6.826—Principles of Computer Systems 2004

3. Introduction to Spec

This handout explains what the Spec languageisfor, how to use it effectively, and how it differs
from a programming language like C, Pascal, Clu, Java, or Scheme. Spec is very different from
these languages, but it is also much simpler. Its meaning is clearer and Spec programs are more
succinct and less burdened with trivial details. The handout also introduces the main constructs
that are likely to be unfamiliar to a programmer. Y ou will probably find it worthwhileto read it
over more than once, until those constructs are familiar. Don’'t miss the one-page summary of
spec at the end. The handout also has an index.

Spec is alanguage for writing precise descriptions of digita systems, both sequential and
concurrent. In Spec you can write something that differs from practical code (for instance, code
written in C) only in minor details of syntax. This sort of thing is usually called a program. Or
you can write avery high level description of the behavior of a system, usualy called a
specification. A good specification is almost always quite different from a good program. Y ou
can use Spec to write either one, but not the same style of Spec. The flexibility of the language
means that you need to know the purpose of your Spec in order to write it well.

Most people know alot more about writing programs than about writing specs, so this
introduction emphasizes how Spec differs from a programming language and how to useit to
write good specs. It does not attempt to be either complete or precise, but other handoutsfill
these needs. The Spec Reference Manual (handout 4) describes the language completely; it gives
the syntax of Spec precisely and the semanticsinformally. Atomic Semantics of Spec (handout 9)
describes precisely the meaning of an atomic command; here ‘ precisely’ means that you should
be able to get an unambiguous answer to any question. The section “ Non-Atomic Semantics of
Spec” in handout 17 on formal concurrency describes the meaning of a non-atomic command.

Spec’ s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct.
1989, pp 517-561). The notation for expressionsis derived from mathematics.

This handout starts with a discussion of specifications and how to write them, with many small
examples of Spec. Then thereis an outline of the Spec language, followed by three extended
examples of specs and code. At the end are two handy tear-out one-page summaries, one of the
language and one of the official POCS strategy for writing specs and code.

Handout 3. Introduction to Spec 1

6.826—Principles of Computer Systems 2004

What is a specification for?

The purpose of a specification isto communicate precisely all the essential facts about the
behavior of a system. The important words in this sentence are:

communicate The spec should tell both the client and the implementer what each needs
to know.

precisely We should be able to prove theorems or compile machine instructions
based on the spec.

essential Unnecessary requirements in the spec may confuse the client or make it
more expensive to implement the system.

behavior We need to know exactly what we mean by the behavior of the system.

Communication

Spec mediates communication between the client of the system and itsimplementer. One way to
view the spec is as a contract between these parties:

The client agrees to depend only on the system behavior expressed in the spec; in return it
only hasto read the spec, and it can count on the implementer to provide a system that
actually does behave as the spec saysit should.

The implementer agrees to provide a system that behaves according to the spec; inreturn it is
freeto arrange the internals of the system however it likes, and it does not have to deliver
anything not laid down in the spec.

Usually the implementer of a spec is a programmer, and the client is another programmer.
Usually the implementer of a program is a compiler or a computer, and theclient isa
programmer.

Usually the system that the implementer provides is called an implementation, but in this course
wewill call it code for short. It doesn’t have to be C or Java code; we will give lots of examples
of code in Spec which would still require alot of work on the details of data structures, memory
allocation, etc. to turn it into an executable program. Y ou might wonder what good this kind of
high-level codeis. It expresses the difficult parts of the design clearly, without the
straightforward details needed to actually makeit run.

Behavior

What do we mean by behavior? In real life a spec defines not only the functional behavior of the
system, but also its performance, cogt, reliability, availability, size, weight, etc. In this course we
will deal with these mattersinformaly if at al. The Spec language doesn’t help much with them.

Spec is concerned only with the possible state transitions of the system, on the theory that the
possible state transitions tell the compl ete story of the functional behavior of adigita system. So
we make the following definitions:

Handout 3. Introduction to Spec 2

6.826—Principles of Computer Systems 2004

A stateisthe values of a set of names (for instance, x=3, color=red).

A history is a sequence of states such that each pair of adjacent states is a transition of the
system (for instance, x=1; x=2; x=5 isthehistory if theinitia stateisx=1 and the
transitionsare“if x = 1thenx := x + 1" and“ifx = 2thenx := 2 * x + 17).

A behavior isaset of histories (a non-deterministic system can have more than one history,
usually at least onefor every possible input).

How can we specify a behavior?

Oneway to do thisisto just write down all the historiesin the behavior. For example, if the state
just consists of asingle integer, we might write

i11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i 21 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
12 3 4 5 1 2 3 1 2 3 4 5 6 7 8 910
The example reveals two problems with this approach:

The sequences arelong, and there are alot of them, so it takes alot of space to write them
down. In fact, in most cases of interest the sequences are infinite, so we can't actually write
them down.

Itisn’t too clear from looking at such a set of sequences what isreally going on.

Another description of this set of sequences from which these examples are drawnis“18
integers, each one either 1 or one more than the preceding one.” Thisis concise and
understandable, but it is not formal enough either for mathematical reasoning or for directionsto
acomputer.

Precise

In Spec the set of sequences can be described in many ways, for example, by the expression
{g: SEQ Int | g.size = 18

/\ (ALL i: Int | 0 <= i /\ i < g.size ==>
g(i) =1 \/ (1 >0 /\ g(i) = q(i-1) + 1)) }

Herethe expressionin {. ..} isvery close to the usua mathematical notation for defining a set.
Read it as“ The set of al g which are sequences of integerssuch that g.size = 18 and...”. Spec
sequences are indexed from o. The (aLw . ..) isauniversaly quantified predicate, and ==>
stands for implication, since Spec uses the more familiar =~ for ‘then’ in a guarded command.
Throughout Spec the* |* symbol separates a declaration of some new names and their types from
the scope in which they are meaningful.

Alternatively, hereis a state machine that generates the sequences we want. We specify the
transitions of the machine by starting with primitive assignment commands and putting them
together with afew kinds of compound commands. Each command specifies a set of possible
transitions.

Handout 3. Introduction to Spec 3

6.826—Principles of Computer Systems 2004
VAR i, J |
<< i :=1; § :=1 >> ;
DO << j < 18 => BEGIN i := 1 [] i := i+1 END; Output(i); j := j+1 >> OD

Herethereisagood deal of new notation, in addition to the familiar semicolons, assignments,
and plussigns.

VAR i, j | introducestheloca variables i and 5 with arbitrary values. Because ; binds
more tightly than |, the scope of the variablesis the rest of the example.

The<< ... >> brackets delimit the atomic actions or transitions of the state machine. All
the changes inside these brackets happen as one transition of the state machine.

j < 18 => ... isatrangtion that can only happenwhenj < 18.Readitas“if j < 18
then ...”. Thej < 1siscalled aguard. If the guard isfalse, we say that the entire
command fails.

i :=1 [] i := 1 + 1isanon-deterministic transition which can either set i to 1 or
increment it. Read [] as‘or’.

Thesecin ... enp brackets arejust bracketsfor commands, like{ ...} in C. They are there
because - > binds more tightly than the [1 operator inside the brackets; without them the
meaning would be “either set i to 1 if j < 18 orincrement i and j unconditionally”.

Finaly, thepo ... op brackets mean: repeat the . . . transition aslong as possible.
Eventually 5 becomes 18 and the guard becomes false, so the command inside the
po ... op failsand can no longer happen.

The expression approach is better when it works naturally, as this example suggests, so Spec has
lots of facilities for describing values: sequences, sets, and functions as well as integers and
booleans. Usually, however, the sequences we want are too complicated to be conveniently
described by an expression; a state machine can describe them much more easily.

State machines can be written in many different ways. When each transition involves only
simple expressions and changes only a single integer or boolean state variable, we think of the
state machine as a program, since we can easily make a computer exhibit this behavior. When
there are transitions that change many variables, non-deterministic transitions, big values like
sequences or functions, or expressions with quantifiers, we think of the state machine as a spec,
since it may be much easier to understand and reason about it, but difficult to make a computer
exhibit this behavior. In other words, large atomic actions, non-determinism, and expressions
that compute sequences or functions are hard to code. It may take a good deal of ingenuity to
find code that has the same behavior but uses only the small, deterministic atomic actions and
simple expressions that are easy for the computer.

Essential

The hardest thing for most people to learn about writing specsisthat a specis not a program. A
spec defines the behavior of asystem, but unlike a program it need not, and usually should not,
give any practical method for producing this behavior. Furthermore, it should pin down the

Handout 3. Introduction to Spec 4

6.826—Principles of Computer Systems 2004

behavior of the system only enough to meet the client’s needs. Detailsin the spec that the client
doesn’t need can only make trouble for the implementer.

The example we just saw istoo artificia to illustrate this point. To learn more about the
difference between a spec and code consider the following:

CONST eps := 10**-8

APROC SquareRootO(x: Real) -> Real =
<< VAR y : Real | => RET y >>

(Spec as described in the reference manual doesn’'t have areal datatype, but we'll add it for the
purpose of this example.)

The combination of var and => isavery common Spec idiom; read it as “choose ay such that
Abs (x - y*y) < eps anddoreT y”. Why isthisthe meaning? The var makes a choice of any
Real asthevalue of y, but the entire transition on the second line cannot occur unless the guard
Abs (x - y*y) < eps istrue. Hencethevar must choose avaluethat satisfies the guard.

What can we learn from this example? First, the result of squarerooto (x) isnot completely
determined by the value of x; any result whose square is within eps of x ispossible. Thisiswhy
SquareRoot 0 iISWritten as a procedure rather than a function; the result of afunction hasto be
determined by the arguments and the current state, so that the value of an expression like

f(x) = f£(x) will betrue. Inother words, squareroot 0 isnon-deterministic.

Why did we writeit that way? First of all, there might not be any rea1 (that is, any floating-point
number of the kind used to represent rea1) whose square exactly equals x. We could
accommodate this fact of life by specifying the closest floating-point number.t Second, however,
we may not want to pay for code that gives the closest possible answer. Instead, we may settle
for aless accurate answer in the hope of getting the answer faster.

Y ou have to make sure you know what you are doing, though. This spec alows a negative result,
which is perhaps not what we really wanted. We could have written (highlighting changes with
boxes):

APROC SquareRootl (x: Real) -> Real =

<< VAR y : Real | [y >= 0 /\| Abs(x - y*y) < eps => RET y >>

to rule that out. Also, the spec produces no result if x < o, which meansthat squareRoot1 (-1)
will fail (see the section on commands for a discussion of failure). We might prefer atotal
function that raises an exception:

APROC SquareRoot2 (x: Real) -> Real [RAISES {undefined}| =
<< ‘x >= 0 :>‘ VAR y : Real | y »>= 0 /\ Abs(x - y*y) < eps => RET y
[[*] RAISE undefined >>

The [*] is'ese’; it doesits second operand iff the first onefails. Exceptionsin Spec are much
like exceptionsin cLU. An exception is contagious: once started by ara1se it causes any

1 This would still be non-deterministic in the case that two such numbers are equally close, so if we wanted a
deterministic spec we would have to give arule for choosing one of them, for instance, the smaller.

Handout 3. Introduction to Spec 5

6.826—Principles of Computer Systems 2004

containing expression or command to yield the same exception, until it runsinto an exception
handler (not shown here). Thera1ses clause of aroutine declaration must list all the exceptions
that the procedure body can generate, either by ra1sEes or by invoking another routine.

