6.826—Principles of Computer Systems 2004

4. Spec Reference Manual

Warning: A few changesto Spec having to do with relations have not made it into this manual.
In case of conflict, rely on Handout 3.

Spec is alanguage for writing specifications and thefirst few stages of successive refinement
towards practical code. As a specification language it includes constructs (quantifiers,
backtracking or non-determinism, some uses of atomic brackets) which areimpractica in final
code; they are there because they make it easier to write clear, unambiguous and suitably genera
specs. If you want to write apractical program, avoid them.

This document defines the syntax of the language precisely and the semantics informally. You
should read the Introduction to Spec (handout 3) beforetrying to read this manual. In fact,
this manua isintended mainly for reference; rather than reading it carefully, skim through it, and
then use the index to find what you need. For a precise definition of the atomic semantics read
Atomic Semantics of Spec. (handout 9). Handout 17 on Formal Concurrency gives the non-
atomic semantics semi-formally.

1. Overview

Spec is anotation for writing specs for a discrete system. What do we mean by aspec? It isthe
allowed sequences of transitions of a state machine. So Spec is a notation for describing
sequences of transitions of a state machine.

Expressions and commands
The Spec language has two essential parts:

An expression describes how to compute a value as a function of other values, either
constants or the current values of state variables.

A command describes possible transitions, or changes in the values of the state variables.

Both are based on the state, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the examples below they are i and 5.

There are two kinds of commands:

An atomic command describes a set of possible transitions. For instance, the command

<< i := 1 + 1 >>describesthetransitionsi=1—i=2, i=2—i=3, etc. (Actualy, many
transitions are summarized by i=1—i=2, forinstance, (i=1, j=1)—(i=2, j=1) and (i-=1,
j=15)—=(i=2, j=15)).f acommand alows more than one transition from a given state we
say it isnon-deterministic. For instance, thecommand, << i := 1 [] i := i + 1 >>
allowsthetransitions i=2—i=1 and i=2—i=3. More on thisin Atomic Semantics of Spec.

A non-atomic command describes a set of sequences of states. More on thisin Formal
Concurrency.

Handout 4. Spec Reference Manua 1

6.826—Principles of Computer Systems 2004

A sequential program, in which we are only interested in theinitial and final states, can be
described by an atomic command.

Spec’ s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra s
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra' s calculus, ACM TOPLAS 11, 4, Oct.
1989, pp 517-561). The notation for expressionsis derived from mathematics.

Organizing a program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

A routineis anamed computation with parameters (passed by value). There are four kinds:
A function is an abstraction of an expression.
An atomic procedure is an abstraction of an atomic command.
A general procedureis an abstraction of a non-atomic command.
A thread isthe way to introduce concurrency.

A typeisastylized assertion about the set of values that a name can assume. A typeisalso an
easy way to group and name a collection of routines, called its methods, that operate on
valuesin that set.

An exception is away to report an unusual outcome.

A module is away to structure the name space into atwo-level hierarchy. Anidentifier i
declared inamodulem isknown as i inm and asm. i throughout the program. A classisa
module that can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

Outline

This manual describes the language bottom-up:
Lexical rules
Types
Expressions
Commands
Modules

At the end there are two sections with additional information:
Scope rules
Built-in methods for set, sequence, and routine types.

Thereis aso an index. The Introduction to Spec has a one-page language summary.

Handout 4. Spec Reference Manua 2

6.826—Principles of Computer Systems 2004

2. Grammar rules

Nontermina symbols arein lower case; termina symbols are punctuation other than : : =, or are
quoted, or are in upper case.

Alternative choicesfor a nonterminal are on separate lines.
symbol+ denotes zero of more occurrences of symbol.

The symbol empty denotes the empty string.

If x isanonterminal, the nonterminal x1.ist isdefined by

xList ti= X
x , xList

A comment in the grammar runs from ¢ to the end of thelineg; thisisjust like Spec itself.

A [n] in acomment means that there is an explanation in anote labeled [n] that follows this chunk
of grammar.

3. Lexical rules

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation
() L1 {}, i : .| << s> :==>->1[1 [*].Symbolsmustnot have embedded white
space. They are dways taken to be as long as possible.

A literal isadecimal number such as 3765, aquoted character such as ' x’, or adouble-quoted
string such as "aello\n".

Anidentifier (i) is aletter followed by any number of |etters, underscores, and digits followed
by any number of ' characters. Caseissignificant in identifiers. By convention type and
procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword.
The predefined identifierSAny, Bool, Char, Int, Nat, Null, String, true, false, and
nil aredeclared in every program. The meaning of an identifier is established by a declaration;
see section 8 on scope for details. Identifiers cannot be redeclared.

By convention keywords are written in upper case, but you can write them in lower caseif you
like; the same strings with mixed case are not keywords, however. The keywords are

ALL APROC AS BEGIN BY CLASS
CONST DO END ENUM EXCEPT EXCEPTION
EXISTS EXPORT FI FUNC HAVOC IF

IN Is LAMBDA MODULE oD PROC
RAISE RAISES RET SEQ SET SKIP
SUCHTHAT THREAD TYPE VAR WHILE WITH

An operator is any sequence of the characters 1e#s*s*-+=: .<>2?/\ |~ except the sequences

| << >> := => -> (theseare punctuation), or one of the keyword operators as, 1n, and 1s.

A comment in a Spec program runs from a ¢ outside of quotes to the end of theline. It does not
change the meaning of the program.

Handout 4. Spec Reference Manua 3

6.826—Principles of Computer Systems 2004

4. Types

A type definesa set of values; we say that avaluev hastype if v isin T's set. The sets are not
digoint, so avalue can belong to more than one set and therefore can have more than one type.

In addition to its value set, a type also defines a set of routines (functions or procedures) called

its methods; a method normally takes a value of the type asits first argument.

An expression has exactly one type, determined by the rules in section 5; the result of the
expression hasthistype unlessit is an exception.

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. You
can skip them on first reading, or if you don’t care about type-checking.

About unions: If the expression e hastype T we say that e has aroutinetypew if T isaroutine
typew or if T isaunion type and exactly onetypew in the union is aroutine type. Under
corresponding conditions we say that e has a sequence or set type, or arecord type with afield £.

Two types are equal if their definitions are the same (that is, have the same parse trees) after all
type names have been replaced by their definitions and all wits clauses have been discarded.
Recursion is alowed; thus the expanded definitions might be infinite. Equal types define the
same value set. |deally the reverse would a so be true, but type equality is meant to be decided by
atype checker, whereas the set equality isintractable.

A typer fitsatypeu if the type-checker thinks they may have some valuesin common. This can
only happen if they have the same structure, and each part of T fits the corresponding part of v.
‘Fits' isan equivalencerelation. Precisdly, T fitsu if:

T = U.

TIST’ SUCHTHAT FOf (... + T’ + ...) and T fitsu, or vice versa. There may be no
values in common, but the type-checker can’t anayze the sucutHaT clauses to find out.

T and u are tuples of the same length and each component of T fits the corresponding
component of u.

T and u are record types, and for every dec1 id: T’ inT thereisacorresponding decl id:
u’ inusuchthat T fitsu-, or vice versa.

T=T1->T2 RAISES EXt and U-=U1->U2 RAISES EXu, Or Oneor both raTsES are missing, and
T1 fitsu1 and T2 fitsv2. Similar rules apply for proc and aproc types.

T=SET T’ and u=seT U’ and T fitsu’.
T = Int->T’ OFSEQ T' andu = sEg U’ and T’ fitsu’.
T includesu if the same conditions apply with “fits’ replaced by “includes’, al the “vice versa’

clauses dropped, and in the - > rule“ 1 fitsu1” replaced by “v1 includes T1 and ext is a superset
of Exu”. If T includes u then T’ svalue set includes u’ s value set; again, the reverseisintractable.

An expression e fitsatypeuv in state s if e'stypefits u and the result of e in state s hastypeu or
isan exception; in general this can only be checked at runtime unless u includes e’ stype. The
check that e fits T is required for assignment and routine invocation; together with afew other
checksit is called type-checking. The rules for type-checking are given in sections 5 and 6.

