6.826—Principles of Computer Systems 2004

24. Network Objects

We have studied how to build up communications from physical signalsto areliable message
channe defined by the channe1 spec in handout 21 on distributed systems. This channd delivers
bytes from a sender to areceiver in order and without loss or duplication as long as there are no
failures; if there are failuresit may lose some messages.

Usually, however, auser or an application program doesn’t want reliable messages to and from a
fixed party. Instead, they want access to anamed object. A user wants to name the object with a
World Wide Web URL (perhapsimplicitly, by clicking on a hypertext link), and perhaps to pass
some parameters that are supplied asfields of aform; the user expectsto get back aresult that
can be displayed, and perhaps to change the state of the object, for instance, by recording a
reservation or an order. A program may want the same thing, or it may want to call a procedure
or invoke a method of an object.

In both cases, the object name should have universal scope; that is:
It should be able to refer to an object on any computer that you can communicate with.

It should refer to the same object if it is copied to any computer that you can communicate
with.

Aswelearned when we studied naming, it's possible to encode method names and arguments
into the name. For example, the URL

http://google.com/cgi-bin/query?&what=web&g=butler+lampson

could be written in Spec asGoogle.Query ("web", {"butler", "lampson"}).S0we canwrite
ageneral procedure cal as a path name. To do thiswe need away to encode and decode the
arguments; thisisusually called ‘marshaling’ and ‘unmarshaling’ in this context, but it's the
same mechanism we discussed in handout 7.

So the big pictureis clear. We have a global name space for al the objects we could possibly talk
about, and we find a particular object by simply looking up its name, one component at atime.
Thissummary is good as far asit goes, but it omits afew important things.

e Roots. The global name space has to be rooted somewhere. A Web URL isrooted in the
Internet’s Domain Name Space (DNS).

o Heterogeneity. There may be a variety of communication protocols used to reach an object,
hardware architectures and operating systems implementing it, and programming languages
using it. Although we can abstract the process of hame lookup aswe did in handout 12, by
viewing the directory or context at each point asafunction~ -> (o + v), there may bevery
different code for thislookup operation at different points. In aURL, for example, the host
nameislooked up in DNS, the next part of the name is looked up by the HTML server on
that host, and therest is passed to some program on the server.

Handout 24. Network Objects 1

6.826—Principles of Computer Systems 2004

o Efficiency. If we anticipate lots of referencesto objects, we will be concerned about
efficiency. There are various tricks that we can use to make things run faster:

Use specialized interfaces to look up aname. An important case of thisis to pass awhole
path name along to the lookup operation so that it can be swallowed in one gulp, rather
than looking it up one simple name at atime.

Cache theresults of looking up prefixes of aname.

Change the representation of an object name to make it efficient in a particular situation.
Thisiscaled ‘swizzling' . One example isto encode anamein afixed size data structure.
Another isto makeit relative to alocally meaningful root, in particular, to make it a
virtual addressin the local address space.

e Fault tolerance. In general we need to deal with both volatile and stable (or persistent)
objects. Volatile objects may disappear because of acrash, in which case there hasto be a
suitable error returned. Stable objects may be temporarily unreachable. Both kinds of objects
may be replicated for availability, in which case we have to locate a suitable replica

e Location transparency. Ideally, loca and remote objects behavein exactly the same way. In
fact, however, there are certainly performance differences, and methods of remote objects
may fail because of communication failure or failure of the remote system.

e Data types and encoding. There may be restrictions on what types of values can be passed as
parameters to methods, and the cost of encoding may vary greatly, depending on the
encoding and on whether encoding is done by compiled code or by interpreting some
description of the type.

e Programming issues. If the objects are typed, the type system must deal with evolution of the
types, because in abig system it isn't practical to recompile everything whenever atype
changes. If the objects are garbage collected, there must be away to know when there are no
longer any references to an object.

Anocther way of looking at thisis that we want a system that is universal, that is, independent of
the details of the code, in as many dimensions as possible.

