

6.826—Principles of Computer Systems 2004

source

Fig. 3: The cost of doing broadcast with point-to-point communication

atree rooted at the source of the broadcast and the message needs to traverse each link only
once, instead of once for each node that the link separates from the root. Figure 3 shows the
number of times a message from the root would traverse each link if it were sent individually to
each node; in abroadcast it traverses each link just once.

Historically, most LANs have done broadcast automatically, in the sense that every message
reaches every node on the LAN, even if the underlying electrons or photons don’t have this
property; wewill study broadcast networks in more detail later on. Switched LANs are
increasingly popular, however, because they can dramatically increase the total bandwidth
without changing the bandwidth of asingle link, and they don’t do broadcast automatically.
Instead, the switches must organize themselves into a spanning tree that can deliver a message
originating anywhere to every node.

Broadcast is a special case of ‘multicast’, where messages go to a subset of the nodes. As nodes
enter and leave a multicast group, the shape of the tree that spans all the nodes may change. Note
that once the tree is constructed, any node can be the root and send to all the others. There are
clever algorithmsfor constructing and maintaining this tree that are fairly widely implemented in
the Internet.”

Real time

Although often ignored, real time plays an important role in distributed systems. It isused in
three ways:

1. Todecidewhen to retry atransmission if thereis no response. This often happens when there
issomekind of failure, for instance alost Internet IP packet, as part of an end-to-end
protocaol. If the retransmission timeout iswrong, performance will suffer but the system will
usualy still work. When timeouts are used to control congestion, however, making them too
short can cause the bandwidth to drop to 0.

7'S, Deering et al., An architecture for wide-area multicast routine, ACM SigComm Computer Communication
Review, 24, 4 (Oct. 1994), pp 126-135.

Handout 21. Distributed Systems 9

6.826—Principles of Computer Systems 2004

@ Message send

time-
out

Receive
>

Messageresend
< "~ Message ack

This generaizes to any kind of fault-tolerance based on replication in time, or retry: the
timeout tells you when to retry. More on this under fault-tolerance below.

2. Toensurethe stability of aload control system based on feedback. This requires knowing the

round trip time for a control signal to propagate. For instance, if a network providesa ' stop’
signal when it can’t absorb more data, it should have enough buffering to absorb the
additional datathat may be sent while the ‘ stop’ signal makes its way back to the sender. If

the‘stop’ comes from the receiver then the receiver should have enough buffering to cover a

sender-receiver-sender round trip. If the assumed round-trip timeis too short, data will be
lost; if it’stoo long, bandwidth will suffer.

der Rece| ve
Buffer
reserve .
Time

Round
trip v

3. To code “bounded waiting” locks, which can be released by another party after atimeout.
Such locks are called ‘leases’; they work by requiring the holder of thelock to either fail or
release it before anyone else times out.8. If the lease timeout is too short the system won't
work. This means that all the processes must have clocks that run at roughly the samerate.
Furthermore, to make use of alease to protect some operation such asaread or write, a
process needs an upper bound on how the operation can last, so that it can check that it will
hold the |ease until the end of that time. Leases are used in many real systems, for example,
to control ownership of adual-ported disk between two processors, and to provide coherent
file caching in distributed file systems. See handout 18 on consensus for more about |eases.

|Lockx|

Timeout

Time

8 C. Gray and D. Cheriton, Leases: An efficient fault-tolerant mechanism for distributed file cache consistency,
Proc. 12th Symposium on Operating Systems Principles, Dec. 1989, pp 202-210.

Handout 21. Distributed Systems

10

6.826—Principles of Computer Systems 2004

Fault tolerance

Fault tolerance is always based on redundancy. The simplest strategy for fault-toleranceisto get
the redundancy by replicating fairly large components or actions. Here are three ways to do it:

1. Duplicate components, detect errors, and ignore bad components (replicate in space).
2. Detect errors and retry (replicate in time, hoping the error is transient).