Code for this spec would look quite different from the spec itself. Instead of the existential
quantifier implied by thevar v, it would have an agorithm for finding v, for instance, Newton’s
method. In the algorithm you would only see operations that have obvious codes in terms of the
load, store, arithmetic, and test instructions of a computer. Probably the code would be
deterministic.

Another way to write these specs is as functions that return the set of possible answers. Thus

FUNC| SquareRootsl(x: Real) -> |SET Real| =

RET ﬂy : Real | y >= 0 /\ Abs(x - y*y) < epsm

Notethat theforminsidethe {. ..} set constructor is the same asthe guard on thereT. To get a
single result you can use the set’s choose method: squareRoots1 (2) . choose.2

In the next section we give an outline of the Spec language. Following that are three extended
examples of specs and code for fairly realistic systems. At the end is a one-page summary of the
language.

An outline of the Spec language

The Spec language has two main parts:

e An expression describes how to compute a result (avalue or an exception) as a function of
other values: either literal constants or the current values of state variables.

e A command describes possible transitions of the state variables. Another way of saying this
isthat acommand is arelation on states: it allows atransition from s1 to s2 iff it relates s1 to
s2.

Both are based on the state, which in Spec is a mapping from names to values. The names are
caled state variables or simply variables: in the sequence example abovethey are 1 and 5.
Actually acommand relates states to outcomes; an outcome is either a state (anormal outcome)
or a state together with an exception (an exceptional outcome).

There are two kinds of commands:

e Anatomic command describes a set of possible transitions, or equivalently, a set of pairs of
states, or arelation between states. For instance, thecommand << i := i + 1 >> describes
thetransitionsi=1—i=2, i=2—i=3, etc. (Actually, many transitions are summarized by
i=1—i=2, forinstance, (i=1, j=1)—(i=2, j=1) and (i=1, j=15)—(i=2, j=15)).Ifa

2y .= squareRootsl (x) .choose (using the function) isamost the sameasr := SquareRoot1 (x) (using the
procedure). The difference isthat because choose isafunction it aways returns the same element (even though we
don’t know in advance which one) when given the same set, and hence when squareRoots1 isgiven the same
argument. The procedure, on the other hand, is non-deterministic and can return different values on successive calls,
so that spec is weaker. Which one is more appropriate?

Handout 3. Introduction to Spec 6

6.826—Principles of Computer Systems 2004

command allows more than one transition from a given state we say it is non-deterministic.
For instance, on page 3thecommand BEcIN i := 1 [] i := i + 1 END alowsthe
transitions i=2—i=1 and i=2—1=3, with the rest of the state unchanged.

¢ A non-atomic command describes a set of sequences of states (by contrast with the set of
pairs for an atomic command). More on this below.

A sequentia program, in which we are only interested in theinitial and final states, can be
described by an atomic command.

The meaning of an expression, which is afunction from states to values (or exceptions), is much
simpler than the meaning of an atomic command, which is arelation between states, for two
reasons:

e Theexpression yields asingle value rather than an entire state.

e Theexpression yields at most one value, whereas a non-deterministic command can yield
many fina states.

A atomic command is still simple, much simpler than a non-atomic command, because:

e Takeninisolation, the meaning of a non-atomic command is arelation between an initial
state and a history. A history is awhole sequence of states, much more complicated than a
singlefina state. Again, many histories can stem from asingleinitial state.

e The meaning of the composition of two non-atomic commandsis not any simple
combination of their relations, such as the union, because the commands can interact if they
share any variables that change.

These considerations |ead us to describe the meaning of a non-atomic command by breaking it
down into its atomic subcommands and connecting these up with anew state variable called a
program counter. The details are somewhat complicated; they are sketched in the discussion of
atomicity below, and described in handout 17 on formal concurrency.

Themoral of al thisisthat you should use the simpler parts of thelanguage as much as possible:
expressions rather than atomic commands, and atomic commands rather than non-atomic ones.
To encourage this style, Spec has alot of syntax and built-in types and functions that make it
easy to write expressions clearly and concisely. Y ou can write many things in a single Spec
expression that would require a number of C statements, or even aloop. Of course, codewith a
lot of concurrency will necessarily have more non-atomic commands, but this complication
should be put off aslong as possible.

Organizing the program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

e A routineisanamed computation with parameters, in other words, an abstraction of the
computation. Parameters are passed by value. There are four kinds of routine:

Handout 3. Introduction to Spec 7

6.826—Principles of Computer Systems 2004

A function (defined with Func) is an abstraction of an expression.

An atomic procedure (defined with aproc) is an abstraction of an atomic command.
A general procedure (defined with proc) is an abstraction of a non-atomic command.
A thread (defined with TarEAD) is the way to introduce concurrency.

o A typeisahighly stylized assertion about the set of values that a name or expression can
assume. A typeis also aconvenient way to group and name a collection of routines, caled its
methods, that operate on valuesin that set.

e Anexception isaway to report an unusual outcome.

e A moduleisaway to structure the name space into atwo-level hierarchy. Anidentifier i
declared in amodulem has the namem. i throughout the program. A class is a modul e that
can be instantiated many times to create many objects, much like a Java class.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

The next two sections describe things about Spec’ s expressions and commands that may be new
to you. They should be enough for the Spec you will read and writein this course, but they don't
answer every question about Spec; for those answers, read the reference manua and the
handouts on Spec semantics. There is a one-page summary at the end of this handout.

Expressions, types, and functions

Expressions are for computing functions of the state.
A Spec expression is and itsvalueis

aconstant the constant

avariable the current value of the variable

an invocation of afunction on an the value of the function at the value of the
argument that is some sub-expression argument

There are no side-effects; those are the province of commands. Thereis quite abit of syntactic
sugar for function invocations. An expression may be undefined in a state; if asimple command
evaluates an undefined expression, the command fails (see below).

Types
A Spec type defines two things:

A set of values, we say that avaue hasthetypeif it'sin the set. The setsarenot digoint. If T
isatype, T.a11 isitsset of vaues.

A set of functions called the methods of the type. There is convenient syntax v.m for
invoking method m on avalue v of thetype. A method m of type T islifted to functionsu->t,

Handout 3. Introduction to Spec 8

6.826—Principles of Computer Systems 2004

sets of T’'s, and relations from u to T in the obvious way, unless overridden by adifferent min
the definition of the higher type. Thusif int hasasquare method, {2, 3, 4}.square =
{4, 9, 16}. W€l seethat thisis aform of function composition.

Spec is strongly typed. This means that you are supposed to declare the types of your variables,
just asyou do in Java. In return the language defines atype for every expression3 and ensures
that the value of the expression always has that type. In particular, the value of avariable aways
has the declared type. Y ou should think of atype declaration as a stylized comment that hasa
precise meaning and can be checked mechanically.

If Foo isatype, you can omit it in adeclaration of the identifiers foo, fool, foo’ €. Thus
VAR intl, bool2, char’ |

isshort for
VAR intl: Int, bool2: Bool, char’: Char |

If e IN T.allthene as Tisan expression with the samevaue and typeT; otherwiseit’s
undefined. You canwritee 1s Tfore IN T.all.

Spec has the usud types:

Int, Nat (NON-negative Int), Bool

SEtSSET T

functions T->u

relations T->>u

records or structs [f1: T1, f2: T2, ...]

tuples (t1, T2, ...)

variable-length arrays called sequences, seQ T
A sequenceis actually afunction whosedomainis {o, 1, ., n-1} for somen. In addition to
the usua functionslike »+» and "\ /n, Spec also has some |ess usual operations on these types,
which are valuable when you want to suppress code detail; they are called constructors and
combinations and are described below.

Y ou can make a type with fewer values using sucutuat. For example,

TYPE T = Int SUCHTHAT (\ i: Int \ 0 <=1 /\ i <= 4)
hasthevalueset {0, 1, 2, 3, a}.Herethe (\ ...) isalambdaexpression (with\ for %) that
defines afunction from 1nt to Bool, and avalue hastype T if it'san 1nt and the function maps it
10 true.

Methods

Methods are a convenient way of packaging up some functions with atype so that the functions
can be applied to values of that type concisely and without mentioning the typeitself. For
example, if s iSaseEQ T, s.head iS(Sequence [T] .Head) (s), Whichisjust s (0) (whichis
undefined if s isempty). You can seethat it's shorter to write s. head.4

Y ou can define your own methods by using wiTs. For instance, consider

3 Note that avalue may have many types, but avariable or an expression has exactly one type: for avariable, it'sthe
declared type, and for a complex expression it’s the result type of the top-level function in the expression.
4 Of course, s (0) isshorter still, but that’s an accident; thereis no similar aternativefor s. tail.

Handout 3. Introduction to Spec 9

6.826—Principles of Computer Systems 2004

TYPE Complex = [re: Real, im: Real] WITH {"+":=Add, mag:=Mag}
add and mag are ordinary Spec functions that you must define, but you can now invoke them on a
c which is complex by writing ¢ + ¢’ and c.mag, which mean add (c, c¢’) andmMag(c). You
can use existing operator symbols or make up your own; see section 3 of the reference manual
for lexical rules. You can also write complex. "+" and complex.mag to denote the functions adaa
and Mag; this may be convenient if complex was declared in adifferent module. Using add asa
method does not makeit private, hidden, static, local, or anything funny like that.

When you nest wita the methods pile up in the obvious way. Thus

TYPE MoreComplex = Complex WITH {"-":=Sub, mag:=Mag2}
has an additional method " -, the same "+ as complex, and adifferent mag. Many people call
this ‘inheritance’ and ‘overriding' .

A method m of type T is lifted automatically to a method of typesv->t, v->>1, and seT T by
composing it with the value of the higher-order type. Thisis explained in detail in the discussion
of functions below.

Expressions

The syntax for expressions gives various ways of writing function invocationsin addition to the
familiar £ (x). You can use unary and binary operators, and you can invoke a method with
el.m(e2) for T.m(e1,e2), Of just e.mif there are no other arguments. Y ou can also writea
lambda expression (\ t: T | e) oraconditional expression (predicate => el [*] e2),
whichyieldse1 if predicate istrueand e2 otherwise. If you omit (] e2, theresultis
undefined if predicate isfalse.

Hereisalist of dl the built-in operators, which also gives their precedence, and alist of the
built-in methods. Y ou should read these over so that you know the vocabulary. Therest of this
section explains many of these and gives examples of their use.

Binary operators

Op Prec. Argument/result types Operation
* ok 8 (Int, Int)->Int exponentiate
* 7 (Int, Int)->Int multiply
(T->U, U->V)->(T->V) function or relation composition
(\t|e2(e1l(t))
/ 7 Int, Int)->Int divide
// 7 Int, Int)->Int remainder
+

SEQ T, SEQ T)->SEQ T concatenation
T->U, T->U)->(T->U) function overlay
(\t] (e2!t=>e2(t) [*]el(t))

(
(
6 (Int, Int)->Int add
(
(

- 6 (Int, Int)->Int subtract
(SET T, SET T)->SET T set difference
(SEQ T, SEQ T)->SEQ T multiset difference
! 6 (T->U, T)->Bool function isdefined at arg
1 6 (T->U, T)->Bool function defined, no exception at arg

Handout 3. Introduction to Spec 10

6.826—Principles of Computer Systems

2004

6.826—Principles of Computer Systems 2004

5 (Int, Int)->SEQ Int subrange: The advantage of relationsis simplicity and generality; for example, there' s no notion of
{e1l, el+l, ..., e2} “undefined” for relations. The drawback is that you can't write r (x) (although you can write {x}
<= 4 (Int, Int)->Bool Iessthmorequal +x r for the set of values rdated to x by r, SeedeW)

(SET T, SET T)->Bool subset A relation r has methods

(SEQ T, SEQ T)->Bool prefix

e2.restrict (el.dom)=el r.setF toturnitinto aset function: r.setF (x) isthe set of elementsthat r relatesto x. This
< 4 (T, T)->Bool, T with <= less than istotal. Theinverse of setF isthe setrel method for a function whose values are sets:
el<e2 = (el<=e2 /\ el#e2) r.setF.setRel = r,and f.setRel.setF = fif fyiddssets.
> 4 T, T)->Bool, T with <= reater than

(el><)32 - en<el ’ r. func to turnitinto afunction: r . func (x) isundefined unless r relates x to exactly one

o= 4 (T, T)->Bool, T with <= greater or equal vaue ThusSr.func = r.setF.one.