Handout 24. Network Objects 2

6.826—Principles of Computer Systems 2004

Function Independent of How

Transport bytes Communication protocol Reliable messages

Transport meaningful Architecture and language Encode and decode
values Stubs and pickles

Network references Location, architecture, and Globally meaningful names

language
Reqguest-response Concurrency Server: work queue
Client: waiting calls
Evolution Version of an interface Subtyping
Fault tolerance Failures Replication and failover

Storage allocation Failures, client programs Garbage collection

There are lots of different kinds of network objects, and they address these issuesin different
ways and to different extents. We will 1ook closely at two of them: Web URLSs, and Modula-3
network objects. The former are intended for human consumption, the latter for programming,
and indeed for fairly low level programming.

Web URLs

Consider again the URL

http://google.com/cgi-bin/query?&what=web&g=butler+lampson

It makes senseto view http://google . com as anetwork object, and an HTTP get operation on
this URL astheinvocation of aquery method on that object with parameters (what : ="web",
g:="butler+lampson"). The name space of URL objectsisrooted in the Internet DNS; in this
example the object is just the host named by the DN'S name plus the port (which defaultsto so as
usua). Thereis additional multiplexing for the RPC server cgi-bin. Thisserver findsthe
procedureto run by looking up query in adirectory of scripts and running it.

HTTP isarequest-response protocol. Internet TCP is the transport. Thisworksin the most
straightforward way: thereis anew TCP connection for each HTTP operation (although the
latest version, HTTP 1.2, has provision for caching connections, which cuts the number of round
trips and network packets by a factor of 3 when the response data is short). The number of
instructions executed to do an invocation is not very important, because it takes a user action to
cause an invocation.

In the invocation, all the names in the path name are strings, as are all the parameters. The data
type of the responseis dways HTML. This, however, can contain other types. Initialy GIF (for
images) was the only widely supported type, but several others (for example, JPEG for images,
Javaand ActiveX for code) are now routindly supported. An arbitrary embedded type can be

Handout 24. Network Objects 3

6.826—Principles of Computer Systems 2004

handled by dispatching a“helper’ program such as a Postscript viewer, aword processor, or a
spreadsheet.

It's also possibleto do a put operation that takesan HTML value as a parameter. Thisis more
convenient than coding everything into stringsin acet. Methods normally ignore parameters
that they don’t understand, and both methods and clients ignore the parts of HTML that they
don’t understand. These conventions provide aform of subtyping.

Thereisno explicit fault tolerance, though the Web inherits fault-tolerance for transport from IP
and the ability to have multiple serversfor an object from DNS. In addition, the user can retry a
failed request. Thisbehavior is consistent with the fact that the Web is used for casua browsing,
soit doesn’t really have to work. This usage pattern islikely to evolve into one that demands
much higher reliability, and alot of the code will have to change as well to support it.

Normally objects are persistent (that is, stored on the disk) and read-only, and there is no notion
of preserving state from one operation to the next, so there is no need for storage allocation.
Thereisaway to store server state in the client, using a data structure called a ‘ cookie'. Cookies
are indexed by the URL of the server that made them, so that different servers don’t step on each
other’s cookies. The user is responsible for getting rid of cookies when they are no longer
needed, but since they are small, most people don’t bother. Cookies are often used as pointers
back to writeable state in the server, but there are no standard ways of doing this.

As everyone knows, the Web has been extremely successful. It owes much of its success to the
fact that an operation is normally invoked by a human user and the responseis read by the same
user. When things go wrong, the user gives up, makes the best of it, or tries something else. It's
extremely difficult to write programs that use HT TP, because there are so many things that can
happen besides the “norma” response. Another way of saying thisis that the web doesn’'t have
to work.

Modula-3 networ k objects

We now look at the Modula-3 network object system, which has an entirely different goal: to be
used by programs. The things to be done are the same: name objects, encode parameters and
responses, process request and response messages. However, most of the coding techniques are
quite different. This system is described in the paper by Birrell et a. (handout 25). It addresses
all of theseissuesin the table above except for fault-tolerance, and provides a framework for that
aswell. These network objects are closely integrated with Modula-3' s strongly typed objects,
which are similar to the typed objects of C++, Java, and other ‘ object-oriented’ programming
languages.

Before explaining network objects, it is appropriate to point out their pitfalls. The appeal of
remote procedure call or network objectsisthat you can program a distributed computation
exactly like aloca one; the RPC mechanism abstracts out all the differences. In general,
abstraction is agood thing, sinceit lets usignore irrelevant detail. For example, afile system
abstracts out many things about disk sizes, allocation, representation of indexes, etc. For the most
part nothing important islost in this abstraction; the most important aspect of disk performance,
that sequential operations are much faster than random ones, maps fairly well to the same
property within asinglefile.