Handout 4. Spec Reference Manua 4

6.826—Principles of Computer Systems 2004 6.826—Principles of Computer Systems 2004
type name % name of atype The ambiguity of the type grammar is resolved by taking - > to be right associative and giving
"Any" % every value has this type wiThH and ra1ses higher precedencethan -».
"Null" % with value set {nil}
"Bool" % with valueset {true, false} [1] A sEo Tisjust afunction from {o, 1, ., size-1}toT. Thatis, itisshort for
"Char" % like an enumeration (Int->T) SUCHTHAT (\ f£: Int->T | (EXISTS size: Int |
"String" %= SEQ Char (ALL i: Int | £!i = (1 IN O .. size-1)))
"Int" % integers WITH { Seesection9 }.
"Nat" % naturals: non-negative integers This means that invocation, !, and * work for a sequence just as they do for any function. In
SEQ type zﬁ’ sequence [1] addition, there are many other useful operators on sequences; see section 9. The string typeis
SET type % set) just SEQ char; thereare string literals, defined in section 5.
(typeList) %tuple; (T) isthesameas T
[declList] Z/U record with declared fields [2] A T->u valueisapartial function from a state and avalue of type T to a value of typeu. A
(union) , % union of the types T->U RAISES xs valueisthe same except that the function may raise the exceptionsin xs.
aType -> type raises % function [2]
aType ->> type raises % relation [2] [3] Wesay m isamethod of T defined by £, and denote £ by T.m, if
APROC aType returns raises % atomic procedure
PROC aType returns raises % non-atomic procedure T =T WITH {..., m := £, ...} andmisanidentifier orisop" where op isan operator
type WITH { methodDefList } % attach methods to atype[3] (the construct in bracesis amethodDefList), or
type SUCHTHAT primary % restrict the value set [4]
IN exp %= T SUCHTHAT (\ t: T | t IN exp) T = T' WITH { methodDefList }, miSnotdefinedinmethodpefList, andmisamethod
% where exp’ stype has an IN method of T defined by £, or
id [typeList] % type from amodule [5]
T= (... + T + ...),nisamethod of T defined by £, and there is no other typein the
name id . id % the first id denotes amodule union with a method m.
id % short form. 14 if 1d is declared
%in the current module m, and for There are two special formsfor invoking methods: e1 infixop e2 Or prefixop e, and
. (‘;/"Glcﬁbal -idif id isdeclared globally el.id(e2) OFe.id Of e.id(). They are explained in notes[1] and [3] to the expression grammar
dect sze N +d ;’t,h;;d ’t‘;?"tf’d of type in the next section. This notation may be familiar from object-oriented languages. Unlike many
e oo %o rtfo) ifi Ypi a6 such languages, Spec makes no provision for varying the method in each object, though it does
’ alow inheritance and overriding.
i t t . .
anen uﬁin : 552 A methqd do&sn_’t have to be aroutine, though the specia formswon’t type-check unlessthe
method is aroutine. Any method m of T can bereferred to by T.m.
aType () . .
type If type u has method n, then the function typev - T->u hasalifted method n that composesu.m
returns empty % only for procedures with v, unless v already has am method. v. m is defined by
. -> type (v | (\t | v(t).m))
raises empty] . o sothatv.m = v * U.m For example, {va", "ab", "b"}.size = {1, 2, 1}.Ifmtakesa
RAISES exceptionSet ¥ the exceptionsilt can return second argument of type w, then v.m takes a second argument of typevv = T->w and is defined
. . . . on the intersection of the domains b lying m to the two results. Thusinthiscasev.mis
exceptionSet ::= { exceptionList } % aset of exceptions N\ v, vw | (\t:INv doz a/p\pzv %Sm | v(t) v (£)))) m
name % declared as an exception set ! ’ ’ ’ ’
except?onzet \% excei’?iogsit ;ﬁ’iﬁ?‘f‘m Lifting also works for relations to u, and therefore also for seT v. Thusifr = (T,U)->Bool and
exceptlionse - exceptionse (] ITTerence H H
, , N m returnstype x, r.m is defined by
exception = 1id % means "id Nr| A\t x| xIN{u| oz, w | un))
method i id sothatr.m = r * U.m.rel. If mtakes a second argument, then . m takes a second argument of
stringLiteral 9% the string must be an operator typerRrR = T->W, an(_j r.m(rr) relatest tou.m(w) whenever r relates t tow and rr relates t to w.
% other than "=" or "#" (see section 3) In other words, r.m is defined by
methodDef ::= method := name % name isaroutine N\ r, rr | (\t, x| xIN {u, w |, w /\ rr(t, w) | u.m(w)}))

If u doesn’t have a method m but Boo1 does, then the lifting is done on the function that defines
therdation, sothat r1 \/ r2 istheunion of therelations, r1 /\ r2 theintersection, r1 - r2
the difference, and ~r the complement.

Handout 4. Spec Reference Manua 5 Handout 4. Spec Reference Manua 6

6.826—Principles of Computer Systems 2004

[4] InT sucuTHAT £, £ isapredicateon T’s, that is, afunction (T -> Bool). Thetype
T SUCHTHAT f hasthe same methods as T, and its value set is the values of T for which £ istrue.
See section 5 for primary.

[5] If atypeisdefined by m[typeList] .id and m is a parameterized module, the meaning is
m’ .id Wherem’ isdefined by MODULE m’ = m([typeList] END m’.Seesection 7 for afull
discussion of thiskind of type.

[6] 1a isthe ia of atype, obtained from id by dropping trailing ' characters and digits, and
capitalizing thefirst letter or al theletters (it's an error if these capitalizations yield different
identifiers that are both known at this point).

Handout 4. Spec Reference Manua 7

6.826—Principles of Computer Systems 2004

5. Expressions

An expression isapartial function from states to results; results are values or exceptions. That is,
an expression computes aresult for a given state. The state is a function from namesto values.
This state is supplied by the command containing the expression in away explained later. The
meaning of an expression (that is, the function it denotes) is defined informally in this section.
The meanings of invocations and lambda function constructors are somewhat tricky, and the
informal explanation here is supplemented by aformal account in Atomic Semantics of Spec.
Because expressions don’t have side effects, the order of evaluation of operandsisirrelevant (but
see[5] and [13]).

Every expression has atype. The result of the expression isamember of thistypeif it isnot an
exception. This property is guaranteed by the type-checking rules, which require an expression
used as an argument, the right hand side of an assignment, or aroutine result to fit the type of the
formal, left hand side, or routine range (see section 4 for the definition of ‘fit’). In addition,
expressions appearing in certain contexts must have suitable types: ine1 (e2), e1 must have a
routinetype; in e1+e2, e1 must have atypewith a "+ method, etc. Theserules are given in
detail in therest of this section. A union typeis suitable if exactly one of the membersis suitable.
Also, if T issuitablein some context, soareT wiTH {... } and T SUCHTHAT f.

An expression can be aliteral, avariable known in the scope that contains the expression, or a
function invocation. The form of an expression determines both itstype and itsresult in a state:

literal hasthetypeand value of theliteral.

name hasthe declared type of name and its valuein the current state, state ("name"). The
form T.m (where T denotes atype) is aso a name; it denotes them method of T. Note that if
name iSid and id isdeclared in the current modulem, thenitisshort for m.ia.

invocation £ (e) : £ must have afunction (not procedure) typeu->T RAISES EX Of U->T (note
that a sequenceis afunction), and e must fit u; then £ (e) hastypeT. In more detail, if £ has
result £ and e hastypeu’ and result re, then v must fit u (checked statically) and re must
have type u (checked dynamically if u’ involves aunion or sucuTHaT; if the dynamic check
failstheresult isafatal error). Then £ (e) hastyper.

If either r£ or re isundefined, sois £ (e) . Otherwise, if either isan exception, that exception
istheresult of £ (e); if both are, x£ istheresult.

If both r£ and re are normal, theresult of r£ at re can be:
A normal value, which becomes theresult of £ (e) .

An exception, which becomes the result of £ (e) . If r£ isdefined by afunction body that
loops, theresult is a special looping exception that you cannot handle.

Undefined, in which case £ (e) isundefined and the command containing it fails (has no
outcome) — failureis explained in section 6.

A function invocation in an expression never affects the state. If the result is an exception,
the containing command has an exceptional outcome; for details see section 6.

The other forms of expressions (e. id, constructors, prefix and infix operators, combinations,
and quantifications) are all syntactic sugar for function invocations, and their results are obtained
by the rule used for invocations. Thereisasmall exception for conditionas[5] and for the
conditional logical operators /\,\/, and ==> that are defined in terms of conditionals[13].

