
6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 1

3. Introduction to Spec

This handout explains what the Spec language is for, how to use it effectively, and how it differs
from a programming language like C, Pascal, Clu, Java, or Scheme. Spec is very different from
these languages, but it is also much simpler. Its meaning is clearer and Spec programs are more
succinct and less burdened with trivial details. The handout also introduces the main constructs
that are likely to be unfamiliar to a programmer. You will probably find it worthwhile to read it
over more than once, until those constructs are familiar. Don’t miss the one-page summary of
spec at the end. The handout also has an index.

Spec is a language for writing precise descriptions of digital systems, both sequential and
concurrent. In Spec you can write something that differs from practical code (for instance, code
written in C) only in minor details of syntax. This sort of thing is usually called a program. Or
you can write a very high level description of the behavior of a system, usually called a
specification. A good specification is almost always quite different from a good program. You
can use Spec to write either one, but not the same style of Spec. The flexibility of the language
means that you need to know the purpose of your Spec in order to write it well.

Most people know a lot more about writing programs than about writing specs, so this
introduction emphasizes how Spec differs from a programming language and how to use it to
write good specs. It does not attempt to be either complete or precise, but other handouts fill
these needs. The Spec Reference Manual (handout 4) describes the language completely; it gives
the syntax of Spec precisely and the semantics informally. Atomic Semantics of Spec (handout 9)
describes precisely the meaning of an atomic command; here ‘precisely’ means that you should
be able to get an unambiguous answer to any question. The section “Non-Atomic Semantics of
Spec” in handout 17 on formal concurrency describes the meaning of a non-atomic command.

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct.
1989, pp 517-561). The notation for expressions is derived from mathematics.

This handout starts with a discussion of specifications and how to write them, with many small
examples of Spec. Then there is an outline of the Spec language, followed by three extended
examples of specs and code. At the end are two handy tear-out one-page summaries, one of the
language and one of the official POCS strategy for writing specs and code.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 2

What is a specification for?

The purpose of a specification is to communicate precisely all the essential facts about the
behavior of a system. The important words in this sentence are:

communicate The spec should tell both the client and the implementer what each needs
to know.

precisely We should be able to prove theorems or compile machine instructions
based on the spec.

essential Unnecessary requirements in the spec may confuse the client or make it
more expensive to implement the system.

behavior We need to know exactly what we mean by the behavior of the system.

Communication

Spec mediates communication between the client of the system and its implementer. One way to
view the spec is as a contract between these parties:

The client agrees to depend only on the system behavior expressed in the spec; in return it
only has to read the spec, and it can count on the implementer to provide a system that
actually does behave as the spec says it should.

The implementer agrees to provide a system that behaves according to the spec; in return it is
free to arrange the internals of the system however it likes, and it does not have to deliver
anything not laid down in the spec.

Usually the implementer of a spec is a programmer, and the client is another programmer.
Usually the implementer of a program is a compiler or a computer, and the client is a
programmer.

Usually the system that the implementer provides is called an implementation, but in this course
we will call it code for short. It doesn’t have to be C or Java code; we will give lots of examples
of code in Spec which would still require a lot of work on the details of data structures, memory
allocation, etc. to turn it into an executable program. You might wonder what good this kind of
high-level code is. It expresses the difficult parts of the design clearly, without the
straightforward details needed to actually make it run.

Behavior

What do we mean by behavior? In real life a spec defines not only the functional behavior of the
system, but also its performance, cost, reliability, availability, size, weight, etc. In this course we
will deal with these matters informally if at all. The Spec language doesn’t help much with them.

Spec is concerned only with the possible state transitions of the system, on the theory that the
possible state transitions tell the complete story of the functional behavior of a digital system. So
we make the following definitions:

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 3

A state is the values of a set of names (for instance, x=3, color=red).

A history is a sequence of states such that each pair of adjacent states is a transition of the
system (for instance, x=1; x=2; x=5 is the history if the initial state is x=1 and the
transitions are “if x = 1 then x := x + 1” and “if x = 2 then x := 2 * x + 1”).

A behavior is a set of histories (a non-deterministic system can have more than one history,
usually at least one for every possible input).

How can we specify a behavior?

One way to do this is to just write down all the histories in the behavior. For example, if the state
just consists of a single integer, we might write

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...
 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
....
 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 9 10

The example reveals two problems with this approach:

The sequences are long, and there are a lot of them, so it takes a lot of space to write them
down. In fact, in most cases of interest the sequences are infinite, so we can’t actually write
them down.

It isn’t too clear from looking at such a set of sequences what is really going on.

Another description of this set of sequences from which these examples are drawn is “18
integers, each one either 1 or one more than the preceding one.” This is concise and
understandable, but it is not formal enough either for mathematical reasoning or for directions to
a computer.

Precise

In Spec the set of sequences can be described in many ways, for example, by the expression

{q: SEQ Int | q.size = 18
 /\ (ALL i: Int | 0 <= i /\ i < q.size ==>
 q(i) = 1 \/ (i > 0 /\ q(i) = q(i-1) + 1)) }

Here the expression in {...} is very close to the usual mathematical notation for defining a set.
Read it as “The set of all q which are sequences of integers such that q.size = 18 and ...”. Spec
sequences are indexed from 0. The (ALL ...) is a universally quantified predicate, and ==>
stands for implication, since Spec uses the more familiar => for ‘then’ in a guarded command.
Throughout Spec the ‘|’ symbol separates a declaration of some new names and their types from
the scope in which they are meaningful.

Alternatively, here is a state machine that generates the sequences we want. We specify the
transitions of the machine by starting with primitive assignment commands and putting them
together with a few kinds of compound commands. Each command specifies a set of possible
transitions.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 4

 VAR i, j |
<< i := 1; j := 1 >> ;
DO << j < 18 => BEGIN i := 1 [] i := i+1 END; Output(i); j := j+1 >> OD

Here there is a good deal of new notation, in addition to the familiar semicolons, assignments,
and plus signs.

VAR i, j | introduces the local variables i and j with arbitrary values. Because ; binds
more tightly than |, the scope of the variables is the rest of the example.

The << ... >> brackets delimit the atomic actions or transitions of the state machine. All
the changes inside these brackets happen as one transition of the state machine.

j < 18 => ... is a transition that can only happen when j < 18. Read it as “if j < 18
then ...”. The j < 18 is called a guard. If the guard is false, we say that the entire
command fails.

i := 1 [] i := i + 1 is a non-deterministic transition which can either set i to 1 or
increment it. Read [] as ‘or’.

The BEGIN ... END brackets are just brackets for commands, like { ... } in C. They are there
because => binds more tightly than the [] operator inside the brackets; without them the
meaning would be “either set i to 1 if j < 18 or increment i and j unconditionally”.

Finally, the DO ... OD brackets mean: repeat the ... transition as long as possible.
Eventually j becomes 18 and the guard becomes false, so the command inside the
DO ... OD fails and can no longer happen.

The expression approach is better when it works naturally, as this example suggests, so Spec has
lots of facilities for describing values: sequences, sets, and functions as well as integers and
booleans. Usually, however, the sequences we want are too complicated to be conveniently
described by an expression; a state machine can describe them much more easily.

State machines can be written in many different ways. When each transition involves only
simple expressions and changes only a single integer or boolean state variable, we think of the
state machine as a program, since we can easily make a computer exhibit this behavior. When
there are transitions that change many variables, non-deterministic transitions, big values like
sequences or functions, or expressions with quantifiers, we think of the state machine as a spec,
since it may be much easier to understand and reason about it, but difficult to make a computer
exhibit this behavior. In other words, large atomic actions, non-determinism, and expressions
that compute sequences or functions are hard to code. It may take a good deal of ingenuity to
find code that has the same behavior but uses only the small, deterministic atomic actions and
simple expressions that are easy for the computer.

Essential

The hardest thing for most people to learn about writing specs is that a spec is not a program. A
spec defines the behavior of a system, but unlike a program it need not, and usually should not,
give any practical method for producing this behavior. Furthermore, it should pin down the

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 5

behavior of the system only enough to meet the client’s needs. Details in the spec that the client
doesn’t need can only make trouble for the implementer.

The example we just saw is too artificial to illustrate this point. To learn more about the
difference between a spec and code consider the following:

CONST eps := 10**-8

APROC SquareRoot0(x: Real) -> Real =
<< VAR y : Real | => RET y >>

(Spec as described in the reference manual doesn’t have a Real data type, but we’ll add it for the
purpose of this example.)

The combination of VAR and => is a very common Spec idiom; read it as “choose a y such that
Abs(x - y*y) < eps and do RET y”. Why is this the meaning? The VAR makes a choice of any
Real as the value of y, but the entire transition on the second line cannot occur unless the guard
Abs(x - y*y) < eps is true. Hence the VAR must choose a value that satisfies the guard.

What can we learn from this example? First, the result of SquareRoot0(x) is not completely
determined by the value of x; any result whose square is within eps of x is possible. This is why
SquareRoot0 is written as a procedure rather than a function; the result of a function has to be
determined by the arguments and the current state, so that the value of an expression like
f(x) = f(x) will be true. In other words, SquareRoot0 is non-deterministic.

Why did we write it that way? First of all, there might not be any Real (that is, any floating-point
number of the kind used to represent Real) whose square exactly equals x. We could
accommodate this fact of life by specifying the closest floating-point number.1 Second, however,
we may not want to pay for code that gives the closest possible answer. Instead, we may settle
for a less accurate answer in the hope of getting the answer faster.

You have to make sure you know what you are doing, though. This spec allows a negative result,
which is perhaps not what we really wanted. We could have written (highlighting changes with
boxes):

APROC SquareRoot1(x: Real) -> Real =
<< VAR y : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y >>

to rule that out. Also, the spec produces no result if x < 0, which means that SquareRoot1(-1)
will fail (see the section on commands for a discussion of failure). We might prefer a total
function that raises an exception:

APROC SquareRoot2(x: Real) -> Real RAISES {undefined} =
<< x >= 0 => VAR y : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y
 [*] RAISE undefined >>

The [*] is ‘else’; it does its second operand iff the first one fails. Exceptions in Spec are much
like exceptions in CLU. An exception is contagious: once started by a RAISE it causes any

1 This would still be non-deterministic in the case that two such numbers are equally close, so if we wanted a
deterministic spec we would have to give a rule for choosing one of them, for instance, the smaller.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 6

containing expression or command to yield the same exception, until it runs into an exception
handler (not shown here). The RAISES clause of a routine declaration must list all the exceptions
that the procedure body can generate, either by RAISES or by invoking another routine.

Code for this spec would look quite different from the spec itself. Instead of the existential
quantifier implied by the VAR y, it would have an algorithm for finding y, for instance, Newton’s
method. In the algorithm you would only see operations that have obvious codes in terms of the
load, store, arithmetic, and test instructions of a computer. Probably the code would be
deterministic.

