4. Spec Reference Manual

Warning: A few changes to Spec having to do with relations have not made it into this manual. In case of conflict, rely on Handout 3.

Spec is a language for writing specifications and the first few stages of successive refinement towards practical code. As a specification language it includes constructs (quantifiers, backtracking or non-determinism, some uses of atomic brackets) which are impractical in final code; they are there because they make it easier to write clear, unambiguous and suitably general specs. If you want to write a practical program, avoid them.

This document defines the syntax of the language precisely and the semantics informally. You should read the Introduction to Spec (handout 3) before trying to read this manual. In fact, this manual is intended mainly for reference; rather than reading it carefully, skim through it, and then use the index to find what you need. For a precise definition of the atomic semantics read Atomic Semantics of Spec. (handout 9). Handout 17 on Formal Concurrency gives the nonatomic semantics semi-formally.

1. Overview

Spec is a notation for writing specs for a discrete system. What do we mean by a spec? It is the allowed sequences of transitions of a state machine. So Spec is a notation for describing sequences of transitions of a state machine.

Expressions and commands

The Spec language has two essential parts
An expression describes how to compute a value as a function of other values, either constants or the current values of state variables.

A command describes possible transitions, or changes in the values of the state variables.
Both are based on the state, which in Spec is a mapping from names to values. The names are called state variables or simply variables: in the examples below they are i and j.

There are two kinds of commands:
An atomic command describes a set of possible transitions. For instance, the command $\ll i \quad:=i+1 \gg$ describes the transitions $i=1 \rightarrow i=2, \quad i=2 \rightarrow i=3$, etc. (Actually, many transitions are summarized by $i=1 \rightarrow i=2$, for instance, $(i=1, j=1) \rightarrow(i=2, j=1)$ and $(i=1$, $j=15) \rightarrow(i=2, \quad j=15))$. If a command allows more than one transition from a given state we say it is non-deterministic. For instance, the command, << i := 1 [] i := i + $1 \gg$ allows the transitions $i=2 \rightarrow i=1$ and $i=2 \rightarrow i=3$. More on this in Atomic Semantics of Spec.

A non-atomic command describes a set of sequences of states. More on this in Formal Concurrency.

A sequential program, in which we are only interested in the initial and final states, can be described by an atomic command.

Spec's notation for commands, that is, for changing the state, is derived from Edsger Dijkstra's guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended by Greg Nelson (G. Nelson, A generalization of Dijkstra's calculus, ACM TOPLAS 11, 4, Oct. 1989, pp 517-561). The notation for expressions is derived from mathematics.

Organizing a program

In addition to the expressions and commands that are the core of the language, Spec has four other mechanisms that are useful for organizing your program and making it easier to understand.

A routine is a named computation with parameters (passed by value). There are four kinds:
A function is an abstraction of an expression.
An atomic procedure is an abstraction of an atomic command.
A general procedure is an abstraction of a non-atomic command.
A thread is the way to introduce concurrency.
A type is a stylized assertion about the set of values that a name can assume. A type is also an easy way to group and name a collection of routines, called its methods, that operate on values in that set.

An exception is a way to report an unusual outcome.
A module is a way to structure the name space into a two-level hierarchy. An identifier i declared in a module m is known as i in m and as m. i throughout the program. A class is a module that can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a set of modules each of which declares some variables, routines, types, and exceptions.

Outline

This manual describes the language bottom-up
Lexical rules
Types
Expressions
Commands
Modules
At the end there are two sections with additional information:
Scope rules
Built-in methods for set, sequence, and routine types.
There is also an index. The Introduction to Spec has a one-page language summary.

2. Grammar rules

Nonterminal symbols are in lower case; terminal symbols are punctuation other than : :=, or are quoted, or are in upper case.

Alternative choices for a nonterminal are on separate lines.
symbol* denotes zero of more occurrences of symbol.
The symbol empty denotes the empty string.
If x is a nonterminal, the nonterminal xList is defined by

xList

x , xList
A comment in the grammar runs from \% to the end of the line; this is just like Spec itself.
A [n] in a comment means that there is an explanation in a note labeled [n] that follows this chunk of grammar.

3. Lexical rules

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation () [] \{ \} , ; : . | << >> := => -> [] [*]. Symbols must not have embedded white space. They are always taken to be as long as possible.
A literal is a decimal number such as 3765 , a quoted character such as ' x ', or a double-quoted string such as "Hello\n".
An identifier (id) is a letter followed by any number of letters, underscores, and digits followed by any number of 'characters. Case is significant in identifiers. By convention type and procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword. The predefined identifiers Any, Bool, Char, Int, Nat, Null, String, true, false, and nil are declared in every program. The meaning of an identifier is established by a declaration; see section 8 on scope for details. Identifiers cannot be redeclared.

By convention keywords are written in upper case, but you can write them in lower case if you like; the same strings with mixed case are not keywords, however. The keywords are

ALL	APROC	AS	BEGIN	BY	CLASS
CONST	DO	END	ENUM	EXCEPT	EXCEPTION
EXISTS	EXPORT	FI	FUNC	HAVOC	IF
IN	IS	LAMBDA	MODULE	OD	PROC
RAISE	RAISES	RET	SEQ	SET	SKIP
SUCHTHAT	THREAD	TYPE	VAR	WHILE	WITH

An operator is any sequence of the characters !@\#\$^^^-+=: :<>?/\|~ except the sequences : . | << >> := => -> (these are punctuation), or one of the keyword operators AS, IN, and IS.

A comment in a Spec program runs from a\% outside of quotes to the end of the line. It does not change the meaning of the program.

4. Types

A type defines a set of values; we say that a value v has type T if v is in T 's set. The sets are not disjoint, so a value can belong to more than one set and therefore can have more than one type. In addition to its value set, a type also defines a set of routines (functions or procedures) called its methods; a method normally takes a value of the type as its first argument.

An expression has exactly one type, determined by the rules in section 5; the result of the expression has this type unless it is an exception.

The picky definitions given on the rest of this page are the basis for Spec's type-checking. You can skip them on first reading, or if you don't care about type-checking.
About unions: If the expression e has type T we say that e has a routine type w if T is a routine type w or if T is a union type and exactly one type w in the union is a routine type. Under corresponding conditions we say that e has a sequence or set type, or a record type with a field f .
Two types are equal if their definitions are the same (that is, have the same parse trees) after all type names have been replaced by their definitions and all wITH clauses have been discarded. Recursion is allowed; thus the expanded definitions might be infinite. Equal types define the same value set. Ideally the reverse would also be true, but type equality is meant to be decided by a type checker, whereas the set equality is intractable.
A type T_{f} fits a type u if the type-checker thinks they may have some values in common. This can only happen if they have the same structure, and each part of T fits the corresponding part of U . 'Fits' is an equivalence relation. Precisely, T fits u if:
$\mathrm{T}=\mathrm{U}$.
T is T^{\prime} SUChthat F or $\left(\ldots+T^{\prime}+\ldots\right)$ and T^{\prime} fits U, or vice versa. There may be no values in common, but the type-checker can't analyze the SUснтнAт clauses to find out.
T and U are tuples of the same length and each component of T fits the corresponding component of U.
T and U are record types, and for every decl id: T^{\prime} in T there is a corresponding decl id: U^{\prime} in U such that T^{\prime} fits U^{\prime}, or vice versa.
$\mathrm{T}=\mathrm{T} 1->\mathrm{T} 2$ RAISES EXt and $\mathrm{U}=\mathrm{U} 1->\mathrm{U} 2$ RAISES EXu, or one or both RAISES are missing, and $T 1$ fits U1 and $T 2$ fits U2. Similar rules apply for PROC and APROC types.
$T=S E T T^{\prime}$ and $U=S E T U^{\prime}$ and T^{\prime} fits U^{\prime}.
$T=$ Int $->T^{\prime}$ or SEQ T^{\prime} and $U=S E Q U^{\prime}$ and T^{\prime} fits U^{\prime}.
T includes U if the same conditions apply with "fits" replaced by "includes", all the "vice versa" clauses dropped, and in the -> rule " $T 1$ fits $U 1$ " replaced by " U 1 includes $T 1$ and EXt is a superset of EXu". If T includes u then T 's value set includes U'S value set; again, the reverse is intractable.