) A (Anjbzzi) ::2:91 cart overide by HITH If sisaset, s.re1 isarelation that relates true to each member of the set; thusit is

4 (Any’ Any) ->Bool ot equal: can't override by HITE s.pred.inv. Therelatlon’_Srn_g method_lnvertsthls s.rel.rng = s.Vle/_vmg asetasa _

’ ' relation, you can compose it with arelation (or afunction viewed as arelation); the result isthe
elfiez = - (el=e2) _ image of the set under therelation: s * r = (s.rel * r).rng. Notethat thisis never

<<= 4 (SEQ T, SEQ T)->Bool non-contiguous sub-seq undefined, unlike sequence composition.
(EXISTS s | s<=e2.dom /\ s.sort*e2 = el

IN 4 (T, SET T)->Bool membership A method m of uislifted to ser uvand to relationsto u just asit isto functionsto u (see below),

/\ 2 (Bool, Bool)->Bool conditional and* sothatr.m = r * U.m.rel.

Ei?iz flzi _:S(f:m f:;?;:if:idion If v doesn’'t have a method m but Boo1 does, then the lifting is done on the function that defines
\/ 1 (Bool, Bool)->Bool conditional or* therdation, sothat r1 \/ r2istheunion of therelations, r1 /\ r2 theintersection, and ~r the

(SET T, SET T)->SET T set union complement.

(T->>U, T->>U)->(T->>U) relation union A réation r: T->>u can beviewed asaset r. set of pairs (T, u), or asatotal function r.pred
==> 0 (Bool, Bool) ->Bool conditional implies* on (T,u) that is true on the pairsthat arein the relation, or as afunction r . setF from T to st
op 5 (T, U)->V op none of the above .

T."op" (el, e2)
T ={1,2,3,4,5}; U = {A,a,B,b,C}
Unaryoperators r: T->>U r.set r.pred r.setF
Op Prec. Argument/result types Operation 1 A (1,R) (1,n) 1—{a,B}
- 6 Int->Int negation (1,B) (1,B)
~ 3 Bool->Bool complement 3 B (1,0) true 3—»{B}

SET T-SET T sets complement (3,2) 5 (8,c}

(T->>U) -> (T->>U) relation complement 5 ¢ (3.8 g?; —
op 5 T->U op none of the above (5 :A) false

T."op" (el) (5,B) (5,B)
(5,C) (5,C)
Relations

Y ou can compute the inverse of arelation, and compose two relations by matching up the range

A relation r isageneralization of afunction: an arbitrary set of ordered pairs, defined by atotal
function from pairsto Boo1. Thus r can relate an element of its domain to any number of
elements of itsrange (including none). Like afunction, r has dom, rng, and inv methods (the
inverseis obtained just by flipping the ordered pairs), and you can compose relations with «. You
can al so take the complement, union, and intersection of two relations that have the same type.

of thefirst with the domain of the second.

Handout 3. Introduction to Spec 11 Handout 3. Introduction to Spec 12

6.826—Principles of Computer Systems 2004

r.inv r’ r * r'

A A 10 1 10
ZZ;%%E %%%;EE ZZ;%%E ., .,
c cC 30 5 30

If arelation T->>T hasthe same range and domain typesiit represents a graph, on which it
makes sense to define the paths through the graph, and the transitive closure of the relation.

w

r asagraoh r r.paths r.closure
1 2 1 1 {},{1}.{2}, {3}, {4}, {5}, 1
D 2 2 {1.,2},{1,4},{2,2},{3,4},{4,5},{5,3}, 2 2
3 4 3 3 {1.4,5},{3,4,5},{4,5,3}.{5,3,4}, 3 3
T {3,4,5,3},{4,5,3,4},{5,3,4,5}
4 4 4 4
5 5 5 5 5
Method call Result Definition
type
r.pred (T,u) definition; (\t,u | u IN r.setF(r))
->Bool
r.set SET T r.rng;OmnyFR = Bool->>T
r * rr T->>V (\t,v | (EXISTS u | r.pred(t,u) /\ rr.pred(u,v))).pToR
where rr: u->>v; worksfor £ aswell asrr
r.dom SET T U.all * r.inv
r.rng SET U T.all * ¢
r.inv U->>T (\t,u | r.pred(u,t)).pToR
r.restrict(s) T->>U s.id * rwherés: SET T
r.setF T-> (\t | {t} * n)
SET U
r.fun T->U r.setF.one (one islifted from ser vtoT->SET U)
r.paths SET {g:SEQ T | (ALL i IN g.dom-{0}|r.pred(g(i-1),q(i)))
SEQ T /\ (g.rng.size=qg.size

\/ (g.head=q.last /\ g.rng.size=qg.size-1))}
only for rR=T->>T; paths don’t intersect except for complete cycles
r.closure T->>T {g IN r.paths | g.size>l | (g.head, g.last)}.pred.pToR
only for rR=T->>T; there’'sanon-trivial path fromt1 to t2

Sets
A set has methods for

computing union, intersection, and set difference (lifted from Boo1; see note 3 in section 4),

and adding or removing an element, testing for membership and subset;

Handout 3. Introduction to Spec

6.826—Principles of Computer Systems 2004

choosing (deterministically) a single element from a set, or a sequence with the same
members, or a maximum or minimum element, and turning a set into its characteristic
predicate (the inverseis the predicate’' s set method);

composing a set with afunction or relation, and converting a set into arelation fromni1 to
the members of the set (theinverse of thisisjust therange of the relation).

A sets: seT T canbeviewed as atotal function s.pred on T that is t rue on the members of s
(sometimes called the ‘ characteristic function’), or asarelation s . re1 from true to the members
of the set, or astheidentity relation s. id that relates each member to itself, or as the universal
relation s . univ that relates all the membersto each other.

s ={1,3,5} s.pred s.rel = s.id s.univ
s.pred.inv
.restrict
({true})
1 1 1 >1 1 1
2 true
3 3 true 3——m3»3 3 3
4 alse
5 5 5— »5 5 5
Y ou can compose a set with afunction or arelation to get another set.
{1,3,5} * square = {1,5} * r =
1 1— 31 1 1 1 A A
2 — > 4
3 3— 9 9 3 B B
4 ——p16
5 5 25 2 5 5 c c

.Thisisjust like relational composition on s . rel.
{1,3,5}.rel * square = {1,5}.rel * r =

1 l——>»1 1 1 1 A A

2 — > 4

true 3 33— 9 true 9 true 3 B true B
4 ——p16

5 5—»25 16 5 5 ¢ c

The universal relation s.univ isjust the composition of s. re1 with itsinverse:

s ={1,3,5} s.rel.inv * s.rel = s.univ
1 1 1
>true true<3 3 3
5 5 5

Handout 3. Introduction to Spec 14

6.826—Principles of Computer Systems 2004

Y ou can compute the range and domain of arelation. An element t isin therangeif r relates
something to it, and in the domain if r relates it to something. (For clarity, the figures show the
relations corresponding to the sets, not the sets themselves.)

T.all * r = r.rng U.all * r.inv = r.dom
1 le—w—9A A A 1 1
2 4

true 3 3 7 B true B true B 3 true 3
4
5 5 C 5 5

Y ou can restrict the domain of arelation or function to aset s by composing the identity relation
s.id withit. Torestrict therangeto s, use the sameideaand writer * s.id.

Qo wo M

r.restrict

({1,3})

1— 1 1 A 1 A
3——»3 3}3 333
5 C

Y ou can pick out one element of aset swith s. choose. Thisisdeterministic: choose aways
returns the same value given the same set (a necessary property for it to be afunction). Itis
undefined if the set is empty. A variation of choose iSone: s.one isundefined unless s has
exactly one element, in which case it returns that e ement.

{1,3}.id * r =

Y ou can compute the set of all permutations of a set; apermutation is a sequence, explained
below. Y ou can sort aset or compute its maximum or minimum.

s = {3,1,5}, s.perms ={{3,1,5},{3,5,1},{5,1,3},{5,3,1},{{1.3,5},{1,5,3}},
s.sort = {1,3,5}, s.max = 5, s.min = 3.

Handout 3. Introduction to Spec 15

6.826—Principles of Computer Systems 2004

Method call Result Definition
type
s.pred T->Bool definition; (\t | t IN s)
s.rel Bool->>T s.pred.inv
s.id T->>T (\ t1,t2 | t1 IN s /\ tl = t2)
s.univ T->>T s.rel.inv * s.rel
t IN s Bool s.pred(t)
sl <= s2 Bool sl /\ s2 = sl

(ALL t | t IN s1 > t IN s2)

sl /\ s2 S (\t | t IN s1 /\ t IN s2)
sl \/ s2 S (\t | £t IN s1 \/ t IN s2)

~ s S (\t | ~(t IN s))
sl - s2] sl /\ ~ s2
s *r SET U (s.rel * r).rng Wherer=T->>U; worksfor £ aswell asr
s.size Nat s.seqg.dom.max + 1
s.choose T ?
s.one T (s.size = 1 => s.choose); undefined if s#{t}
s.perms SET Q {g: SEQ T | g.size = s.size /\ g.rng = s}
s.seq Q s.perms.choose
s.fsort (f) Q {g IN s.perms]|

(ALL i IN g.dom-{0}|f(q(i),q(i-1)))}.choose

s.sort Q s.fsort (T."<=")
s.fmax (f) T s.fsort (£) .last and likewisefor fmin
s.max T s.sort.last and likewisefor min
s.combine (f) T s.seq.combine (f), Wwheref: (T, T)->T iscommutative

Functions

A function is a set of ordered pairs; thefirst element of each pair comes from the functions
domain, and the second from itsrange. A function produces at most one value for an argument;
that is, two pairs can’t have the same first element. Thusafunction isareation in which each
element of thedomain isrelated to at most onething. A function may be partial, that is,
undefined at some elements of its domain. The expression £ 1 x istrueif £ isdefined at %, false
otherwise. Like everything (except types), functions are ordinary valuesin Spec.

Given afunction, you can use a function constructor to make another onethat is the same except
at a particular argument, asin the pe example above. Another exampleis£{x -> o}, whichis
thesame as £ except that itis0 at x. If you have never seen a construction like this one, think
about it for aminute. Suppose you had to implement it. If £ isrepresented as atable of
(argument, result) pairs, the code will be easy. If £ is represented by code that computes the
result, the code for the constructor is less obvious, but you can make a new piece of code that
says

(\ yv: Int | ((y = x) =>0 [*] £(y)))
Here '\’ is‘lambdd’, and the subexpression ((y = x) => 0 [*] £(y)) isaconditiond,
modeled on the conditional commands we saw in the first section; itsvalueiso if y = x and
£ (y) otherwise, so we have changed £ just at o, asdesired. If theelseclause [*] £ (y) is
omitted, the condition isundefined if y # x. Of coursein arunning program you probably

Handout 3. Introduction to Spec 16

6.826—Principles of Computer Systems 2004

wouldn’t want to construct new functions very often, so a piece of Spec that isintended to be
closeto practical code must use function constructors carefully.