Handout 24. Network Objects 4

6.826—Principles of Computer Systems 2004

Unfortunately, the same is often (perhaps even usually) not true for RPC. The most important
aspects of distributed systems are non-negligible communication costs and partia failures. RPC
abstracts away from these.

e |t'sjust as easy to write and invoke a remote procedure for adding 1000 x1000 matrices as
one for factoring an integer, even though the cost of transferring 24 Mbytes is many times the
computation cost for the addition.

e When you write aremote call to update a bank balance on a machinein China, it's easy to
ignore the possibility that the call may fail because the Chinese machineis down or has lost
its connection to the Internet.

Many attempts to build distributed systems using RPC have come to grief by ignoring these
redlities. And unfortunately, they usually do so very late in their development, since a system
will probably work just fine on small test cases. The moral is not that RPC is always a bad thing,
but that you should approach it with caution.

Why objects, rather than procedures? Because obj ects subsume the notions of procedure,
interface, and reference/pointer. By an object we mean a collection of procedures that operate on
some shared state; an object isjust like a Spec module; indeed, its behavior can be defined by a
Spec module. An essential property of an object is that there can be many codes for the same
interface. Thisis often valuable in ordinary programming, but it's essential in a distributed
system, because it’s normal for different instances of the same kind of object to live on different
machines. For example, two files may live on different file servers.

Although in principle every object can have its own procedures to implement its methods,
normally there are lots of objects that share the same procedure code, each with its own state. A
set of objects with the same code is often called a‘ class'. The standard code for an object isa
record that holds its state along with a pointer to arecord of procedures for the class. Indeed,
Spec classes work thisway.

Thebasicidea

We begin with a spec for network objects. Theideaisthat you can invoke a method of an object
transparently, regardless of whether it islocal or remote.

Client Client

- call « call \

Server \ Server

Handout 24. Network Objects 5

6.826—Principles of Computer Systems 2004

If it'slocal, the code just invokes the method directly; if it’s remote, the code sends the
arguments in a message and waits for areply that contains theresult. A real system does this by
supplying a‘surrogate’ object for a remote object. The surrogate has the same methods as the
local object, but the code of each method isa‘stub’ or ‘proxy’ that sends the argumentsto the
remote object and waits for the reply. The source code for the surrogate classis generated by a
‘stub generator’ from the declaration of thereal class, and then compiled in the ordinary way.

void inner(long size, long A[], long B[], long *result)

result return value

CLIENT SERVER

We can't do thisin agenera way in Spec. Instead, we change the call interface for methodsto a
single procedure ca11. Y ou give this procedure the object, the method, and the arguments (with
typeany), and it gives back the result. This gives us clumsy syntax for invoking a method,
call(o, "meth", args) instead of o.meth (args), and sacrifices static type checking, but it
also gives us transparent invocation for local and remote objects.

An unredlistic form of thisisvery smple.
MODULE Object0 =

TYPE O
Method

Method -> (PROC (Any) -> Any) % Object
String % Method name

PROC Call (o, method, any) -> Any RAISES {failed} =
RET o(method) (any)

END Object0

What' swrong with thisis that it takes no account of what happens when there' s afailure. The
machine containing the remote object might fail, or the communication between that machine
and the invoker might fail. Either way, it won't be possible to satisfy this spec. When there'sa
failure, we expect the caller to see a failed exception. But what about the method? It may not
beinvoked at all, or it may beinvoked but no result returned to the caller, or it may still be
running after the caller gets the exception. Thisthird case can arise if the remote object getsthe
call message, but communication fails and the caller times out while the remote method is till
running; such acall iscaled an ‘orphan’. The following spec expresses al these possibilities;

Handout 24. Network Objects 6

6.826—Principles of Computer Systems 2004

Fork (p, a) isaprocedurethat runsp (a) in aseparate thread. We assume that the atomicity of
the remote method when there' sa failure (that is, how much of it gets executed) is already
expressed in its definition, so we don’t have to say anything about it here.