An expression e fits a type U in state s if e's type fits U and the result of e in state s has type U or is an exception; in general this can only be checked at runtime unless u includes e's type. The check that e fits T is required for assignment and routine invocation; together with a few other checks it is called type-checking. The rules for type-checking are given in sections 5 and 6.

type	: : = name	\% name of a type
	"Any"	\% every value has this type
	"Null"	$\%$ with value set $\{\mathrm{nil}\}$
	"Bool"	\% with value set $\{$ true, false $\}$
	"Char"	\% like an enumeration
	"String"	$\%=$ SEQ Char
	"Int"	\% integers
	"Nat"	\% naturals: non-negative integers
	SEQ type	\% sequence [1]
	SET type	\% set
	(typeList)	\% tuple; (T) is the same as T
	[declList]	\% record with declared fields
	(union)	\% union of the types
	aType -> type raises	\% function [2]
	aType ->> type raises	\% relation [2]
	APROC aType returns raises	\% atomic procedure
	PROC aType returns raises	\% non-atomic procedure
	type WITH \{ methodDefList \}	\% attach methods to a type [3]
	type SUCHTHAT primary	\% restrict the value set [4]
	IN exp	$\%=\mathrm{T}$ SUCHTHAT ($\backslash \mathrm{t}: \mathrm{T} \mid \mathrm{t}$ IN exp) \% where exp's type has an IN method
	id [typeList] . id	$\%$ type from a module [5]
name	:: = id . id	\% the first id denotes a module
	id	\% short form. id if id is declared
		\% in the current module m, and for
		\% Global.id if id is declared globally
	type . id	\% the id method of type
decl	:: = id : type	\% id has this type
	id	\% short for id: Id [6]
union	$\begin{aligned} ::= & \text { type + type } \\ & \text { union }+ \text { type } \end{aligned}$	
aType	: : = ()	
	type	
returns	:: = empty	\% only for procedures
	-> type	
raises	:: = empty	
	RAISES exceptionSet	\% the exceptions it can return
exceptionSet	::= \{ exceptionList \}	\% a set of exceptions
	name	\% declared as an exception set
	exceptionSet \/ exceptionSet	\% set union
	exceptionSet - exceptionSet	\% set difference
exception	: : = id	\% means "id"
method	: : = id	
	stringLiteral	\% the string must be an operator
		\% other than "=" or "\#" (see section 3)
methodDef	: $:=$ method := name	\% name is a routine

The ambiguity of the type grammar is resolved by taking $->$ to be right associative and giving WITH and RAISES higher precedence than ->.
[1] A SEQ T is just a function from $\{0,1, \ldots$, size-1\} to T. That is, it is short for (Int->T) SUCHTHAT ($\backslash \mathrm{f}:$ Int->T | (EXISTS size: Int
(ALL i: Int \mid f!i = (i IN 0 .. size-1)))
WITH \{ see section 9 \}.
This means that invocation, !, and * work for a sequence just as they do for any function. In addition, there are many other useful operators on sequences; see section 9 . The string type is just SEQ Char; there are string literals, defined in section 5.
[2] A $T->U$ value is a partial function from a state and a value of type T to a value of type U. A $T->U$ RAISES $x s$ value is the same except that the function may raise the exceptions in $x s$.
[3] We say m is a method of T defined by f, and denote f by T.m, if
$T=T^{\prime}$ WITH $\{\ldots, m:=f, \ldots\}$ and m is an identifier or is "op" where op is an operator (the construct in braces is a methodDefList), or
$T=T^{\prime}$ WITH \{ methodDefList \}, m is not defined in methodDefList, and m is a method of T^{\prime} defined by f, or
$T=\left(\ldots+T^{\prime}+\ldots\right), m$ is a method of T^{\prime} defined by f, and there is no other type in the union with a method m.

There are two special forms for invoking methods: e1 infixop e2 or prefixop e, and e1.id(e2) or e.id or e.id(). They are explained in notes [1] and [3] to the expression grammar in the next section. This notation may be familiar from object-oriented languages. Unlike many such languages, Spec makes no provision for varying the method in each object, though it does allow inheritance and overriding.

A method doesn't have to be a routine, though the special forms won't type-check unless the method is a routine. Any method m of T can be referred to by $T . m$.

If type U has method m, then the function type $V=T->U$ has a lifted method m that composes $U . m$ with v , unless v already has a m method. $\mathrm{v} . \mathrm{m}$ is defined by
$(\backslash \mathrm{v} \mid(\backslash \mathrm{t} \mid \mathrm{v}(\mathrm{t}) . \mathrm{m}))$
so that $v . m=v * U . m$. For example, $\{$ "a", "ab", "b"\}.size $=\{1,2,1\}$. If m takes a second argument of type W , then $\mathrm{V} . \mathrm{m}$ takes a second argument of type $\mathrm{VV}=\mathrm{T}->\mathrm{W}$ and is defined on the intersection of the domains by applying m to the two results. Thus in this case $\mathrm{V} . \mathrm{m}$ is
($\backslash \mathrm{v}$, $\mathrm{vv} \mid(\backslash \mathrm{t}: I \mathrm{~N}$ v.dom $/ \backslash \mathrm{vv} . \operatorname{dom} \mid \mathrm{v}(\mathrm{t}) . \mathrm{m}(\mathrm{vv}(\mathrm{t})))$)
Lifting also works for relations to U , and therefore also for SET U . Thus if $R=(T, U)->B O O 1$ and m returns type $x, R . m$ is defined by
($\backslash r \mid(\backslash t, x \mid x \operatorname{IN}\{u|r(t, u)| u . m\}))$
so that $r . m=r * U . m . r e l$. If m takes a second argument, then R.m takes a second argument of type $R R=T->W$, and $r . m(r r)$ relates t to $u . m(w)$ whenever r relates t to u and rr relates t to w. In other words, $R . m$ is defined by

$$
(\backslash r, \operatorname{rr} \mid(\backslash t, x \mid x \operatorname{IN}\{u, w|r(t, u) / \backslash r r(t, w)| u . m(w)\}))
$$

If U doesn't have a method m but Bool does, then the lifting is done on the function that defines the relation, so that $r 1 \backslash / r 2$ is the union of the relations, $r 1 / \backslash r 2$ the intersection, $r 1-r 2$ the difference, and $\sim r$ the complement.
[4] In T SUChthat f, f is a predicate on T 's, that is, a function ($T \rightarrow B O O$). The type T SUchthat f has the same methods as T , and its value set is the values of T for which f is true. See section 5 for primary.
[5] If a type is defined by m[typeList] .id and m is a parameterized module, the meaning is m^{\prime}.id where m^{\prime} is defined by MODULE $m^{\prime}=m[t y p e L i s t]$ END m^{\prime}. See section 7 for a full discussion of this kind of type.
[6] Id is the id of a type, obtained from id by dropping trailing ' characters and digits, and capitalizing the first letter or all the letters (it's an error if these capitalizations yield different identifiers that are both known at this point).

5. Expressions

An expression is a partial function from states to results; results are values or exceptions. That is, an expression computes a result for a given state. The state is a function from names to values. This state is supplied by the command containing the expression in a way explained later. The meaning of an expression (that is, the function it denotes) is defined informally in this section. The meanings of invocations and lambda function constructors are somewhat tricky, and the informal explanation here is supplemented by a formal account in Atomic Semantics of Spec. Because expressions don't have side effects, the order of evaluation of operands is irrelevant (but see [5] and [13]).

Every expression has a type. The result of the expression is a member of this type if it is not an exception. This property is guaranteed by the type-checking rules, which require an expression used as an argument, the right hand side of an assignment, or a routine result to fit the type of the formal, left hand side, or routine range (see section 4 for the definition of 'fit'). In addition, expressions appearing in certain contexts must have suitable types: in e1 (e2), e1 must have a routine type; in e1+e2, e1 must have a type with a " + " method, etc. These rules are given in detail in the rest of this section. A union type is suitable if exactly one of the members is suitable. Also, if T is suitable in some context, so are T WITH \{...\} and T SUCHTHAT f.

An expression can be a literal, a variable known in the scope that contains the expression, or a function invocation. The form of an expression determines both its type and its result in a state:
literal has the type and value of the literal.
name has the declared type of name and its value in the current state, state ("name"). The form $T . m$ (where T denotes a type) is also a name; it denotes the m method of T. Note that if name is id and id is declared in the current module m, then it is short for m.id.
invocation $f(e)$: f must have a function (not procedure) type $U->T$ RAISES EX or $U->T$ (note that a sequence is a function), and e must fit U; then $f(e)$ has type T. In more detail, if f has result $r f$ and e has type U^{\prime} and result re, then U^{\prime} must fit U (checked statically) and re must have type U (checked dynamically if U^{\prime} involves a union or SUснтнат; if the dynamic check fails the result is a fatal error). Then $f(e)$ has type $т$.
If either $r f$ or $r e$ is undefined, so is $f(e)$. Otherwise, if either is an exception, that exception is the result of $f(e)$; if both are, rf is the result.
If both $r f$ and re are normal, the result of rf at re can be:
A normal value, which becomes the result of $f(e)$.
An exception, which becomes the result of $f(e)$. If $r f$ is defined by a function body that loops, the result is a special looping exception that you cannot handle.
Undefined, in which case $f(e)$ is undefined and the command containing it fails (has no outcome) - failure is explained in section 6.
A function invocation in an expression never affects the state. If the result is an exception, the containing command has an exceptional outcome; for details see section 6 .