3. Checkpoint, detect errors, crash, reconfigure without the bad components, and
restart from the checkpoint (a more general way to replicate in time)

Thereis a space-time tradeoff illustrated in the following picture.

Triple modular redundancy
RAID disks
Space Checkpointing

Try-fail-retry

N-version programming

Time

Highly available systems use the first strategy. Others use the second and third, which are
cheaper as long as errors are not too frequent, since they substitute duplication in time for
duplication in space (or equipment). The second strategy works very well for communications,
since there is no permanent state to restore, retry isjust resend, and many errors are transient.
Thethird strategy is difficult to program correctly without transactions, which are therefore an
essential ingredient for complex fault tolerant systems.

Another way to look at the third approach is as failover to an aternate component and retry; this
requires afailover mechanism, which for communications takes the simple form of changesin
the routing database. An often-overlooked point is that unless the aternate component is only
used as aspare, it carries more load after the failure than it did before, and hence the
performance of the system will decrease.

In general, fault tolerance requires timeouts, since otherwise you wait indefinitely for aresponse
from afaulty component. Timeouts in turn reguire knowledge of how long things should take, as
we saw in the previous discussion of real time. When this knowledge is precise, we call the
system ‘ synchronous'; timeouts can be short and failure detection rapid, conditions that are

Handout 21. Distributed Systems 11

6.826—Principles of Computer Systems 2004

usually met at low levelsin asystem. It's common to design a snoopy cache, for instance, on the
assumption that every processor will respond in the same cycle so that the responses can be
combined with an ‘or’ gate.? Higher up thereis aneed for compatibility with several
implementations, and each lower level with caching adds uncertainty to the timing. It becomes
more difficult to set timeouts appropriately; often thisisthe biggest problem in building a fault-
tolerant system. Perhaps we should specify the real-time performance of systems more carefully,
and give up the use of caches such as virtual memory that can cause large variationsin response
time.

All these methods have been used at every level from processor chipsto distributed systems. In
generd, however, below the level of the LAN most systems are synchronous and not very fault-
tolerant: any permanent failure causes a crash and restart. Above that level most systems make
few assumptions about timing and are designed to keep working in spite of several failures. From
this difference in requirements follow many differencesin design.

In asystem that cannot be completely reset, it isimportant to have self-stabilization: the system
can get from an arbitrary state (which it might land in because of afailure) to agood state.10

In any fault-tolerant system the algorithms must be ‘wait-freg’ or ‘non-blocking’, which means
that the failure of one process (or of certain sets of processes, if the system is supposed to
tolerate multiple failures) cannot keep the system from making progress.! Unfortunately, simple
locking is not wait-free. Locking with leases is wait-free, however. We will study some other
wait-free algorithms that don’t depend on real time. We said alittle about this subject in handout
14 on practical concurrency.12 Note that the Paxos algorithm iswait-free; see handout 18 on
€oNsensus.

Per for mance of communication

Communication has the same basic performance measures as anything else: latency and
bandwidth.

e Latency: how long a minimum communication takes. We can measure the latency in bytes by
multiplying the latency time by the bandwidth; this gives the capacity penalty for each
separate operation. There are standard methods for minimizing the effects of latency:

Caching reduces latency when the cache hits.
Prefetching hides latency by the distance between the prefetch and the use.

Concurrency tolerates latency by giving something else to do while waiting.

9 Hennessey and Patterson, section 8.3, pp 654-676.

10 G, Varghese and M. Jayaram, The fault span of crash failures, JACM, to appear. Available here.

11 These terms are not actually synonyms. In await-free system every process makes progress. In anon-blocking
system some process is aways making progress, but it's possible for a process to be starved indefinitely.

12 M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13, 1 (Jan.
1991), pp 124-149.

Handout 21. Distributed Systems 12

6.826—Principles of Computer Systems 2004

e Bandwidth: how communication time grows with data size. Usually thisis quoted for a two-
party link. The “bisection bandwidth” is the minimum bandwidth across a set of links that
partition the system into roughly equal-size partsif they are removed; it is alower bound on
the possibletotal rate of uniform communication. There are standard methods for minimizing
the cost of bandwidth:

Caching saves bandwidth when the cache hits.
More generally, locality saves bandwidth when cost increases with distance.