Another way to write these specs is as functions that return the set of possible answers. Thus

FUNC SquareRoots1(x: Real) -> SET Real =
RET {y : Real | y >= 0 /\ Abs(x - y*y) < eps}

Note that the form inside the {...} set constructor is the same as the guard on the RET. To get a
single result you can use the set’s choose method: SquareRoots1(2).choose.2

In the next section we give an outline of the Spec language. Following that are three extended
examples of specs and code for fairly realistic systems. At the end is a one-page summary of the
language.

An outline of the Spec language

The Spec language has two main parts:

• An expression describes how to compute a result (a value or an exception) as a function of
other values: either literal constants or the current values of state variables.

• A command describes possible transitions of the state variables. Another way of saying this
is that a command is a relation on states: it allows a transition from s1 to s2 iff it relates s1 to
s2.

Both are based on the state, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the sequence example above they are i and j.
Actually a command relates states to outcomes; an outcome is either a state (a normal outcome)
or a state together with an exception (an exceptional outcome).

There are two kinds of commands:

• An atomic command describes a set of possible transitions, or equivalently, a set of pairs of
states, or a relation between states. For instance, the command << i := i + 1 >> describes
the transitions i=1→i=2, i=2→i=3, etc. (Actually, many transitions are summarized by
i=1→i=2, for instance, (i=1, j=1)→(i=2, j=1) and (i=1, j=15)→(i=2, j=15)). If a

2 r := SquareRoots1(x).choose (using the function) is almost the same as r := SquareRoot1(x) (using the
procedure). The difference is that because choose is a function it always returns the same element (even though we
don’t know in advance which one) when given the same set, and hence when SquareRoots1 is given the same
argument. The procedure, on the other hand, is non-deterministic and can return different values on successive calls,
so that spec is weaker. Which one is more appropriate?

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 7

command allows more than one transition from a given state we say it is non-deterministic.
For instance, on page 3 the command BEGIN i := 1 [] i := i + 1 END allows the
transitions i=2→i=1 and i=2→i=3, with the rest of the state unchanged.

• A non-atomic command describes a set of sequences of states (by contrast with the set of
pairs for an atomic command). More on this below.

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.

The meaning of an expression, which is a function from states to values (or exceptions), is much
simpler than the meaning of an atomic command, which is a relation between states, for two
reasons:

• The expression yields a single value rather than an entire state.

• The expression yields at most one value, whereas a non-deterministic command can yield
many final states.

A atomic command is still simple, much simpler than a non-atomic command, because:

• Taken in isolation, the meaning of a non-atomic command is a relation between an initial
state and a history. A history is a whole sequence of states, much more complicated than a
single final state. Again, many histories can stem from a single initial state.

• The meaning of the composition of two non-atomic commands is not any simple
combination of their relations, such as the union, because the commands can interact if they
share any variables that change.

These considerations lead us to describe the meaning of a non-atomic command by breaking it
down into its atomic subcommands and connecting these up with a new state variable called a
program counter. The details are somewhat complicated; they are sketched in the discussion of
atomicity below, and described in handout 17 on formal concurrency.

The moral of all this is that you should use the simpler parts of the language as much as possible:
expressions rather than atomic commands, and atomic commands rather than non-atomic ones.
To encourage this style, Spec has a lot of syntax and built-in types and functions that make it
easy to write expressions clearly and concisely. You can write many things in a single Spec
expression that would require a number of C statements, or even a loop. Of course, code with a
lot of concurrency will necessarily have more non-atomic commands, but this complication
should be put off as long as possible.

Organizing the program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

• A routine is a named computation with parameters, in other words, an abstraction of the
computation. Parameters are passed by value. There are four kinds of routine:

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 8

A function (defined with FUNC) is an abstraction of an expression.

An atomic procedure (defined with APROC) is an abstraction of an atomic command.

A general procedure (defined with PROC) is an abstraction of a non-atomic command.

A thread (defined with THREAD) is the way to introduce concurrency.

• A type is a highly stylized assertion about the set of values that a name or expression can
assume. A type is also a convenient way to group and name a collection of routines, called its
methods, that operate on values in that set.

• An exception is a way to report an unusual outcome.

• A module is a way to structure the name space into a two-level hierarchy. An identifier i
declared in a module m has the name m.i throughout the program. A class is a module that
can be instantiated many times to create many objects, much like a Java class.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

The next two sections describe things about Spec’s expressions and commands that may be new
to you. They should be enough for the Spec you will read and write in this course, but they don’t
answer every question about Spec; for those answers, read the reference manual and the
handouts on Spec semantics. There is a one-page summary at the end of this handout.

Expressions, types, and functions

Expressions are for computing functions of the state.

A Spec expression is and its value is

a constant the constant

a variable the current value of the variable

an invocation of a function on an
argument that is some sub-expression

 the value of the function at the value of the
argument

There are no side-effects; those are the province of commands. There is quite a bit of syntactic
sugar for function invocations. An expression may be undefined in a state; if a simple command
evaluates an undefined expression, the command fails (see below).

Types

A Spec type defines two things:

A set of values; we say that a value has the type if it’s in the set. The sets are not disjoint. If T
is a type, T.all is its set of values.

A set of functions called the methods of the type. There is convenient syntax v.m for
invoking method m on a value v of the type. A method m of type T is lifted to functions U->T,

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 9

sets of T’s, and relations from U to T in the obvious way, unless overridden by a different m in
the definition of the higher type. Thus if int has a square method, {2, 3, 4}.square =
{4, 9, 16}. We’ll see that this is a form of function composition.

Spec is strongly typed. This means that you are supposed to declare the types of your variables,
just as you do in Java. In return the language defines a type for every expression3 and ensures
that the value of the expression always has that type. In particular, the value of a variable always
has the declared type. You should think of a type declaration as a stylized comment that has a
precise meaning and can be checked mechanically.

If Foo is a type, you can omit it in a declaration of the identifiers foo, foo1, foo’ etc. Thus
VAR int1, bool2, char’ | ...

is short for
VAR int1: Int, bool2: Bool, char’: Char | ...

If e IN T.all then e AS T is an expression with the same value and type T; otherwise it’s
undefined. You can write e IS T for e IN T.all.

Spec has the usual types:
Int, Nat (non-negative Int), Bool
sets SET T
functions T->U
relations T->>U
records or structs [f1: T1, f2: T2, ...]
tuples (T1, T2, ...)
variable-length arrays called sequences, SEQ T

A sequence is actually a function whose domain is {0, 1, ..., n-1} for some n. In addition to
the usual functions like "+" and "\/", Spec also has some less usual operations on these types,
which are valuable when you want to suppress code detail; they are called constructors and
combinations and are described below.

You can make a type with fewer values using SUCHTHAT. For example,
TYPE T = Int SUCHTHAT (\ i: Int | 0 <= i /\ i <= 4)

has the value set {0, 1, 2, 3, 4}. Here the (\ ...) is a lambda expression (with \����� � that
defines a function from Int to Bool, and a value has type T if it’s an Int and the function maps it
to true.

Methods

Methods are a convenient way of packaging up some functions with a type so that the functions
can be applied to values of that type concisely and without mentioning the type itself. For
example, if s is a SEQ T, s.head is (Sequence[T].Head)(s), which is just s(0) (which is
undefined if s is empty). You can see that it’s shorter to write s.head.4

You can define your own methods by using WITH. For instance, consider

3 Note that a value may have many types, but a variable or an expression has exactly one type: for a variable, it’s the
declared type, and for a complex expression it’s the result type of the top-level function in the expression.
4 Of course, s(0) is shorter still, but that’s an accident; there is no similar alternative for s.tail.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 10

TYPE Complex = [re: Real, im: Real] WITH {"+":=Add, mag:=Mag}

Add and Mag are ordinary Spec functions that you must define, but you can now invoke them on a
c which is Complex by writing c + c’ and c.mag, which mean Add(c, c’) and Mag(c). You
can use existing operator symbols or make up your own; see section 3 of the reference manual
for lexical rules. You can also write Complex."+" and Complex.mag to denote the functions Add
and Mag; this may be convenient if Complex was declared in a different module. Using Add as a
method does not make it private, hidden, static, local, or anything funny like that.

When you nest WITH the methods pile up in the obvious way. Thus
TYPE MoreComplex = Complex WITH {"-":=Sub, mag:=Mag2}

has an additional method "-", the same "+" as Complex, and a different mag. Many people call
this ‘inheritance’ and ‘overriding’.

A method m of type T is lifted automatically to a method of types V->T, V->>T, and SET T by
composing it with the value of the higher-order type. This is explained in detail in the discussion
of functions below.

Expressions

The syntax for expressions gives various ways of writing function invocations in addition to the
familiar f(x). You can use unary and binary operators, and you can invoke a method with
e1.m(e2) for T.m(e1,e2), of just e.m if there are no other arguments. You can also write a
lambda expression (\ t: T | e) or a conditional expression (predicate => e1 [*] e2),
which yields e1 if predicate is true and e2 otherwise. If you omit [*] e2, the result is
undefined if predicate is false.

Here is a list of all the built-in operators, which also gives their precedence, and a list of the
built-in methods. You should read these over so that you know the vocabulary. The rest of this
section explains many of these and gives examples of their use.