The other forms of expressions (e.id, constructors, prefix and infix operators, combinations, and quantifications) are all syntactic sugar for function invocations, and their results are obtained by the rule used for invocations. There is a small exception for conditionals [5] and for the conditional logical operators $/ \backslash, \backslash /$, and $==>$ that are defined in terms of conditionals [13].

The ambiguity of the expression grammar is resolved by taking the infixops to be left associative and using the indicated precedences for the prefixops and infixops (with 8 for is and AS and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The precedence is determined by the operator symbol and doesn't depend on the operand types.
[1] The meaning of prefixop e is T. "prefixop" (e), where T is e's type, and of
e1 infixop e2 is $\mathrm{T1}$. "infixOp" (e1, e2), where T 1 is e1's type. The built-in types Int (and Nat with the same operations), Bool, sequences, sets, and functions have the operations given in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than Int and Bool. Special case: e1 IN e2 means T2."IN" (e1, e2), where T 2 is e2's type.
Note that the $=$ operator does not require that the types of its arguments agree, since both are Any Also, = and \# cannot be overridden by wITt. To define your own abstract equality, use a different operator such as "==".
[2] The exp must have type SEQ T or SET $т$. The value is the elements of exp combined into a single value by infixop, which must be associative and have an identity, and must also be commutative if exp is a set. Thus

$$
+:\{i: \text { Int | 0<i } 八 \text { i<5 | i**2\} = } 1+4+9+16=30,
$$

and if s is a sequence of strings, $+: s$ is the concatenation of the strings. For another example, see the definition of quantifications in [4]. Note that the entire set is evaluated; see [10].
[3] Methods can be invoked by dot notation.
The meaning of e.id or e.id() is T. id (e), where T is e's type.
The meaning of e1.id(e2) is $\mathrm{T} . \mathrm{id}(\mathrm{e} 1, \mathrm{e} 2)$, where T is e1's type.
Section 9 on built-in methods gives the methods for built-in types other than Int and Bool.
[4] A quantification is a conjunction (if the quantifier is ALL) or disjunction (if it is EXISTS) of the pred with the id's in the decllist bound to every possible value (that is, every value in their types); see section 4 for decl. Precisely, (ALL d | p) $=/ \backslash:\{d \mid p\}$ and (EXISTS $\mathrm{d} \mid \mathrm{p}$) $=\backslash /:\{\mathrm{d} \mid \mathrm{p}\}$. All the expressions in these expansions are evaluated, unlike e2 in the expressions e1 \backslash e2 and e1 $\backslash /$ e2 (see [10] and [13]).
[5] A conditional (pred => e1 [*] e2) is not exactly an invocation. If pred is true, the result is the result of e1 even if e2 is undefined or exceptional; if pred is false, the result is the result of e2 even if e1 is undefined or exceptional. If pred is undefined, so is the result; if pred raises an exception, that is the result. If [*] e2 is omitted and pred is false, the result is undefined.
[6] In a constructor \{expList\} each exp must have the same type т, the type of the constructor is (SEQ $T+\operatorname{SET} T$), and its value is the sequence containing the values of the exps in the given order, which can also be viewed as the set containing these values.

If expList is empty the type is the union of all function, sequence and set types, and the value is the empty sequence or set, or a function undefined everywhere. If desired, these constructors can be prefixed by a name denoting a suitable set or sequence type.
A constructor $\mathrm{T}\{\mathrm{e} 1, \ldots$, en\}, where T is a record type [f1: $\mathrm{T} 1, \ldots, \mathrm{fn}: \mathrm{Tn}$], is short for a record constructor (see [7]) $\mathrm{T}\{\mathrm{fi}:=\mathrm{e} 1, \ldots, \mathrm{fn}:=\mathrm{en}\}$.
[7] The primary must have a record type, and the constructor has the same type as its primary and denotes the same value except that the fields named in the fieldDefList have the given
values. Each value must fit the type declared for its id in the record type. The primary may also denote a record type, in which case any fields missing from the fieldDefList are given arbitrary (but deterministic) values. Thus if $\mathrm{R}=[\mathrm{a}$: Int, b : Int $], \mathrm{R}\{\mathrm{a}:=3, \mathrm{~b}:=4\}$ is a record of type R with $a=3$ and $b=4$, and $R\{a:=3, b:=4\}\{a:=5\}$ is a record of type R with $a=5$ and $b=4$. If the record type is qualified by a SUCHTHAT, the fields get values that satisfy it, and the constructor is undefined if that's not possible.
[8] The primary must have a function or sequence type, and the constructor has the same type as its primary and denotes a value equal to the value denoted by the primary except that it maps the argument value given by \exp (which must fit the domain type of the function or sequence) to result (which must fit the range type if it is an exp). For a function, if result is empty the constructed function is undefined at exp, and if result is RAISE exception, then exception must be in the RAISES set of primary's type. For a sequence result must not be empty or RAISE, and exp must be in primary. dom or the constructor expression is undefined.
In the $*$ form the primary must be a function type or a function, and the value of the constructor is a function whose result is result at every value of the function's domain type (the type on the left of the $->$). Thus if $\mathrm{F}=($ Int $->$ Int) and $f=\mathrm{F}\{*->0\}$, then f is zero everywhere and $\mathrm{f}\{4->1\}$ is zero except at 4 , where it is 1 . If this value doesn't have the function type, the constructor is undefined; this can happen if the type has a suchthat clause. For example, the type can't be a sequence.
[9] A LAMBDA constructor is a statically scoped function definition. When it is invoked, the meaning of the body is determined by the local state when the LAMBDA was evaluated and the global state when it is invoked; this is ad-hoc but convenient. See section 7 for signature and section 6 for cmd. The returns in the signature may not be empty. Note that a function can't have side effects.

The form (\backslash declList | exp) is short for (LAMBDA (declList) -> $T=$ Ret exp), where T is the type of exp. See section 4 for decl.
[10] A set constructor \{ declList | pred | exp \} has type SET T, where exp has type T in the current state augmented by declList; see section 4 for decl. Its value is a set that contains x iff (EXISTS declList | pred $/ \backslash \mathrm{x}=\exp$). Thus
$\{i: \operatorname{Int}|0<i / \backslash i<5| i * * 2\}=\{1,4,9,16\}$
and both have type SET Int. If pred is omitted it defaults to true. If | exp is omitted it defaults to the last id declared:
$\{i:$ Int $\mid 0<i / \backslash i<5\}=\{1,2,3,4\}$
Note that if s is a set or sequence, in s is a type (see section 4), so you can write a constructor like $\{i: I N s \mid i>4\}$ for the elements of s greater than 4 . This is shorter and clearer than $\{i \mid i \ln s 八 i>4\}$

If there are any values of the declared id's for which pred is undefined, or pred is true and exp is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions; if more than one exception is raised, the result exception is an arbitrary choice among them.
[11] A sequence constructor \{ seqGenList | pred | exp \} has type SEQ T, where exp has type T in the current state augmented by seqGenList, as follows. The value of
$\{\mathrm{x} 1:=$ e01 BY e1 WHILE $\mathrm{p} 1, \ldots$, $\mathrm{xn}:=$ eon By en while pn | pred | exp\}
is the sequence which is the value of result produced by the following program. Here exp has type T and result is a fresh identifier (that is, one that doesn't appear elsewhere in the program). There's an informal explanation after the program.

```
VAR x2 := e02, ..., xn := e0n, result := T{}, x1 := e01 
    DO p1 => x2 := e2; p2 => ... => xn := en; pn =>
        IF pred => result := result + {exp} [*] SKIP FI;
        x1 := e1
```