Functions can return functions as results. Thus - >u->v isthe type of afunction that takesaT
and returns a function of typeu->v, which in turn takesauv and returnsav. If £ hasthistype,
then £ (t) hastypeu->v, and £ (t) (u) hastypev. Comparethiswith (T, v)->v, thetypeof a
function which takesa and av and returns av. If g hasthistype, g (t) doesn’t type-check, and
g(t, u) hastypev. Obvioudly £ and g are closely related, but they are not the same.

Y ou can define your own functions either by lambda expressions like the one above, or more
generaly by function declarations like this one

FUNC NewF(y: Int) -> Int = RET ((y = x) => 0 [*] f(y))
The value of thisvewr is the same as the value of the lambda expression. To avoid some
redundancy in the language, the meaning of the function is defined by a command in which rReT
sub-commands specify the value of the function. The command might be syntactically non-
deterministic (for instance, it might contain var or [1), but it must specify at most one result
value for any argument value; if it specifies no result values for an argument or more than one
value, the function is undefined there. If you need a full-blown command in afunction
constructor, you can write it with n.amepa instead of \:

(LAMBDA (y: Int) -> Int = RET ((y = x) => 0 [*] f(y)))

Y ou can compose two functions with the * operator, writing £ * g. This meansto apply £ first
and then g, so you read it “ £ then g”. It is often useful when £ is a sequence (remember that a seo
T isafunction from {0, 1, , size-1} toT), sincetheresult isasequence with every
element of £ mapped by g. Thisis Lisp’s or Scheme’s“map”. So:

(0 .. 4) » {\ i: Int | i*i} = (SEQ Int){0, 1, 4, 9, 16}

sinceo .. 4 = {0, 1, 2, 3, 4} because int hasamethod . . with the obvious meaning:
i § o= {i, i+1, , -1, j}.Inthesection on constructors we saw another way to
write

(0 .. 4) * {\ i: Int | i*i},
as

{1 :IN O .. 4 | | i*i}.

Thisis more convenient when the mapping function is defined by an expression, asit is here, but
it'sless convenient if the mapping function aready has aname. Then it’'s shorter and clearer to

write
(0 .. 4) * factorial
rather than
{i :IN 0 .. 4 | | factorial(i)}.

A function £ has methods £ . dom and £ . rng that yield its domain and range sets, £ . inv that
yieldsitsinverse (which isundefined at y unless £ maps exactly one argument toy), and £ . rel
that turnsit into arelation (seebelow). £. restrict (s) isthe sameas £ on elements of s and
undefined elsewhere. The overlay operator combines two functions, giving preference to the
second: (f1 + f£2) (x) iSf2(x) if that isdefined and £1 (x) otherwise. SO £{3 -> 24} = f +
{3 -> 24}.

If type u has method m, then the function typer - T->u hasa“lifted” method m that composes
u.mwith £, unless r aready hasam method. r. m is defined by

Handout 3. Introduction to Spec 17

6.826—Principles of Computer Systems 2004

(N £ | (\t | £(t).m))
sothat £.m = £ * U.m. For example, {va", "ab", "b"}.size = {1, 2, 1}.|fmtakesa
second argument of typew, then 7. m takes a second argument of the same type and uses it
uniformly.

You can turn arelation into afunction by discarding all the pairs whose first element isrelated to
more than one thing

£ £.inv (NOt r r.fun r.inv. fun
afunction)

l1—» A A—»p 1 1 A D — Ae—Pp1

NG E =

5 5 5 c C— 35

Y ou can go back and forth between arelation T->> v and afunction T->seT v withthesetr
and setRel methods.

r.setF = (\t | {t} * r)
t {t} * r = r.setF(t) =
1 1 A A
1 true/ 3§B true4B {A,B}
5 C
1 A
2 true/'z 3 B {}
C
1 A
3 true—»3 3 B true—®B {B}
5 C
A
4 true——y 4 3 B {}
5
1 A
5 true\ 3 B true?B {B,C}
5 5 C C

f.setRel = f.rel.include

Handout 3. Introduction to Spec 18

6.826—Principles of Computer Systems 2004

r: T->>U r.setF.rel * (SET U).include = r.setF.setRel
1 A 1—{A, B} {} 1 A
{2} N
3 B 3—{B} {B} 3 B
{c} .
5 c 5s—{B,C} %2:2% 5 c
{8,c) ¢
{p,B,C}
Method call Result Definition
type
f + £/ T->U (f.rel \/ (f’.rel * fl.rng.id)) .func
(\t | (£t => £ (t) [*] £'(£)))
fit Bool t IN f.dom
fiit Bool ?
£ x ff T->V (f.rel * ff.rel).fun, Whereff .u->v
f.rel T->>U (\t,u | £!t /\ £(t) = u). pToR
f.setRel T->>V f.rel.include, Only for F=T->SET Vv
f.set SET T f.restrict({true}).rng,onlyfor F=T->Bool
f.pToR v->>w definition, only for F= (v, w) ->Bool; (\v |{w|f(v,w)}) .setRel

A functiontyper - T->U dso hasaset of lifting methods that turn an £ into afunction on seT
T, V->T, Of V->>T by composition. Thisworksfor 7 = (T, w) ->u aswell; the lifted method aso
takesaw and usesit uniformly. A relation typer - T->>uisasoliftedtoser T. These are used
to automatically supply the higher-order types with lifted methods.

Method methodm makes with type by
oftype T, methodm
with type r for type
f.liftSet T-> U S =SET T SET T -> SET U s .m=(s * f).set
f.liftFun T-> U FF=V-> T (V-> T)->(V-> U) ff.m=ff * £
f.liftRel T-> U RR=V->>T (V->>T)->(V->>U) ff.m=rr * £
f.liftSet (T,W)->U S =SET T (SET T ,W)->SET U s .m(w)=(s *(\t‘f(t,w)).set
f.liftFun (T,W)->U FF=V-> T ((V-> T),W)->(V-> U) ff.m(w)=££f *(\t\f(t,w))
f.1liftRel (T,W)->U RR=V->>T ((V->>T),W)->(V->>U) £ff.m(w)=rr *(\t‘f(t,w))
with type r
r.liftSet T->>U S =SET T SET T -> SET U s .m=(s * r).set

Changing coordinates: relations, predicates, sets, and functions

Aswe have seen, there are several waysto view a set or arelation. Which one is best depends on
what you want to do with it, and what is familiar and comfortable in your application. Often the
choice of representation makes a big difference to the convenience and clarity of your code, just
as the choice of coordinate system makes abig difference in a physics problem. The following
tables summarize the different representations, the methods they have, and the conversions
among them.

Handout 3. Introduction to Spec 19

6.826—Principles of Computer Systems

by Inverse
(\t,u|f!t/\f(t)=u) .pToR .fun
s.pred.inv.restrict ({true}) .set
definition; (\t | t IN s) -set
definition; .pToR
(\t,u | u IN r.setF(r))
f.restrict ({true}) .rng .rel
r.rng .rel
r.setF.one .rel
definition; .pred
(\t | {ulf(t,u)}.setRel
(\t | {t} * ») .setRel
f.rel.include .setF
converts to methods
with
Bool->>T IN <= /\ \/ ~ - * pred rel id
.rel size choose one

perms seqg sort max

function

.set

relation

.set
T->U 4 * dom rng inv restrict
.fun setF fun

[paths closure]

function
.pToR .set

function
.setRel

Method Converts to
.rel F=T->U T->>U
S=SET T Bool->>T
.pred S=SET T T->Bool
R=T->>U (T,U) ->Bool
.set F=T->Bool SET T
R=Bool->>T SET T
.fun R=T->>U T->U
.pToR F=(T,U) ->Bool T->>U
.setF R=T->>U T->SET U
.setRel F=T->SET U T->>U
Type based on equiv to
convert with convert with
SET T T->Bool
.pred
T->Bool SET T
set
Bool->>T SET T
.set
T->>U (T,U) ->Bool SET (T,U)<+4
.pred .pred.set
T->SET
.setF
(T,U) ->Bool T->>U
.pToR
SET (T,U)
.set
T->SET U T->>U
.setRel
SET (T,U) (T,U) ->Bool T->>U4¢—
.pred .pred.pToR
T->U
SEQ T Int->T

Handout 3. Introduction to Spec

just aset

T->>U4
.rel

* dom rng inv restrict

(fromT->>1)
+ ! 1l rel

function

B <= <<=

size seg sub head tail
addh remh last reml addl
fill tuple lexLE

2004

20

6.826—Principles of Computer Systems 2004
Sequences
A function is called a sequenceif itsdomain is afinite set of consecutive 1nt’s starting at 0, that
is, if it hastype
Q = Int -> T SUCHTHAT (\ g | (EXISTS size: Int | g.dom = (0 .. size-1).rng))

We denote this type (with the methods defined below) by seq T. A sequence inheritsthe
methods of the function (though it overrides +), and it a so has methods for

detaching or attaching the first or last element,
extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elementsthesame: t.Fi11 (n),
making a sequence into atuple (rng makesit into aset): q.tuple,
testing for prefix or sub-sequence (not necessarily contiguous): q1<=q2, gl<<-q2,
lexical comparison, permuting, and sorting,
filtering, iterating over, and combining the elements,
treating a sequence as a multiset with operations to:
count the number of times an element appears: q. count (t),
test membership: t 1N g,
take differences. g1 - g2
(v+n isunion and add1 adds an element; to remove an element useq - {t}; totest
equality useql IN g2.perms).

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence
isalways defined regardless of the subscripts, by taking the largest number of elements allowed
by the size of the sequence.