Binary operators

Op Prec. Argument/result types Operation
** 8 (Int, Int)->Int exponentiate
* 7 (Int, Int)->Int multiply
 (T->U, U->V)->(T->V) function or relation composition

 (\t|e2(e1(t))
/ 7 (Int, Int)->Int divide
// 7 (Int, Int)->Int remainder
+ 6 (Int, Int)->Int add
 (SEQ T, SEQ T)->SEQ T concatenation
 (T->U, T->U)->(T->U) function overlay

 (\t|(e2!t=>e2(t)[*]e1(t))
- 6 (Int, Int)->Int subtract
 (SET T, SET T)->SET T set difference
 (SEQ T, SEQ T)->SEQ T multiset difference
! 6 (T->U, T)->Bool function is defined at arg
!! 6 (T->U, T)->Bool function defined, no exception at arg

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 11

.. 5 (Int, Int)->SEQ Int subrange:
 {e1, e1+1, ..., e2}
<= 4 (Int, Int)->Bool less than or equal

 (SET T, SET T)->Bool subset
 (SEQ T, SEQ T)->Bool prefix
 e2.restrict(e1.dom)=e1
< 4 (T, T)->Bool, T with <= less than
 e1<e2 = (e1<=e2 /\ e1#e2)

> 4 (T, T)->Bool, T with <= greater than

 e1>e2 = e2<e1

>= 4 (T, T)->Bool, T with <= greater or equal
 e1>=e2 = e2<=e1

= 4 (Any, Any)->Bool can’t override by WITH
4 (Any, Any)->Bool not equal; can’t override by WITH
 e1#e2 = ~ (e1=e2)

<<= 4 (SEQ T, SEQ T)->Bool non-contiguous sub-seq
 (EXISTS s | s<=e2.dom /\ s.sort*e2 = e1
IN 4 (T, SET T)->Bool membership
/\ 2 (Bool, Bool)->Bool conditional and*
 (SET T, SET T)->SET T set intersection
 (T->>U, T->>U)->(T->>U) relation intersection

\/ 1 (Bool, Bool)->Bool conditional or*
 (SET T, SET T)->SET T set union
 (T->>U, T->>U)->(T->>U) relation union
==> 0 (Bool, Bool)->Bool conditional implies*
op 5 (T, U)->V op none of the above
 T."op"(e1, e2)

Unary operators

Op Prec. Argument/result types Operation
- 6 Int->Int negation
~ 3 Bool->Bool complement
 SET T ����� sets complement

 (T->>U)->(T->>U) relation complement
op 5 T->U op none of the above
 T."op"(e1)

Relations

A relation r is a generalization of a function: an arbitrary set of ordered pairs, defined by a total
function from pairs to Bool. Thus r can relate an element of its domain to any number of
elements of its range (including none). Like a function, r has dom, rng, and inv methods (the
inverse is obtained just by flipping the ordered pairs), and you can compose relations with *. You
can also take the complement, union, and intersection of two relations that have the same type.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 12

The advantage of relations is simplicity and generality; for example, there’s no notion of
“undefined” for relations. The drawback is that you can’t write r(x) (although you can write {x}
** r for the set of values related to x by r; see below).

A relation r has methods

r.setF to turn it into a set function: r.setF(x) is the set of elements that r relates to x. This
is total. The inverse of setF is the setRel method for a function whose values are sets:
r.setF.setRel = r, and f.setRel.setF = f if f yields sets.

r.func to turn it into a function: r.func(x) is undefined unless r relates x to exactly one
value. Thus r.func = r.setF.one.

If s is a set, s.rel is a relation that relates true to each member of the set; thus it is
s.pred.inv. The relation’s rng method inverts this: s.rel.rng = s. Viewing a set as a
relation, you can compose it with a relation (or a function viewed as a relation); the result is the
image of the set under the relation: s * r = (s.rel * r).rng. Note that this is never
undefined, unlike sequence composition.

A method m of U is lifted to SET U and to relations to U just as it is to functions to U (see below),
so that r.m = r * U.m.rel.

 If U doesn’t have a method m but Bool does, then the lifting is done on the function that defines
the relation, so that r1 \/ r2 is the union of the relations, r1 /\ r2 the intersection, and ~r the
complement.

A relation r: T->>U can be viewed as a set r.set of pairs (T,U), or as a total function r.pred
on (T,U) that is true on the pairs that are in the relation, or as a function r.setF from T to SET
U.

T = {1,2,3,4,5}; U = {A,a,B,b,C}

r: T->>U r.set r.pred r.setF

1

3

5

A

B

C

(1,B)
(1,A)

(3,B)

(5,B)
(5,C)

true

false

(1,B)
(1,A)

(1,C)

(3,B)
(3,A)

(3,C)

(5,B)
(5,A)

(5,C)

1

3

5

{A,B}

{B}

{B,C}

You can compute the inverse of a relation, and compose two relations by matching up the range
of the first with the domain of the second.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 13

r r.inv r r’ r * r’

1

3

5

A

B

C

1

3

5

A

B

C

1

3

5

A

B

C

A

C

10

20

30

1

5

10

20

30

If a relation T->>T has the same range and domain types it represents a graph, on which it
makes sense to define the paths through the graph, and the transitive closure of the relation.

r as a graph r r.paths r.closure

1

3

5

2

4

1

3

5

2

4

1

3

5

2

4

{},{1},{2},{3},{4},{5},
{1,2},{1,4},{2,2},{3,4},{4,5},{5,3},
{1,4,5},{3,4,5},{4,5,3},{5,3,4},
{3,4,5,3},{4,5,3,4},{5,3,4,5}

1

3

5

2

4
3

5

2

4

Method call Result

type
Definition

r.pred (T,U)
->Bool

definition; (\t,u | u IN r.setF(r))

r.set SET T r.rng; only for R = Bool->>T
r * rr T->>V (\t,v | (EXISTS u | r.pred(t,u) /\ rr.pred(u,v))).pToR

where rr: U->>V; works for f as well as rr
r.dom SET T U.all * r.inv

r.rng SET U T.all * r

r.inv U->>T (\t,u | r.pred(u,t)).pToR

r.restrict(s) T->>U s.id * r where s: SET T
r.setF T->

SET U

(\t | {t} * r)

r.fun T->U r.setF.one (one is lifted from SET U to T->SET U)

r.paths SET

SEQ T

{q:SEQ T | (ALL i IN q.dom–{0}|r.pred(q(i-1),q(i)))

 /\ (q.rng.size=q.size

 \/ (q.head=q.last /\ q.rng.size=q.size-1))}
only for R=T->>T; paths don’t intersect except for complete cycles

r.closure T->>T {q IN r.paths | q.size>1 | (q.head, q.last)}.pred.pToR
only for R=T->>T; there’s a non-trivial path from t1 to t2

Sets

A set has methods for

computing union, intersection, and set difference (lifted from Bool; see note 3 in section 4),
and adding or removing an element, testing for membership and subset;

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 14

choosing (deterministically) a single element from a set, or a sequence with the same
members, or a maximum or minimum element, and turning a set into its characteristic
predicate (the inverse is the predicate’s set method);

composing a set with a function or relation, and converting a set into a relation from nil to
the members of the set (the inverse of this is just the range of the relation).

A set s: SET T can be viewed as a total function s.pred on T that is true on the members of s
(sometimes called the ‘characteristic function’), or as a relation s.rel from true to the members
of the set, or as the identity relation s.id that relates each member to itself, or as the universal
relation s.univ that relates all the members to each other.

s ={1,3,5} s.pred s.rel =
s.pred.inv
.restrict
({true})

s.id s.univ

1

3

5

1

3

5

true 2

4 false

true

1

3

5

1

3

5

1

3

5

1

3

5

1

3

5

You can compose a set with a function or a relation to get another set.

{1,3,5} * square = {1,5} * r =

1

3

5

1

3

5

1

9

25

2 4

4 16

1

9

2

1

5

1

3

5

A

B

C

A

B

C

.This is just like relational composition on s.rel.

{1,3,5}.rel * square = {1,5}.rel * r =

true

1

3

5

1

3

5

1

9

25

2 4

4 16

true

1

9

16

true

1

5

1

3

5

A

B

C

true

A

B

C

The universal relation s.univ is just the composition of s.rel with its inverse:

s ={1,3,5} s.rel.inv * s.rel = s.univ

1

3

5

1

3

5

true

true

1

3

5

1

3

5

1

3

5

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 15

You can compute the range and domain of a relation. An element t is in the range if r relates
something to it, and in the domain if r relates it to something. (For clarity, the figures show the
relations corresponding to the sets, not the sets themselves.)

T.all * r = r.rng U.all * r.inv = r.dom

true

1

3

5

2

4

1

3

5

A

B

true

A

B

true

A

B

C

a

b

1

3

5

A

B

C

true

1

3

5

You can restrict the domain of a relation or function to a set s by composing the identity relation
s.id with it. To restrict the range to s, use the same idea and write r * s.id.

{1,3}.id * r = r.restrict
({1,3})

1

3

1

3

1

3

5

A

B

C

1

3

A

B

You can pick out one element of a set s with s.choose. This is deterministic: choose always
returns the same value given the same set (a necessary property for it to be a function). It is
undefined if the set is empty. A variation of choose is one: s.one is undefined unless s has
exactly one element, in which case it returns that element.

You can compute the set of all permutations of a set; a permutation is a sequence, explained
below. You can sort a set or compute its maximum or minimum.

s = {3,1,5}, s.perms ={{3,1,5},{3,5,1},{5,1,3},{5,3,1},{{1,3,5},{1,5,3}},
s.sort = {1,3,5}, s.max = 5, s.min = 3.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 16

Method call Result
type

Definition

s.pred T->Bool definition; (\t | t IN s)
s.rel Bool->>T s.pred.inv
s.id T->>T (\ t1,t2 | t1 IN s /\ t1 = t2)
s.univ T->>T s.rel.inv * s.rel
t IN s Bool s.pred(t)
s1 <= s2 Bool s1 /\ s2 = s1

(ALL t | t IN s1 � t IN s2)
s1 /\ s2 S (\t | t IN s1 /\ t IN s2)
s1 \/ s2 S (\t | t IN s1 \/ t IN s2)
 ~ s S (\t | ~(t IN s))
s1 - s2 S s1 /\ ~ s2
s * r SET U (s.rel * r).rng where R=T->>U; works for f as well as r
s.size Nat s.seq.dom.max + 1

s.choose T ?

s.one T (s.size = 1 => s.choose); undefined if s#{t}
s.perms SET Q {q: SEQ T | q.size = s.size /\ q.rng = s}

s.seq Q s.perms.choose

s.fsort(f) Q {q IN s.perms|

 (ALL i IN q.dom–{0}|f(q(i),q(i-1)))}.choose

s.sort Q s.fsort(T."<=")

s.fmax(f) T s.fsort(f).last and likewise for fmin
s.max T s.sort.last and likewise for min
s.combine(f) T s.seq.combine(f), where f: (T,T)->T is commutative

Functions

A function is a set of ordered pairs; the first element of each pair comes from the functions
domain, and the second from its range. A function produces at most one value for an argument;
that is, two pairs can’t have the same first element. Thus a function is a relation in which each
element of the domain is related to at most one thing. A function may be partial, that is,
undefined at some elements of its domain. The expression f!x is true if f is defined at x, false
otherwise. Like everything (except types), functions are ordinary values in Spec.

Given a function, you can use a function constructor to make another one that is the same except
at a particular argument, as in the DB example above. Another example is f{x -> 0}, which is
the same as f except that it is 0 at x. If you have never seen a construction like this one, think
about it for a minute. Suppose you had to implement it. If f is represented as a table of
(argument, result) pairs, the code will be easy. If f is represented by code that computes the
result, the code for the constructor is less obvious, but you can make a new piece of code that
says

(\ y: Int | ((y = x) => 0 [*] f(y)))

Here ‘\’ is ‘lambda’, and the subexpression ((y = x) => 0 [*] f(y)) is a conditional,
modeled on the conditional commands we saw in the first section; its value is 0 if y = x and
f(y) otherwise, so we have changed f just at 0, as desired. If the else clause [*] f(y) is
omitted, the condition is undefined if y # x. Of course in a running program you probably

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 17

wouldn’t want to construct new functions very often, so a piece of Spec that is intended to be
close to practical code must use function constructors carefully.