Handout 4. Spec Reference Manua 8

6.826—Principles of Computer Systems

exp ::= primary
prefixOp exp
exp infixOp exp
infixOp : exp
exp IS type
exp AS type

literal
name

primary

primary . id

primary arguments
constructor

(exp)

(quantif declList | pred)
(pred => expq [*] expsy)

(pred => exp;)

literal ::= intLiteral
charLiteral
stringLiteral

arguments (expList)

()

constructor ::= { }
{ expList }
(expList)
name {1}
name expList }
primary fieldDefList }
primary { exp -> result }
primary { * -> result }
(LAMBDA signature = cmd)
(\ declList | exp)
{ declList | pred | exp }
{ segGenList | pred | exp }

{
{
{
{

fieldDef ::=1d := exp

result

empty
exp
RAISE exception

seqgGen ::=1d := exp BY exp WHILE exp
id :IN exp

pred 1= exp

quantif ::= ALL
EXISTS

Handout 4. Spec Reference Manua

%[1]

% [1]

% exp’s elements combined by op [2]
% (EXISTS x: type | exp = x)
% error unless (exp IS type) [14]

% method invocation [3] or record field
% function invocation

2004

% /\:{d | p}foraLL,\/ for EXISTS [4]

% if pred then exp; else exp;, [5]
% undefined if pred isfase

% sequence of decimal digits
% 'x', x aprinting character
% "xxx", with \ escapesasin C

% theargisthetuple (expList)

% empty function/sequence/set [6]

% sequence/set constructor [6]

% tuple constructor

% name denotes a func/seq/set type [6]

% name denotes a seg/set/record type [6]

% record constructor [7]

% function or sequence constructor [8]
% function constructor [8]

% function with the local state [9]

% short for (LAMBDA (d) - >T=RET exp) [9]

% set constructor [10]
% sequence constructor [11]

% the function is undefined
% the function yields exp
% the function yields exception

% sequence generator [11]

% predicate, of type Bool

6.826—Principles of Computer Systems

(precedence)
infixOp = k% % (8)
%
%
/%)
/7 % (7)
+ % (6)
%
%
- % (6)
%
%
! % (6)
1 % (6)
.. % (5)
<= % (4)
%
%
< % (4)
%
> % (4)
%
>= % (4)
%
= % (4)
% (4)
%
<<= % (4
IN % (4)
N %
%
Vo %
%
==> %(0)
op % (5)
prefixOp ti= - % (6)
~ % (3)
op % (5)

Handout 4. Spec Reference Manua

argument/result types

Int, Int)->Int
Int, Int)->Int
T->U, U->V)->(T->V) [12]
Int, Int)->Int
Int, Int)->Int
Int, Int)->Int
SEQ T, SEQ T)->SEQ T [12]
T->U, T->U)->(T->U) [12]
Int, Int)->Int
SET T, SET T)->SET T [12]
SEQ T, SEQ T)->SEQ T [12]
T->U, T)->Bool [12]
T->U, T)->Bool [12]
Int, Int)->SEQ Int [12]
Int, Int)->Bool
SET T, SET T)->Bool [12]
SEQ T, SEQ T)->Bool [12]

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(T, T)->Bool, T with <=

el<e2 = (el<=e2 /\ el#e2)

(T, T)->Bool, T with <=
el>e2 = e2<el

(T, T)->Bool, T with <=
el>=e2 = e2<=el

(Any, Any)->Bool [1]
(Any, Any)->Bool

el#fe2 = ~ (el=e2)
(SEQ T, SEQ T)->Bool [12]
(T, SET T)->Bool [12]
(Bool, Bool) ->Bool [13]
(SET T, SET T)->SET T [12]
(Bool, Bool) ->Bool [13]
(SET T, SET T)->SET T [12]
(Bool, Bool) ->Bool [13]
not one of the above [1]
Int->Int
Bool->Bool
not one of the above [1]

2004

operation

exponentiate
multiply

function composition
divide

remainder

add

concatenation
function overlay
subtract

set difference;
multiset difference
function is defined
func has normal value
subrange

less than or equal
subset

prefix

less than

greater than
greater or equal

equal
not equal

non-contiguous sub-seq
membership
conditional and
intersection

conditional or

union

conditional implies

negation
complement

10

6.826—Principles of Computer Systems 2004

The ambiguity of the expression grammar is resolved by taking the infixops to beleft
associative and using the indicated precedences for the prefixops and infixops (with 8 for 1s
and as and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The
precedence is determined by the operator symbol and doesn’t depend on the operand types.

[1] Themeaning of prefixop eiS T."prefixop" (e), WhereT ise’stype, and of

el infixOp e2iST1."infixOp" (el, e2),WhereT1 ise1’stype Thebuilt-intypesint (and
Nat with the same operations), Bool, sequences, sets, and functions have the operations given
in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than
Int and Bool. Special casel e1 IN e2 MEANST2."IN" (el, e2),WhereT2 ise2’stype.

Notethat the = operator does not require that the types of its arguments agree, since both are any.
Also, = and # cannot be overridden by wita. To define your own abstract equality, use a different
operator such as n==".

[2] The exp must havetypeseq T or seT T. Thevalueisthe elements of exp combined into a
singlevalue by infixop, Which must be associative and have an identity, and must also be
commutativeif exp isaset. Thus

+ : {i: Int | 0<i /\ i<5 | i**2} = 1 + 4 + 9 + 16 = 30,
and if s isasequence of strings, + : s isthe concatenation of the strings. For another example,
see the definition of quantificationsin [4]. Note that the entire set is evaluated; see[10].

[3] Methods can be invoked by dot notation.
Themeaningof e.id Ore.id() iST.id(e), WhereT ise’stype.
Themeaning of e1.id (e2) iST.id(el, e2),WhereTise1’stype.
Section 9 on built-in methods gives the methods for built-in types other than 1nt and Bool.

[4] A quantification isa conjunction (if the quantifier isary) or digunction (if it isex1sTs) of
thepred with the id’sin the dec1vnist bound to every possible value (that is, every valuein
their types); see section 4 for dec1. Precisely, (aLn. 4 | p) = /\ : {d | p}and

(ExisTs d | p) = \/ : {d | p}.All theexpressionsin these expansions are evaluated,
unlike e2 inthe expressionse1 /\ e2ande1 \/ e2 (see[10] and [13]).

[5] A conditiona (pred => e1 [*] e2) isnot exactly an invocation. If pred istrue, the result
istheresult of e1 even if e2 isundefined or exceptional; if pred isfalse, theresult isthe result of
e2 evenif e1 isundefined or exceptional. If pred isundefined, so isthe result; if pred raisesan
exception, that istheresult. If [*] e2 isomitted and pred isfase, the result is undefined.

[6] Inaconstructor {expList} each exp must have the same type T, the type of the
constructor iS (SEQ T + SET T), and itsvalueisthe sequence containing the values of the
expSin the given order, which can also be viewed as the set containing these values.

If expList isempty thetypeisthe union of al function, sequence and set types, and thevalueis
the empty sequence or set, or afunction undefined everywhere. If desired, these constructors can
be prefixed by aname denoting a suitable set or sequence type.

A congtructor T{e1, , en},wheretisarecordtype (f1: T1, ..., fn: Tn], isshortfor
arecord congtructor (see[7]) T{f1:=el, ..., fn:=en}.

[7] The primary must have arecord type, and the constructor has the sametype asitSprimary
and denotes the same value except that the fields named in the fie1dpefrist havethe given

Handout 4. Spec Reference Manua 11

6.826—Principles of Computer Systems 2004

values. Each value must fit the type declared for its id in the record type. Theprimary may aso
denote arecord type, in which case any fields missing from the fieldpefLnist are given
arbitrary (but deterministic) values. Thusif R=[a: Int, b: Int],R{a := 3, b := 4}isa
record of typer with a=3 andb=4,andr{a := 3, b := 4}{a := 5} isarecord of typer with
a=5 and b=4. If therecord typeis qudified by a sucuTraT, the fields get values that satisfy it,
and the constructor is undefined if that’s not possible.

[8] Theprimary must have afunction or sequence type, and the constructor has the same type as
itsprimary and denotes avalue equa to the value denoted by the primary except that it maps
the argument value given by exp (which must fit the domain type of the function or sequence) to
result (Which must fit therangetypeif it isan exp). For afunction, if result iSempty the
constructed function is undefined at exp, and if result iISRAISE exception, then exception
must bein thera1ses set of primary’ Stype. For aseguence result must not be empty or
RAISE, and exp must bein primary . dom Or the constructor expression is undefined.

In the » form the primary must be afunction type or afunction, and the value of the constructor
isafunction whose result is result at every value of the function’s domain type (the type on the
|eft of the ->). Thusif F= (Int->Int) and £=F{*->0}, then £ iszero everywhereand £ {4->1} is
zero except at 4, whereit is 1. If thisvaue doesn’t have the function type, the constructor is
undefined; this can happen if the type has a sucutHaT clause. For example, thetype can’'t bea
sequence.

[9] A LaMBDA constructor isastatically scoped function definition. When it isinvoked, the
meaning of the body is determined by thelocal state when the .amepa was evaluated and the
global state when it isinvoked; thisis ad-hoc but convenient. See section 7 for signature and
section 6 for cmd. The returns inthe signature may not be empty. Notethat afunction can’t
have side effects.

Theform (\ declrist | exp) isshortfor (LAMBDA (declList) -> T = RET exp),WhereT
isthetype of exp. See section 4 for dec1.

[10] A set constructor { declList | pred | exp } hastypeset T, whereexp hastypet
in the current state augmented by declrist; seesection 4 for decl. Itsvalueisaset that
contains x iff (Ex1sTs decliList | pred /\ x = exp).Thus

{i: Int | 0<i /\ i<5 | i**2} = {1, 4, 9, 16}
and both havetype seT 1nt. If pred isomitted it defaultsto true. If | exp isomitted it
defaultsto thelast id declared:

{i: Int | 0<i /\ i<5} = {1, 2, 3, 4}
Notethat if s isaset or sequence, 1n s isatype (see section 4), so you can write a constructor

like{i :18 s | i > 4} fortheelements of s greater than 4. Thisis shorter and clearer than
{i | 11Ns /\1i> 4}

If there are any values of the declared id’sfor which pred is undefined, or pred istrue and exp
isundefined, then the result is undefined. If nothing is undefined, the same holds for exceptions;
if more than one exception is raised, the result exception is an arbitrary choice among them.