MODULE Object =

TYPE O = Method -> (PROC (Any) -> Any) % Object
Method = String % Method name

VAR failure : Bool := false

PROC Call(o, method, any) -> Any RAISES {failed} =
RET o(method) (any)
[] failure =>
BEGIN SKIP [] o(method) (any) [] Fork (o(method), any) END;
RAISE failed

END Object

Now we examine basic code for this spec in terms of messages sent to and from the remote
object. In the next two sections we will see how to optimize this code.

Our codeis based on theidea of a space, which you should think of as the global name of a
process or address space. Each object and each thread is loca to some space. An object’ s stateis
directly addressable there, and its methods can be directly invoked from athread local to that
space. We assume that we can send messages reliably between spaces using a channel ch with
the usual get and put procedures. Later on we discuss how to code this on top of standard
networking.

For network objects to work transparently, we must be able to:
e Haveaglobaly valid namefor an object.

e Find its space from its global name.

e Convert between loca and global names.

We go from global to local in order to find the object in its own space to invoke a method; thisis
sometimes called ‘swizzling’. We go from local to global to send (areference to) the object from
its own space to another space; thisis sometimes called ‘unswizzling' .

Looking at the spec, the most obvious approach is to ssimply encode the value of an o to make it
remote. But this requires encoding procedures, which is fraught with difficulty. The whole point
of aprocedureisthat it reads and changes state. Encoding afunction, aslong asit doesn't
depend on global state, isjust a matter of encoding its code, since given the codeit can execute
anywhere. Encoding a procedureis not so simple, since when it runs it has to read and change
the same state regardless of where it is running. This means that the running procedure has to
communicate with its state. It could do this with some low level remote read and write operations
on state components such as bytes of memory. Systems that work this way are called ‘ distributed
shared memory’ systems,. The main challenge is to make the reads and writes efficient in spite of
the fact that they involve network communication. Wewill study this problem in handout 30
when we discuss caching.

Handout 24. Network Objects 7

6.826—Principles of Computer Systems 2004

Thisis not what remote procedures or network objects are about, however. Instead of encoding
the procedure code, we encode areference to the object, and send it a message in order to invoke
amethod. Thisreferenceisaremote; it is apath name that consists of the space containing the
object together with some local name for the object in that space. The local name could be just a
LocalObj, theaddress of the object in the space. However, that would be rather fragile, since
any mistake in the entire global system might result in treating an arbitrary memory address as
the address of an object. It is prudent to name objects with meaningless object identifiers or
oid’s, and add alevel of indirection for exporting the name of alocal object, export: o1d -»
LocalObj. Wethushaveremote = [space, oid].

We summarize the encoding and decoding of arguments and results in two procedures Encode
and pecode that map between any and pata, as described in handout 7. In the next section we
discuss some of the details of this process.

MODULE NetObj -= % codes Object
TYPE O = (LocalObj + Remote)
LocalObj Object .0 % A local object
Remote [space, oid] % Wire Rep for an object
01d Int % Object Identifier
Space Int % Address space
Data = SEQ Byte
c1d = Int % Call Identifier
Req = [for: CId, remote, method, datal % Request
Resp = [for: CId, datal % Response
M = (Reqg + Resp) % Message
CONST r : Space := ...
sendSR := Ch.SR{s := r}

VAR export Space -> 0Id -> LocalObj % One per space

PROC Call (o, method, any) -> Any RAISES {failed} =
IF o IS LocalObj => RET o (method) (any)

[*] VAR cid := NewCId(), to :=o.space |
Ch.Put (sendSR{r := to}, Reg{cid, remote, method, Encode (any)});
VAR m |
IF << (to, m) := Ch.Get(r); m IS Resp /\ m.for = cid => SKIP >>;
RET Decode (m.data)
[1 Timeout () => RAISE failed
FI
FI

After sending the request, ca11 waits for aresponse, which isidentified by theright cza in the
for field. If it hasn’t arrived by the time Timeout () iStrue, ca11 givesup and raises failed.

Note the Spec hack: an atomic command that gets from the channel only the response to the
current cid. Other threads, of course, might assign other cid’s and extract their responses from
the same space-to-space channel. Code has to have this demultiplexing in some form, since the
channd is between spaces and we are using it for al the requests and responses between those
two spaces. In areal system the calling thread registersits c1a and wait on a condition. The code

Handout 24. Network Objects 8

6.826—Principles of Computer Systems 2004

that receives messages |ooks up the c1a to find out which condition to signal and where to queue
the response.