Functions can return functions as results. Thus T->U->V is the type of a function that takes a T
and returns a function of type U->V, which in turn takes a U and returns a V. If f has this type,
then f(t) has type U->V, and f(t)(u) has type V. Compare this with (T, U)->V, the type of a
function which takes a T and a U and returns a V. If g has this type, g(t) doesn’t type-check, and
g(t, u) has type V. Obviously f and g are closely related, but they are not the same.

You can define your own functions either by lambda expressions like the one above, or more
generally by function declarations like this one

FUNC NewF(y: Int) -> Int = RET ((y = x) => 0 [*] f(y))

The value of this NewF is the same as the value of the lambda expression. To avoid some
redundancy in the language, the meaning of the function is defined by a command in which RET
sub-commands specify the value of the function. The command might be syntactically non-
deterministic (for instance, it might contain VAR or []), but it must specify at most one result
value for any argument value; if it specifies no result values for an argument or more than one
value, the function is undefined there. If you need a full-blown command in a function
constructor, you can write it with LAMBDA instead of \:

(LAMBDA (y: Int) -> Int = RET ((y = x) => 0 [*] f(y)))

You can compose two functions with the * operator, writing f * g. This means to apply f first
and then g, so you read it “f then g”. It is often useful when f is a sequence (remember that a SEQ
T is a function from {0, 1, ..., size-1} to T), since the result is a sequence with every
element of f mapped by g. This is Lisp’s or Scheme’s “map”. So:

(0 .. 4) * {\ i: Int | i*i} = (SEQ Int){0, 1, 4, 9, 16}

since 0 .. 4 = {0, 1, 2, 3, 4} because Int has a method .. with the obvious meaning:
i .. j = {i, i+1, ..., j-1, j}. In the section on constructors we saw another way to
write

(0 .. 4) * {\ i: Int | i*i},

as
{i :IN 0 .. 4 | | i*i}.

This is more convenient when the mapping function is defined by an expression, as it is here, but
it’s less convenient if the mapping function already has a name. Then it’s shorter and clearer to
write

(0 .. 4) * factorial

rather than
{i :IN 0 .. 4 | | factorial(i)}.

A function f has methods f.dom and f.rng that yield its domain and range sets, f.inv that
yields its inverse (which is undefined at y unless f maps exactly one argument to y), and f.rel
that turns it into a relation (see below). f.restrict(s) is the same as f on elements of s and
undefined elsewhere. The overlay operator combines two functions, giving preference to the
second: (f1 + f2)(x) is f2(x) if that is defined and f1(x) otherwise. So f{3 -> 24} = f +
{3 -> 24}.

If type U has method m, then the function type F = T->U has a “lifted” method m that composes
U.m with f, unless F already has a m method. F. m is defined by

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 18

(\ f | (\ t | f(t).m))

so that f.m = f * U.m. For example, {"a", "ab", "b"}.size = {1, 2, 1}. If m takes a
second argument of type W, then F.m takes a second argument of the same type and uses it
uniformly.

You can turn a relation into a function by discarding all the pairs whose first element is related to
more than one thing

f f.inv (not
a function)

 r r.fun r.inv.fun

1

3

5

A

B

A

B

5

1

3

1

3

5

A

B

C

3

B

1

5

A

C

You can go back and forth between a relation T->> U and a function T->SET U with the setF
and setRel methods.

r.setF = (\t | {t} * r)

t {t} * r = r.setF(t) =

1 true
1

1
3
5

A
B
C

 true
A
B

{A,B}

2 true

2

1
3
5

A
B
C

{}

3 true

3

1
3
5

A
B
C

 true

B

{B}

4 true

4

1
3
5

A
B
C

{}

5 true

5

1
3
5

A
B
C

 true

B
C

{B,C}

f.setRel = f.rel.include

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 19

r: T->>U r.setF.rel * (SET U).include = r.setF.setRel

1

3

5

A

B

C

1

3

5

{A,B}

{B}

{B,C}

A

B

C

{}
{A}

{A,B}

{B}
{C}

{A,C}
{B,C}

{A,B,C}

1

3

5

A

B

C

Method call Result
type

Definition

f + f’ T->U (f.rel \/ (f’.rel * f1.rng.id)).func

(\t | (f!t => f (t) [*] f’(t)))

f!t Bool t IN f.dom

f!!t Bool ?

f * ff T->V (f.rel * ff.rel).fun, where ff:U->V
f.rel T->>U (\t,u | f!t /\ f(t) = u). pToR
f.setRel T->>V f.rel.include, only for F=T->SET V
f.set SET T f.restrict({true}).rng, only for F=T->Bool
f.pToR V->>W definition, only for F=(V,W)->Bool; (\v |{w|f(v,w)}).setRel

A function type F = T->U also has a set of lifting methods that turn an f into a function on SET
T, V->T, or V->>T by composition. This works for F = (T,W)->U as well; the lifted method also
takes a W and uses it uniformly. A relation type R = T->>U is also lifted to SET T. These are used
to automatically supply the higher-order types with lifted methods.

Method method m
of type T,
with type F

makes
method m
for type

with type by

f.liftSet T-> U S =SET T SET T -> SET U s .m=(s * f).set
f.liftFun T-> U FF=V-> T (V-> T)->(V-> U) ff.m=ff * f
f.liftRel T-> U RR=V->>T (V->>T)->(V->>U) ff.m=rr * f
f.liftSet (T,W)->U S =SET T (SET T ,W)->SET U s .m(w)=(s *(\t|f(t,w)).set
f.liftFun (T,W)->U FF=V-> T ((V-> T),W)->(V-> U) ff.m(w)=ff *(\t|f(t,w))
f.liftRel (T,W)->U RR=V->>T ((V->>T),W)->(V->>U) ff.m(w)=rr *(\t|f(t,w))
 with type R

r.liftSet T->>U S =SET T SET T -> SET U s .m=(s * r).set

Changing coordinates: relations, predicates, sets, and functions

As we have seen, there are several ways to view a set or a relation. Which one is best depends on
what you want to do with it, and what is familiar and comfortable in your application. Often the
choice of representation makes a big difference to the convenience and clarity of your code, just
as the choice of coordinate system makes a big difference in a physics problem. The following
tables summarize the different representations, the methods they have, and the conversions
among them.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 20

Method Converts to by Inverse
.rel F=T->U T->>U (\t,u|f!t/\f(t)=u).pToR .fun
 S=SET T Bool->>T s.pred.inv.restrict({true}) .set
.pred S=SET T T->Bool definition; (\t | t IN s) .set

 R=T->>U (T,U)->Bool definition;
(\t,u | u IN r.setF(r))

.pToR

.set F=T->Bool SET T f.restrict({true}).rng .rel
 R=Bool->>T SET T r.rng .rel
.fun R=T->>U T->U r.setF.one .rel
.pToR F=(T,U)->Bool T->>U definition;

(\t | {u|f(t,u)}.setRel

.pred

.setF R=T->>U T->SET U (\t | {t} * r) .setRel

.setRel F=T->SET U T->>U f.rel.include .setF

Type based on
convert with

equiv to
convert with

converts to
with

methods

SET T T->Bool
.pred

 Bool->>T
.rel

IN <= /\ \/ ~ - * pred rel id
size choose one
perms seq sort max

T->Bool SET T
.set

 function
.set

Bool->>T SET T
.set

 relation
.set

T->>U (T,U)->Bool
.pred

SET (T,U)
.pred.set
T->SET U
.setF

T->U
.fun

* dom rng inv restrict
setF fun
[paths closure]

(T,U)->Bool T->>U
.pToR
SET (T,U)
.set

 function
.pToR .set

T->SET U T->>U
.setRel

 function
.setRel

SET (T,U) (T,U)->Bool
.pred

T->>U
.pred.pToR

 just a set

T->U T->>U
.rel

* dom rng inv restrict
(from T->>U)
+ ! !! rel

SEQ T Int->T function
+ <= <<=
size seg sub head tail
addh remh last reml addl
fill tuple lexLE

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 21

Sequences

A function is called a sequence if its domain is a finite set of consecutive Int’s starting at 0, that
is, if it has type

Q = Int -> T SUCHTHAT (\ q | (EXISTS size: Int | q.dom = (0 .. size-1).rng))

We denote this type (with the methods defined below) by SEQ T. A sequence inherits the
methods of the function (though it overrides +), and it also has methods for

detaching or attaching the first or last element,
extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same: t.Fill(n),
making a sequence into a tuple (rng makes it into a set): q.tuple,
testing for prefix or sub-sequence (not necessarily contiguous): q1<=q2, q1<<-q2,
lexical comparison, permuting, and sorting,
filtering, iterating over, and combining the elements,
treating a sequence as a multiset with operations to:

count the number of times an element appears: q.count(t),
test membership: t IN q,
take differences: q1 – q2
("+" is union and addl adds an element; to remove an element use q – {t}; to test
equality use q1 IN q2.perms).

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence
is always defined regardless of the subscripts, by taking the largest number of elements allowed
by the size of the sequence.

To apply a function f to each of the elements of q, just use composition q * f.