[11] A sequence constructor { seqGenList | pred | exp } hastypeseg T, whereexp has
type T in the current state augmented by seqcentist, asfollows. The value of
{x1 := e01 BY el WHILE pl, ... , xn := eOn BY en WHILE pn | pred | exp}

Handout 4. Spec Reference Manua 12

6.826—Principles of Computer Systems 2004

isthe sequence which isthe value of result produced by the following program. Here exp has
typeT and result isafresh identifier (that is, one that doesn’t appear e sewherein the program).
There's an informal explanation after the program.

VAR x2 := €02, ..., xn := e0On, result := T{}, x1 := e0l |
DO pl => x2 := e2; p2 => ... => XN := en; pn =>
IF pred => result := result + {exp} [*] SKIP FI;
x1l := el
oD

However, eoi and ei arenot alowed to refer toxj if 5 > i. Thusthen sequences are unrolled
in parallel until one of them ends, asfollows. All but thefirst areinitialized; then thefirst is
initialized and al the others computed, then all are computed repeatedly. In each iteration, once
all the xi have been set, if pred istruethe value of exp is appended to the result sequence; thus
pred servesto filter theresult. As with set constructors, an omitted pred defaultsto true, and an
omitted | exp defaultsto | xn. An omitted wHILE pi defaultstowHILE true. An omitted
:= eoi defaultsto

:= {x: Ti | true}.choose

whereTi isthetype of ei; that is, it defaultsto an arbitrary value of theright type.

Thegenerator xi :IN ei generatesthe elements of the sequence ei in order. It is short for

j := 0 BY j + 1 WHILE j < ei.size, xi BY ei(j)
where j isafresh identifier. Note that if the : 1w isn't the first generator then the first element of
ei isskipped, which is probably not what you want. Note that : v in a sequence constructor
overridesthenormal use of 1n s asatype (see[10]).

Undefined and exceptional results are handled the same way as in set constructors.

Examples
{i := 0 BY i+l WHILE i <= n} =0..n= {0, 1, ..., n}
(r := head BY r.next WHILE r # nil | | r.val} theval fields of alist starting at head
{x :IN s, sum := 0 BY sum + x} partial sumsof s
{x :IN s, sum := 0 BY sum + x}.last + : s, thelast partiad sum
{x :IN s, rev := {} BY {x} + rev}.last reverseof s
{x :IN s | | £(x)} s * f
{i:IN1..n | 1 // 2#0 | i * 1} squares of odd numbers <= n
{i :IN 1..n, iter := e BY f(iter)} {£(e), £2(e), ..., f"(e)}

[12] These operations are defined in section 9.

[13] The conditional logical operators are defined in terms of conditionals:

el \/ e2 = (el => true [*] e2)
el /\ e2 = (~el => false [*] e2)
el ==> e2 = (~el => true [*] e2)

Thus the second operand is not evaluated if the value of the first one determines the resullt.

[14] as changes only the type of the expression, not itsvalue. Thusif (exp 1s type) thevalue
of (exp As type) isthevalue of exp, but itstypeis type rather than the type of exp.

Handout 4. Spec Reference Manua 13

6.826—Principles of Computer Systems 2004

6. Commands

A command changes the state (or does nothing). Recall that the state is a mapping from names to
values; we denote it by state. Commands are non-deterministic. An atomic command is one
thatisinside<<. . . >> brackets.

The meaning of an atomic command is a set of possible transitions (that is, arelation) between a
state and an outcome (a state plus an optional exception); there can be any number of outcomes
from a given state. One possibility is alooping exceptional outcome. Another is no outcomes. In
this case we say that the atomic command fails; this happens because all possible choices within
it encounter afalse guard or an undefined invocation.

If a subcommand fails, an atomic command containing it may still succeed. This can happen
because it’'s one operand of [1 or [*] and the other operand succeeds. If can also happen because
anon-deterministic construct in the language that might make a different choice. Leaving
exceptions aside, the commands with this property are [1and var (because it chooses arbitrary
values for the new variables). If we gave an operational semantics for atomic commands, this
situation would correspond to backtracking. In the relational semantics that we actualy give (in
Atomic Semantics of Spec), it corresponds to the fact that the predicate defining the relation isthe
“or” of predicates for the subcommands. Look there for more discussion of this point.

A non-atomic command defines a collection of possible transitions, roughly one for each
<<...>>command that is part of it. If it has simple commands not in atomic brackets, each one
aso defines a possible transition, except for assignmentSand invocationS. AN assignment
defines two transitions, one to evaluate the right hand side, and the other to change the value of
the left hand side. An invocation defines atransition for evaluating the arguments and doing
the call and one for evaluating the result and doing the return, plus all the transitions of the body.
These rules are somewhat arbitrary and their details are not very important, since you can aways
write separate commands to express more transitions, or atomic brackets to express fewer
transitions. The motivation for the rulesisto have as many transitions as possible, consistent
with the idea that an expression is evaluated atomically.

A complete collection of possible transitions defines the possible sequences of states or histories;
there can be any number of histories from a given state. A non-atomic command still makes
choices, but it does not backtrack and therefore can have historiesin which it gets stuck, even
though in other histories a different choice allowsit to run to completion. For the details, see
handout 17 on formal concurrency.

Handout 4. Spec Reference Manua 14

6.826—Principles of Computer Systems 2004

cmd ::= SKIP % [1]
HAVOC % [1]
RET %[2]
RET exp % [2]
RAISE exception %[9]
CRASH % [10]
invocation %[3]
assignment % [4]
cmd [1 cmd % or [5]
cmd [*] cmd % else[5]
pred => cmd % guarded cmd: if pred then cmd [5]
VAR declInitList | cmd % variable introduction [6]
cmd ; cmd % sequential composition

cmd EXCEPT handler % handle exception [9]

<< cmd >>
BEGIN cmd END

% atomic brackets [7]
% just brackets

IF cmd FI % just brackets [5]
DO cmd OD % repeat until cmd fails[8]
invocation ::= primary arguments % primary hasaroutine type[3]
assignment = lhs 1= exp % state := state{name -> exp} [4]
lhs infixOp := exp % shortfor lhs := lhs infixOp exp
lhs = invocation % of a PROC or APROC
(lhsList) := exp % exp atuplethat fits 1hsList
(lhsList) := invocation
lhs ::= name % defined in section 4
lhs . id % record field [4]
lhs arguments % function [4]
declInit ::= decl % initially any value of the type [6]
id : type := exp % initially exp, which must fit type [6]
id := exp %shortfor id: T := exp,where
% T isthetypeof exp
handler ::= exceptionSet => cmd % [9]. See section 4 for exceptionSet

The ambiguity of the command grammar is resolved by taking the command composition opera-
tions ;, 1, and [*] to beleft-associative and excepT to be right associative, and giving [1 and
[*] lowest precedence, => and | next (to theright only, since their left operand is an exp), ;
next, and excepT highest precedence.

[1] The empty command and sx1p make no changein the state. navoc produces an arbitrary
outcome from any state; if you want to specify undefined behavior when a precondition is not
satisfied, write ~precondition => HAVOC.

[2] A reT may only appear in aroutine body, and the exp must fit the result type of the routine.
The exp isomitted iff the returns of theroutin€' s signature isempty.

[3] For arguments See section 5. The argument are passed by value, that is, assigned to the
formals of the procedure A function body cannot invoke a proc or aproc; together with therule
for assignments (see [7]) this ensuresthat it can’t affect the state. An atomic command can
invoke an aproc but not aproc. A command is atomic iff it is<< cmd >, asubcommand of an

Handout 4. Spec Reference Manua 15

6.826—Principles of Computer Systems 2004

atomic command, or one of the simple commands sx1p, HAVOC, RET, Of RAISE. Thetype-
checking rule for invocationsisthe same asfor function invocationsin expressions.

[4] You can only assign to a name declared with var or in asignature. In an assignment the
exp must fit the type of the 1ns, or thereis afatal error. In afunction body assignments must be
to names declared in the signature or the body, to ensure that the function can’t have side effects.

An assignment to aleft hand side that is not a nameis short for assigning a constructor to a
name. In particular,

lhs (arguments) := exp iSshortfor 1hs := lhs{arguments-sexp}, and

lhs . id := expisshortfor ihs := 1hs{id := exp}.
These abbreviations are expanded repeatedly until 1hs iSaname.
In an assignment the right hand side may be an invocation (of aprocedure) aswell asan
ordinary expression (which can only invoke afunction). The meaning of 1hs := exp or
lhs := invocation iStofirst evaluate the exp or do the invocation and assign theresult to a
temporary variable v, and then do 1hs := v. Thusthe assignment command is not atomic unless
itisinside<<...>>.