 OD
 However, e0i and ei are not allowed to refer to $x j$ if $j>i$. Thus the n sequences are unrolled in parallel until one of them ends, as follows. All but the first are initialized; then the first is initialized and all the others computed, then all are computed repeatedly. In each iteration, once all the xi have been set, if pred is true the value of exp is appended to the result sequence; thus pred serves to filter the result. As with set constructors, an omitted pred defaults to true, and an omitted | exp defaults to | xn. An omitted while pi defaults to while true. An omitted := e0i defaults to
$:=\{x: \operatorname{Ti} \mid$ true $\}$.choose
where Ti is the type of ei; that is, it defaults to an arbitrary value of the right type.
The generator xi :IN ei generates the elements of the sequence ei in order. It is short for

$$
\text { j := } 0 \text { BY j + } 1 \text { WHILE j < ei.size, xi BY ei(j) }
$$

where j is a fresh identifier. Note that if the : IN isn't the first generator then the first element of ei is skipped, which is probably not what you want. Note that : IN in a sequence constructor overrides the normal use of IN s as a type (see [10]).
Undefined and exceptional results are handled the same way as in set constructors.
Examples

i := 0 BY i+1 WHILE i <= n\}	$=0 \ldots n=\{0,1, \ldots, n\}$	
($\mathrm{r}:=$ head BY r.next WHILE r \# nil \|	r.val $\}$	the val fields of a list starting at head
\{ x : IN s , sum := 0 BY sum +x$\}$	partial sums of s	
\{x :IN s, sum := O BY sum + x\}.last	+ : s, the last partial sum	
\{x :IN s, rev := \{\} BY \{x\} + rev\}.last	reverse of	
$\{\mathrm{x}:$ IN s \|	$\mathrm{f}(\mathrm{x}) \mathrm{\}}$	s
\{i :IN 1..n \| i // 2 \# 0	i * i	squares of odd numbers <=
\{i :IN 1..n, iter := e BY f (iter) \}	$\left\{\mathrm{f}(\mathrm{e}), \mathrm{f}^{2}(\mathrm{e}), \ldots . \mathrm{f}^{\mathrm{n}}(\mathrm{e})\right.$ \}	

[12] These operations are defined in section 9.
[13] The conditional logical operators are defined in terms of conditionals:
e1 $\backslash / e 2=(e 1 ~=>~ t r u e ~[*] ~ e 2 ~) ~$
$\mathrm{e} 1 / \backslash \mathrm{e}^{2}=(\sim \mathrm{e} 1 \Rightarrow$ false $[*]$ e2 $)$
e1 ==> e2 = (~e1 => true [*] e2)
Thus the second operand is not evaluated if the value of the first one determines the result.
[14] As changes only the type of the expression, not its value. Thus if (exp IS type) the value of (exp AS type) is the value of exp, but its type is type rather than the type of exp.

6. Commands

A command changes the state (or does nothing). Recall that the state is a mapping from names to values; we denote it by state. Commands are non-deterministic. An atomic command is one that is inside \ll. . . >> brackets.

The meaning of an atomic command is a set of possible transitions (that is, a relation) between a state and an outcome (a state plus an optional exception); there can be any number of outcomes from a given state. One possibility is a looping exceptional outcome. Another is no outcomes. In this case we say that the atomic command fails; this happens because all possible choices within it encounter a false guard or an undefined invocation.

If a subcommand fails, an atomic command containing it may still succeed. This can happen because it's one operand of [] or [*] and the other operand succeeds. If can also happen because a non-deterministic construct in the language that might make a different choice. Leaving exceptions aside, the commands with this property are [] and VAR (because it chooses arbitrary values for the new variables). If we gave an operational semantics for atomic commands, this situation would correspond to backtracking. In the relational semantics that we actually give (in Atomic Semantics of Spec), it corresponds to the fact that the predicate defining the relation is the "or" of predicates for the subcommands. Look there for more discussion of this point.

A non-atomic command defines a collection of possible transitions, roughly one for each $\ll \ldots$. . > command that is part of it. If it has simple commands not in atomic brackets, each one also defines a possible transition, except for assignments and invocations. An assignment defines two transitions, one to evaluate the right hand side, and the other to change the value of the left hand side. An invocation defines a transition for evaluating the arguments and doing the call and one for evaluating the result and doing the return, plus all the transitions of the body. These rules are somewhat arbitrary and their details are not very important, since you can always write separate commands to express more transitions, or atomic brackets to express fewer transitions. The motivation for the rules is to have as many transitions as possible, consistent with the idea that an expression is evaluated atomically.

A complete collection of possible transitions defines the possible sequences of states or histories; there can be any number of histories from a given state. A non-atomic command still makes choices, but it does not backtrack and therefore can have histories in which it gets stuck, even though in other histories a different choice allows it to run to completion. For the details, see handout 17 on formal concurrency.

The ambiguity of the command grammar is resolved by taking the command composition operations ; , [], and [*] to be left-associative and EXCEPT to be right associative, and giving [] and [*] lowest precedence, => and | next (to the right only, since their left operand is an exp), ; next, and EXCEPT highest precedence.
[1] The empty command and SKIP make no change in the state. HAVOC produces an arbitrary outcome from any state; if you want to specify undefined behavior when a precondition is not satisfied, write \sim precondition $=>$ HAVOC.
[2] A RET may only appear in a routine body, and the exp must fit the result type of the routine. The exp is omitted iff the returns of the routine's signature is empty.
[3] For arguments see section 5. The argument are passed by value, that is, assigned to the formals of the procedure A function body cannot invoke a PROC or APROC; together with the rule for assignments (see [7]) this ensures that it can't affect the state. An atomic command can invoke an APROC but not a PROC. A command is atomic iff it is \ll cmd \gg, a subcommand of an
atomic command, or one of the simple commands SKIP, HAVOC, RET, or RAISE. The typechecking rule for invocations is the same as for function invocations in expressions.
[4] You can only assign to a name declared with VAR or in a signature. In an assignment the exp must fit the type of the 1 hs , or there is a fatal error. In a function body assignments must be to names declared in the signature or the body, to ensure that the function can't have side effects.
An assignment to a left hand side that is not a name is short for assigning a constructor to a name. In particular,
$\begin{array}{ll}\text { lhs (arguments) }:=\exp \text { is short for } 1 \mathrm{hs}:=\operatorname{lhs}\{\text { arguments->exp\}, and } \\ \text { lhs . id } & :=\exp \text { is short for lhs }:=\operatorname{lhs}\{i d:=\exp \} .\end{array}$
These abbreviations are expanded repeatedly until ihs is a name.
In an assignment the right hand side may be an invocation (of a procedure) as well as an ordinary expression (which can only invoke a function). The meaning of $1 \mathrm{hs}:=\exp$ or lhs := invocation is to first evaluate the exp or do the invocation and assign the result to a temporary variable v , and then do $\mathrm{lh} s:=\mathrm{v}$. Thus the assignment command is not atomic unless it is inside << . . >> .

If the left hand side of an assignment is a (lhsList), the exp must be a tuple of the same length, and each component must fit the type of the corresponding lhs. Note that you cannot write a tuple constructor that contains procedure invocations.
[5] A guarded command fails if the result of pred is undefined or false. It is equivalent to cmd if the result of pred is true. A pred is just a Boolean exp; see section 4.
S1 [] S2 chooses one of the si to execute. It chooses one that doesn't fail. Usually S1 and S2 will be guarded. For example,
$x=1 \Rightarrow y:=0[] x>1 \Rightarrow y:=1$ sets y to 0 if $x=1$, to 1 if $x>1$, and has no outcome if $x<1$. But $\mathrm{x}=1 \mathrm{y}=\mathrm{y}:=0$ [] $\mathrm{x}>=1$ => $\mathrm{y}:=1$ might set y to 0 or 1 if $\mathrm{x}=1$.
S1 [*] S2 is the same as S1 unless S1 fails, in which case it's the same as S2.
IF . . . FI are just command brackets, but it often makes the program clearer to put them around a sequence of guarded commands, thus:

$$
\begin{array}{ll}
\text { IF } & \mathrm{x}<0=>\mathrm{y}:=3 \\
{[]} & \mathrm{x}=0 \Rightarrow \mathrm{y}:=4 \\
{[*]} & \\
\text { FI } &
\end{array}
$$

[6] In a VAR the unadorned form of decl Init initializes a new variable to an arbitrary value of the declared type. The := form initializes a new variable to exp. Precisely,

VAR id: T := exp | C
is equivalent to
VAR id: T | id := exp; c
The exp could also be a procedure invocation, as in an assignment.
Several declInits after VAR is short for nested VARs. Precisely,
VAR declInit , declInitList | cmd
is short for
VAR declInit | VAR declInitList | cmd
This is unlike a module, where all the names are introduced in parallel.
[7] In an atomic command the atomic brackets can be used for grouping instead of BEGIN ... END; since the command can't be any more atomic, they have no other meaning in this context.
[8] Execute cmd repeatedly until it fails. If cmd never fails, the result is a looping exception that doesn't have a name and therefore can't be handled. Note that this is not the same as failure.
[9] Exception handling is as in Clu, but a bit simplified. Exceptions are named by literal strings (which are written without the enclosing quotes). A module can also declare an identifier that denotes a set of exceptions. A command can have an attached exception handler, which gets to look at any exceptions produced in the command (by RAISE or by an invocation) and not handled closer to the point of origin. If an exception is not handled in the body of a routine, it is raised by the routine's invocation.

