
6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 1

6. Abstraction Functions and Invariants

This handout describes the main techniques used to prove correctness of state machines:
abstraction functions and invariant assertions. We demonstrate the use of these techniques for
some of the Memory examples from handout 5.

Throughout this handout, we consider modules all of whose externally invocable procedures are
APROCs. We assume that the body of each such procedure is executed all at once. Also, we do not
consider procedures that modify global variables declared outside the module under
consideration.

Modules as state machines

Our methods apply to an arbitrary state machine or automaton. In this course, however, we use a
Spec module to define a state machine. Each state of the automaton designates values for all the
variables declared in the module. The initial states of the automaton consist of initial values
assigned to all the module’s variables by the Spec code. The transitions of the automaton
correspond to the invocations of APROCs together with their result values.

An execution fragment of a state machine is a sequence of the form s0, π1, s1, π2, …, where each
s is a state, each π is a label for a transition (an invocation of a procedure), and each consecutive
(si, πi+1, si+1) triple follows the rules specified by the Spec code. (We do not define these rules
here—wait for the lecture on atomic semantics.) An execution is an execution fragment that
begins in an initial state.

The πi are labels for the transitions; we often call them actions. When the state machine is
written in Spec, each transition is generated by some atomic command, and we can use some
unambiguous identification of the command for the action. At the moment we are studying
sequential Spec, in which every transition is the invocation of an exported atomic procedure. We
use the name of the procedure, the arguments, and the results as the label.

Figure 1 shows some of the states and transitions of the state machine for the Memory module
with A = IN 1 .. 4, and Figure 2 does likewise for the WBCache module with Csize = 2. The
arrow for each transition is labeled by its πi, that is, by the procedure name, arguments, and
result.

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 2

b
c
a
b

b
a
a
b

a
a
a
a

b
a
a
c

a

c

Write(2,a)

Init
(Read(2),a)

Init

(Read(3),a)
 (Read(1),b)(Read(1),b)

Reset(a)

 Reset(a)
Write(4,c)

Reset(a)

 Figure 1: Part of the Memory state machine

a
b

a

b

a

a

b
c
a
c

a

Write(2,a)

Init
(Read(2),a)

Init

(R
ea

d(1),b
)

Rese
t(a

)

Reset(a) Write(4,c)

b
c
c
a

b

b

b
c
a
a

b
a
a
b

a
b
a
c

Reset(a)

a

c

b
c
a
b

b

c

a
a

b
a

b
c
a
c

b
a
a
c

b

a

(R
ea

d(
3)

,a)

(Read(1),b)

Figure 2: Part of the WBCache state machine

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 3

External behavior

Usually, a client of a module is not interested in all aspects of its execution, but only in some
kind of external behavior. Here, we formalize the external behavior as a set of traces. That is,
from an execution (or execution fragment) of a module, we discard both the states and the
internal actions, and extract the trace. This is the sequence of labels πi for external actions (that
is, invocations of exported routines) that occur in the execution (or fragment). Then the external
behavior of the module is the set of traces that are obtained from all of its executions.

It’s important to realize that in going from the execution to the trace we are discarding a great
deal of information. First, we discard all the states, keeping only the actions or labels. Second,
we discard all the internal actions, keeping only the external ones. Thus the only information we
keep in the trace is the behavior of the state machine at its external interface. This is appropriate,
since we want to study state machines that have the same behavior at the external interface; we
shall see shortly exactly what we main by ‘the same’ here. Two machines can have the same
traces even though they have very different state spaces.

In the sequential Spec that we are studying now, a module only makes a transition when an
exported routine is invoked, so all the transitions appear in the trace. Later, however, we will
introduce modules with internal transitions, and then the distinction between the executions and
the external behavior will be important.

For example, the set of traces generated by the Memory module includes the following trace:
(Reset(v),)
(Read(a1),v)
(Write(a2,v’))
(Read(a2),v’)

However, the following trace is not included if v # v’:
(Reset(v))
(Read(a1),v’) should have returned v
(Write(a2,v’))
(Read(a2),v) should have returned v’

In general, a trace is included in the external behavior of Memory if every Read(a) or Swap(a,
v) operation returns the last value written to a by a Write, Reset or Swap operation, or returned
by a Read operation; if there is no such previous operation, then Read(a) or Swap(a, v) returns
an arbitrary value.

Implements relation

In order to understand what it means for one state machine to implement another one, it is
helpful to begin by considering what it means for one atomic procedure to implement another.
The meaning of an atomic procedure is a relation between an initial state just before the
procedure starts (sometimes called a ‘pre-state’) and a final state just after the procedure has
finished (sometimes called a ‘post-state’). This is often called an ‘input-output relation’. For
example, the relation defined by a square-root procedure is that the post-state is the same as the
pre-state, except that the square of the procedure result is close enough to the argument. This
meaning makes sense for an arbitrary atomic procedure, not just for one in a trace.