If the left hand side of an assignment isa (1hsList), the exp must be atuple of the same
length, and each component must fit the type of the corresponding 1hs. Note that you cannot
write atuple constructor that contains procedure invocations.

[5] A guarded command failsif theresult of pred isundefined or false. Itisequivaent to cmd if
theresult of pred iStrue. A pred isjust aBoolean exp; see section 4.

s1 [] s2 choosesone of thesi to execute. It chooses one that doesn’t fail. Usually s1 and s2
will be guarded. For example,

x=1 => y:=0 [] x> 1 => y:=1Se{Sytooifx=1,t01 if x>1, and has no outcome if x<1. But
x=1 => y:=0 [] x>=1 => y:=1mightsetytooor1ifx=1.

s1 [*] s2isthesameassi unlesssi fails, in which caseit’sthe same ass2.

IF ... FI arejust command brackets, but it often makes the program clearer to put them
around a sequence of guarded commands, thus:

3
4
5

IF X < 0 =>y
[] X =0 =>Y
[*] Yy
FI

[6] In avar the unadorned form of dec11nit initializes anew variable to an arbitrary value of
the declared type. The : = form initializes anew variable to exp. Precisdly,

VAR id: T := exp | ¢
isequivalent to
VAR id: T | id := exp; ¢

The exp could also be a procedure invocation, asin an assignment.

Severa decl1nitsafter var isshort for nested vars. Precisely,
VAR declInit , declInitList | cmd

is short for
VAR declInit | VAR declInitList | cmd

Thisisunlike amodule, where al the names are introduced in parallel.

[7] In an atomic command the atomic brackets can be used for grouping instead of BecIN ...
END; since the command can’'t be any more atomic, they have no other meaning in this context.

Handout 4. Spec Reference Manua 16

6.826—Principles of Computer Systems 2004

[8] Execute cma repeatedly until it fails. If cma never fails, theresult is alooping exception that
doesn’'t have a name and therefore can’t be handled. Note that thisis not the same asfailure.

[9] Exception handling is asin Clu, but a bit simplified. Exceptions are named by literal strings
(which are written without the enclosing quotes). A module can also declare an identifier that
denotes aset of exceptions. A command can have an attached exception handler, which getsto
look at any exceptions produced in the command (by ra1sE or by an invocation) and not handled
closer to the point of origin. If an exception is not handled in the body of aroutine, it is raised by
the routin€’ sinvocation.

An exception ex must bein thera1ses set of aroutine r if either RATSE ex Or aninvocation of a
routinewith ex in itsrRa1sES Set occursin the body of r outside the scope of ahandler for ex.

[10] crasH stops the execution of any current invocations in the module other than the one that
executes the cras, and discards their local state. The same thing happens to any invocations
outside the module from within it. After crasy, no procedure in the module can be invoked from
outside until the routine that invokesit returns. crass is meant to be invoked from within a
special crash procedurein the module that models the effects of afailure.

7. Modules

A program is some global declarations plus a set of modul es. Each module contains variable,
routine, exception, and type declarations.

Module definitions can be parameterized with mformals after the module id, and a
parameterized module can be instantiated. Instantiation is like macro expansion: the formal
parameters are replaced by the arguments throughout the body to yield the expanded body. The
parameters must be types, and the body must type-check without any assumptions about the
argument that replaces aformal other than the presence of awiTa clause that contains al the
methods mentioned in the formal parameter list (that is, formals are treated as distinct from all
other types).

Each module is a separate scope, and thereis also aciobal scope for the identifiers declared at
thetop level of the program. Anidentifier id declared at the top level of a non-parameterized
modulen is short for m. id when it occursinm. If it @ppearsin the exports, it can be denoted by
m. id anywhere. When an identifier id that is declared globally occurs anywhere, it is short for
Global.id. Global cannot beused asamodule ia.

An exported id must be declared in the module. If an exported id hasawrTs clause, it must be
declared in the module as atype with at |east those methods, and only those methods are
accessible outside the modul g if thereisno wrTu clause, all its methods and constructors are
accessible. Thisis Spec’sversion of data abstraction.

Handout 4. Spec Reference Manua 17

6.826—Principles of Computer Systems

program tr=

module ti=

modclass A

exports
export

mformals ti=

mfp R

body ti=

toplevel ti=

routineDecl ::=

signature ti=

exSetDecl ti=

typeDecl ti=

toplevel* module* END
modclass id mformals

MODULE
CLASS

EXPORT exportList
id
id WITH {methodList}

empty

[mfpList]

id

id WITH { declList }

toplevelx*
id [typeList]

VAR declInitx*

CONST declInit¥*
routineDecl
EXCEPTION exSetDecl%*
TYPE typeDecl*

FUNC id signature =
APROC 1id signature =
PROC id signature =
THREAD id signature =

(declList) returns
() returns

id = exceptionSet

id = type
id = ENUM [idList]

exports

cmd
<<cmd>>

cmd

cmd

raises
raises

= body END id

% [4]

% see section 4 for method

% module formal parameter
% see section 4 for decl

% id must be the moduleid
% instance of parameterized module

% declaresthe dec1 ids[1]

% declares the dec1 ids as constant
% declaresthe routine id

% declares the exception set ids

% declaresthe type idsand any

% idsin ENUMS

% function

% atomic procedure

% non-atomic procedure

% one thread for each possible
% invocation of the routine [2]
% see section 4 for returns
% and raises

% see section 4 for exceptionSet

% see section 4 for type
% avaueisoneof the 1d’'s[3]

2004

[1] The":= exp” inadeclinit (defined in section 6) specifiesaninitial value for the variable.

The exp is evaluated in a state in which each variable used during the evaluation has been

initialized, and the result must be a normal value, not an exception. The exp seesall the names

known in the scope, not just the ones that textually precede it, but the relation “ used during

evaluation of initial values’ on the variables must be a partial order so that initialization makes

sense. Asin an assignment, the exp may be a procedure invocation as well as an ordinary

expression. It'safatal error if the exp is undefined or the invocation fails.

[2] Instead of being invoked by the client of the module or by another procedure, athread is

automatically invoked in parallel once for every possible value of its arguments. Thethread is
named by the id in the declaration together with the argument values. So

VAR sum :=
THREAD P (i:
VAR t | t

0,

count := 0

Int) =1 INO .. 9 =>

:= F(i); <<sum := sum + t>>; <<count := count + 1>>

Handout 4. Spec Reference Manua

18

6.826—Principles of Computer Systems 2004

addsup thevaluesof r(0) ... r(9) inparalel. It createsathread p (i) for every integer i; the
threadse (o), , p(9) for whichthe guard istrueinvoker (o), , F(9) inparale and
total the resultsin sum. When count = 10 thetotal is complete.

A thread is the only way to get an entire program to do anything (except evaluate initializing
expressions, which could have side effects), since transitions only happen as part of some thread.

[3] Theid'sinthelist are declared in the module; their type is the exum type. There are no
operations on enumeration values except the ones that apply to al types: equality, assignment,
and routine argument and result communication.

[4] A classis shorthand for a module that declares a convenient object type. The next few
paragraphs specify the shorthand, and the last one explains the intended usage.

If the class id isobj, the module 1d isobjMod. Each variable declared in atop level var inthe
class becomes afield of the objrec record type in the module. The module exports only atype
obj that isaso declared globally. obj indexes a collection of state records of type objrec stored
in the modul€ s obis variable, which isafunction obj - >objRrec. 0bj’'s methods are all the
names declared at top level in the class except the variables, plus the new method described

bel ow; the exported obj’'s methods are all the ones that the class exports plus new.

To make a class routine suitable as a method, it needs access to an objrec that holds the state of
the object. It gets this access through ase1£ parameter of type obj, which it usesto refer to the
object state objs (self). To carry out this scheme, each routine in the module, unlessit appears
inawrTH clausein the class, is ‘objectified’ by giving it an extraself parameter of typeobj. In
addition, in aroutine body every occurrence of avariablev declared at top level in the classis
replaced by objs (self) .v inthe module, and every invocation of an objectified class routine
getsself asan extrafirst parameter.

The module also gets a synthesized and objectified stanew procedure that adds a state record to
objs, initializesit from the class' s variable initializations (rewritten like the routine bodies), and
returnsits obj index; this procedure becomes the new method of obj unlessthe class aready has
anew routine.

A class cannot declare a THREAD.

The effect of thistransformation is that a variable obj of type obj behaves like an object. The
state of the object isobjs (obj). Theinvocation obj .m OF obj .m(x) isshort for objMod.m(obj)
Or objMod.m (obj, x) by theusual rulefor methods, and it thus invokes the method m; inw'’s
body each occurrence of a class variable refersto the corresponding field in obj’s state.

obj.new () returnsanew and initialized obj object. The following example shows how aclassis
transformed into amodule.

Handout 4. Spec Reference Manua 19

6.826—Principles of Computer Systems 2004

CLASS Obj EXPORT T1, f, p, .. = MODULE ObjMod EXPORT Obj WITH {T1, f, p, new

TYPET1 = .. WITH {add:=AddT}
CONST ¢ := ..