The "+" operator concatenates two sequences.

q1 + q2 = q1 + x.inv * q2, where x = (q1.size .. q1.size+q2.size-1)
q1 = {A,B,C}; q2 = {D,E}; x = {3,4}; q1 + q2 = {A,B,C,D,E}

x x.inv * q2 = x.inv * q2 * q1 = q1 +
x.inv * q2

0
1

3
4

0
1

3
4

0
1

D
E

3
4

D
E

0
1
2

A
B
C

0
1
2

A
B
C

3
4

D
E

You can test for q1 being a prefix of q1 with q1 <= q2, and for it being an arbitrary
subsequence, not necessarily contiguous, with q1 <<= q2.

q1 <= q2 = (q1 = q2.restrict(q1.dom))
q1 = {A,B}; q2 = {A,B,C}

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 22

q2 q2.restrict
(q1.dom)

= q1

0
1
2

A
B
C

0
1

A
B

0
1

A
B

q1 <<= q2 = (EXISTS s: SET Int | s <= q2.dom /\ q1 = s.sort * q2

q1 = {A,C}; q2 = {A,B,C}; choose s = {0,2} <= {0,1,2}

s s.sort * q2 = q1

0

 2

0
1

0

2

0
1
2

A
B
C

0
1

A
C

You can take a subsequence of size n starting at i with q.seg(i,n) and a subsequence from i1
to i2 with q.sub(i1,i2).

q.seg(i,n) = (i .. i+n-1) * q
q = {A,B,C}; i = 1; n = 3; q.seg(1,3) = {B,C}

i .. i+n-1 * q =q.seg(i,n)

0
1
2

1
2
3

0
1
2

A
B
C

0
1

B
C

You can select the elements of q that satisfy a predicate f with q.filter(f).

q.filter(f) = (q * f).set.sort * q
q = {5,4,3,2,1}; f = even

q q * f (q * f).set .sort * q =

0
1
2

5
4
3

3
4

2
1

0
1
2
3
4

false
true
false
true
false

1

3

0
1

1
3

0
1

4
2

You can apply a combining function f successively to the elements of q with q.iterate(f). To
get the result of combining all the elements of q with f use q.combine(f) =
q.iterate(f).last. The syntax + : q is short for q.combine(T."+"); it works for any binary
operator that yields a T.

q.iterate(f) = {qr | qr.size=q.size /\ qr(0)=q(0)

 /\ (ALL i IN q.dom–{0}|qr(i)=f(qr(i-1),q(i)))}.one,
 where f: (T,T)->T
q = {1,2,3,4,5}; f = Int."+"

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 23

q qr.one

0
1
2

1
2
3

3
4

4
5

0
1
2

1
3
6

3
4

10
15

Method call Result
type

Definition

q1 + q2 Q q1 + (q1.size .. q1.size+q2.size-1).inv * q2

q1 <= q2 Bool q1 = q2.restrict(q1.dom)

q1 <<= q2 Bool (EXISTS s: SET Int | s <= q2.dom /\ q1 = s.sort * q2)

q.size Nat q.dom.size

q.seg(i,n) Q (i .. i+n-1) * q

q.sub(i1,i2) Q (i1 .. i2) * q

q.head T q(0)

q.tail Q (q # {} => q.sub(1, q.size-1))

t.fill(n) Q (0 .. n-1) * {* -> t}

q1.lexLE(q2,f) Bool (EXISTS q,n | n=q.size /\ q<=q1 /\ q<=q2 /\

 (q=q1 \/ f(q1(n),q2(n)) /\ q1(n)#q2(n)))

q.filter(f) Q (q * f).set.sort * q, where f: T->Bool
q.iterate(f) Q {qr | qr.size=q.size /\ qr(0)=q(0) where f: (T,T)->T

 /\ (ALL i IN q.dom–{0}|qr(i)=f(qr(i-1),q(i)))}.one

q.combine(f) T q.iterate.last

t ** n T t.fill(n).combine(T."*")

q.count(t) Nat {t’ :IN q | t’ = t}.size

t IN q Bool t IN q.rng

q1 – q2 Q {q |(ALL t | q.count(t)={q1.count(t)-q2.count(t), 0}.max)}.

choose

SEQ T has the same perms, fsort, sort, fmax, fmin, max, and min constructors as SET T.

Constructors

Functions, sets, and sequences make it easy to toss large values around, and constructors are
special syntax to make it easier to define these values. For instance, you can describe a database
as a function db from names to data records with two fields:

TYPE DB = (String -> Entry)
TYPE Entry = [salary: Int, birthdate: Int]
VAR db := DB{}

Here db is initialized using a function constructor whose value is a function undefined
everywhere. The type can be omitted in a variable declaration when the variable is initialized; it
is taken to be the type of the initializing expression. The type can also be omitted when it is the
upper case version of the variable name, DB in this example.

Now you can make an entry with

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 24

db := db{ "Smith" -> Entry{salary := 23000, birthdate := 1955} }

using another function constructor. The value of the constructor is a function that is the same as
db except at the argument "Smith", where it has the value Entry{...}, which is a record
constructor. This assignment could also be written

db("Smith") := Entry{salary := 23000, birthdate := 1955}

which changes the value of the db function at "Smith" without changing it anywhere else. This
is actually a shorthand for the previous assignment. You can omit the field names if you like, so
that

db("Smith") := Entry{23000, 1955}

has the same meaning as the previous assignment. Obviously this shorthand is less readable and
more error-prone, so use it with discretion. Another way to write this assignment is

db("Smith").salary := 23000; db("Smith").birthdate := 1955

The set of names in the database can be expressed by a set constructor. It is just
{n: String | db!n},

in other words, the set of all the strings for which the db function is defined (‘!’ is the ‘is-
defined’ operator; that is, f!x is true iff f is defined at x). Read this “the set of strings n such that
db!n”. You can also write it as db.dom, the domain of db; section 9 of the reference manual
defines lots of useful built in methods for functions, sets, and sequences. It’s important to realize
that you can freely use large (possibly infinite) values such as the db function. You are writing a
spec, and you don’t need to worry about whether the compiler is clever enough to turn an
expensive-looking manipulation of a large object into a cheap incremental update. That’s the
implementer’s problem (so you may have to worry about whether she is clever enough).

If we wanted the set of lengths of the names, we would write
{n: String | db!n | n.size}

This three part set constructor contains i if and only if there exists an n such that db!n and
i = n.size. So {n: String | db!n} is short for {n: String | db!n | n}. You can
introduce more than one name, in which case the third part defaults to the last name. For
example, if we represent a directed graph by a function on pairs of nodes that returns true when
there’s an edge from the first to the second, then

{n1: Node, n2: Node | graph(n1, n2) | n2}

is the set of nodes that are the target of an edge, and the “| n2” could be omitted. This is just the
range graph.rng of the relation graph on nodes.

Following standard mathematical notation, you can also write
{f :IN openFiles | f.modified}

to get the set of all open, modified files. This is equivalent to
{f: File | f IN openFiles /\ f.modified}

because if s is a SET T, then IN s is a type whose values are the T’s in s; in fact, it’s the type
T SUCHTHAT (\ t | t IN s). This form also works for sequences, where the second operand
of :IN provides the ordering. So if s is a sequence of integers, {x :IN s | x > 0} is the
positive ones, {x :IN s | x > 0 | x * x} is the squares of the positive ones, and {x :IN s
| | x * x} is the squares of all the integers, because an omitted predicate defaults to true.5

5 In the sequence form, IN s is not a set type but a special construct; treating it as a set type would throw away the
essential ordering information.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 25

To get sequences that are more complicated you can use sequence generators with BY and WHILE.
You can skip this paragraph until you need to do this.

{i := 1 BY i + 1 WHILE i <= 5 | true | i}

is {1, 2, 3, 4, 5}; the second and third parts could be omitted. This is just like the “for”
construction in C. An omitted WHILE defaults to true, and an omitted := defaults to an arbitrary
choice for the initial value. If you write several generators, each variable gets a new value for
each value produced, but the second and later variables are initialized first. So to get the sums of
successive pairs of elements of s, write

{x := s BY x.tail WHILE x.size > 1 | | x(0) + x(1)}

To get the sequence of partial sums of s, write (eliding | | sum at the end)
{x :IN s, sum := 0 BY sum + x}

Taking last of this would give the sum of the elements of s. To get a sequence whose elements
are reversed from those of s, write

{x :IN s, rev := {} BY {x} + rev}.last

To get the sequence {e, f(e), f2(e), ..., fn(e)}, write
{i :IN 1 .. n, iter := e BY f(iter)}

This uses the .. operator; i .. j is the sequence {i, i+1, ..., j-1, j}. It’s the empty
sequence if i > j.

Combinations

A combination is a way to combine the elements of a non-empty sequence or set into a single
value using an infix operator, which must be associative, and must be commutative if it is
applied to a set. You write “operator : sequence or set”. This is short for
q.combine(T.operator). Thus

+ : (SEQ String){"He", "l", "lo"} = "He" + "l" + "lo" = "Hello"

because + on sequences is concatenation, and
+ : {i :IN 1 .. 4 | | i**2} = 1 + 4 + 9 + 16 = 30

Existential and universal quantifiers make it easy to describe properties without explaining how
to test for them in a practical way. For instance, a predicate that is true iff the sequence s is
sorted is

(ALL i :IN 1 .. s.size-1 | s(i-1) <= s(i))

This is a common idiom; read it as
“for all i in 1 .. s.size-1, s(i-1) <= s(i)”.

This could also be written
(ALL i :IN (s.dom - {0}) | s(i-1) <= s(i))

since s.dom is the domain of the function s, which is the non-negative integers < s.size. Or it
could be written

(ALL i :IN s.dom | i > 0 ==> s(i-1) <= s(i))

Because a universal quantification is just the conjunction of its predicate for all the values of the
bound variables, it is simply a combination using /\ as the operator:

(ALL i | Predicate(i)) = /\ : {i | Predicate(i)}

Similarly, an existential quantification is just a similar disjunction, hence a combination using \/
as the operator:

(EXISTS i | Predicate(i)) = \/ : {i | Predicate(i)}

Spec has the redundant ALL and EXISTS notations because they are familiar.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 26

If you want to get your hands on a value that satisfies an existential quantifier, you can construct
the set of such values and use the choose method to pick out one of them:

{i | Predicate(i)}.choose

The VAR command described in the next section on commands is another form of existential
quantification that lets you get your hands on the value, but it is non-deterministic.

Commands

Commands are for changing the state. Spec has a few simple commands, and seven operators for
combining commands into bigger ones. The main simple commands are assignment and routine
invocation. There are also simple commands to raise an exception, to return a function result, and
to SKIP, that is, do nothing. If a simple command evaluates an undefined expression, it fails (see
below).

You can write i + := 3 instead of i := i + 3, and similarly with any other binary operator.

The operators on commands are:

• A conditional operator: predicate => command, read “if predicate then command”. The
predicate is called a guard.

• Choice operators: c1 [] c2 and c1 [*] c2, read ‘or’ and ‘else’.

• Sequencing operators: c1 ; c2 and c1 EXCEPT handler. The handler is a special form of
conditional command: exception => command.

• Variable introduction: VAR id: T | command, read “choose id of type T such that command
doesn’t fail”.

• Loops: DO command OD.

Section 6 of the reference manual describes commands. Atomic Semantics of Spec gives a precise
account of their semantics. It explains that the meaning of a command is a relation between a
state and an outcome (a state plus an optional exception), that is, a set of possible state-to-
outcome transitions.

Conditionals and choice

The figure below (copied from Nelson’s paper) illustrates conditionals and choice with some
very simple examples. Here is how they work:

The command
p => c

means to do c if p is true. If p is false this command fails; in other words, it has no outcome.
More precisely, if s is a state in which p is false or undefined, this command does not relate s to
any outcome.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 27

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

x = 0 => SKIP

(partial)

y = 0 => y := 1

(partial)

 SKIP

[] y = 0 => y := 1

(non-deterministic)

 x = 0 => SKIP

[] y = 0 => y := 1

(partial, non-deterministic)

SKIP

y := 1

Combining commands

What good is such a command? One possibility is that p will be true some time in the future, and
then the command will have an outcome and allow a transition. Of course this can only happen
in a concurrent program, where there is something else going on that can make p true. Even if
there’s no concurrency, there might be an alternative to this command. For instance, it might
appear in the larger command

 p => c
[] p’ => c’

in which you read [] as ‘or’. This fails only if each of p and p’ is false or undefined. If both are
true (as in the 00 state in the south-west corner of the figure), it means to do either c or c’; the
choice is non-deterministic. If p’ is ~p then they are never both false, and if p is defined this
command is equivalent to

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 28

 p => c
[*] c’

in which you read [*] as ‘else’. On the other hand, if p is undefined the two commands differ,
because the first one fails (since neither guard can be evaluated), while the second does c’.