To apply afunction £ to each of the elements of g, just use compositiong * £.
The "+ operator concatenates two sequences.

gl + g2 = gl + x.inv * q2,Wh€|’6x = (gl.size .. gl.size+g2.size-1)
ql = {A,B,C}; @2 = {D,E}; x = {3,4}; g1 + @2 = {A,B,C,D,E}

x x.inv * g2 = x.inv * g2 * gl = gl +
x.inv * g2
o—*3 0 >n o0 >
1—>4 1—>B 1—>B
2 >c 2 > c
3 > 0 0 i) 3—p 3—>p
44— 1—»E 4—>E 11— E

You can test for g1 being aprefix of g1 with g1 <= g2, and for it being an arbitrary
subsequence, not necessarily contiguous, with g1 <<= g2.

g2.restrict (gl.dom))
{a,B,C}

gl <= g2 = (ql
ql = {A,B}; @2

Handout 3. Introduction to Spec 21

6.826—Principles of Computer Systems 2004

g2 g2.restrict = gl
(gl.dom)
o—»an o—>n»1 o—>xa
1 > B 1 >3 1—>B
2—>¢
gl <<= g2 = (EXISTS s: SET Int | s <= g2.dom /\ gl = s.sort * g2

gl = {A,c}; a2 = {a,B,C};chooses = {0,2} <= {0,1,2}

s s.sort * g2 = gl

0 0 >0 0 > A 0 > A
1\ 1— B 1—>cC

2 2 2 > C

Y ou can take a subsequence of sizen starting at 1 with q.seg (1,n) and asubsequence from i1
toi2 withq.sub(i1,i2).

g.seg(i,n) = (i i+n-1) * g

qg={amB,C}; i =1; n=23; g.seg(1,3) = {B,C}
i i+n-1 * g =g.seg(i,n)
o—>1 o—>2a [—-

1—>2 1—>B 1—> ¢

2—>3 2—>¢C

Y ou can select the elements of g that satisfy apredicate £ withg. filter (f).

g.filter(f) = (g * f).set.sort * g

q = {5,4,3,2,1}; £ = even

q g * £ (g * £).set .sort * q =
o—»s5 o0 Pfalse o—>1 [—’
1—> 1> true 1 1—>3 1—>2
2 > 3 2P»false

3—>2 3 Ptrue 3

4 > 1 4 —P»false

Y ou can apply a combining function £ successively to the eements of g with g. iterate (£). TO
get the result of combining all the elements of g with £ useq. combine (£) =
g.iterate(f).last. Thesyntax + : gisshortfor q.combine (T."+"); it worksfor any binary
operator that yieldsaT.

g.iterate(f) = {qgr | gr.size=qg.size /\ qr(0)=qg(0)
/\ (ALL i IN g.dom-{0}|qr(i)=£f(qgr(i-1),q(i)))}.one,

wheref: (T,T)->T
q={1,2,3,4,5}; £ = Int."+"

Handout 3. Introduction to Spec 22

6.826—Principles of Computer Systems 2004

q gr.one

o—>1 o—>1
1—>2 1—>3
2—>3 2—>¢
3— >4 3—>10
4g—> 5 4 —>15

Method call Result Definition
type
gl + g2 Q gl + (gl.size .. gl.size+g2.size-1).inv * g2
gl <= g2 Bool gl = g2.restrict (gl.dom)
gl <<= g2 Bool (EXISTS s: SET Int | s <= g2.dom /\ gl = s.sort * g2)
g.size Nat g.dom.size
g.seg(i,n) Q (i .. i+n-1) * g
g.sub(il,i2) Q (i1 .. i2) * g
g.head T g (0)
g.tail Q (g # {} => g.sub(1, g.size-1))
t.£1i11 (n) Q

(0 .. n-1) * {* -> t}
(EXISTS q,n | n=q.size /\ g<=ql /\ g<=q2 /\
(g=gq1 \/ f(gl(n),q2(n)) /\ gl(n)#g2(n)))

gl.lexLE(g2,f) Bool

g.filter(f) Q (g * £f).set.sort * q,WthEf: T->Bool

q.iterate (f) Q {qr | gr.size=qg.size /\ qr(0)=q(0) wheret: (T,T)->T
/\ (ALL i IN g.dom-{0}|gr(i)=£(gr(i-1),q(i)))}.one

qg.combine (f) T g.iterate.last

t ** n T t.fill (n) .combine (T."*")

g.count (t) Nat {t’ :IN g | t' = t}.size

t IN g Bool t IN g.rng

gl - g2 Q {g | (ALL t | g.count (t)={qgl.count (t)-g2.count(t), 0}.max)}.

choose

sEQ T hasthe sameperus, fsort, sort, fmax, fmin, max, and min constructors asseT T.

Constructors

Functions, sets, and sequences make it easy to toss large values around, and constructors are
special syntax to makeit easier to define these values. For instance, you can describe a database
as afunction ab from names to data records with two fields:

TYPE DB = (String -> Entry)
TYPE Entry = [salary: Int, birthdate: Int]
VAR db := DB{}

Here ap isinitialized using a function constructor whose valueis a function undefined
everywhere. The type can be omitted in a variable declaration when the variableis initialized; it
istaken to be the type of theinitializing expression. The type can also be omitted when it is the
upper case version of the variable name, og in this example.

Now you can make an entry with

Handout 3. Introduction to Spec 23

6.826—Principles of Computer Systems 2004

db := db{ "Smith" -> Entry{salary := 23000, birthdate := 1955} }
using another function constructor. The value of the constructor is afunction that isthe same as
db except at the argument "smithr, whereit hasthevalueentry{. ..}, whichisarecord
constructor. This assignment could also be written

db("Smith") := Entry{salary := 23000, birthdate := 1955}
which changes the value of the db function at "smith" without changing it anywhere else. This
isactually ashorthand for the previous assignment. Y ou can omit the field namesif you like, so
that

db("Smith") := Entry{23000, 1955}
has the same meaning as the previous assignment. Obviously this shorthand is less readable and
more error-prone, so use it with discretion. Another way to write this assignment is

db ("Smith") .salary := 23000; db("Smith") .birthdate := 1955

The set of names in the database can be expressed by a set constructor. It isjust

{n: String | db!n},
in other words, the set of al the strings for which the ao function isdefined (* :* isthe‘is-
defined’ operator; that is, £1x istrueiff £ isdefined at x). Read this“the set of stringsn such that
db!n". You can also writeit as db . dom, the domain of ab; section 9 of the reference manual
defineslots of useful built in methods for functions, sets, and sequences. It’simportant to realize
that you can freely use large (possibly infinite) values such as the do function. Y ou are writing a
spec, and you don't need to worry about whether the compiler is clever enough to turn an
expensive-looking manipulation of alarge object into a cheap incrementa update. That' s the
implementer’ s problem (so you may have to worry about whether sheis clever enough).

If we wanted the set of lengths of the names, we would write

{n: String | db!n | n.size}
This three part set constructor contains i if and only if there exists an n such that ap1n and
i = n.size. SO {n: String | db!n}isshortfor {n: string | db!n | n}.Youcan
introduce more than one name, in which case the third part defaults to the last name. For
example, if werepresent adirected graph by afunction on pairs of nodes that returns true when
there' s an edge from the first to the second, then

{nl: Node, n2: Node | graph(nl, n2) | n2}
isthe set of nodes that are the target of an edge, and the“ | n2" could be omitted. Thisisjust the
range graph. rng of therelation graph on nodes.

Following standard mathematical notation, you can aso write

{f :IN openFiles | f.modified}
to get the set of all open, modified files. Thisis equivalent to

{f: File | £ IN openFiles /\ f.modified}
becauseif s isaseT T, then 1v s isatypewhosevaluesaretheT’sin s; in fact, it'sthe type
T SUCHTHAT (\ t | t IN s). Thisform asoworksfor sequences, where the second operand
of : 1~ providesthe ordering. Soif s isasequence of integers, {x :IN s | x > o} isthe
positiveones, {x :IN s | x > 0 | x * x} iSthesquares of the positiveones, and {x :IN s
| | x * x} isthesquares of all the integers, because an omitted predicate defaultsto true.5

5 In the sequence form, IN s isnot a set type but a special construct; treating it as a set type would throw away the
essentia ordering information.

Handout 3. Introduction to Spec 24

6.826—Principles of Computer Systems 2004

To get sequences that are more complicated you can use sequence generators with By and waILE.
Y ou can skip this paragraph until you need to do this.

{1 := 1 BY i+ 1 WHILE i <= 5 | true | i}
is{1, 2, 3, 4, 5};thesecond and third parts could be omitted. Thisisjust like the “for”
construction in C. An omitted wu1Le defaults to true, and an omitted : = defaults to an arbitrary
choicefor theinitial value. If you write severa generators, each variable gets anew value for
each value produced, but the second and later variables are initialized first. So to get the sums of
successive pairs of elements of s, write

{x := s BY x.tail WHILE x.size > 1 | | x(0) + x(1)}
To get the sequence of partial sums of s, write (eliding | | sum at the end)
{x :IN s, sum := 0 BY sum + x}

Taking 1ast of thiswould give the sum of the elements of s. To get a sequence whose elements
arereversed from those of s, write

{x :IN s, rev := {} BY {x} + rev}.last
To get thesequence {e, f(e), f2(e), . £2(e) }, write
{1 :IN 1 .. n, iter := e BY f(iter)}

Thisusesthe . . operator; i ..
sequenceif i > .

jistheseguence {i, i+1, ..., j-1, j}.It'stheempty

Combinations

A combination is away to combine the el ements of a non-empty sequence or set into asingle
value using an infix operator, which must be associative, and must be commutative if it is
applied to a set. Y ou write “operator : sequence or set”. Thisis short for

q.combine (T.operator). Thus

+ : (SEQ String){"He", niw, ulou} = "He" 4+ "I" 4 nlo" = "Hello"
because + on sequences is concatenation, and
+ 0+ {1 :IN1 .. 4 | | i**2} =1 + 4 + 9 + 16 = 30

Existential and universal quantifiers make it easy to describe properties without explaining how
to test for them in apractical way. For instance, a predicate that is t rue iff the sequence s is
sorted is

(ALL i :IN 1 .. s.size-1 | s(i-1) <= s(i))
Thisisacommon idiom; read it as
“foraliin1 .. s.size-1,s(i-1) <= s(i)".
This could also be written
(ALL i :IN (s.dom - {0}) | s(i-1) <= s(i))

since s . dom is the domain of the function s, which isthe non-negativeintegers < s.size. Orit
could be written
(ALL 1 :IN s.dom | i > 0 ==> s(i-1) <= s(i))

Because a universal quantification isjust the conjunction of its predicate for all the values of the
bound variables, it is simply a combination using /\ as the operator:

(ALL i | Predicate(i)) = /\ : {i | Predicate(i)}
Similarly, an existential quantification isjust asimilar digunction, hence a combination using \ /
asthe operator:

(EXISTS i | Predicate(i)) = \/ : {i | Predicate(i)}

Spec has theredundant ar1. and Ex1sTs notations because they are familiar.

Handout 3. Introduction to Spec 25

6.826—Principles of Computer Systems 2004

If you want to get your hands on a value that satisfies an existential quantifier, you can construct
the set of such values and use the choose method to pick out one of them:
{i | pPredicate(i)}.choose

Thevar command described in the next section on commands is another form of existential
quantification that lets you get your hands on the value, but it is non-deterministic.

Commands

Commands are for changing the state. Spec has afew simple commands, and seven operators for
combining commands into bigger ones. The main simple commands are assignment and routine
invocation. There are also simple commands to raise an exception, to return a function result, and
to sk1p, that is, do nothing. If asimple command evaluates an undefined expression, it fails (see
below).

Youcanwritei + := 3insteadof i := i + 3, and similarly with any other binary operator.
The operators on commands are:

e A conditional operator: predicate => command, read “if predicate then command”. The
predicateis called aguard.

e Choiceoperators. c1 [] c2andc1 [*] c2,read‘or’ and ‘ese.

e Sequencing operators: c1 ; c2 and c1 EXCEPT handler. Thehandler isaspecia form of
conditional command: exception => command.

e Vaiableintroduction: var id: T | command, read “choose id of type T such that command
doesn’t fail”.

e LOOpS. DO command OD.

Section 6 of the reference manual describes commands. Atomic Semantics of Spec gives a precise
account of their semantics. It explains that the meaning of acommand is arelation between a
state and an outcome (a state plus an optional exception), that is, a set of possible state-to-
outcome transitions.

Conditionals and choice

The figure below (copied from Nelson's paper) illustrates conditionals and choice with some
very simple examples. Hereis how they work:

The command

p =>cC
meansto do c if p istrue. If p isfalse thiscommand fails; in other words, it has no outcome.
More precisdly, if s isastatein which p isfalse or undefined, this command does not relate s to
any outcome.