‘Combining networks save bandwidth to a hot spot by combining several operationsinto
one, severa loads or incrementsfor example: x +:= sandx := 3 combineintox := s.

Code shipping saves bandwidth by sending the code to the data.13
In addition, there are some other issues that are especially important for communication:

e Connectivity: how many parties you can talk to. Sometimes thisis afunction of latency, asin
the telephone system, which alows you to talk to millions of parties but only one at atime.

e Predictability: how much latency and bandwidth vary with time. Variation in latency is
called ‘jitter’; variation in bandwidth is called ‘burstiness' . The biggest difference between
the computing and telecommunications cultures is that computer communication is basically
unpredictable, while telecommunications serviceistraditionaly highly predictable.

e Availability: the probability that an attempt to communicate will succeed.

Uniformity of performance at an interface is often as important as absolute performance, because
dealing with non-uniformity complicates programming. Thus performance that depends on
locality is troublesome, though often rewarding. Performance that depends on congestion is even
worse, since congestion is usually much more difficult to predict than locality. By contrast, the
Monarch multiprocessor’4 provides uniform, albeit slow, access to a shared memory from 64K
processors, with atotal bandwidth of 256 Gbytes/sec and a very simple programming model.
Since all the processors make memory references synchronously, it can use a combining network
to eliminate many hot spots.

Specs for communication

Regardless of the type of message being transported, al the communication systems we will
study implement one of afew specs. All of them are based on the idea of sending and receiving
messages through a channd. The channe has state that is derived from the messages that have
been sent. Ideally the state is the sequence of messages that have been sent and not yet delivered,
but for weaker specs the state is different. In addition, a message may be acknowledged. Thisis
interesting if the spec allows messages to be lost, because the sender needs to know whether to
retransmit. It may also be interesting if the spec does not guarantee prompt delivery and the
sender needs to know that the message has been delivered.

13 Thanks to Dawson Engler for this observation.
14 R, Rettberg et a.: The Monarch parallel processor hardware design. |EEE Computer 23, 18-30 (1990)

Handout 21. Distributed Systems 13

6.826—Principles of Computer Systems 2004

None of the specs alows for messages to be corrupted in transit. Thisis becauseit’s easy to
convert a corrupted message into a lost message, by attaching a sufficiently good checksum to
each message and discarding any message with an incorrect checksum. It’simportant to realize
that the definition of a*sufficiently good’ checksum depends on a model of what kind of errors
can occur. To take an extreme example, if the errors are caused by a malicious adversary, then
the checksum must involve some kind of secret, called a‘key’; such achecksumiscaled a
‘message authentication code . At the opposite extreme, if only single-bit errors are expected,
(whichislikely to be the case on afiber optic link where the errors are caused by thermal noise)
then a 32-bit CRC may be good; it is cheap to compute and it can detect three or fewer single-bit
errorsin a message of less than about 10 KB. In the middle is an unkeyed one-way function like
MD5.15

These specs are for messages between a single sender and asingle receiver. We alow for lots of
sender-receiver pairsinitially, and then suppress this detail in the interests of simplicity.

MODULE Channel [

M, % Message
Al = % Address

TYPE Q SEQ M % Queue: channel state
SR [s: A, r: A] % Sender - Receiver

K ENUM [ok, lost] % acK

END Channel

Perfect channels

A perfect channel isjust a FIFO queue. This oneis unbounded. Note that cet blocksif the queue
isempty.

VAR g = (SR -> Q) {* -> {}} % all initially empty
APROC Put (sr, m) = << g(sr) := g(sr) + {m} >>
APROC Get(sr) -> M = << VAR m | m = g(sr).head => g(sr) := g(sr).tail; RET m >>

Henceforth we suppress the sr argument and deal with only one channel, to reduce clutter in the
Specs.