An exception ex must be in the RAISES set of a routine r if either RAISE ex or an invocation of a routine with ex in its RAISES set occurs in the body of r outside the scope of a handler for ex.
[10] CRASH stops the execution of any current invocations in the module other than the one that executes the CRASH, and discards their local state. The same thing happens to any invocations outside the module from within it. After CRASH, no procedure in the module can be invoked from outside until the routine that invokes it returns. CRASH is meant to be invoked from within a special Crash procedure in the module that models the effects of a failure.

7. Modules

A program is some global declarations plus a set of modules. Each module contains variable, routine, exception, and type declarations.
Module definitions can be parameterized with mformals after the module id, and a parameterized module can be instantiated. Instantiation is like macro expansion: the formal parameters are replaced by the arguments throughout the body to yield the expanded body. The parameters must be types, and the body must type-check without any assumptions about the argument that replaces a formal other than the presence of a WITH clause that contains all the methods mentioned in the formal parameter list (that is, formals are treated as distinct from all other types).
Each module is a separate scope, and there is also a Global scope for the identifiers declared at the top level of the program. An identifier id declared at the top level of a non-parameterized module m is short for m . id when it occurs in m . If it appears in the exports, it can be denoted by m.id anywhere. When an identifier id that is declared globally occurs anywhere, it is short for Global.id. Global cannot be used as a module id.
An exported id must be declared in the module. If an exported id has a with clause, it must be declared in the module as a type with at least those methods, and only those methods are accessible outside the module; if there is no with clause, all its methods and constructors are accessible. This is Spec's version of data abstraction.

[1] The ": = exp" in a declInit (defined in section 6) specifies an initial value for the variable. The exp is evaluated in a state in which each variable used during the evaluation has been initialized, and the result must be a normal value, not an exception. The exp sees all the names known in the scope, not just the ones that textually precede it, but the relation "used during evaluation of initial values" on the variables must be a partial order so that initialization makes sense. As in an assignment, the exp may be a procedure invocation as well as an ordinary expression. It's a fatal error if the exp is undefined or the invocation fails.
[2] Instead of being invoked by the client of the module or by another procedure, a thread is automatically invoked in parallel once for every possible value of its arguments. The thread is named by the id in the declaration together with the argument values. So

$$
\begin{aligned}
& \text { VAR sum }:=0, \text { count }:=0 \\
& \text { THREAD } P(i: \text { Int })=i \text { IN } 0 . .9=>
\end{aligned}
$$

$$
\text { VAR } t \mid t:=F(i) ; \ll \text { sum }:=\text { sum }+t \gg ; \ll c o u n t ~:=~ c o u n t ~+~ 1 \gg ~
$$

adds up the values of $F(0) \ldots F(9)$ in parallel. It creates a thread $P(i)$ for every integer i; the threads $P(0), \ldots, P(9)$ for which the guard is true invoke $F(0), \ldots, F(9)$ in parallel and total the results in sum. When count $=10$ the total is complete.

A thread is the only way to get an entire program to do anything (except evaluate initializing expressions, which could have side effects), since transitions only happen as part of some thread.
[3] The id's in the list are declared in the module; their type is the Enum type. There are no operations on enumeration values except the ones that apply to all types: equality, assignment, and routine argument and result communication.
[4] A class is shorthand for a module that declares a convenient object type. The next few paragraphs specify the shorthand, and the last one explains the intended usage.

If the class id is Obj, the module id is ObjMod. Each variable declared in a top level VAR in the class becomes a field of the Obj Rec record type in the module. The module exports only a type Obj that is also declared globally. Obj indexes a collection of state records of type ObjRec stored in the module's objs variable, which is a function Obj->ObjRec. Obj's methods are all the names declared at top level in the class except the variables, plus the new method described below; the exported obj's methods are all the ones that the class exports plus new.
To make a class routine suitable as a method, it needs access to an ObjRec that holds the state of the object. It gets this access through a self parameter of type Obj, which it uses to refer to the object state objs (self). To carry out this scheme, each routine in the module, unless it appears in a WITH clause in the class, is 'objectified' by giving it an extra self parameter of type obj. In addition, in a routine body every occurrence of a variable v declared at top level in the class is replaced by objs (self).v in the module, and every invocation of an objectified class routine gets self as an extra first parameter.

The module also gets a synthesized and objectified StdNew procedure that adds a state record to objs, initializes it from the class's variable initializations (rewritten like the routine bodies), and returns its Obj index; this procedure becomes the new method of obj unless the class already has a new routine.

A class cannot declare a thread.
The effect of this transformation is that a variable obj of type obj behaves like an object. The state of the object is objs (obj). The invocation obj.mor obj.m(x) is short for ObjMod.m (obj) or ObjMod.m(obj, x) by the usual rule for methods, and it thus invokes the method m; in m's body each occurrence of a class variable refers to the corresponding field in obj's state. obj .new () returns a new and initialized obj object. The following example shows how a class is transformed into a module.

```
CLASS Obj EXPORT T1, f, p, ... = MODULE ObjMOd EXPORT Obj WITH {T1, f, p, new } =
TYPE T1 = ... WITH {add:=AddT} TYPE T1 = ... WITH {add:=AddT}
CONST c := ...
VAR v1:T1:=ei, v2:T2:=pi(v1), ... TYPE ObjRec = [v1: T1, v2: T2, ...]
    Obj = Int WITH {T1, c, f:=f, p:=p,
    AddT:=AddT, ..., new:=StdNew
FUNC f(p1: RT1, ...) = ... v1 .
PROC p(p2: RT2, ...) = ... v2 ..
FUNC AddT(t1, t2) = ..
...
CONST c := ...
VAR objs: Obj -> ObjRec := {}
FUNC f(self: Obj, p1: RT1, ...) = ... objs(self).v1 ..
PROC p(self: Obj, p2: RT2, ...) = ... objs(self).v2 ..
FUNC AddT(t1, t2) = ... % in T1's WITH, so not objectified
PROC StdNew(self: Obj) -> Obj =
    VAR obj: Obj | ~ obj IN objs.dom =>
    objs(obj) := ObjRec{};
    objs(obj).v1 := Obj;
    objs(obj).v2 := pi(objs(obj).v1)
    ...;
    RET obj
```

END Obj
END ObjMod
TYPE Obj = ObjMod.Obj

In abstraction functions and invariants we also write obj .n for field n in obj's state, that is, for ObjMod.objs(obj).n.

8. Scope

The declaration of an identifier is known throughout the smallest scope in which the declaration appears (redeclaration is not allowed). This section summarizes how scopes work in Spec; terms defined before section 7 have pointers to their definitions. A scope is one of
the whole program, in which just the predefined (section 3), module, and globally declared identifiers are declared;
a module;
the part of a routineDecl or LAMBDA expression (section 5) after the $=$;
the part of a VAR declInit | cmd command after the | (section 6);
the part of a constructor or quantification after the first | (section 5).
a record type or methodDefList (section 4);
An identifier is declared by
a module id, mfp, or toplevel (for types, exception sets, ENUM elements, and named routines),
a decl in a record type (section 4), | constructor or quantification (section 5), declInit (section 6), routine signature, or WITH clause of a mfp, or
a methodDef in the WITH clause of a type (section 4).

An identifier may not be declared in a scope where it is already known. An occurrence of an identifier id always refers to the declaration of id which is known at that point, except when id is being declared (precedes a :, the $=$ of a toplevel, the $:=$ of a record constructor, or the $:=$ or BY in a seqGen), or follows a dot. There are four cases for dot:
moduleId . id - the id must be exported from the basic module moduleId, and this expression denotes the meaning of id in that module.
record . id - the id must be declared as a field of the record type, and this expression denotes that field of record. In an assignment's ihs see [7] in section 6 for the meaning.
typeId . id - the typeId denotes a type, id must be a method of this type, and this expression denotes that method.
primary . id - the id must be a method of primary's type, and this expression, together with any following arguments, denotes an invocation of that method; see [2] in section 5 on expressions.

If id refers to an identifier declared by a toplevel in the current module m, it is short for m.id. If it refers to an identifier declared by a toplevel in the program, it is short for Global.id.
Once these abbreviations have been expanded, every name in the state is either global (contains a dot and is declared in a toplevel), or local (does not contain a dot and is declared in some other way).

Exceptions look like identifiers, but they are actually string literals, written without the enclosing quotes for convenience. Therefore they do not have scope.

9. Built-in methods

Some of the type constructors have built-in methods, among them the operators defined in the expression grammar. The built-in methods for types other than Int and Bool are defined below. Note that these are not complete definitions of the types; they do not include the constructors.