Handout 3. Introduction to Spec 26

6.826—Principles of Computer Systems 2004

Xy Xy Xy Xy
00— ™ 00 0Q— 00

01 > 01 0Ol— 01

10— ™ 10 10 10
n———* 1 11 11
SKIP x = 0 => SKIP
(partia)
Xy Xy Xy Xy
00 : 00 OO\ 00
01 01 01 01
10 : 10 10\ 10
11 11 11 11
y =1 y =0=>y :=1
(partia)
Xy Xy Xy Xy

00 00 OOS 00
01 S: 01 01 01
10 10 10§: 10
11 \ 11 11 11

x = 0 => SKIP SKIP
[l] y=0=>y :=1 [l] y=0=>y :=1
(partial, non-deterministic) (non-deterministic)

Combining commands

What good is such acommand? One possibility isthat p will be true some time in the future, and
then the command will have an outcome and allow atransition. Of course this can only happen
in aconcurrent program, where there is something else going on that can make p true. Even if
there’ s no concurrency, there might be an alternative to this command. For instance, it might
appear in the larger command
p =>c¢C

[] p’ => c’
inwhichyouread [] as‘or’. Thisfalsonly if each of p and p’ isfalse or undefined. If both are
true (asinthe oo state in the south-west corner of the figure), it meansto do either c or ¢’ ; the
choiceis non-deterministic. If p* is ~p then they are never both false, and if p is defined this
command is equivaent to

Handout 3. Introduction to Spec 27

6.826—Principles of Computer Systems 2004
p =>cC
[*] <’

inwhich you read [+] as‘else’. On the other hand, if p is undefined the two commands differ,
because the first onefails (since neither guard can be evaluated), while the second doesc .

Bothci (1 c2andc1 (*] c2 fal only if both c1 and c2 fail. If you think of a Spec program
operationally (that is, as executing one command after another), this meansthat if the execution
makes some choice that leads to failure later on, it must ‘back-track’ and try the other
dternatives until it finds a set of choices that succeed. For instance, no matter what x is, after

y=0=>x:=x-1; X<y =>X:=1
[1 y >0 =>x := 3 ;i X <y => X = 2
[*] SKIP

if y = oinitidly, x = 1 afterwards, if y > 3 initidly, x = 2 afterwards, and otherwisex is
unchanged. If you think of it relationally, c1 [1 <2 hasal thetransitions of c1 (there are none if
c1 fails, severdl if it is non-deterministic) aswell as all the transitions of ¢2. Both failure and
non-determinism can arise from deep inside a complex command, not just from atop-level [1 or
VAR.

Thisis sometimes called ‘angelic’ non-determinism, since the code finds all the possible
transitions, yielding an outcome if any possible non-deterministic choice yield that outcome.
Thisisusually what you want for a spec or high-level code; it isnot so good for low-level code,
since an operational implementation requires backtracking. The other kind of non-determinism,
not used in Spec, iscalled ‘demonic’; it yields an outcome only if all possible non-deterministic
choice yidld that outcome.

The precedence rules for commands are
EXCEPT bindstightest
; next
=> | next (for the right operand; the left sideis an expression or delimited by var)
[1 [*1 bindleasttightly.

These rules minimize the need for parentheses, which are written around commands in the ugly

formsecin ... END or thedightly prettier form1r ... r1; thetwo formshavethe same
meaning, but as a matter of style, the latter should only be used around guarded commands. So,
for example,

p => cl; c2
isthe same as

p => BEGIN cl; c2 END
and meansto do c1 followed by c2 if p istrue. To guard only c1 with p you must write

IF p => cl [*] SKIP FI; c2
which meanstodo c1 if p istrue, and thento do c2. The [*] sk1p ensuresthat the command
beforethe »; » does not fail, which would prevent c2 from getting done. Without the [*] skip,
thatisin

IF p => cl FI; c2
if pisfasetherr ... r1 fails, so thereisno possible outcome from which c2 can be done and
thewholething fails. Thus1r p => c1 FI; c2 hasthesamemeaningasp => BEGIN c1; c2
END, Which isabit surprising.

Handout 3. Introduction to Spec 28

6.826—Principles of Computer Systems 2004

Sequencing

A c1 ; <2 command means just what you think it does: first c1, then c2. The command

cl ; c2 getsyou from state s1 to state s2 if thereis an intermediate state s such that c1 getsyou
from s1 to s and c2 gets you from s to s2. In other words, itsrelation is the composition of the
relationsfor c1 and c2; sometimes + ; + iscalled ‘sequential composition’. If c1 produces an
exception, the composite command ignores c2 and produces that exception.

A c1 EXCEPT ex => c2 commandisjustlikec1 ; c2 except that it treats the exception ex the
other way around: if c1 produces the exception ex then it goes on to c2, but if c1 produces a
normal outcome (or any other exception), the composite command ignores c2 and produces that
outcome.

Variable introduction

VAR @ives you more dramatic non-determinism than [1. The most common useisin theidiom
VAR x: T | P(x) => c
which isread “choose some x of type T such that p (x),, and do ¢”. It failsif thereisno x for
which p (x) istrue and c succeeds. If you just write
VAR x: T | ¢
then var acts like ordinary variable declaration, giving an arbitrary initial valueto x.

Variable introduction is an alternative to existential quantification that lets you get your hands on
the bound variable. For instance, you can write

IF VAR n: Int, x: Int, y: Int, z: Int |

(n > 2 /\ X**n + y**n = z**n) => out := n

[*] out := 0

FI
which isread: chooseintegersn, x, y, zsuchthatn > 2andx® + y* = z*, and assignn to
out; if there are no such integers, assign o to out.® The command beforethe [*] succeedsiff

(EXISTS n: Int, x: Int, y: Int, z: Int | n > 2 /\ x**n + y**n = z**n),
but if we wrote that in a guard there would be no way to set out to one of then’sthat exist. We
could also write

VAR s := { n: Int, x: Int, y: Int, z: Int

| n > 2 /\ x**n + y**n = z**n
(n, x, v, z)}

to construct the set of all solutionsto the equation. Thenif s # {}, s.choose yieldsatuple
(n, %, y, z) withthedesired property.

Y ou can use vaR to describe al the transitions to a state that has an arbitrary relation r to the
current state: var s’ | R(s, s’) => s := s’ if thereisonly one state variables.

The precedence of | ishigher than [, which meansthat you can string together different var
commandswith [] or [*], but if you want several alternatives within avar you haveto use
BEGIN ... ENDOr IF ... FI.Thus

6 A correctness proof for an implementation of this spec defied the best efforts of mathematicians between Fermat’s
time and 1993.

Handout 3. Introduction to Spec 29

6.826—Principles of Computer Systems 2004

VAR x: T | P(x) => cl
[] q => c2
is parsed theway it isindented and is the same as
BEGIN VAR x: T \ P(x) => cl END
[l BEGIN g => c2 END
but you must write the bracketsin

VAR x: T |
IF P(x) => cl
[1 9(x) => c2
FI
which might be formatted more concisely as
VAR x: T |

IF P(x) => cl
[R(x) => c2 FI

or even
VAR x: T | IF P(x) => cl [] R(x) => c2 FI

Y ou are supposed to indent your programs to make it clear how they are parsed.

Loops

Y ou can always write arecursive routine, but sometimes aloop is clearer . In Spec you use
po ... op forthis. These are brackets, and the command inside is repeated aslong asit
succeeds. When it fails, the repetition isover and thepo ... obpiscomplete. The most common
formis

DO P => c OD
which isread “whilep istruedo <”. After this command, »p must be false. If the command inside
thepo ... op succeedsforever, the outcomeis alooping exception that cannot be handled.
Note that this is not the same as a failure, which simply means no outcome at all.

For example, you can zero all the elements of a sequence s with

VAR 1 := 0 | DO i < s.size => s(i) := 0; 1 - := 1 OD
or the simpler form (which also avoids fixing the order of the assignments)
DO VAR i | s(i) # 0 => s(i) := 0 OD

Thisis another common idiom: keep choosing an i aslong as you can find one that satisfies
some predicate. Since s isonly defined for i between o and s . size-1, the guarded command
failsfor any other choice of i. Theloop terminates, sincethes (i) := o definitely reducesthe
number of i’sfor which the guard istrue. But although thisis a good example of aloop, it is bad
style; you should have used a sequence method or function composition:

s := 0.fill(s.size)
or

s := {x :IN s | | 0}
(asequencejust like s except that every element is mapped to o), remembering that Spec makes
it easy to throw around big things. Don’t write aloop when a constructor will do, because the
loop is more complicated to think about. Even if you are writing code, you still shouldn’t use a
loop here, because it’ s quite clear how to write C code for the constructor.

To zero all the elements of s that satisfy some predicate p you can write
DO VAR i: Int | (s(i) # 0 /\ P(s(i))) => s(i) := 0 OD

Handout 3. Introduction to Spec 30

6.826—Principles of Computer Systems 2004

Again, you can avoid the loop by using a sequence constructor and a conditional expression
s :={x :INs | | (P(x) => 0 [*] x) }

Atomicity

Each <<...>> command is atomic. It defines asingle transition, which includes moving the
program counter (which is part of the state) from before to after the command. If acommand is
notinside<<...>>, itisatomic only if there’s no reasonable way to split it up: sx1p, HAVOC, RET,
RAISE. Here are the reasonable ways to split up the other commands:

e Anassignment has one internal program counter value, between evaluating the right hand
side expression and changing the | eft hand side variable.

e A guarded command likewise has one, between evaluating the predicate and the rest of the
command.

e Aninvocation has one after evaluating the arguments and before the body of the routine, and
another after the body of the routine and before the next transition of the invoking command.

Note that evaluating an expression is aways atomic.

M odules and names

Spec's modules are very conventiona. Mostly they are for organizing the name space of alarge
program into atwo-level hierarchy: module. id. It's good practice to declare everything except a
few names of global significance inside amodule. Y ou can also declare consT’s, just like var’s.

MODULE foo EXPORT i, j, Fact =
CONST ¢ := 1

0

VAR 1 :
j 1

J

FUNC Fact(n: Int) -> Int =
IF n <= 1 => RET 1
[*] RET n * Fact(n - 1)
FI

END foo

Y ou can declare an identifier id outside of amodule, in which caseyou can refer toitasid
everywhere; thisis short for clobal . id, SO Global behaves much like an extramodule. If you
declare id at thetop level in modulem, id isshort for m. id inside of m. If you includeitinm's
EXPORT clause, you can refer to it asm. id everywhere. All these names are in the global state
and are shared among all the atomic actions of the program. By contrast, names introduced by a
declaration inside aroutine arein the local state and are accessible only within their scope.

The purpose of the ExporT clause isto define the external interface of amodule. Thisis
important because module T implements module s iff T'sbehavior at its external interfaceisa
subset of s’sbehavior at its external interface.

Handout 3. Introduction to Spec 31

6.826—Principles of Computer Systems 2004

The other feature of modulesis that they can be parameterized by typesin the same styleascLu
clusters. The memory systems modules in handout 5 are examples of this.