TYPE T1 = ..
CONST c := ..

WITH {add:=AddT}

VAR v1:Tl:=ei, v2:T2:=pi(vl), .. TYPE ObjRec = [vl: T1l, v2: T2, ..

} o=

Obj = Int WITH {T1, c, f:=f, p:=p,
AddT:=AddT, .., new:=StdNew}
VAR objs: Obj -> ObjRec := {}
FUNC f (pl: RT1, ..) = .. vl .. FUNC f (self: Obj, pl: RT1, ..) = .. objs(self).vl ..
PROC p(p2: RT2, ..) = .. V2 .. PROC p(self: Obj, p2: RT2, ..) = .. objs(self).v2

FUNC AddAT(tl, t2) = .. FUNC AddAT(tl, t2) = .. %inTl’SWITH,SOnOtObje()tifi
PROC StdNew(self: Obj) -> Obj =
VAR obj: Obj | ~ obj IN objs.dom =>
objs (obj)

ObjRec{};
ei;
pi(objs(obj) .v1) ;

objs (obj) .v1
objs (obj) .v2

RET obj

END Obj END ObjMod

TYPE Obj = ObjMod.Obj

In abstraction functions and invariants we also write obij . n for field n in obj’s state, that is, for
ObjMod.objs (obj) .n.

8. Scope

The declaration of an identifier is known throughout the smallest scope in which the declaration
appears (redeclaration is not alowed). This section summarizes how scopes work in Spec; terms
defined before section 7 have pointers to their definitions. A scopeis one of

thewhole program, in which just the predefined (section 3), module, and globally declared
identifiers are declared;

amodule;
the part of aroutineDecl OF LAMBDA expression (section 5) after the =;
thepart of avar declinit | cmd command &fter the | (section 6);
the part of aconstructor or quantification after thefirst | (section 5).
arecord type Or methodDefList (Section 4);

An identifier is declared by

amodule id, mfp, Or toplevel (for types, exception sets, Exum elements, and named
routines),

adecl inarecord type (section 4), | constructor oOr quantification (section 5), declInit
(section 6), routine signature, or WITH clause of amfp, or

amethodpef inthewrTH clause of atype (section 4).

Handout 4. Spec Reference Manua 20

6.826—Principles of Computer Systems 2004

An identifier may not be declared in ascope whereit is aready known. An occurrence of an
identifier id always refersto the declaration of id which is known at that point, except when id
isbeing declared (precedes a :, the = of atoplevel, the : = of arecord constructor, or the : = or
BY iN @seqgCen), Of follows adot. There are four cases for dot:

moduleId . id— theid must be exported from the basic module module1d, and this
expression denotes the meaning of id in that module.

record . id — theid must be declared asafield of the record type, and this expression
denotesthat field of record. In an assignment’S1hs See[7] in section 6 for the meaning.

typeld . id—thetype1d denotesatype, id must be a method of thistype, and this
expression denotes that method.

primary . id— the id must be amethod of primary’stype, and this expression, together
with any following arguments, denotes an invocation of that method; see[2] in section 5 on
expressions.

If ia refersto an identifier declared by atop1evel in the current modulem, it is short for m. id.

If it refersto an identifier declared by atoplevel intheprogram, itisshort for clobal.id.
Once these abbreviations have been expanded, every name in the state is either global (contains a
dot and isdeclared in atoplevel), or local (does not contain adot and is declared in some other
way).

Exceptions look like identifiers, but they are actually string literals, written without the enclosing
quotes for convenience. Therefore they do not have scope.

9. Built-in methods

Some of the type constructors have built-in methods, among them the operators defined in the
expression grammar. The built-in methods for types other than 1nt and Boo1 are defined below.
Note that these are not compl ete definitions of the types; they do not include the constructors.

Sets
A set has methods for

computing union, intersection, and set difference (lifted from Boo1; see note 3 in section 4),
and adding or removing an element, testing for membership and subset;

choosing (deterministically) a single element from a set, or a sequence with the same
members, or a maximum or minimum element, and turning a set into its characteristic
predicate (the inverseis the predicate' s set method);

composing a set with afunction or relation, and converting a set into arelation fromni1 to
the members of the set (theinverse of thisisjust therange of therelation).

We define these operations with a module that represents a set by its characteristic predicate.
Precisely, seT T behaves asthough it were set [T] . s, where

Handout 4. Spec Reference Manua 21

6.826—Principles of Computer Systems 2004

MODULE Set [T] EXPORT S =

TYPE S = Any->Bool SUCHTHAT (\ s | (ALL any | s(any) ==> (any IS T)))
% Defined everywhere so that type inclusion will work; see section 4.
WITH {"\/":=Union, "/\":=Intersection, "-":=Difference,
"IN":=In, "<=":=Subset, choose:=Choose, seqg:=Seq,

pred:=Pred, perms:=Perms, fsort:=FSort, sort:=Sort,
fmax:=FMax, fmin:=FMin, max:=Max, min:=Min

"*":=ComposeF, rel:=Rel, "**":=ComposeR }
FUNC Union(sl, s2)->S = RET (\ t | s1(t) \/ s2(t)) %sl \/ s2
FUNC Intersection(sl, s2)->S = RET (\ t | sl(t) /\ s2(t)) %sl /\ s2
FUNC Difference(sl, s2)->S = RET (\ t | sl(t) /\ ~s2(t)) %sl - s2
FUNC In(s, t)->Bool = RET s(t) %t IN s
FUNC Subset (sl, s2)->Bool = RET (ALL t\ sl(t) ==> s2(t)) %sl <= s2
FUNC Size(s)->Int %s.size

VAR t | s(t) => RET Size(s-{t}) + 1 [*] RET 0
FUNC Choose (s) ->T = VAR t | s(t) => RET t % s .choose
% Not really, since VAR makes a non-deterministic choice,

% but choose makes adeterministic one. It isundefined if s isempty.
FUNC Seq(s)->SEQ T = % s.seq
% Defined only for finite sets. Note that Seq chooses a sequence deterministically.

RET {g: SEQ T | g.rng = s /\ g.size = s.size}.choose
FUNC Pred(s)->(T->Bool) = RET s % s .pred
% s .predisjust s. We define pred for symmetry with seq, set, etc.

FUNC Perms (s)->SET SEQ T = RET s.seqg.perms % s .perms

FUNC FSort (s, f: (T,T)->Bool)->S = RET s.seq.fsort (f) % s.fsort (f); £ iscompare
FUNC Sort (s)->S = RET s.seq.sort % s .sort; onlyif T has <=
FUNC FMax(s, f: (T,T)->Bool)->T = RET s.fsort(f).last % s .fmax (f); amax under £
FUNC FMin(s, f: (T,T)->Bool)->T = RET s.fsort(f).head % s.fmin (£); aminunder £
FUNC Max (s) ->T = RET s.fmax(T."<=") % s .max; only if T has <=
FUNC Min(s)->T = RET s.fmin(T."<=") % s .min; onlyif T has <=

% Note that these functions are undefined if s is empty. If there are extremal
% elements not distinguished by £ or "<=", they make an arbitrary deterministic choice.

FUNC ComposeF (s, f: T->U)->SET U = RET {t :IN s | | £(t)} %s * f;imageof s under £
% ComposeF by analogy with sequences, where ordinary function composition applies pointwise to the elements.
FUNC Rel(s) -> ((Null, T)-»>Bool) = RET (\ null, t | t IN s)

% s .rel relatesnil to every element of s
FUNC ComposeR(s, r: (T, U)->Bool)->SET U = RET(s.rel*r).rng %s ** r;imageof s under r

% ComposeRr isrelational composition: anything you can get to by r, starting with amember of s. We could have written it

explicitly: {t :IN s, u | r(t, u) | u},oras\/ : (s * r.setF),oras(s.rel * r).rng
END Set
There are constructors { } for theempty set, {e1, e2, ...} for aset with specific e ements, and

{declList | pred | exp} for aset whose elements satisfy a predicate. These constructors are
described in [6] and [10] of section 5. Notethat {t | p}.pred = (\ t | p),andsimilarly (\ t
| p).set = {t | p}. A method on T islifted to amethod on s, unless the name conflicts with
one of s’smethods, exactly likeliftingon s.re1; seenote 3 in section 4.

Functions
Thefunction typesT->u and T->U RAISES xs have methodsfor

composition, overlay, inverse, and restriction;

Handout 4. Spec Reference Manua 22

6.826—Principles of Computer Systems 2004

testing whether afunction is defined at an argument and whether it produces a normal (non-
exceptiona) result at an argument, and for the domain and range;

converting afunction to arelation (theinverseisthereation’s func method) or afunction
that produces a set to arelation with each element of the set (setrel; theinverseisthe
relation’s setF method).