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 4

We say that procedure P implements spec S if the relation defined by P (considered as a set of
ordered pairs of states) is a subset of the relation defined by S. This means that P never does
anything that S couldn’t do. However, P doesn’t have to do everything that S can do. Code for
square root is probably deterministic and always returns the same result for a given argument.
Even though the spec allows several results (all the ones that are within the specified tolerance),
we don’t require code for to be able to produce all of them; instead we are satisfied with one.

Actually this is not enough. The definition we have given allows P’s relation to be empty, that is,
it allows P not to terminate. This is usually called ‘partial correctness’. In addition, we usually
want to require that P’s relation be total on the domain of S; that is, P must produce some result
whenever S does. The combination of partial correctness and termination is usually called ‘total
correctness’.

If we are only interested in external behavior of a procedure that is part of a stateless module, the
only state we care about is the arguments and results of the procedure. In this case, a transition is
completely described by a single entry in a trace, such as (Read(a1),v).

Now we are ready to consider modules with state. Our idea is to generalize what we did with
pairs of states described by single trace entries to sequences of states described by longer traces.
Suppose that T and S are any modules that have the same external interface (set of procedures
that are exported and hence may be invoked externally). In this discussion, we will often refer to
S as the spec module and T as the code. Then we say that T implements S if every trace of T is
also a trace of S. That is, the set of traces generated by T is a subset of the set of traces generated
by S.

This says that any external behavior of the code T must also be an external behavior of the spec
S. Another way of looking at this is that we shouldn’t be able to tell by looking at the code that
we aren’t looking at the spec, so we have to be able to explain every behavior of T as a possible
behavior of S.

The reverse, however, is not true. We do not insist that the code must exhibit every behavior
allowed by the spec. In the case of the simple memory the spec is completely deterministic, so
the code cannot take advantage of this freedom. In general, however, the spec may allow lots of
behaviors and the code choose just one. The spec for sorting, for instance, allows any sorted
sequence as the result of Sort; there may be many such sequences if the ordering relation is not
total. The code will usually be deterministic and return exactly one of them, so it doesn’t exhibit
all the behavior allowed by the spec.

Safety and liveness

Just as with procedures, this subset requirement is not strong enough to satisfy our intuitive
notion of code. In particular, it allows the set of traces generated by T to be empty; in other word,
the code might do nothing at all, or it might do some things and then stop. As we saw, the analog
of this for a simple sequential procedure is non-termination. Usually we want to say that the code
of a procedure should terminate, and similarly we want to say that the code of a module should
keep doing things. More generally, when we have concurrency we usually want the code to be
fair, that is, to eventually service all its clients, and more generally to eventually make any
transition that continues to be enabled.

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 5

It turns out that any external behavior (that is, any set of traces) can be described as the
intersection of two sets of traces, one defined by a safety property and the other defined by a
liveness property.1 A safety property says that in the trace nothing bad ever happens, or more
precisely, that no bad transition occurs in the trace. It is analogous to partial correctness for a
stateless procedure; a state machine that never makes a bad transition can define any safety
property. If a trace doesn’t satisfy a safety property, you can always find this out by looking at a
finite prefix of the trace, in particular, at a prefix that includes the first bad transition.

A liveness property says that in the trace something good eventually happens. It is analogous to
termination for a stateless procedure. You can never tell that a trace doesn’t have a liveness
property by looking at a finite prefix, since the good thing might happen later. A liveness
property cannot be defined by a state machine. It is usual to express liveness properties in terms
of fairness, that is, in terms of a requirement that if some transition stays enabled continuously it
eventually occurs (weak fairness), or that if some transition stays enabled intermittently it
eventually occurs (strong fairness).

With a few exceptions, we don’t deal with liveness in this course. There are two reasons for this.
First, it is usually not what you want. Instead, you want a result within some time bound, which
is a safety property, or you want a result with some probability, which is altogether outside the
framework we have set up. Second, liveness proofs are usually hard.

Abstraction functions and simulation

The definition of ‘implements’ as inclusion of external behavior is a sound formalization of our
intuition. It is difficult to work with directly, however, since it requires reasoning about infinite
sets of infinite sequences of actions. We would like to have a way of proving that T implements
S that allows us to deal with one of T’s actions at a time. Our method is based on abstraction
functions.

An abstraction function maps each state of the code T to a state of the spec S. For example, each
state of the WBCache module gets mapped to a state of the Memory module. The abstraction
function explains how to interpret each state of the code as a state of the spec. For example,
Figure 3 depicts part of the abstraction function from WBCache to Memory. Here is its definition in
Spec, copied from handout 5.