Y ou can also declare a class, which isamodul e that can be instantiated many times. The obj
class produces a global obj typethat has as its methods the exported identifiers of the class plus
anew procedure that returns a new, initialized instance of the class. It also produces a objmMod
module that contains the declaration of the obj type, the code for the methods, and a state
variable indexed by obj that holds the state records of the objects. For example:

CLASS Stat EXPORT add, mean, variance, reset =

VAR n : Int := 0
sum : Int := 0
sumsq : Int := 0
PROC add(i: Int) = n + := 1; sum + := 1; sumsqg + := 1**2
FUNC mean() -> Int = RET sum/n
FUNC variance() -> Int = RET sumsqg/n - self.mean**2
PROC reset() = n := 0; sum := 0; sumsqg := 0
END Stat

Then you can write
VAR s: Stat \ s := s.new(); s.add(x); s.add(y); Print(s.variance)

In abstraction functions and invariants we also write obj . n for field n in obj’s state.

Section 7 of the reference manual deals with modules. Section 8 summarizes al the uses of
names and the scope rules. Section 9 gives several modules used to define the methods of the
built-in data types such as functions, sets, and sequences.

This compl etes the language summary; for more details and greater precision consult the
reference manual. Therest of this handout consists of three extended examples of specs and code
written in Spec: topological sort, editor buffers, and a simple window system.

Example: Topological sort

Suppose we have adirected graph whosen+1 vertexes are labeled by theintegerso .. n,
represented in the standard way by arelation g; g (v1, v2) istrueif v2 isasuccessor of v1, that
is, if thereis an edge from v1 to v2. Wewant atopological sort of the vertexes, that is, a
sequence that isapermutation of o .. ninwhich vz followsvi whenever v2 is a successor of
v1. Of coursethis possible only if the graph isacyclic.

MODULE TopologicalSort EXPORT V, G, Q, TopSort =

TYPEV = IN O .. n % Vertex
G = (V, V) -> Bool % Graph
Q = SEQ V

PROC TopSort (g) -> Q RAISES {cyclic} =
IF VAR g | g IN (0 .. n).perms /\ IsTSorted(q, g) => RET g
[*] RAISE cyclic % g must be cyclic
FI

Handout 3. Introduction to Spec 32

6.826—Principles of Computer Systems 2004

FUNC IsTSorted(q, g) -> Bool =
% Not tsorted if v2 precedesv1 in g butisalso achild
RET ~ (EXISTS vl :IN g.dom, v2 :IN g.dom | v2 < vl /\ g(g(vl), q(v2))

END TopologicalSort

Note that this solution checks for a cyclic graph. It allows any topologically sorted result that isa
permutation of the vertexes, becausethe var g in Topsort alowsany q that satisfies the two
conditions. The perms method on sets and sequences is defined in section 9 of the reference
manual; the dom method gives the domain of afunction. Topsort isa procedure, not afunction,
because its result is non-deterministic; we discussed this point earlier when studying
SquareRoot. Like that one, this spec has no interna state, since the module has no var. It
doesn’'t need one, because it does all itswork on the input argument.

Thefollowing codeisfrom Cormen, Leiserson, and Rivest. It adds vertexesto the front of the
output sequence as depth-first search returns from visiting them. Thus, a child is added before its
parents and therefore appears after them in the result. Unvisited vertexes are white, nodes being
visited are grey, and fully visited nodes are b1ack. Note that all the descendants of ab1ack node
must beblack. Thegrey stateis used to detect cycles: visiting agrey node means that thereis a
cycle containing that node.

This module has state, but you can seethat it's just for conveniencein programming, sinceit is
reset each time Topsort iscalled.

MODULE TopSortImpl EXPORT V, G, Q, TopSort = % implements TopSort

TYPE Color = ENUM[white, grey, black] % plus the spec’ s types

VAR out : Q

color: V -> Color % every vertex starts white

PROC TopSort(g) -> Q RAISES {cyclic} = VAR i := 0 |
out := {}; color := {* -> white}
DO VAR v | color(v) = white => Visit(v, g) OD; % visit every unvisited vertex
RET out

PROC Visit (v, g) RAISES {cyclic} =

color(v) := grey;

DO VAR v’ | g(v, v’) /\ color(v’) # black => % pick an successor not done
IF color(v’) = white => Visit(v’', g)
[*] RAISE cyclic % grey — partly visited
FI

OD;

color(v) := black; out := {v} + out % add v to front of out

The codeis as non-deterministic as the spec: depending on the order in which Topsort chooses v
and visit chooses v, any topologically sorted sequence can result. We could get deterministic
code in many ways, for example by using min to take the smallest node in each case:

VAR v {v0 | color(v0) = white}.min in TopSort
VAR v’ {v0 | g(v, v0) /\ color(v’) # black }.min in Visit

Code in C would do something like this; the details would depend on the representation of .

Handout 3. Introduction to Spec 33

6.826—Principles of Computer Systems 2004

Example: Editor buffers

A text editor usualy has a buffer abstraction. A buffer isa mutable sequence of ¢’s. To get
started, supposethat ¢ = char and abuffer has two operations,

Get (i) to get character 1

Replace t0 replace a subsequence of the buffer by a subsequence of an argument of type seo
¢, where the subsequences are defined by starting position and size.

We can make this spec precise as a Spec class.

CLASS Buffer EXPORT B, C, X, Get, Replace =

TYPE X = Nat % indeX in buffer

C = Char

B = SEQ C % Buffer contents
VAR b : B := {} % Note: initially empty

FUNC Get (x) -> C = RET b (x) % Note: defined iff 0<=x<b.size

PROC Replace (from: X, size: X, b’: B, from’: X, size’: X) =
% Note: failsif it touches C’sthat aren’t there.
VAR bl, b2, b3 | b = bl + b2 + b3 /\ bl.size = from /\ b2.size = size =>
b := bl + b’.seg(from’, size’) + b3

END Buffer

We can implement a buffer as a sorted array of pieces called a*piece tabl€’ . Each piece contains
aseo ¢, and thewhole buffer isthe concatenation of al the pieces. We use binary search to find
apiece, so the cost of get isat most logarithmic in the number of pieces. Replace may require
inserting a piece in the piece table, so its cost is a most linear in the number of pieces.” In
particular, neither depends on the number of ¢’s. Also, each replace increases the size of the
array of pieces by at most two.

A pieceisas (in C it would be a pointer to as) together with the sum of the length of al the
previous pieces, that is, theindex in Butfer.b of thefirst c that it represents; the index isthere
so that the binary search can work. There are internal routines Locate (x) , which uses binary
search to find the piece containing x, and split (x), which returnsthe index of a piece that
starts at x, if necessary creating it by splitting an existing piece. Replace calssplit twiceto
isolate the substring being removed, and then replaces it with a single piece. Thetime for
Replace islinear in pt . size because on the average half of pt is moved when sp1it or
Replace insertsapiece, and in haf of pt, p.x isadjusted if size’ # size.

7 By using atree of pieces rather than an array, we could make the cost of Replace logarithmic aswell, but to
keep things simple we won't do that. See FSImp1l in handout 7 for more on this point.

Handout 3. Introduction to Spec 34

6.826—Principles of Computer Systems 2004
CLASS BufImpl EXPORT B,C,X, Get, Replace = % implementsBuf fer
TYPE % Typesasin Buffer, plus
N =X % iNdex in piece table
P = [b, x] % Piece: x isposinBuffer.b
PT = SEQ P % Piece Table
VAR pt := PT{}
ABSTRACTION FUNCTION buffer.b = + : {p :IN pt | | p.b}
% buffer.Db isthe concatenation of the contents of the piecesin pt
INVARIANT (ALL n :IN pt.dom | pt(n).b # {}
/\ pt(n).x =+ :{1 :IN O .. n-1 | | pt(i).b.size})

% no pieces are empty, and x isthe position of the piecein Buf fer . b, as promised.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.b(x - p.x)
PROC Replace (from: X, size: X, b’: B, from’: X, size’: X) =
VAR nl := Split (from); n2 := Split(from + size),
new := P{b := b’.seg(from’, size’), x := from} |
pt := pt.sub(0, nl - 1)
+ NonNull (new)
+ pt.sub(n2, pt.size - 1) * AdjustX(size’ - size)

PROC Split(x) -> N =

% Makept (n) startatx,sopt (Split(x)).x = x. Falsifx > b.size.

% If pt=abcd|efg|hi,thenSplit(4) is RET 1 and Split(5) is pt:=abcd|e|fg|hi; RET 2
IF pt = {} /\ x =0 => RET 0

[*] VAR n := Locate(x), p := pt(n), bl, b2 |
p.b = bl + b2 /\ p.x + bl.size = x =>
VAR fragl := p{b := bl}, frag2 := p{b := b2, x := x} |
pt := pt.sub(0, n - 1)

+ NonNull (fragl) + NonNull (frag2)
+ pt.sub(n + 1, pt.size - 1);
RET (bl = {} =>n [*] n + 1)
FI
FUNC Locate(x) -> N = VAR nl := 0, n2 := pt.size - 1 |
% Use binary search to find the piece containing x. Yields 0 if pt={},
%pt.size-1if pt#{} /\ x>=b.size; neverfals. Theloopinvariantis
% pt={} \/ n2 >= nl /\ pt(nl).x <= x /\ (x < pt(n2).x \/ x >= pt.last.x)
% Theloop terminatesbecausen2 - nl > 1 ==> nl < n < n2,50n2 - nl decreases.
DO n2 - nl > 1 =>
VAR n := (nl + n2)/2 | IF pt(n).x <= x =>nl :=n [*] n2 := n FI
OD; RET (x < pt(n2).x => nl [*] n2)

FUNC NonNull(p) -> PT = RET (p.b # {} => PT{p} [*] {})
FUNC AdjustX(dx: Int) -> (P -> P) = RET (\ p | p{x + := dx})
END BufImpl

If subsequences were represented by their starting and ending positions, there would be lots of
extreme cases to worry about.

Handout 3. Introduction to Spec

35

6.826—Principles of Computer Systems 2004

Suppose we now want each c in the buffer to have not only a character code but also some
additional properties, for instance the font, size, underlining, etc. cet and rReplace remain the
same. In addition, we need a third exported method app1y that appliesto each character ina
subsequence of the buffer amap function ¢ -> c¢. Such afunction might make all the ¢’sitalic,
for example, or increase the font size by 10%.
PROC Apply (map: C->C, from: X, size: X) =

b := b.sub (0, from-1)

+ b.seg(from, size) * map
+ b.sub(from + size, b.size-1)

Hereiscodefor apply that takes time linear in the number of pieces. It works by changing the
representation to add amap function to each piece, and in app1y composing the map argument
with the map of each affected piece. We need anew version of cet that applies the proper map
function, to go with the new representation.

TYPE P = [b, x, map: C->C] % x isposinBuffer.b

ABSTRACTION FUNCTION buffer.b = + :{p :IN pt | | p.b * p.map}
% buffer.b isthe concatenation of the piecesin p with their map’s applied.
% Thisis the same AF we had before, except for the addition of * p.map.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.map(p.b(x - p.x))
PROC Apply(map: C->C, from: X, size: X) =
VAR nl := Split(from), n2 := Split (from + size) |
pt := pt.sub(0 , nl - 1)

+ pt.sub(nl, n2 - 1) * (\ p | p{map := p.map * map})
+ pt.sub(n2, pt.size - 1)

Notethat wewrote sp1it S0 that it keeps the samemap in both parts of a split piece. We also
needtoaddmap := (\ ¢ | c) totheconstructor for new in Replace.

This code was used in the Bravo editor for the Alto, the first what-you-see-is-what-you-get
editor. It is still used in Microsoft Word.

Example: Windows

A window (the kind on your computer screen, not the kind in your house) is a map from points to
colors. There can belots of windows on the screen; they are ordered, and closer ones block the
view of more distant ones. Each window has its own coordinate system; when they are arranged
on the screen, an offset says where each window’s origin fallsin screen coordinates.