Both c1 [] c2 and c1 [*] c2 fail only if both c1 and c2 fail. If you think of a Spec program
operationally (that is, as executing one command after another), this means that if the execution
makes some choice that leads to failure later on, it must ‘back-track’ and try the other
alternatives until it finds a set of choices that succeed. For instance, no matter what x is, after

 y = 0 => x := x - 1; x < y => x := 1
[] y > 0 => x := 3 ; x < y => x := 2
[*] SKIP

if y = 0 initially, x = 1 afterwards, if y > 3 initially, x = 2 afterwards, and otherwise x is
unchanged. If you think of it relationally, c1 [] c2 has all the transitions of c1 (there are none if
c1 fails, several if it is non-deterministic) as well as all the transitions of c2. Both failure and
non-determinism can arise from deep inside a complex command, not just from a top-level [] or
VAR.

This is sometimes called ‘angelic’ non-determinism, since the code finds all the possible
transitions, yielding an outcome if any possible non-deterministic choice yield that outcome.
This is usually what you want for a spec or high-level code; it is not so good for low-level code,
since an operational implementation requires backtracking. The other kind of non-determinism,
not used in Spec, is called ‘demonic’; it yields an outcome only if all possible non-deterministic
choice yield that outcome.

The precedence rules for commands are
EXCEPT binds tightest
; next
=> | next (for the right operand; the left side is an expression or delimited by VAR)
[] [*] bind least tightly.

These rules minimize the need for parentheses, which are written around commands in the ugly
form BEGIN ... END or the slightly prettier form IF ... FI; the two forms have the same
meaning, but as a matter of style, the latter should only be used around guarded commands. So,
for example,

p => c1; c2

is the same as
p => BEGIN c1; c2 END

and means to do c1 followed by c2 if p is true. To guard only c1 with p you must write
IF p => c1 [*] SKIP FI; c2

which means to do c1 if p is true, and then to do c2. The [*] SKIP ensures that the command
before the ";" does not fail, which would prevent c2 from getting done. Without the [*] SKIP,
that is in

IF p => c1 FI; c2

if p is false the IF ... FI fails, so there is no possible outcome from which c2 can be done and
the whole thing fails. Thus IF p => c1 FI; c2 has the same meaning as p => BEGIN c1; c2
END, which is a bit surprising.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 29

Sequencing

A c1 ; c2 command means just what you think it does: first c1, then c2. The command
c1 ; c2 gets you from state s1 to state s2 if there is an intermediate state s such that c1 gets you
from s1 to s and c2 gets you from s to s2. In other words, its relation is the composition of the
relations for c1 and c2; sometimes ‘;’ is called ‘sequential composition’. If c1 produces an
exception, the composite command ignores c2 and produces that exception.

A c1 EXCEPT ex => c2 command is just like c1 ; c2 except that it treats the exception ex the
other way around: if c1 produces the exception ex then it goes on to c2, but if c1 produces a
normal outcome (or any other exception), the composite command ignores c2 and produces that
outcome.

Variable introduction

VAR gives you more dramatic non-determinism than []. The most common use is in the idiom
VAR x: T | P(x) => c

which is read “choose some x of type T such that P(x), and do c”. It fails if there is no x for
which P(x) is true and c succeeds. If you just write

VAR x: T | c

then VAR acts like ordinary variable declaration, giving an arbitrary initial value to x.

Variable introduction is an alternative to existential quantification that lets you get your hands on
the bound variable. For instance, you can write

IF VAR n: Int, x: Int, y: Int, z: Int |
 (n > 2 /\ x**n + y**n = z**n) => out := n
[*] out := 0
FI

which is read: choose integers n, x, y, z such that n > 2 and xn + yn = zn, and assign n to
out; if there are no such integers, assign 0 to out.6 The command before the [*] succeeds iff

(EXISTS n: Int, x: Int, y: Int, z: Int | n > 2 /\ x**n + y**n = z**n),

but if we wrote that in a guard there would be no way to set out to one of the n’s that exist. We
could also write

VAR s := { n: Int, x: Int, y: Int, z: Int
 | n > 2 /\ x**n + y**n = z**n
 | (n, x, y, z)}

to construct the set of all solutions to the equation. Then if s # {}, s.choose yields a tuple
(n, x, y, z) with the desired property.

You can use VAR to describe all the transitions to a state that has an arbitrary relation R to the
current state: VAR s’ | R(s, s’) => s := s’ if there is only one state variable s.

The precedence of | is higher than [], which means that you can string together different VAR
commands with [] or [*], but if you want several alternatives within a VAR you have to use
BEGIN ... END or IF ... FI. Thus

6 A correctness proof for an implementation of this spec defied the best efforts of mathematicians between Fermat’s
time and 1993.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 30

 VAR x: T | P(x) => c1
[] q => c2

is parsed the way it is indented and is the same as
 BEGIN VAR x: T | P(x) => c1 END
[] BEGIN q => c2 END

but you must write the brackets in
VAR x: T |

IF P(x) => c1
[] Q(x) => c2
FI

which might be formatted more concisely as
VAR x: T |

IF P(x) => c1
[] R(x) => c2 FI

or even
VAR x: T | IF P(x) => c1 [] R(x) => c2 FI

You are supposed to indent your programs to make it clear how they are parsed.

Loops

You can always write a recursive routine, but sometimes a loop is clearer . In Spec you use
DO ... OD for this. These are brackets, and the command inside is repeated as long as it
succeeds. When it fails, the repetition is over and the DO ... OD is complete. The most common
form is

DO P => c OD

which is read “while P is true do c”. After this command, P must be false. If the command inside
the DO ... OD succeeds forever, the outcome is a looping exception that cannot be handled.
Note that this is not the same as a failure, which simply means no outcome at all.

For example, you can zero all the elements of a sequence s with
VAR i := 0 | DO i < s.size => s(i) := 0; i - := 1 OD

or the simpler form (which also avoids fixing the order of the assignments)
DO VAR i | s(i) # 0 => s(i) := 0 OD

This is another common idiom: keep choosing an i as long as you can find one that satisfies
some predicate. Since s is only defined for i between 0 and s.size-1, the guarded command
fails for any other choice of i. The loop terminates, since the s(i) := 0 definitely reduces the
number of i’s for which the guard is true. But although this is a good example of a loop, it is bad
style; you should have used a sequence method or function composition:

s := 0.fill(s.size)

or
s := {x :IN s | | 0}

(a sequence just like s except that every element is mapped to 0), remembering that Spec makes
it easy to throw around big things. Don’t write a loop when a constructor will do, because the
loop is more complicated to think about. Even if you are writing code, you still shouldn’t use a
loop here, because it’s quite clear how to write C code for the constructor.

To zero all the elements of s that satisfy some predicate P you can write
DO VAR i: Int | (s(i) # 0 /\ P(s(i))) => s(i) := 0 OD

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 31

Again, you can avoid the loop by using a sequence constructor and a conditional expression
s := {x :IN s | | (P(x) => 0 [*] x) }

Atomicity

Each <<...>> command is atomic. It defines a single transition, which includes moving the
program counter (which is part of the state) from before to after the command. If a command is
not inside <<...>>, it is atomic only if there’s no reasonable way to split it up: SKIP, HAVOC, RET,
RAISE. Here are the reasonable ways to split up the other commands:

• An assignment has one internal program counter value, between evaluating the right hand
side expression and changing the left hand side variable.

• A guarded command likewise has one, between evaluating the predicate and the rest of the
command.

• An invocation has one after evaluating the arguments and before the body of the routine, and
another after the body of the routine and before the next transition of the invoking command.

Note that evaluating an expression is always atomic.

Modules and names

Spec’s modules are very conventional. Mostly they are for organizing the name space of a large
program into a two-level hierarchy: module.id. It’s good practice to declare everything except a
few names of global significance inside a module. You can also declare CONST’s, just like VAR’s.

MODULE foo EXPORT i, j, Fact =

CONST c := 1

VAR i := 0
 j := 1

FUNC Fact(n: Int) -> Int =
IF n <= 1 => RET 1
[*] RET n * Fact(n - 1)
FI

END foo

You can declare an identifier id outside of a module, in which case you can refer to it as id
everywhere; this is short for Global.id, so Global behaves much like an extra module. If you
declare id at the top level in module m, id is short for m.id inside of m. If you include it in m’s
EXPORT clause, you can refer to it as m.id everywhere. All these names are in the global state
and are shared among all the atomic actions of the program. By contrast, names introduced by a
declaration inside a routine are in the local state and are accessible only within their scope.

The purpose of the EXPORT clause is to define the external interface of a module. This is
important because module T implements module S iff T’s behavior at its external interface is a
subset of S’s behavior at its external interface.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 32

The other feature of modules is that they can be parameterized by types in the same style as CLU
clusters. The memory systems modules in handout 5 are examples of this.

You can also declare a class, which is a module that can be instantiated many times. The Obj
class produces a global Obj type that has as its methods the exported identifiers of the class plus
a new procedure that returns a new, initialized instance of the class. It also produces a ObjMod
module that contains the declaration of the Obj type, the code for the methods, and a state
variable indexed by Obj that holds the state records of the objects. For example:

CLASS Stat EXPORT add, mean, variance, reset =

VAR n : Int := 0
 sum : Int := 0
 sumsq : Int := 0

PROC add(i: Int) = n + := 1; sum + := i; sumsq + := i**2
FUNC mean() -> Int = RET sum/n
FUNC variance() -> Int = RET sumsq/n – self.mean**2
PROC reset() = n := 0; sum := 0; sumsq := 0

END Stat

Then you can write
VAR s: Stat | s := s.new(); s.add(x); s.add(y); Print(s.variance)

In abstraction functions and invariants we also write obj.n for field n in obj’s state.

Section 7 of the reference manual deals with modules. Section 8 summarizes all the uses of
names and the scope rules. Section 9 gives several modules used to define the methods of the
built-in data types such as functions, sets, and sequences.

This completes the language summary; for more details and greater precision consult the
reference manual. The rest of this handout consists of three extended examples of specs and code
written in Spec: topological sort, editor buffers, and a simple window system.