THREAD Server() =
DO VAR m, from: Space, remote, result: Any |
<< (from, m) := Ch.Get(r); m IS Reqg => SKIP >>;
remote := m.remote;
IF remote.space = r => VAR local := export (r) (remote.oid) |
result := local (m.method) (Decode (m.data)) ;
Ch.Put (sendSR{r := from}, Resp{m.for, Encode (result)})
[*] ... % not local object; error
FI
OD

Note that the server thread runs the method. Of course, this might take awhile, but we can have
as many of these server threads as welike. A real system has a single receiving thread, interrupt
routine, or whatever that finds an idle server thread and givesit anewly arrived request to work
on.

FUNC Encode(any) -> Data
FUNC Decode (data) -> Any

END NetObj

We have not discussed how to encode exceptions. Aswe saw when we studied the atomic
semantics of Spec, an exception raised by aroutineisjust afunny kind of result value, so it can
be coded aong with the ordinary result. The caller checks for an exceptional result and raises the
proper exception.

This module uses a channd ch that sends messages between spaces. It isadight variation on the
perfect channel described in handout 20. Thisversion delivers all the messages directed to a
particular address, providing the source address of each one. We give the spec here for

compl eteness.

MODULE PerfectSRI[

M, % Message
Al = % Address
TYPE Q = SEQ M % Queue: channel state

SR = [s: A, r: A] % Sender - Receiver
VAR g := (SR -> Q) {* -> {}} % al initially empty
APROC Put (sr, m) = << g(sr) := g(sr) + {m} >>
APROC Get(r: A) -> (A, M) = << VAR sr, m | sr.r = r /\ m = g(sr).head =>
g(sr) := g(sr).tail; RET (sr.s, m) >>

END PerfectSR

MODULE Ch = PerfectSR[NetObj.M, NetObj.Space]

Handout 24. Network Objects 9

6.826—Principles of Computer Systems 2004

Now we explain how types and references are handled, and then we discuss how the space-to-
space channels are actually coded on top of awide variety of existing communication
mechanisms.

Types and references

Likethe Modula 3 system described in handout 25, most RPC and network object systems have
static type systems. That is, they know the types of the remote procedures and methods, and take
advantage of thisinformation to make encoding and decoding more efficient. In netobj the
argument and result are of type any, which means that Encode must produce a self-describing
Data result so that becode has enough information to recreate the origina value. If you know the
procedure type, however, then you know the types of the argument and result, and pecode can be
type specific and take advantage of thisinformation. In particular, values can simply be encoded
one after another, a 32-bit integer as 4 bytes, arecord as the sequence of its component values,
efc., just asin handout 7. The server thread reads the object remote from the message and
convertsit to aloca object, just asin netobj. Thenit calsthelocal object’s disp method,
which decodes the method, usually as an integer, and switches to method-specific code that
decodes the arguments, calls thelocal object’s method, and encodes the resullt.

Thisis not the whole story, however. A network object system must respect the object types,
decoding an encoded object into an object of the same type (or perhaps of a supertype, aswe
shall see). This means that we need globa aswell asloca names for object types. In fact, there
arein general two local types for each global type g, one which isthe type of local objects of
type e, and another which is the type of remote objects of typec. For example, supposethereisa
network object typerile. A space that implements some files will have alocal typemyrFile for
its code. It may also need a surrogate type srgrile, which isthe type of surrogate objects that
areimplemented by a remote space but have been passed to this one. Both myFile and srgrile
are subtypes of rile. Asfar astheruntimeis concerned, these types comeinto existencein the
usua way, because code that implements them is linked into the program. In Modula 3 the global
nameisthe ‘fingerprint’ rp of the type, and the local name is the ‘typecode’ Tc used by thelocal
runtime for safe casts, garage collection, and other things. The stub code for the type registers the
local-global mapping with theruntimein tablesFptoTc: FP -> Tc and TCtoFP: TC -> FR.L

When anetwork object remote arrives and is decoded, there are three possihilities:

e It correspondsto alocal object, because remote . space = r. The export table maps
remote .oid to the corresponding Localobj.

e |t correspondsto an existing surrogate. The surrogates table keeps track of thesein
surrogates: Space -> Remote -> LocalObj. Inhandout 25 the export and
surrogates tables are combined into asingle objTob1.

e A new surrogate has to be created for it. For thisto work we have to know the local surrogate
type. If we pass along the global type with the object, we can map the global typeto alocal
(surrogate) type, and then use the ordinary New to create the new surrogate.