In other words, they behave as though they were Function[T, Ul .F, Where (making allowances
for the fact that xs and v are pulled out of thin air):

MODULE Function[T, U] EXPORT F =

TYPE F = T->U RAISES XS WITH {"*"::Compose, "+":=Overlay,
inv:=Inverse, restrict:=Restrict,
"iv:=Defined, "!!":=Normal,
dom:=Domain, rng:=Range, rel:=Rel, setRel::SetRel}
R = (T, U) -> Bool

FUNC Compose (£, g: U -> V) -> (T -> V) = RET (\ t | g(f(t)))
% Note that the order of the argumentsis reversed from the usual mathematical convention.

FUNC Overlay(fl, f2) -> F = RET (\ t | (f2!t => f2(t) [*] £1(t)))
% (f1 + £2) isf2 (x) if that isdefined, otherwise £1 (x)

FUNC Inverse(f) -> (U -> T) = RET f.rel.inv.func
FUNC Restrict(f, s: SET T) -> F = RET (\ t | (t IN s => £(t))

FUNC Defined(f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET true

FUNC Normal (£, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET false

FUNC Domain(f) -> SET T
FUNC Range (f) -> SET U

RET {t | f!t}
RET {t | £!!1t | £(t)}

FUNC Rel(f) -> R = RET (\ t, u | £(t) = u)
FUNC SetRel(f) -> ((T, V)-»Bool) = RET (\ t, v | (f!t ==> v IN f(t) [*] false))
%if U = SET V, f.setRel relateseach t in £.domtoeach element of £ (t).

END Function

Notethat there are constructors { } for the function undefined everywhere, T{* -> result} for
afunction of type T whosevalueis result everywhere and f{exp -> result} for afunction
which isthe same as £ except at exp, whereitsvalueis result. These constructors are described
in [6] and [8] of section 5. There are a so lambda constructors for defining a function by a
computation, described in [9] of section 5. A method on v is lifted to a method on 7, unlessthe
name conflicts with a method of r; see note 3 in section 4.

A total function T->Bool isa predicate and has an additional method to compute the set of T's
that satisfy the predicate (the inverseisthe set’s prea method). In other words, a predicate
behaves as though it were predicate [T] . P, Where

MODULE Predicate[T] EXPORT P =
TYPE P = T -> Bool WITH {set:=Set}

FUNC Set(p) -> SET T = RET {t | p(t)}
END Predicate

Handout 4. Spec Reference Manua 23

6.826—Principles of Computer Systems 2004

A predicatewith T = (u, v) isardation and has additional methodsto turn it into afunction u
-> vorafunctionu -> seT v, and to get its domain and range, invert it or compose it
(overriding the methods for afunction). In other words, it behaves as though it were
Relation[U, V] .R,where (allowing for thefact that wispulled out of thin air in compose):

MODULE Relation[U, V] EXPORT R =

TYPE R = (U, V) -> Bool WITH {func:=Func, setF:=SetFunc, dom:=Domain, rng :=Range,
inv:=Inverse, "*":=Compose}

FUNC Func(r) -> (U -> V) =
% Func (r) isdefined at u iff r relatesu toasingle v.

RET (\ u | (r.setF(u).size = 1 => r.setF(u).choose))
FUNC SetFunc(r) -> (U -> SET V) = RET (\ u | {v | r(u, v)})
% SetFunc (r) isdefined everywhere, returning the set of v'srelated to u.

FUNC Domain(r) -> SET U = RET {u, v | r(u, v) | u}
FUNC Range (r) -> SET V = RET {u, v | r(u, v) | v}

FUNC Inverse(r) -> ((V, U) -> Bool) = RET (\ v, u | r(u, v))

FUNC Compose(r: R, s: (V, W)->Bool) -> (U, W)->Bool =
RET (\ u, w | (EXISTS v | r(u, v) /\ s(v, w)))

END Relation
A method on v islifted to a method on r, unless there's aname conflict; see note 3 in section 4.

A relation withu = visagraph and has additional methods to yield the sequences of v’ sthat are
pathsin the graph and to compute the transitive closure. In other words, it behaves as though it
Were Graph [U] .G, where

MODULE Graph[T] EXPORT G =

TYPE G = (T, T) -> Bool WITH {paths:=Paths, closure:=TransitiveClosure }
P =SEQT
FUNC Paths(g) -> SET P = RET {p | (ALL i :IN p.dom - {0} | g(p(i-1), p(i)))}

% Any p of size<= 1 isapath by this definition.
FUNC TransitiveClosure(g) -> G = RET (\ tl, t2 |
(EXISTS p | p.size > 1 /\ p.head = t1 /\ p.last = t2 /\ p IN g.paths))

END Graph
Sequences
A function is called a sequenceif itsdomain is afinite set of consecutive 1nt’s starting at 0, that
is, if it hastype
Q = Int -> T SUCHTHAT (\ g | (EXISTS size: Int | g.dom = (0 .. size-1).rng))

We denote this type (with the methods defined below) by seo T. A sequenceinheritsthe
methods of the function (though it overrides +), and it aso has methods for

detaching or attaching thefirst or last element,

extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same

making a sequence into atuple (rng makesit into a set),

testing for prefix or sub-sequence (not necessarily contiguous),

Handout 4. Spec Reference Manua 24

6.826—Principles of Computer Systems 2004

composing with arelation (seo T inherits composing with a function),

lexical comparison, permuting, and sorting,

tresting a sequence as a multiset with operations to:
count the number of times an element appears, test membership and multiset equality,
take differences, and remove an element ("« or »\ /" isunion and add1 adds an
element).

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence
isalways defined regardless of the subscripts, by taking the largest number of elements allowed
by the size of the sequence.

We define the sequence methods with amodule. Precisely, sEQ T iSsequence[T] .Q, where:

MODULE Sequence [T] EXPORTS Q =

TYPE I = Int
Q = (I ->T)
SUCHTHAT (\ q | (ALL i | g!i = (0 <= i /\ i < g.size)))

WITH { size:=Size, seg:=Seg, sub:=Sub, "+":=Concatenate,
head:=Head, tail:=Tail, addh:=AddHead, remh:=Tail,
last:=Last, reml:=RemoveLast, addl:=AddLast,
£ill:=Fill, tuple:=Tuple,

"<=":=Prefix, "<<=":=SubSeq,
"kx 1. =ComposeR, lexLE:=LexLE, perms:=Perms,
fsorter:=FSorter, fsort:=FSort, sort:=Sort,

% These methods treat a sequence as a multiset (or bag).

count :=Count, "IN":=In, "==":=EgElem,
"\/":=Concatenate, "-":=Diff, set:=Q.rng |}
FUNC Size(qg)-> Int = RET g.dom.size

FUNC Sub(g, il, i2) -> Q =

%qg.sub(il, i2); yidds{g(il),...,q(i2) },orashorter sequenceif i1 < 0ori2 >= g.size
RET ({0, il}.max .. {i2, g.size-1}.min) * g

FUNC Seg(q, i, n: I) -> Q = RET g.sub(i, i+n-1) %g.seg(i,n);n T'sfromqg(i)

FUNC Concatenate(qgl, g2) -> Q = VAR g | %ql + g2
g.sub(0, gl.size-1) = gl /\ g.sub(gl.size, g.size-1) = g2 => RET g

FUNC Head(q) -> T = RET g(0) % g.head; first element

FUNC Tail(qg) -> Q = %qg.tail; dlbutfirst
g.size > 0 => RET g.sub(l, g.size-1)

FUNC AddHead(q, t) -> Q = RET {t} + g %qg.addh(t)

FUNC Last(g) -> T = RET g(g.size-1) % qg.last; last element

FUNC Removelast(g) -> Q = % g.reml; al but last

g # {} => RET g.sub(0, g.size-2)

FUNC AddLast(qg, t) -> Q = RET g + {t} % q.addl (t)
FUNC Fill(t, n: I) -> Q = RET {i :IN 0 .. n-1 | | t} %yieldsi copiesof t
FUNC Prefix(ql, g2) -> Bool = %gl <= g2

RET (EXISTS q | gl + q = g2)

FUNC SubSeq(gl, g2) -> Bool =
% Are gl’selementsin g2 in the same order, not necessarily contiguously.