Sets
A set has methods for
computing union, intersection, and set difference (lifted from Bool; see note 3 in section 4), and adding or removing an element, testing for membership and subset;
choosing (deterministically) a single element from a set, or a sequence with the same members, or a maximum or minimum element, and turning a set into its characteristic predicate (the inverse is the predicate's set method);
composing a set with a function or relation, and converting a set into a relation from nil to the members of the set (the inverse of this is just the range of the relation).
We define these operations with a module that represents a set by its characteristic predicate. Precisely, SET T behaves as though it were Set [T]. S, where

MODULE Set[T] EXPORT $S=$

TYPE $S=A n Y->B O O 1 \operatorname{SUCHTHAT}(\backslash S \mid(A L L$ any $\mid S($ any $)==>($ any IS T))) \% Defined everywhere so that type inclusion will work; see section 4.

WITH \{"\/":=Union, "/\":=Intersection, " -":=Difference
"IN":=In, " <=":=Subset, choose:=Choose, seq:=Seq, pred:=Pred, perms:=Perms, fsort:=FSort, sort:=Sort, fmax:=FMax, fmin:=FMin, max:=Max, min:=Min
"*":=ComposeF, rel:=Rel, "**":=ComposeR \}
FUNC Union(s1, s2)->S $=\operatorname{RET}(\backslash t \mid s 1(t) \backslash / s 2(t)) \%$ s1 $\backslash / \mathrm{s} 2$
FUNC Intersection(s1, s2)->S $=\operatorname{RET}(\backslash t \mid s 1(t) /$ s2(t)) \% s1 八 s2
FUNC Difference(s1, s2)->S $=\operatorname{RET}(\backslash t \mid s 1(t) / \backslash \sim s 2(t)) \% s 1-s 2$
FUNC In(s, t)->BOOL $\quad=\operatorname{RET} s(t) \quad$ \%t IN s
FUNC Subset (s1, s2)->Bool = RET (ALL $t \mid s 1(t)==>s 2(t)) \%$ s1 <= s2
FUNC Size(s)->Int
VAR t | $s(t)=>\operatorname{RET} \operatorname{Size}(s-\{t\})+1$ [*] RET 0
FUNC Choose (s) $->\mathrm{T}=$ VAR $t \mid s(t)=>$ RET $t \quad \%$ s.choose \% Not really, since VAR makes a non-deterministic choice,
$\%$ but choose makes a deterministic one. It is undefined if s is empty.
FUNC Seq(s) ->SEQ T =

\%s.seq
號
$\operatorname{RET}\{q:$ SEQ T \mid q.rng $=s / \backslash q . s i z e=s . s i z e\} . c h o o s e$
FUNC Pred(s) $->$ (T->BOOl) $=$ RET s
$\%$ s.pred is just s. We define pred for symmetry with seq, set, etc.
FUNC Perms (s)->SET SEQ T = RET s.seq.perms
FUNC FSort (s, f: (T,T)->Bool) ->S = RET s.seq.fsort(f)
FUNC Sort (s)->S = RET s.seq.sort
FUNC FMax (s, f: (T,T)->Bool)->T = RET s.fsort(f).last FUNC $\operatorname{FMin}(\mathrm{s}, \mathrm{f}:(\mathrm{T}, \mathrm{T})->B \mathrm{Bol})->\mathrm{T}=$ RET $\mathrm{s} . \mathrm{f}$ sort (f).head FUNC Max (s) $->\mathrm{T}$
FUNC $\operatorname{Min}(s)->T$
= RET s.fmax(T." $<=$ ")
\% Note that these functions are undefined if s is empty. If there are extremal
\% elements not distinguished by f or " $<=$ ", they make an arbitrary deterministic choice.
FUNC ComposeF (s, f: T->U)->SET U $=$ RET $\{t: I N s| | f(t)\} \% s$ * f image of s under f \% ComposeF by analogy with sequences, where ordinary function composition applies pointwise to the elements. FUNC Rel (s) -> ((Null, T) ->Bool) = RET (\backslash null, t | t IN s)
$\%$ s.rel relates nil to every element of s
FUNC ComposeR(s, r: (T, U) $->$ Bool) $->$ SET $U=$ RET (s.rel*r).rng \% s ** r; image of s under r \% ComposeR is relational composition: anything you can get to by r, starting with a member of s. We could have written it explicitly: $\{t: I N s, u|r(t, u)| u\}$, or as $\backslash /:(s * r . s e t F)$, or as (s.rel * r).rng

END Set
There are constructors $\}$ for the empty set, $\{e 1, e 2, \ldots\}$ for a set with specific elements, and \{declList | pred | exp\} for a set whose elements satisfy a predicate. These constructors are described in [6] and [10] of section 5. Note that $\{t \mid p\}$. pred $=(\backslash t \mid p)$, and similarly ($\backslash t$ $\mid p)$.set $=\{t \mid p\}$. A method on T is lifted to a method on s, unless the name conflicts with one of s's methods, exactly like lifting on s.rel; see note 3 in section 4 .

Functions

The function types $T->U$ and $T->U$ RAISES $X S$ have methods for
composition, overlay, inverse, and restriction;
testing whether a function is defined at an argument and whether it produces a normal (nonexceptional) result at an argument, and for the domain and range;
converting a function to a relation (the inverse is the relation's func method) or a function that produces a set to a relation with each element of the set (setRel; the inverse is the relation's set F method).

In other words, they behave as though they were Function [T, U] . F, where (making allowances for the fact that XS and v are pulled out of thin air):

MODULE Function [T, U] EXPORT F =

TYPE F = T->U RAISES XS WITH \{"*":=Compose, "+":=Overlay,
inv:=Inverse, restrict:=Restrict,
"!":=Defined, "!!":=Normal,

R = (T, U) -> Bool

$$
\text { dom:=Domain, rng:=Range, rel:=Rel, setRel:=SetRel\} }
$$

FUNC Compose (f, g: U -> V) -> (T -> V) = RET ($\backslash \mathrm{t} \mid \mathrm{g}(\mathrm{f}(\mathrm{t}))$)
\% Note that the order of the arguments is reversed from the usual mathematical convention.
FUNC Overlay(f1, f2) -> F = RET ($\backslash \mathrm{t} \mid$ (f2!t $=>\mathrm{f} 2(\mathrm{t})$ [*] f1(t)))
$\%(\mathrm{f} 1+\mathrm{f} 2)$ is $\mathrm{f} 2(\mathrm{x})$ if that is defined, otherwise $\mathrm{f} 1(\mathrm{x})$
FUNC Inverse(f) -> (U -> T) = RET f.rel.inv.func
FUNC Restrict (f, $s: \operatorname{SET} T) \rightarrow F=\operatorname{RET}(\backslash t \mid(t$ IN $s \Rightarrow f(t)))$
FUNC Defined(f, t$)->$ Bool $=$
IF $f(t)=f(t) \Rightarrow$ RET true [*] RET false FI EXCEPT XS \Rightarrow RET true
FUNC Normal (f, t)->Bool =
IF $f(t)=f(t)=>$ RET true [*] RET false FI EXCEPT XS $=>$ RET false
FUNC Domain(f) -> SET T = RET $\{t \mid f!t\}$
FUNC Range (f) -> SET U $=\operatorname{RET}\{t|f!!t| f(t)\}$
FUNC Rel (f)-> $\mathrm{R}=\operatorname{RET}(\backslash \mathrm{t}, \mathrm{u} \mid \mathrm{f}(\mathrm{t})=\mathrm{u})$
 $\%$ if $U=$ SET V,f.setRel relates each t in f. dom to each element of $f(t)$.

END Function
Note that there are constructors \{\} for the function undefined everywhere, $T\{$ * -> result \} for a function of type T whose value is result everywhere, and $f\{\exp ->$ result $\}$ for a function which is the same as f except at exp, where its value is result. These constructors are described in [6] and [8] of section 5. There are also lambda constructors for defining a function by a computation, described in [9] of section 5. A method on U is lifted to a method on F, unless the name conflicts with a method of F; see note 3 in section 4 .