Example: Topological sort

Suppose we have a directed graph whose n+1 vertexes are labeled by the integers 0 .. n,
represented in the standard way by a relation g; g(v1, v2) is true if v2 is a successor of v1, that
is, if there is an edge from v1 to v2. We want a topological sort of the vertexes, that is, a
sequence that is a permutation of 0 .. n in which v2 follows v1 whenever v2 is a successor of
v1. Of course this possible only if the graph is acyclic.

MODULE TopologicalSort EXPORT V, G, Q, TopSort =

TYPE V = IN 0 .. n % Vertex
G = (V, V) -> Bool % Graph
Q = SEQ V

PROC TopSort(g) -> Q RAISES {cyclic} =
IF VAR q | q IN (0 .. n).perms /\ IsTSorted(q, g) => RET q
[*] RAISE cyclic % g must be cyclic
FI

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 33

FUNC IsTSorted(q, g) -> Bool =
% Not tsorted if v2 precedes v1 in q but is also a child

RET ~ (EXISTS v1 :IN q.dom, v2 :IN q.dom | v2 < v1 /\ g(q(v1), q(v2))

END TopologicalSort

Note that this solution checks for a cyclic graph. It allows any topologically sorted result that is a
permutation of the vertexes, because the VAR q in TopSort allows any q that satisfies the two
conditions. The perms method on sets and sequences is defined in section 9 of the reference
manual; the dom method gives the domain of a function. TopSort is a procedure, not a function,
because its result is non-deterministic; we discussed this point earlier when studying
SquareRoot. Like that one, this spec has no internal state, since the module has no VAR. It
doesn’t need one, because it does all its work on the input argument.

The following code is from Cormen, Leiserson, and Rivest. It adds vertexes to the front of the
output sequence as depth-first search returns from visiting them. Thus, a child is added before its
parents and therefore appears after them in the result. Unvisited vertexes are white, nodes being
visited are grey, and fully visited nodes are black. Note that all the descendants of a black node
must be black. The grey state is used to detect cycles: visiting a grey node means that there is a
cycle containing that node.

This module has state, but you can see that it’s just for convenience in programming, since it is
reset each time TopSort is called.

MODULE TopSortImpl EXPORT V, G, Q, TopSort = % implements TopSort

TYPE Color = ENUM[white, grey, black] % plus the spec’s types

VAR out : Q
color: V -> Color % every vertex starts white

PROC TopSort(g) -> Q RAISES {cyclic} = VAR i := 0 |
out := {}; color := {* -> white}
DO VAR v | color(v) = white => Visit(v, g) OD; % visit every unvisited vertex
RET out

PROC Visit(v, g) RAISES {cyclic} =
color(v) := grey;
DO VAR v’ | g(v, v’) /\ color(v’) # black => % pick an successor not done

IF color(v’) = white => Visit(v’, g)
[*] RAISE cyclic % grey — partly visited
FI

OD;
color(v) := black; out := {v} + out % add v to front of out

The code is as non-deterministic as the spec: depending on the order in which TopSort chooses v
and Visit chooses v’, any topologically sorted sequence can result. We could get deterministic
code in many ways, for example by using min to take the smallest node in each case:

VAR v := {v0 | color(v0) = white}.min in TopSort
VAR v’ := {v0 | g(v, v0) /\ color(v’) # black }.min in Visit

Code in C would do something like this; the details would depend on the representation of G.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 34

Example: Editor buffers

A text editor usually has a buffer abstraction. A buffer is a mutable sequence of C’s. To get
started, suppose that C = Char and a buffer has two operations,

Get(i) to get character i

Replace to replace a subsequence of the buffer by a subsequence of an argument of type SEQ
C, where the subsequences are defined by starting position and size.

We can make this spec precise as a Spec class.

CLASS Buffer EXPORT B, C, X, Get, Replace =

TYPE X = Nat % indeX in buffer
C = Char
B = SEQ C % Buffer contents

VAR b : B := {} % Note: initially empty

FUNC Get(x) -> C = RET b(x) % Note: defined iff 0<=x<b.size

PROC Replace(from: X, size: X, b’: B, from’: X, size’: X) =
% Note: fails if it touches C’s that aren’t there.

VAR b1, b2, b3 | b = b1 + b2 + b3 /\ b1.size = from /\ b2.size = size =>
 b := b1 + b’.seg(from’, size’) + b3

END Buffer

We can implement a buffer as a sorted array of pieces called a ‘piece table’. Each piece contains
a SEQ C, and the whole buffer is the concatenation of all the pieces. We use binary search to find
a piece, so the cost of Get is at most logarithmic in the number of pieces. Replace may require
inserting a piece in the piece table, so its cost is at most linear in the number of pieces.7 In
particular, neither depends on the number of C’s. Also, each Replace increases the size of the
array of pieces by at most two.

A piece is a B (in C it would be a pointer to a B) together with the sum of the length of all the
previous pieces, that is, the index in Buffer.b of the first C that it represents; the index is there
so that the binary search can work. There are internal routines Locate(x), which uses binary
search to find the piece containing x, and Split(x), which returns the index of a piece that
starts at x, if necessary creating it by splitting an existing piece. Replace calls Split twice to
isolate the substring being removed, and then replaces it with a single piece. The time for
Replace is linear in pt.size because on the average half of pt is moved when Split or
Replace inserts a piece, and in half of pt, p.x is adjusted if size’ # size.

7 By using a tree of pieces rather than an array, we could make the cost of Replace logarithmic as well, but to
keep things simple we won’t do that. See FSImpl in handout 7 for more on this point.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 35

CLASS BufImpl EXPORT B,C,X, Get, Replace = % implements Buffer

TYPE % Types as in Buffer, plus
N = X % iNdex in piece table
P = [b, x] % Piece: x is pos in Buffer.b
PT = SEQ P % Piece Table

VAR pt := PT{}

ABSTRACTION FUNCTION buffer.b = + : {p :IN pt | | p.b}
% buffer.b is the concatenation of the contents of the pieces in pt

INVARIANT (ALL n :IN pt.dom | pt(n).b # {}
 /\ pt(n).x = + :{i :IN 0 .. n-1 | | pt(i).b.size})
% no pieces are empty, and x is the position of the piece in Buffer.b, as promised.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.b(x - p.x)

PROC Replace(from: X, size: X, b’: B, from’: X, size’: X) =
VAR n1 := Split(from); n2 := Split(from + size),
 new := P{b := b’.seg(from’, size’), x := from} |

pt := pt.sub(0, n1 - 1)
 + NonNull(new)
 + pt.sub(n2, pt.size - 1) * AdjustX(size’ - size)

PROC Split(x) -> N =
% Make pt(n) start at x, so pt(Split(x)).x = x. Fails if x > b.size.
% If pt=abcd|efg|hi, then Split(4) is RET 1 and Split(5) is pt:=abcd|e|fg|hi; RET 2

IF pt = {} /\ x = 0 => RET 0
[*] VAR n := Locate(x), p := pt(n), b1, b2 |

p.b = b1 + b2 /\ p.x + b1.size = x =>
VAR frag1 := p{b := b1}, frag2 := p{b := b2, x := x} |

pt := pt.sub(0, n - 1)
 + NonNull(frag1) + NonNull(frag2)
 + pt.sub(n + 1, pt.size - 1);
RET (b1 = {} => n [*] n + 1)

FI

FUNC Locate(x) -> N = VAR n1 := 0, n2 := pt.size - 1 |
% Use binary search to find the piece containing x. Yields 0 if pt={},
% pt.size-1 if pt#{} /\ x>=b.size; never fails. The loop invariant is
% pt={} \/ n2 >= n1 /\ pt(n1).x <= x /\ (x < pt(n2).x \/ x >= pt.last.x)
% The loop terminates because n2 - n1 > 1 ==> n1 < n < n2, so n2 – n1 decreases.

DO n2 - n1 > 1 =>
VAR n := (n1 + n2)/2 | IF pt(n).x <= x => n1 := n [*] n2 := n FI

OD; RET (x < pt(n2).x => n1 [*] n2)

FUNC NonNull(p) -> PT = RET (p.b # {} => PT{p} [*] {})

FUNC AdjustX(dx: Int) -> (P -> P) = RET (\ p | p{x + := dx})

END BufImpl

If subsequences were represented by their starting and ending positions, there would be lots of
extreme cases to worry about.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 36

Suppose we now want each C in the buffer to have not only a character code but also some
additional properties, for instance the font, size, underlining, etc. Get and Replace remain the
same. In addition, we need a third exported method Apply that applies to each character in a
subsequence of the buffer a map function C -> C. Such a function might make all the C’s italic,
for example, or increase the font size by 10%.

PROC Apply(map: C->C, from: X, size: X) =
b := b.sub(0, from-1)
 + b.seg(from, size) * map
 + b.sub(from + size, b.size-1)

Here is code for Apply that takes time linear in the number of pieces. It works by changing the
representation to add a map function to each piece, and in Apply composing the map argument
with the map of each affected piece. We need a new version of Get that applies the proper map
function, to go with the new representation.

TYPE P = [b, x, map: C->C] % x is pos in Buffer.b

ABSTRACTION FUNCTION buffer.b = + :{p :IN pt | | p.b * p.map}
% buffer.b is the concatenation of the pieces in p with their map’s applied.
% This is the same AF we had before, except for the addition of * p.map.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.map(p.b(x - p.x))

PROC Apply(map: C->C, from: X, size: X) =
 VAR n1 := Split(from), n2 := Split(from + size) |

pt := pt.sub(0 , n1 - 1)
 + pt.sub(n1, n2 - 1) * (\ p | p{map := p.map * map})
 + pt.sub(n2, pt.size - 1)

Note that we wrote Split so that it keeps the same map in both parts of a split piece. We also
need to add map := (\ c | c) to the constructor for new in Replace.

This code was used in the Bravo editor for the Alto, the first what-you-see-is-what-you-get
editor. It is still used in Microsoft Word.

Example: Windows

A window (the kind on your computer screen, not the kind in your house) is a map from points to
colors. There can be lots of windows on the screen; they are ordered, and closer ones block the
view of more distant ones. Each window has its own coordinate system; when they are arranged
on the screen, an offset says where each window’s origin falls in screen coordinates.

MODULE Window EXPORT Get, Paint =

TYPE I = Int
Coord = Nat
Intensity = IN (0 .. 255).rng
P = [x: Coord, y: Coord] WITH {"-":=PSub} % Point
C = [r: Intensity, g: Intensity, b: Intensity] % Color
W = P -> C % Window

FUNC PSub(p1, p2) -> P = RET P{x := p1.x - p2.x, y := p1.y - p2.y}

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 37

The shape of the window is determined by the points where it is defined; obviously it need not be
rectangular in this very general system. We have given a point a “-” method that computes the
vector distance between two points; we somewhat confusingly represent the vector as a point.