1 There's actually a kludge that maps the local typecode to the surrogate typecode, instead of mapping the
fingerprint to both.

Handout 24. Network Objects 10

6.826—Principles of Computer Systems 2004

Almost every object system, including Modula 3, alows a supertype (more general type) to be
‘narrowed’ to a subtype (more specific type). We have to know the smallest (most specific) type
for avaluein order to decide whether the narrowing islegal, that is, whether the desired typeisa
supertype of the most specific type. So the global type for the object must be its most specific
type, rather than some more general one. If the object is coming from a space other than its
owner, that space may not even have any local type that corresponds to the objects most specific
type. Hence the global type must include the sequence of global supertypes, so that we can
search for the most specific locd type of the object.

Itis expensive to keep track of the object’s sequence of global typesin every space that refersto
it, and pass this sequence along every time the object is sent in amessage. To make this cheaper,
in Modula 3 a space calls back to the owning space to learn the global type sequence the first
timeit sees aremote object. This cal israther expensive, but it also serves the purpose of
registering the space with the garbage collector (making the object ‘dirty’).

Thistakes care of decoding. To encode a network object, it must bein export sothat it hasan
oz1d. If itisn't, it must be added with anewly assigned oz14.

Where there are objects, there must be storage allocation. A robust system must reclaim storage
using garbage collection. Thisis especially important in a distributed system, where clients may
fail instead of releasing objects. The basic ideafor distributed garbage collection is to keep track
for each exported object of al the spaces that might have areference to the object. A spaceis
supposed to register itself when it acquires areference, and unregister itself when it gives up the
reference (presumably as the result of alocal garbage collection). The owner needs some way to
detect that a space hasfailed, so that it can remove that space from all its objects. The details are
somewhat subtle and beyond the scope of this discussion.

Practical communication

This section is about optimizing the space-to-space communication provided by perfectsr.
We'd like the efficiency to be reasonably close to what you could get by assembling messages by
hand and delivering them directly to the underlying channel. Furthermore, we want to be able to
use avariety of transports, sinceit’s hard to predict what transports will be available or which
oneswill be most efficient. There are several scales at which we may want to work:

e Bytesinto or out of the channel.
e Datablocksinto or out of the channd.

e Directly accessible channel buffers. Most channelswill take bytes or blocks that you give
them and buffer them up into suitable blocks (called packets) for transmission).

e Transmitting and receiving buffers.
e Setting up channelsto spaces.
e Passing references to spaces.

At thelowest level, we need efficient access to atransport’s mechanism for transmitting bytes or
messages. This often takes the form of a‘connection’ that transfers a sequence of bytes or

Handout 24. Network Objects 11

6.826—Principles of Computer Systems 2004

messages reliably and efficiently, but is expensive to keep around. A connection is usualy tied to
aparticular address space and, unlike an address, cannot be passed around freely. So our grand
strategy iSto map space -> Connection Whenever we do acall, and then send the message
over the connection. Because this mapping is done frequently, it must be efficient. In the most
genera case, however, when we have never talked to the space before, it'salot of work to figure
out what transports are available and set up a connection. Caching is therefore necessary.

The general mechanismwe useis Space -> SET Endpoint -> Location -> Connection.
The space is globally unique, but has no other structure. It appearsin every remote and every
surrogate object, so it must be optimized for space. An Endpoint iSatransport-specific address;
thereis aset of them because a space may implement several transports. Because Endpoint’sare
addresses, they arejust bytes and can be passed freely in messages. A Location iSan object; that
is, it has methods that call the transport’s code. Converting an Endpoint int0 @Location
requires finding out whether the Endpoint’stransport is actually implemented here, and if it is,
hooking up to the transport code. Finally, at.ocation object’s new method yields a connection.
The Location may cacheidle connections or create new ones on demand, depending on the
Ccosts.