A total function $T->B \circ O 1$ is a predicate and has an additional method to compute the set of T 's that satisfy the predicate (the inverse is the set's pred method). In other words, a predicate behaves as though it were Predicate [T] . P, where

MODULE Predicate[T] EXPORT P =
TYPE P = T -> Bool WITH \{set:=Set\}
FUNC Set (p)-> SET $T=\operatorname{RET}\{t \mid p(t)\}$
END Predicate

A predicate with $T=(U, V)$ is a relation and has additional methods to turn it into a function U $\rightarrow \mathrm{V}$ or a function $\mathrm{U} \rightarrow$ SET V , and to get its domain and range, invert it or compose it (overriding the methods for a function). In other words, it behaves as though it were Relation [U, V].R, where (allowing for the fact that w is pulled out of thin air in Compose):

MODULE Relation [U, V] EXPORT R =
TYPE $R=(U, V)$-> Bool WITH \{func:=Func, setF:=SetFunc, dom:=Domain, rng :=Range, inv:=Inverse, "*":=Compose $\}$

FUNC Func (r) -> (U -> V) =
\% Func (r) is defined at u iff r relates u to a single v.
$\operatorname{RET}(\backslash u \mid(r . \operatorname{setF}(u) . \operatorname{size}=1=>$ r.setF (u).choose))
FUNC SetFunc (r) -> (U -> SET V) $=\operatorname{RET}(\backslash u \mid\{v \mid r(u, v)\})$
$\%$ SetFunc (r) is defined everywhere, returning the set of V's related to u.
FUNC Domain (r) \rightarrow SET U $=\operatorname{RET}\{u, v|r(u, v)| u\}$
FUNC Range (r) \rightarrow SET V $=\operatorname{RET}\{u, v|r(u, v)| v\}$
FUNC Inverse (r) -> (V, U) $->\operatorname{Bool})=\operatorname{RET}(\backslash \mathrm{v}, \mathrm{u} \mid r(\mathrm{u}, \mathrm{v}))$
FUNC Compose(r: R, s: (V, W) ->Bool) -> (U, W) ->Bool =
$\operatorname{RET}(\backslash \mathrm{u}, \mathrm{w} \mid(\operatorname{EXISTS} \mathrm{v} \mid \mathrm{r}(\mathrm{u}, \mathrm{v}) /$ / $\mathrm{s}(\mathrm{v}, \mathrm{w}))$)
END Relation
A method on v is lifted to a method on R, unless there's a name conflict; see note 3 in section 4 .
A relation with $U=V$ is a graph and has additional methods to yield the sequences of U 's that are paths in the graph and to compute the transitive closure. In other words, it behaves as though it were Graph [U] . G, where

MODULE Graph[T] EXPORT G =

TYPE $G=(T, T)$-> Bool WITH \{paths:=Paths, closure:=Transitiveclosure \}

$$
\mathrm{P}=\mathrm{SEQ} \mathrm{~T}
$$

FUNC Paths (g) -> SET $P=\operatorname{RET}\{p \mid(A L L i \quad: I N p . d o m-\{0\} \mid g(p(i-1), p(i)))\}$ \% Any p of size $<=1$ is a path by this definition.
FUNC TransitiveClosure (g) -> G = RET ($\backslash \mathrm{t} 1, \mathrm{t} 2$
(EXISTS p | p.size > 1 / \p.head = t1 /\ p.last = t2 /\p IN g.paths))
END Graph

Sequences

A function is called a sequence if its domain is a finite set of consecutive Int's starting at 0 , that is, if it has type
$Q=$ Int $->T \operatorname{SUCHTHAT}(\backslash q \mid(E X I S T S ~ s i z e:$ Int $\mid ~ q . d o m=(0 \ldots$ size-1).rng))
We denote this type (with the methods defined below) by SEQ T. A sequence inherits the methods of the function (though it overrides +), and it also has methods for
detaching or attaching the first or last element,
extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same
making a sequence into a tuple (rng makes it into a set),
testing for prefix or sub-sequence (not necessarily contiguous),
composing with a relation (SEQ T inherits composing with a function),
lexical comparison, permuting, and sorting,
treating a sequence as a multiset with operations to
count the number of times an element appears, test membership and multiset equality,
take differences, and remove an element $("+"$ or $" \backslash / "$ is union and addl adds an element).

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence is always defined regardless of the subscripts, by taking the largest number of elements allowed by the size of the sequence.
We define the sequence methods with a module. Precisely, $S E Q T$ is Sequence [T] . Q, where:
MODULE Sequence[T] EXPORTS $Q=$
TYPE I
$=$ Int
$=$ (I $->$ T)
$\operatorname{SUCHTHAT}(\backslash \mathrm{q} \mid(A L L i \mid q!i=(0<=i / \backslash i<q . s i z e)))$
WITH \{ size:=Size, seg:=Seg, sub:=Sub, "+":=Concatenate, head:=Head, tail:=Tail, addh:=AddHead, remh:=Tail, last:=Last, reml:=RemoveLast, addl:=AddLast,
fill:=Fill, tuple:=Tuple,
"<=":=Prefix, "<<=":=SubSeq,
"**":=ComposeR, lexLE:=LexLE, perms:=Perms,
fsorter:=FSorter, fsort:=FSort, sort:=Sort,
\% These methods treat a sequence as a multiset (or bag).
count:=Count, "IN":=In, "==":=EqElem,
" $\backslash /$ ":=Concatenate, "-":=Diff, set:=Q.rng \}
FUNC Size(q)-> Int = RET q.dom.size
FUNC Sub (q, i1, i2) $->\mathrm{Q}=$
\% q.sub(i1, i2); yields $\{q(i 1), \ldots, q(i 2)\}$, or a shorter sequence if $\mathrm{i} 1<0$ or i2 $>=\mathrm{q}$. size $\operatorname{RET}(\{0, i 1\} . \max . .\{i 2, q . s i z e-1\} . \min)$ * q

FUNC Seg(q, i, n: I) $->Q=\operatorname{RET} q . \operatorname{sub}(i, i+n-1)$
\%q.seg(i,n);n T's from q(i)
FUNC Concatenate (q1, q2) $->Q=\operatorname{VAR} q \mid$
\% q1 + q2
q. sub(0, q1.size-1) $=q 1 /$ q.sub(q1.size, $q \cdot \operatorname{size-1)}=q 2=>$ RET q

FUNC Head (q) -> $T=\operatorname{RET} q(0)$
FUNC Tail(q) $->Q=$
q.size >0 => RET q.sub(1, q.size-1)

FUNC AddHead (q, t) $->Q=\operatorname{RET}\{t\}+q$
FUNC Last (q) -> T = RET q(q.size-1)
FUNC RemoveLast (q) -> Q =
q \# \{\} => RET q.sub(0, q.size-2)
FUNC AddLast ($q, ~ t)->Q=\operatorname{RET} q+\{t\}$
FUNC Fill(t, $n: ~ I) ~->Q=\operatorname{RET}\{i: I N 0 \ldots n-1| | t\} \%$ yields i copies of t
FUNC Prefix(q1, q2) -> Bool =
RET (EXISTS q | q1 $+\mathrm{q}=\mathrm{q} 2$)
FUNC SubSeq (q1, q2) -> Bool =
\% q.head; first element
\% q.tail; all but first
\% q.addh (t)
\% q. last; last element
\% q. reml; all but last
\% q.addl (t)
\% q1 <= q2
\% q1 <<= q2

RET (EXISTS p: SET Int $\mid \mathrm{p}<=\mathrm{q} 2 . \mathrm{dom} / \backslash \mathrm{q} 1=\mathrm{p}$. seq.sort * q 2)
FUNC ComposeR(q, r: (T, U) ->Bool) -> SEQ U = \% q ** r
$\%$ Elements related to nothing are dropped. If an element is related to several things, they appear in arbitrary order. RET + : (q * r.setF * ($\backslash \mathrm{s}:$ SET U | s.seq))

FUNC LexLE (q1, q2, f: (T,T)->Bool) -> Bool =
$\% \mathrm{q} 1 . \operatorname{lexLE}(\mathrm{q} 2, \mathrm{f})$; f is $<=$
$\%$ Is q1 lexically less than or equal to $q 2$. True if $q 1$ is a prefix of $q 2$,
$\%$ or the first element in which $q 1$ differs from $q 2$ is less.
RET $\quad \mathrm{q} 1<=\mathrm{q}^{2}$

八 q1(i) \# q2(i)) $\backslash \mathrm{f}(\mathrm{q} 1(\mathrm{i}), \mathrm{q} 2(\mathrm{i}))$
FUNC Perms (q)->SET Q = $\left.\operatorname{RET}\left\{q^{\prime}|\underset{(A L L}{ } t| q \cdot \operatorname{count}(t)=q^{\prime} \cdot \operatorname{count}(t)\right)\right\}$
\% q.perms
FUNC FSorter ($\mathrm{q}, \mathrm{f}:(\mathrm{T}, \mathrm{T})->\mathrm{Bool})->$ SEQ Int $=$
\% q.fsorter(f) ; f is $<=$
$\%$ The permutation that sorts q stably. Note: can't use min to define this, since min is defined using sort.
VAR ps := \{p :IN q.dom.perms $\%$ all perms that sort q

$$
\text { (ALL p :IN ps | po.lexLE(p, Int."<=")) } \Rightarrow \text { RET po }
$$