MODULE Window EXPORT Get, Paint =

TYPE I = Int
Coord = Nat
Intensity = IN (0 .. 255).rng
P = [x: Coord, y: Coord] WITH {"-":=PSub} % Point
¢} = [r: Intensity, g: Intensity, b: Intensity] % Color
w =P ->C % Window

FUNC PSub(pl, p2) -> P = RET P{x := pl.x - p2.%x, y := pl.y - p2.y}

Handout 3. Introduction to Spec 36

6.826—Principles of Computer Systems 2004

The shape of the window is determined by the points where it is defined; obvioudly it need not be
rectangular in this very genera system. We have given apoint a*“-" method that computes the
vector distance between two points; we somewhat confusingly represent the vector as a point.

A ‘window system’ consists of asequenceof [w, offset: P] pars, wecal aparav. The
sequence defines the ordering of the windows (closer windows come first in the sequence); itis
indexed by ‘window number’ wn. The offset gives the screen coordinate of the window’s

(0, o) point, which wethink of asitsupper |ft corner. There are two main operations:

Paint (wn, p, c) tosetthevaueof pinwindow wn, and cet (p) to read thevalueof p in the
topmost window where it is defined (that is, the first onein the sequence). Theideais that what
you see (theresult of cet) istheresult of painting the windows from last to first, offsetting each
oneby its of £set component and using the color that is painted later to completely overwrite
one painted earlier. Of course real window systems have other operations to change the shape of
windows, add, delete, and move them, change their order, and so forth, aswell asways for the
window system to suggest that newly exposed parts of windows be repainted, but we won't
consider any of these complications.

First we give the spec for awindow system initialized with n empty windows. It is customary to
call the coordinate system used by cet the screen coordinates. Thev.offset field givesthe
screen coordinate that correspondsto {o, o} inv.w. Thev.c(p) method below givesthe value
of v'swindow at the point corresponding to p after adjusting by v's offset. The state ws isjust the
sequence of v's. For simplicity weinitialize them all with the same offset {10, s}, whichisnot
too realistic.

get finds the smallest wn that is defined at p and uses that window’ s color at p. This corresponds
to painting the windows from last (biggest ww) to first with opague paint, which is what we
wanted. paint uses window rather than screen coordinates.

The state (the var) is a single sequence of windows.

TYPE WN = INO .. n-1 % Window Number
v = [w, offset: P] % window on the screen
WITH {c:=(\ v, p | v.w(p - v.offset))} % C of ascreenpointp

VAR ws ;= {1 :IN 0..n-1 | | v{{}, P{10,5}}} % the Window System
FUNC Get(p) -> C = VAR wn := {wn’ | V.c!(ws(wn’), p)}.min | RET ws(wn).c(p)
PROC Paint (wn, p, c¢) = ws(wn).w(p) := ¢

END Window

Now we give code that only keeps track of the visible color of each point (that is, it just keeps
the pixels on the screen, not al the pixelsin windows that are covered up by other windows). We
only keep enough state to handle cet and paint.

The state is onew that represents the screen, plus an exposed variable that keeps track of which
window is exposed at each point, and the offsets of the windows. Thisis sufficient to implement
Get and paint; to deal with erasing points from windows we would need to keep more
information about what other windows are defined at each point, so that exposed would have a
typer -> seT wn. Alternatively, we could keep track for each window of whereit is defined.

Handout 3. Introduction to Spec 37

6.826—Principles of Computer Systems 2004

Real window systems usually do this, and represent exposed as a set of visible regions of the
various windows. They aso usually have a ‘background’ window that covers the whole screen,
so that every point on the screen has some color defined; we have omitted this detail from the
spec and the code.

We need a history variable wx that contains thew part of al the windows. The abstraction
function just combines wi and of fset to make ws. The important properties of the code are
contained in the invariant, from which it's clear that cet returns the answer specified by
window.Get. Another way to do it isto have ahistory variable wsu that is equal to ws. This
makes the abstraction function very simple, but then we need an invariant that says of fset (wn)
- wsH(n) .offset. Thisis perfectly correct, but it'susually better to put aslittle stuff in history
variables as possible.

MODULE WinImpl EXPORT Get, Paint =

VAR w := W{} % no points defined
exposed : P -> WN := {} % which wn shows at p
offset := {i :IN 0..n-1 | | P(5, 10)} %
wH := {1 :IN 0..n-1 | | W{}} % history variable

ABSTRACTION FUNCTION ws = (\ wn | V{w := wH(wn), offset := offset(wn)})

INVARIANT
(ALL p | w!p = exposed!p

/\ (w!p == {wn | V.c!(ws(wn), p)}.min = exposed(p)

>
/\ w(p) = ws(exposed(p)).c(p)))

Theinvariant says that each visible point comes from some window, exposed tells the topmost
window that definesit, and its color isthe color of the point in that window. Note that for
convenience the invariant uses the abstraction function; of course we could have avoided this by
expanding it in line, but there is no reason to do so, since the abstraction function is a perfectly
good function.

FUNC Get (p) -> C = RET w(p)

PROC Paint (wn, p, c) =
VAR p0 | p = p0 - offset(wn) => % the screen coordinate
IF wn <= exposed(p0) => w(p0) := c; exposed(p0) := wn [*] SKIP FI;
wH (wn) (p) := ¢ % update the history var
END WinImpl

Handout 3. Introduction to Spec 38

Operators (85, §9)

Op Pr
. 9
Is 8
As 8
* % 8
* 7
/ 7
/T
+ 6
- 6
! 6
1l 6

5
= 4
g4
== 4
<= 4
<<= 4
IN 4
~ 3
/\ 2
\/ 1
==> 0

Type
Any
Any
Any
Int
Int
Set
func
relation
Int
Int
Int
Set
func
Seq
Int
Set
Seq
func
func
Int
Any
Any
Seq
Int
Set

seq
seq
set/seq
Bool
Bool
Bool
Bool

Operators associate to the left.

Expression forms (§ 5)

Spec Summary

Methods (8 9)
X op y is set Ops * + - <= IN,op:
x'sy field/method size number of members
does x have type y? choose somemember of s
x with type y seq s as some sequence
Y pred s.pred(x) = (x € g)
x Xy fmax/min some max/min by £,
X My (intersection) max/min somemax/minby <=
composition set/seq perms set of all permsof sg
composition fsort Sq sorted (g stably) by £,
x/y rounded to O sort sq sorted (q stably) by <=
mod: x — (x/y)*y func Ops * + ! !
x +y dom, rng Fiomai n, range
X U y (union) inv inverse
overlay restrict domainto set s,
concatenation rel r(x,y) = (E(x)=y)
x -y predicate set s ={x | pred(x)}
st difference relation Ops: * and func +
multiset diff dom, rng domain, range
x defined at v inv inverse
x 1y A x(y) not ex setFr £(x) = {y | x(x,v)}
seq {X, x+1,..., y} fun f(x) = setF(}f).choose
X =y graph isPath isqg,apathing?
x £y closure transitive closure of g
x = y as multisets seq Ops: + - .. <= <<= IN, 0p:, func * !
x <y "3"3;;3399 4 size number of elements
Seq an
X C vy (subset) func above head q(o)
x aprefix of y tail {a(),..alq.size-1)}
x asub-seq of y remh remove head = tail
X € y (member) last d(qg.size-1)
not x (unary) reml {a(0),....a(q. size-2)}
X A Yy (and) sub {a(i)m.ais)}
X Vv y(on seg {a(is)s..}, i, elements
x impliesy fill i, copiesof x;
lexLE g lexicaly <= q; by £,%
count number of x,'sing
tuple tuple with g’ s values
tuple seq seq with tu’svalues
type all set of values of the type

f(e) func
op : sq set/seq
(ALL x | pred) Bool
(EXISTS x | pred) Bool
(pred =>e; [*] e,) Any
Constructors (8 5)

{ei,...eq} set
{i:Nat | 1<3 | i**2}

f{e;, -> ey} func
£{* -> e}

(\i:Int | i<3)

{ei, . en} Seq
{i INO L5]| ix*2}
{i:=0BY i+1 WHILE i<6| [i**2}
(e1,..epn) tuple
r{fi:=ey,.., fa:=€,} record

function invocation
sg(o) op sqg(1)..
pred (x;) A..Apred(xy,)
pred(x;) V..vpred(x,)
e, ifpredesee,

with these members

of i¥’swherei<3
fexcept=e,atarge;
= e a every arg
lambda (also L.aMBDA)
of e’sinthisorder
{0,1,4,9,16,25}
same

of e’sinthisorder
rexceptf, =e; ...

Types (8 4)

Any,Null, Bool, Int, basic

Nat, Char, String
SET T, IN s

T, -> T,

APROC T, -> T,
PROC T, -> T,
SEQ T

(Ty, ..., Tw)
[f1: Ty, ., £0: Tal
(T7 + .. + Ty)

T WITH {my:=f,,..
T SUCHTHAT pred

Commands (§86) Pr

SKIP, HAVOC,
RET e, RAISE ex

p(e)

X:=e, x:=p(e),
(x1, ...) :=e

c, EXCEPT ex=>cC,

Ci1 ;7 C2

VAR n: T | ¢

pred => c

cy [1] Cz

cy [*] <

<< C >>

BEGIN c¢ END

IF ¢ FI

DO ¢ OD

}

OQOFRPEFPNW

set
func
procs

SEq

tuple

record

union

add methods
limit values

simple

invocation
assignment

handle ex
sequential
new var n

if (quarded cmd)
Or (ND choaice)
else

atomic c
brackets

loop until fail

Command operators associate to the left,
but EXCEPT associates to the right.

Modules (8 7)
MODULE/CLASS M
[Ty WITH {my: T11->T1z, e}, -]
EXPORT 1, .. =
TYPE T, = SET T,
T, = ENUMI[n,,..]
CONST n: T := e
VAR n: T := e
EXCEPTION ex = {eXji, ..} + Xy + ..
FUNC f(n,: T;,..) -> T=cC

APROC, PROC, THREAD similarly

END M

Naming conventions (except in ‘ Operators’)

c command
e expression
ex exception

£ function, field
g graph

i Int

m method

n name

X H®n RK.Q DO

op

r

operator
proccedure
precedence
seguence
record, relation
set

type

Any

ith extraargument of amethod, or

one of severa like non-terminalsin arule
8§ asection of the Spec reference manual

How to Write a Spec

Figure out what the stateis.

Choose the state to make the spec ssmple and clear, not to match the code.
Describe the actions.

What they do to the state.

What they return.

Helpful hints

Notation isimportant, because it helps you to think about what’ s going on.
Invent a suitable vocabulary.

Lessismore. Less state is better. Fewer actions are better.

More non-determinism is better, because it allows more different codes.
In distributed systems, replace the separate nodes with non-determinism in the spec.

Pass the coffee-stain test: people should want to read the spec.

I’msorry | wrote you such a long letter; | didn’t have time to write a short one. — Pascal

How to Design Code

Writethe specfirst.
Dream up theidea of the code.
Embody the key ideain the abstraction function.
Check that each code action simulates some spec actions.
Add invariants to make this easier. Each action must maintain them.
Change the code (or the spec, or the abstraction function) until this works.
Makethe code correct first, then efficient.
More efficiency means more complicated invariants.
Y ou might need to change the spec to get efficient code.
Measure first before making anything faster.

An efficient programis an exercise in logical brinkmanship. —Dijkstra