Consider the concrete example of TCP as the channel. An Endpoint isaDNS name or an IP
address, aport number, and aUID for an address space that you can reach at that IP and port if it
hasn’t failed; thisisjust bits. The corresponding Locat ion isan object whose new method
generates a TCP connection to that space; it works either by giving you an existing TCP
connection that it has cached, or by creating anew TCP connection to the space. A connection
isa TCP connection.

Aswe have seen, a space isan abbreviation, translated by the adars table. Thus

addrs: Space -> SET Endpoint. Weneed to set up addrs for newly encountered space’s,
and we do this by callback to the source of the space, maintaining theinvariant: have remote
==> addrs! (remote.space). Thisensuresthat we can aways invoke a method of the remote,
and that we can pass on the space’ s Endpoint’swhen we pass on the remote. The callback
returns the set of Endpoint’sthat can be used to reach the space.

An Endpoint should ideally be an object with a1ocation method, but since we haveto
transport them between spaces, thiswould lead to an undesirable recursion. Instead, an Endpoint
isjust astring (or some binary record value), and atransport can recognize its own endpoints.
Thusinstead of invoking endpoint.location, weinvoke tr.location (endpoint) for each
transport tr that is available, until one succeeds and returns aLocation. If aTransport doesn’t
recognize the Endpoint, it returnsnii instead. If there’ sno Transport that recognizes the
Endpoint, then it's of no use.

A connection isabi-directiona channe that hasthe sr builtinand hasm = Byte; it connectsa
caler and aserver thread (actually the thread is assigned dynamically when arequest arrives, as
we saw in Netobject). Because there' s only one sender and onerecelver, it's possible to stuff
the parts of a message into the channel one at atime, and the caller does not have to identify

itself but can take anything that comes back as the response. Thus the connection replaces
NetObj .c1d. Theideaisthat a TCP connection could be used directly asaconnection. You can
make a connection from arnocation. Thereason for having both isthat at.ocation isjust a
small data structure, while a connection may be much more expensiveto maintain. A caller

Handout 24. Network Objects 12

6.826—Principles of Computer Systems 2004 6.826—Principles of Computer Systems

acquires aconnection for each cal, and releasesit when the call is done. The code can choose
between creating and destroying connections on the one hand, and caching them on the other,
based on the cost of creating one versus the cost of maintaining an idle one.

The byte stream code should provide multi-byte put and cet operations for efficiency. It may
aso provide access to the underlying buffers for the stream, which might make encoding and
decoding more efficient; this must be done in a transport-independent way. Transmitting and
receiving the buffersis handled by the transport. We have already discussed how to obtain a
connection to a given space.

Actualy, of course, the channels are usualy not perfect but only reliable; that is, they can lose
messages if thereisacrash. And even if thereisn’t a crash, there might be an indefinite delay
before a message gets through. If you have a transactional queuing system the channels might be
perfect; in other words, if the sender doesn't fail it will be able to queue a message. However, the
response might be long delayed, and in practice there has to be a timeout after which acal raises
the exception cal1railed. At thispoint the caller doesn’t know for sure whether the call
completed or not, though it’ s likely that it didn’t. In fact, it's possible that the call might still be
running as an ‘orphan’.

For maximum efficiency you may want to use a specialized transport rather than a general one
like RPC. Handout 11 described one such transport and analyzes its efficiency in detail.

Bootstrapping

So far we have explained how to invoke a method on a remote object, and how to pass references
to remote objects from one space to another. To get started, however, we have to obtain some
remote objects. If we have a single remote directory object that maps names to objects, we can
look up the names of lots of other objects there and obtain references to them. To get started, we
can adopt the convention that each space has a special object with o1a o that isadirectory.
Given aspace, We can forge Remote {space, 0) to get areferenceto this object.

Actualy we need not a space but at.ocation that we can useto get a connection for invoking
amethod. To get the Location We need an Endpoint, that is, a network address plus awell-
known port number plus a standard unique identifier for the space. So given an address, say

www . microsoft.com, Wecan construct anocation and invoke the lookup method of the
standard directory object. If aserver thread is listening on the well-known port at that address,
thiswill work.

A directory object can act asa‘broker’, choosing a suitabl e representative object for a given
name. Several attempts have been made to invent general mechanisms for doing this, but usually
they need to be application-specific. For example, you may want the closest printer to your
workstation that has B-size paper. A generic broker won't handle this well.

Handout 24. Network Objects 13 Handout 24. Network Objects

2004

14