FUNC FSort ($q, f:(T, T)->B o o l) ~ \rightarrow Q=$
\% q.fsort (f); f is <= for the sort RET q.fsorter(f) * q
FUNC Sort (q) $->Q=\operatorname{RET}$ q.fsort (T." $<="$)) q.sort; only if T has $<=$
FUNC Count (q, t)->Int $=\operatorname{RET}\left\{t^{\prime}:\right.$ IN $\left.q \mid t^{\prime}=t\right\} . s i z e \% q . c o u n t(t)$
FUNC In(t, q)->Bool $=\operatorname{RET}(q . c o u n t(t) \# 0)$
\%t IN q
\% q1 == q2; equal as multisets
FUNC EqElem(q1, q2) -> Bool = RET q1 IN q2.perms
\% q1 - q2
.count (t), 0\}.max) \}.choose
$\operatorname{RET}\{q \mid$ (ALL $t \mid q \cdot$ count $(t)=\{q 1$. count (t)
END Sequence
We can't program Tuple in Spec, but it is defined as follows. If q : SEQ T, then q.tuple is a tuple of q.size T 's, the first equal to $q(0)$, the second equal to $q(1)$, and so forth. For the inverse, if u is a tuple of T 's, then u. seq is a SEQ T such that u. seq.tuple $=u$. If u is a tuple in which not all the elements have the same declared type, then u.seq is a SEQ Any such that u.seq.tuple $=u$.

Int has a method . . for making sequences: $i \ldots j=\{i, i+1, \ldots, j-1, j\}$. If $j<i$, i.. $j=\{ \}$. You can also write $i \ldots j$ as $\{k:=i \operatorname{BY} k+1$ WHILE $k<=j\}$; see [11] in section 5. Int also has a seq method: i.seq $=0 \ldots$ i-1.
There is a constructor $\{e 1, e 2, \ldots\}$ for a sequence with specific elements and a constructor \{\} for the empty sequence. There is also a constructor $q\{e 1 \rightarrow e 2\}$, which is equal to q except at e1 (and undefined if e1 is out of range). For the constructors see [6] and [8] of section 5. To generate a sequence there are constructors $\{x: I N q|\operatorname{pred}| \exp \}$ and $\{x:=e 1$ BY e2 WHILE pred1 | pred2 | exp\}. For these see [11] of section 5.

To map each element t of q to $f(t)$ use function composition q * f. Thus if q : SEQ Int, q * (\backslash i: Int | i*i) yields a sequence of squares. You can also write this
\{i:IN q | | i*i\}.

Index

-, 9, 19, 21	->, 3, 5, 8	conditional or, 9	
!, 9, 22	>, 9	CONST, 17	
!!, 9, 22	<=/>, 9	constructor, 8	
\#, 9, 10	>>, 14	count, 22	
\%, 3	abstract equality, 10	data abstraction, 6	
(), 3, 8, 16	add, 9	decl, 5	
(expList), 8	add an element, 9	declaration, 18	
(typeList), 5	adding an element, 19, 22	defined, 9, 20	
*, 3, 9, 21, 22	addl, 22	difference, 22	
**, 9	ALL, 8	divide, 9	
., 3, 5	ambiguity, 10, 14	Do, 14	
/,9	Any, 5, 10	dot, 18	
//, 9	append an element, 9	e.id, 10	
/ $, ~ 9,20$	APROC, 5, 16	e.id(), 10	
:, 8, 14	arguments, 8	e1 infixop e2, 10	
:, 3, 5	AS, 8	e1.id(e2), 10	
:=, 3, 8, 14, 18	assignment, 14	else, 14	
;, 14	associative, $6,10,14$	empty, 3, 10	
[], 3, 14	atomic command, 1, 13, 14 atomic procedure, 2	empty sequence, 22 empty set, 19	
[declList], 5 $[*], 3,8,14$	Atomic Semantics of Spec, 1,	END, 14,16	
[n], 3	backtracking, 13	Enum, 16 equal, 9	
$\backslash, 8$	$\text { bag, } 22$	equal types, 4	
$\{* \quad->\text { result }\}, 8$	begin, 14 body, 16	EXCEPT, 14 exception, 5, 6, 7, 15, 16	
```{ },3,8 {declList \| pred	exp},8 {exceptionList},5```	Bool, 5   built-in methods, 19 capital letter, 3	```exceptionSet, 5,16 EXISTS,8 exp,8```
```{exp -> result},8 {expList},8 {methodDefList}, 5,6 {},21```	Char, 5 characteristic predicate, 19 choice, 14	expanded definitions, 4   expression, 1, 7   expression has a type, 7	
$\{\mathrm{e} 1, \mathrm{e} 2, \ldots\}, 21$	choose, 19 choosing an element, 19	$\begin{aligned} & \text { fail, } 7,13 \\ & \text { FI, } 14 \end{aligned}$	
\|, 3, 14	CLASS, 16	fill, 22	
$\sim, 9$	class, 17	fit, 4, 7, 11, 14, 15	
+, 5, 9, 19, 21, 22	closure, 21	formal parameters, 16	
$>, 9$ $</ \ll, 14,16$	Clu, 15	FUNC, 16, 23	
<< >>, 3	command, 1, 13	function, $2,6,14,19,20$	
<<=, 9, 22	comment, 3	everywhere, 20	
$<=, 19,21$	composition, 20	general procedure, 2	
=, 9, 10	concatenation, 9	$\text { Global.id, 16, } 18$	
==>, 9	conditional, 10	grammar, 3	
=>, $3,8,14$	conditional and, 9	graph, 21	

greater or equal, 9
greater than, 9
grouping, 15
guard, 13, 14
handler, 14
has a routine type, 4
has type T, 4
HAvoc, 14
head, 22
id, 3, 6
id := exp, 8
id [typeList],5
identifier, 3
if, 14
implies, 9
in, $9,19,22$
includes, 4
infixOp, 9
initial value, 17
initialize, 15
instantiate, 16
intersection, 9, 19
Introduction to Spec, 1
invocation, $7,8,10,14$
IS, 8
isEmpty, 22
isPath, 21
keyword, 3
known, 20
LAMBDA, 8, 11
last, 19
less than, 9
lexical comparison, 22
List, 3
literal, $3,7,8$
local, 18
logical operators, 12
looping exception, 7, 13
m[typeList].id, 6
$\max , 19$
meaning
of an atomic command, 13
of an expression, 7
membership, 9, 19
method, 4, 5, 6, 19
mfp, 16
min, 19
module, 2, 16
multiply, 9
multiset, 22
multiset difference, 9
name, 1, 5, 18
new variable, 15
non-atomic command, 2, 13
Non-Atomic Semantics of
Spec, 1
non-deterministic, 1
nonterminal symbol, 3
normal result, 20
not equal, 9
Null, 5
od, 14
operator, 3, 6
OrderedSet, 19
organizing your program, 2
outcome, 13
parameterized module, 16
path in the graph, 21
precedence, $6,9,14$
precondition, 14
pred, 8, 19
predefined identifiers, 3
predicate, 20
prefix, 9, 22
prefixOp, 9
prefixOp e, 10
primary, 8
PROC, 5, 16
program, 2, 16
punctuation, 3
quantif, 8
quantification, 10
quoted character, 3
RAISE, 8, 14
RAISE exception, 11
RAISES, 5, 11
RAISES set, 15
record, 5, 10
redeclaration, 18
relation, 21
remove an element, $9,19,22$
result, 7
result type, 14
RET, 14
routine, $2,14,16$
scope, 18
seg, 22
SEQ, 5, 6, 22
SEQ Char, 6
sequence, 22
sequential composition, 14
sequential program, 2
SET, 5, 10, 11, 19, 20
set difference, 9,19
set of sequences of states, 2
set of values, 4
set with specific elements, 19
setF, 21
side effects, 15
signature, 15, 16
SKIP, 14
specifications, 1
state, $1,7,13,18$
state machine, 1
state variable, 1
String, 5, 6
stringLiteral, 5
sub-sequence, 9,22
subset, 9,19
subtract, 9
symbol, 3
syntactic sugar, 7
т.m, 6, 7

T->U, 6
tail, 22
terminal symbol, 3
test membership, 19, 22
thread, 17
toplevel, 16, 18
totalf, 21
transition, 1
transitive closure, 21
tuple, 5, 14, 15
tuple constructor, 8
type, 2, 4, 5, 16
type equality, 4
type inclusion, 4
type-checking, 4, 7, 14
undefined, 7, 10, 13
union, 5, 6, 7, 9, 19, 22
upper case, 3
value, 1
variable, $1,14,15$
white space, 3
with, 5, 6, 10, 16