%qgl <<= g2

Handout 4. Spec Reference Manua 25

6.826—Principles of Computer Systems 2004

RET (EXISTS p: SET Int | p <= g2.dom /\ gl = p.seqg.sort * g2)

FUNC ComposeR(qg, r: (T, U)->Bool) -> SEQ U = %qg ** r
% Elements related to nothing are dropped. If an element is related to several things, they appear in arbitrary order.
RET + : (g * r.setF * (\s: SET U | s.seq))

FUNC LexLE(qgl, g2, f: (T,T)->Bool) -> Bool =
% 1sq1 lexicaly lessthan or equal to g2. Trueif g1 isaprefix of g2,
% or thefirst element in which g1 differsfrom g2 isless.
RET gl <= g2
\/ (EXISTS i :IN gl.dom /\ g2.dom | gl.sub(0, i-1) =
/\ ql(i) # g2(i)) /\

%qgl.lexLE(g2, f); fis<=

g2.sub(0, i-1)
f(gql(i), g2(i))

FUNC Perms (q) ->SET Q =
RET {q’ | (ALL t | g.count(t) = g’.count(t))}

% g .perms

FUNC FSorter(q, f: (T,T)->Bool)->SEQ Int = %q.fsorter(f);fis<:
% The permutation that sorts g stably. Note: can’t usemin to define this, sincemin isdefined using sort.
VAR ps := {p :IN g.dom.perms % all perms that sort g
| (ALL i :IN (g.dom - {0}) | £((p*q) (i-1), (p*q) (1))) } |
VAR p0 :IN ps | % the one that reorders the least
(ALL p :IN ps | p0.lexLE(p, Int."<=")) => RET pO

FUNC FSort (g, f: (T,T)->Bool) -> Q =
RET q.fsorter(f) * g
FUNC Sort(qg)->Q = RET g.fsort(T.”<=")

%qg.fsort (f); fis<= forthesort

% qg.sort; onlyif T has<=

FUNC Count (g, t)->Int = RET {t' :IN g | t' = t}.size %gqg.count (t)
FUNC In(t, g)->Bool = RET (g.count(t) # 0) %t IN gq
FUNC EgElem(gl, g2) -> Bool = RET gl IN g2.perms % gl == q2;equal asmultisets
FUNC Diff(gl, g2) -> Q = %ql - g2
RET {g | (ALL t | g.count(t) = {gl.count(t) - g2.count(t), 0}.max)}.choose

END Sequence

We can't program Tuple in Spec, but it isdefined asfollows. If g: sEo T,theng.tupleisa
tupleof q.size T's, thefirst equal to g (o), the second equal to g (1), and so forth. For the
inverse, if uisatupleof T's, then u.seqisaseg T suchthat u.seq.tuple = u. lfuisatuplein
which not al the elements have the same declared type, thenu.seq iSaseg any such that
u.seq.tuple = u.

nt hasamethod . . for making sequences. i .. j = {i, i+1, o313y 15 < 4,
i .. j = {}. Youcanalsowrite i jas{k := i BY k + 1 WHILE k <= j};sSee[11]in
section 5. 1nt dso hasaseq method: i.seq = 0 .. i-1.

Thereisaconstructor {e1, e2, ...} forasequence with specific elementsand a constructor
{} for the empty sequence. Thereisaso aconstructor g{e1 -> e2}, whichisequa to q except
a e1 (and undefined if e1 isout of range). For the constructors see [6] and [g] of section 5. To
generate a sequence there are constructors {x :IN q | pred | exp}and {x := el BY e2
WHILE predl | pred2 | exp}. Forthese see[11] of section 5.

To map each dement t of g to £ (t) usefunction compositiong * f£. Thusif q: sEQ 1Int,
g * (\ i: Int | ixi) yiedsasequence of squares. You can aso writethis
{i 1IN g | | i*i}.

Handout 4. Spec Reference Manua 26

6.826—Principles of Computer Systems

Index
-,9,19,21
1,9,22
11,9, 22
#,9,10
%, 3
(),3,8,16
(expList), 8
(typeList), 5

* 3,9, 21,22

**79

3,5

/,9

//,9

/\, 9,20

:, 8,14

:, 3,5

:=,3,8,14,18

;14

1,314

[declList], 5
[*1,3,8,14

[nl, 3

\, 8

\/, 9,20

{* -> result}, 8
{1,38

{declList | pred | exp}, 8
{exceptionList}, 5
{exp -> result}, 8
{expList}, 8
{methodpefList}, 5, 6
(1,21

{e1, e2, ...}, 21
[,3,14

~9

+ 5,919, 21, 22

>, 9

</<<, 14,16

<< >>,3

<<=,9,22

<=,19,21

=910

>, 9

> 3,8,14

Handout 4. Spec Reference Manua

->,3,5,8

>, 9

<=/>,9

>>, 14

abstract equality, 10
add, 9

add an element, 9
adding an element, 19, 22
addil, 22

ALL, 8

ambiguity, 10, 14
Any,5,10

append an element, 9
APROC, 5, 16

arguments, 8

As, 8

assignment, 14
associative, 6, 10, 14
atomic command, 1, 13, 14
atomic procedure, 2
Atomic Semantics of Spec, 1,
7,13

backtracking, 13

bag, 22

BEGIN, 14

body, 16

Bool, 5

built-in methods, 19
capital letter, 3

Char, 5

characteristic predicate, 19
choice, 14

choose, 19

choosing an element, 19
cLass, 16

class, 17

closure, 21

Clu, 15

cmd, 14

command, 1, 13
comment, 3
composition, 20
concatenation, 9
conditional, 10
conditional and, 9

2004

conditional or, 9
consT, 17
constructor, 8
count, 22

data abstraction, 6
decl, 5

declaration, 18
defined, 9, 20
difference, 22

divide, 9

Do, 14

dot, 18

e.id, 10

e.id(), 10

el infixop e2, 10
el.id(e2), 10

dse 14

empty, 3, 10

empty sequence, 22
empty set, 19

END, 14, 16

ENUM, 16

equal, 9

equal types, 4
EXCEPT, 14
exception, 5, 6, 7, 15, 16
exceptionSet, 5, 16
EXISTS, 8

exp,8

expanded definitions, 4
expression, 1,7
expression hasatype, 7
fail, 7, 13

FI,14

£i11, 22

fit, 4,7, 11, 14, 15
formal parameters, 16
FUNC, 16, 23
function, 2, 6, 14, 19, 20
function undefined
everywhere, 20
general procedure, 2
Global.id, 16, 18
grammar, 3

graph, 21

27

6.826—Principles of Computer Systems

greater or equal, 9
grester than, 9
grouping, 15
guard, 13, 14
handler, 14
has aroutine type, 4
hastypeT, 4
Havoc, 14
head,22
iqg, 3,6
id := exp, 8
id [typeList 1,5
identifier, 3
if, 14
implies, 9
1IN, 9,19, 22
includes, 4
infixop, 9
initial value, 17
initidize, 15
instantiate, 16
intersection, 9, 19
Introduction to Spec, 1
invocation, 7, 8, 10, 14
18,8
isEmpty, 22
isPath, 21
keyword, 3
known, 20
LAMBDA, 8, 11
last, 19
lessthan, 9
lexical comparison, 22
List, 3
literal, 3,7, 8
locadl, 18
logical operators, 12
looping exception, 7, 13
m[typeList].id, 6
max,19
meaning

of an atomic command, 13

of an expression, 7
membership, 9, 19
method, 4, 5, 6, 19
mfp, 16

Handout 4. Spec Reference Manua

min, 19

module, 2, 16

multiply, 9

multiset, 22

multiset difference, 9
name, 1, 5, 18

new variable, 15
non-atomic command, 2, 13
Non-Atomic Semantics of
Spec, 1
non-deterministic, 1
nontermina symbol, 3
normal result, 20

not equal, 9

Null, 5

op, 14

operator, 3, 6
OrderedSet,lg
organizing your program, 2
outcome, 13
parameterized module, 16
path in the graph, 21
precedence, 6, 9, 14
precondition, 14
pred,8,19

predefined identifiers, 3
predicate, 20

prefix, 9, 22

prefixop, 9

prefixop e, 10

primary, 8

PROC, 5, 16

program, 2, 16
punctuation, 3
quantif, 8
quantification, 10

quoted character, 3
RAISE, 8, 14

RAISE exception, 11
RAISES, 5,11

RAISES set, 15

record, 5, 10
redeclaration, 18

relation, 21

remove an element, 9, 19, 22
result, 7

2004

result type, 14

RET, 14

routine, 2, 14, 16
scope, 18

seg, 22

SEQ, 5, 6, 22

SEQ Char, 6
sequence, 22
sequential composition, 14
sequentia program, 2
SET, 5, 10, 11, 19, 20
set difference, 9, 19
set of sequences of states, 2
set of values, 4

set with specific elements, 19
setF, 21

side effects, 15
signature, 15, 16

SKIP, 14
specifications, 1

state, 1, 7, 13, 18

state machine, 1

state variable, 1
String, 5,6
stringLiteral, 5
sub-sequence, 9, 22
subset, 9, 19

subtract, 9

symbol, 3

syntactic sugar, 7
T.m,6,7

T—>U,6

tail, 22

terminal symbol, 3
test membership, 19, 22
thread, 17
toplevel, 16, 18
totalF, 21

transition, 1

transitive closure, 21
tuple, 5, 14, 15

tuple constructor, 8
type, 2, 4,5, 16

type equality, 4
typeinclusion, 4
type-checking, 4, 7, 14

28

6.826—Principles of Computer Systems

undefined, 7, 10, 13
UNION, 5,6, 7,9, 19, 22
upper case, 3

vaue, 1

variable, 1, 14, 15
white space, 3

WITH, 5, 6, 10, 16

Handout 4. Spec Reference Manua

2004

29