A ‘window system’ consists of a sequence of [w, offset: P] pairs; we call a pair a V. The
sequence defines the ordering of the windows (closer windows come first in the sequence); it is
indexed by ‘window number’ WN. The offset gives the screen coordinate of the window’s
(0, 0) point, which we think of as its upper left corner. There are two main operations:
Paint(wn, p, c) to set the value of P in window wn, and Get(p) to read the value of p in the
topmost window where it is defined (that is, the first one in the sequence). The idea is that what
you see (the result of Get) is the result of painting the windows from last to first, offsetting each
one by its offset component and using the color that is painted later to completely overwrite
one painted earlier. Of course real window systems have other operations to change the shape of
windows, add, delete, and move them, change their order, and so forth, as well as ways for the
window system to suggest that newly exposed parts of windows be repainted, but we won’t
consider any of these complications.

First we give the spec for a window system initialized with n empty windows. It is customary to
call the coordinate system used by Get the screen coordinates. The v.offset field gives the
screen coordinate that corresponds to {0, 0} in v.w. The v.c(p) method below gives the value
of v’s window at the point corresponding to p after adjusting by v’s offset. The state ws is just the
sequence of V’s. For simplicity we initialize them all with the same offset {10, 5}, which is not
too realistic.

Get finds the smallest WN that is defined at p and uses that window’s color at p. This corresponds
to painting the windows from last (biggest WN) to first with opaque paint, which is what we
wanted. Paint uses window rather than screen coordinates.

The state (the VAR) is a single sequence of windows.

TYPE WN = IN 0 .. n-1 % Window Number
V = [w, offset: P] % window on the screen
 WITH {c:=(\ v, p | v.w(p - v.offset))} % C of a screen point p

VAR ws := {i :IN 0..n-1 | | V{{}, P{10,5}}} % the Window System

FUNC Get(p) -> C = VAR wn := {wn’ | V.c!(ws(wn’), p)}.min | RET ws(wn).c(p)

PROC Paint(wn, p, c) = ws(wn).w(p) := c

END Window

Now we give code that only keeps track of the visible color of each point (that is, it just keeps
the pixels on the screen, not all the pixels in windows that are covered up by other windows). We
only keep enough state to handle Get and Paint.

The state is one W that represents the screen, plus an exposed variable that keeps track of which
window is exposed at each point, and the offsets of the windows. This is sufficient to implement
Get and Paint; to deal with erasing points from windows we would need to keep more
information about what other windows are defined at each point, so that exposed would have a
type P -> SET WN. Alternatively, we could keep track for each window of where it is defined.

6.826—Principles of Computer Systems 2004

Handout 3. Introduction to Spec 38

Real window systems usually do this, and represent exposed as a set of visible regions of the
various windows. They also usually have a ‘background’ window that covers the whole screen,
so that every point on the screen has some color defined; we have omitted this detail from the
spec and the code.

We need a history variable wH that contains the w part of all the windows. The abstraction
function just combines wH and offset to make ws. The important properties of the code are
contained in the invariant, from which it’s clear that Get returns the answer specified by
Window.Get. Another way to do it is to have a history variable wsH that is equal to ws. This
makes the abstraction function very simple, but then we need an invariant that says offset(wn)
= wsH(n).offset. This is perfectly correct, but it’s usually better to put as little stuff in history
variables as possible.

MODULE WinImpl EXPORT Get, Paint =

VAR w := W{} % no points defined
 exposed : P -> WN := {} % which wn shows at p
 offset := {i :IN 0..n-1 | | P(5, 10)} %
 wH := {i :IN 0..n-1 | | W{}} % history variable

ABSTRACTION FUNCTION ws = (\ wn | V{w := wH(wn), offset := offset(wn)})

INVARIANT
(ALL p | w!p = exposed!p
 /\ (w!p ==> {wn | V.c!(ws(wn), p)}.min = exposed(p)
 /\ w(p) = ws(exposed(p)).c(p)))

The invariant says that each visible point comes from some window, exposed tells the topmost
window that defines it, and its color is the color of the point in that window. Note that for
convenience the invariant uses the abstraction function; of course we could have avoided this by
expanding it in line, but there is no reason to do so, since the abstraction function is a perfectly
good function.

FUNC Get(p) -> C = RET w(p)

PROC Paint(wn, p, c) =
VAR p0 | p = p0 - offset(wn) => % the screen coordinate
 IF wn <= exposed(p0) => w(p0) := c; exposed(p0) := wn [*] SKIP FI;
 wH(wn)(p) := c % update the history var

END WinImpl

Expression forms (§ 5)
f(e) e func function invocation
op : sqe set/seq sq(0) op sq(1) …
(ALL x | pred) e Boole pred(x1) ∧ … ∧ pred(xn)
(EXISTS x | pred) e Boole pred(x1) ∨ … ∨ pred(xn)
(pred => e1 [*] e2) e Anye e1 if pred else e2

Modules (§ 7)
MODULE/CLASS Me
 [T1 WITH {m1: T11->T12,…},…]
 EXPORT n1, … =

TYPE T1 = SET T2e
 T3 = ENUM[n1,…]
CONST n: T := e
VAR n: T := ee
EXCEPTION ex = {ex11,…} + ex2 + …e
FUNC f(n1: T1,…) -> T = ce
APROC, PROC, THREAD similarlye

END M

Commands (§ 6) Pr

SKIP, HAVOC, simple
 RET e, RAISE exe
p(e) e invocation
x := e, x := p(e), assignment
 (x1, ...) := ee
c1 EXCEPT ex=>c2e 3 handle ex
c1 ; c2e 2 sequential
VAR n: T | ce 1 new var n
pred => ce 1 if (guarded cmd)
c1 [] c2e 0 or (ND choice)
c1 [*] c2e 0 else
<< c >>e atomic c
BEGIN c ENDe brackets
IF c FIe
DO c ODe loop until fail

Command operators associate to the left,
but EXCEPT associates to the right.

Spec Summary

Operators (§ 5, § 9)
Op Pr Type x op y is

. e 9 Anye x’s y field/method
ISe 8 Anye does x have type y?
ASe 8 Anye x with type y
**e 8 Inte xye

*e 7 Inte x × y
 set x ∩ y (intersection)
 func composition
 relation composition
/e 7 Inte x/y rounded to 0
//e 7 Inte mod: x – (x/y)*y
+e 6 Inte x + ye
 set x ∪ y (union)
 func overlay
 seq concatenation
-e 6 Inte x – ye
 set set difference
 seq multiset diff
! e 6 func x defined at y
!! e 6 func x!y ∧ x(y) not ex
.. e 5 Inte seq {x, x+1,..., y}
=e 4 Anye x = ye
#e 4 Anye x ≠ y
== e 4 seq x = y as multisets
<=e 4 Inte x ≤ y
 set x ⊆ y (subset)
 seq x a prefix of y
<<=e 4 seq x a sub-seq of y
INE 4 set/seq x ∈ y (member)
~e 3 Boole not x (unary)
/\e 2 Boole x ∧ y (and)
\/e 1 Boole x ∨ y (or)
==>e 0 Boole x implies y
Operators associate to the left.

Methods (§ 9)
set Ops: * + - <= IN, op: e
 sizee number of members
 choosee some member of s
 seqe s as some sequence
 prede s.pred(x) = (x ∈ s)
 fmax/min some max/min by f1
 max/mine some max/min by <=
set/seq permse set of all perms of sq
 fsorte sq sorted (q stably) by f1
 sorte sq sorted (q stably) by <=
func Ops: * + ! !! e
 dom, rnge domain, range
 inve inverse
 restricte domain to set s1
 rele r(x,y) = (f(x)=y)
 predicateesete s = {x | pred(x)}
 relation Ops: * and func +
 dom, rnge domain, range
 inve inverse

 setFe f(x) = {y | r(x,y)}
 fun f(x) = setF(x).choosee
 graph isPathe is q1 a path in g?
 closuree transitive closure of g
seq Ops: + - .. <= <<= IN, op:, func * !e

sizee number of elements
heade q(0) e

also see
set/seq and
func above

taile {q(1),…,q(q.size-1)}
 remhe remove head = tail
 laste q(q.size-1) e
 remle {q(0),…,q(q.size-2)}

 sube {q(i1),…,q(i2)}
 sege {q(i1),…}, i2 elements
 fille i2 copies of x1
 lexLEe q lexically <= q1 by f2?
 counte number of x1’s in q
 tuplee tuple with q’s values
tuple seqe seq with tu’s values
type all set of values of the type

Types (§ 4)
Any, Null, Bool, Int,
Nat, Char, String

basic

SET T, IN se set
T1 -> T2e func
APROC T1 -> T2 e
PROC T1 -> T2

procs

SEQ Te seq
(T1,...,Tn) e tuple
[f1: T1,…,fn: Tn] e record
(T1 + … + Tn) e union
T WITH {m1:=f1,…} e add methods
T SUCHTHAT prede limit values

Constructors (§ 5)
{e1,…,en}e set with these members
{i:Nat | i<3 |ei**2} of i2’s where i<3
f{e1 -> e2}e func f except = e2 at arg e1
f{* -> e}e = e at every arg
(\i:Int | i<3) e lambda (also LAMBDA)
{e1,…,en}e seq of e’s in this order
{i :IN 0 .. 5 ||ei**2} {0,1,4,9,16,25} e
{i:=0 BY i+1eWHILE i<6||i**2} same
(e1,…,en) e tuple of e’s in this order
r{f1:=e1,…,fn:=en} e record r except f1 = e1 ...

Naming conventions (except in ‘Operators’)
ce command ope operator
ee expression pe proccedure
exe exception Pr precedence
fe function, field qe sequence
ge graph re record, relation
ie Inte se set
me method Te type
ne name xe Anye

zie
v

ith extra argument of a method, or
one of several like non-terminals in a rule

§ a section of the Spec reference manual

How to Write a Spec
Figure out what the state is.

Choose the state to make the spec simple and clear, not to match the code.

Describe the actions.

What they do to the state.

What they return.

Helpful hints

Notation is important, because it helps you to think about what’s going on.

Invent a suitable vocabulary.

Less is more. Less state is better. Fewer actions are better.

More non-determinism is better, because it allows more different codes.

In distributed systems, replace the separate nodes with non-determinism in the spec.

Pass the coffee-stain test: people should want to read the spec.

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. — Pascal

How to Design Code

Write the spec first.

Dream up the idea of the code.

Embody the key idea in the abstraction function.

Check that each code action simulates some spec actions.

Add invariants to make this easier. Each action must maintain them.

Change the code (or the spec, or the abstraction function) until this works.

Make the code correct first, then efficient.

More efficiency means more complicated invariants.

You might need to change the spec to get efficient code.

Measure first before making anything faster.

An efficient program is an exercise in logical brinkmanship. — Dijkstra