Reliable channels

A rdliable channd is like a perfect channd, but it can be down, in which case the channel is
allowed to lose messages. Now it sinteresting to have an acknowledgment. This spec gives the
simplest kind of acknowledgment, for the last message transmitted. Note that cetack blocksif
status iSnil; normally thisistrueiff q is non-empty. Also notethat if the channel is down,
status can become 10st even when no messageis|ost.

VAR g = {}

15 B. Schneier, Applied Cryptography, Wiley, 1994, p 329.

Handout 21. Distributed Systems 14

6.826—Principles of Computer Systems 2004 6.826—Principles of Computer Systems 2004

status : (K + Null) := ok decision spec cannot deliver an unbounded number of copies of m. Prophecy variables can work
down := false for infinite traces, but there are complicated technical details that are beyond the scope of this
APROC Put (m) = << q := g + {m}, status := nil >> course.
APROC Get() -> M = << VAR m | m = g.head => Hereisthe early decision spec for the unreliable channel:
g := g.tail; IF g = {} => status := ok [*] SKIP FI; RET m >>
VAR g = of} % as amultiset!
APROC GetAck() -> K = << VAR k | k = status => status := ok; RET k >>
APROC Put (m) = << VAR i: Nat => g := g \/ {j :IN i.seq | | m} >>
APROC Crash () = down := true APROC Get() ->M = << VAR m | m IN g => g := g - {m}; RET m >>
APROC Recover () = down := false
)) and hereis the one for the unreliable FIFO channel
THREAD Lose () = DO % internal action
<< down => VAR g = of} % all initially empty
IF VAR gl, @2, m | g = g1l + {m} + g2 =>
g := gl + g2; IF g2 = {} => status := lost [*] SKIP FI APROC Put (m) = << q :=qg + {m} [l SKIP >>
[*] status := lost APROC Get() -> M = << VAR m | m = g.head => g := g.tail; RET m >>
FI >>
[*] SKIP OD

Unreliable channels

An unreliable channel isallowed to lose, duplicate, or reorder messages at any time. Thisisan
interesting spec because it makes the minimum assumptions about the channel. Hence anything
built on this spec can work on the widest variety of channels. The reason that duplicationis
important is that the way to recover from lost packets is to retransmit them, and this can lead to
duplication unless alot of careistaken, aswe shall see in handout 26 on reliable messages. A
variation (not given here) bounds the number of times a message can be duplicated.

VAR g of{} % asamultiset!

<< qi=q\/ {m} >>
<< VARm | m IN g => g := g - {m}; RET m >>

APROC Put (m)
)

APROC Get() -> M

THREAD Lose ()
THREAD Dup ()

DO VAR m | << m IN g => g
DO VAR m | << m IN g => g

g - {m} >> [*] SKIP OD
qa \/ {m} >> [*] SKIP OD

An unreliable FIFO channel is amodel of a point-to-point wire or of abroadcast LAN without
bridging or switching. It preserves order and does not duplicate, but can |ose messages at any
time. This channd has put and cet exactly like the ones from a perfect channel, and ar.ose
much like the unreliable channel’ s Lose.

VAR g = of} % all initially empty
APROC Put (m) = << g :=q+ {m} >>
APROC Get() -> M = << VAR m | m = g.head => g := g.tail; RET m >>

THREAD Lose ()
DO << VAR g1, g2, m | g = g1l + {m} + g2 => g := gl + g2 >> [*] SKIP OD

These specs can aso be written in an ‘ early-decision’ style that decides everything about
duplication and loss in the put. Asusual, the early decision spec is shorter. It takes a prophecy
variable (handout 8) to show that the code with L.ose and pup implements the early decision spec
for the unreliable FIFO channel, and for the unordered channd it isn't true, because the early

Handout 21. Distributed Systems 15 Handout 21. Distributed Systems 16