FUNC AF() -> M = RET (\ a | c!a => c(a) [*] m(a))

1 B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Computing 2, 3 (1987), pp 117-126.

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 6

a
b

b
a
a
b

a

a

b
c
a
c

a

Write(2,a)

Init
(Read(2),a)

Init

(R
ea

d(1),b
)

Rese
t(a

)

Reset(a) Write(4,c)

b
c
c
a

b

b

b
c
a
a

b
a
a
b

a
b
a
c

Reset(a)

a

c

b
c
a
b

b

c

a
a

b
a

b
c
a
c

b
a
a
c

b

a
 (R

ea
d(

3)
,a)

(Read(1),b)

b
c
a
b

b
a
a
b

a
a
a
a

b
a
a
c

a

c

Write(2,a)

Init
(Read(2),a)

Init

(Read(3),a)
 (Read(1),b)(Read(1),b)

Reset(a)

 Reset(a)
Write(4,c)

Figure 3: Abstraction function for WBCache

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 7

You might think that an abstraction function should map the other way, from states of the spec to
states of the code, explaining how to represent each state of the spec. This doesn’t work,
however, because there is usually more than one way of representing each state of the spec. For
example, in the WBCache code for Memory, if an address is in the cache, then the value stored for
that address in memory does not matter. There are also choices about which addresses appear in
the cache. Thus, many states of the code can represent the same state of the spec. In other words,
the abstraction function is many-to-one.

An abstraction function F is required to satisfy the following two conditions.

1. If t is any initial state of T, then F(t) is an initial state of S.

2. If t is a reachable state of T and (t, π, t') is a step of T, then there is a step of S from F(t) to
F(t'), having the same trace.

Condition 2 says that T simulates S; every step of T faithfully copies a step of S. It is stated in a
particularly simple way, forcing the given step of T to simulate a single step of S. That is enough
for the special case we are considering right now. Later, when we consider concurrent
invocations for modules, we will generalize condition 2 to allow any number of steps of S rather
than just a single step.

The diagram in Figure 4 represents condition 2. The dashed arrows represent the abstraction
function F, and the solid arrows represent the transitions; if the lower (double) solid arrow exists
in the code, the upper (single) solid arrow must exist in the spec. The diagram is sometimes
called a “commutative diagram” because if you start at the lower left and follow arrows, you will
end up in the same state regardless of which way you go.

π

π
F(t) F(t’)

t t’

F F

Figure 4: Commutative diagram for correctness

An abstraction function is important because it can be used to show that one module implements
another:

Theorem 1: If there is an abstraction function from T to S, then T implements S, i.e., every trace
of T is a trace of S.

Note that this theorem applies to both finite and infinite traces.

Proof: (Sketch) Let β be any trace of T, and let α be any execution of T that generates trace β.
Use Conditions 1 and 2 above to construct an execution α' of S with the same trace. That is, if t is

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 8

the initial state of α, then let F(t) be the initial state of α’. For each step of α in turn, use
Condition 2 to add a corresponding step to α’.

More formally, this proof is an induction on the length of the execution. Condition 1 gives the
basis: any initial state of T maps to an initial state of S. Condition 2 gives the inductive step: if
we have an execution of T of length n that simulates an execution of S, any next step by T
simulates a next step by S, so any execution of T of length n+1 simulates an execution of S.

We would like to have an inverse of Theorem 1: if every trace of T is a trace of S, then there is an
abstraction function that shows it. This is not true for the simple abstraction functions and
simulations we have defined here. Later on, in handout 8, we will generalize them to a
simulation method that is strong enough to prove that T implements S whenever that is true.

Invariants

An invariant of a module is any property that is true of all reachable states of the module, i.e., all
states that can be reached in executions of the module (starting from initial states). Invariants are
important because condition 2 for an abstraction function requires us to show that the code
simulates the spec from every reachable state, and the invariants characterize the reachable
states. It usually isn’t true that the code simulates the spec from every state.

Here are examples of invariants for the HashMemory and MajReg modules, written in Spec and
copied from handout 5.

FUNC HashMemory.Inv(nb: Int, m: HashT, default: V) -> Bool = RET
(nb > 0
/\ m.size = nb
/\ (ALL a | a.hf IN m.dom)
/\ (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf = i)
/\ (ALL a | { j :IN m(a.hf) | m(a.hf)(j).a = a }.size <= 1))

FUNC MajReg.Inv(m: M) -> Bool = RET
 (ALL p :IN m.rng, p’ :IN m.rng | p.n = p’.n ==> p.v = p’.v)
/\ (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).n >= p.n)))

For example, for the HashMemory module, the invariant says (among other things) that a pair
containing address a appears only in the appropriate bucket a.hf, and that at most one pair for an
address appears in the bucket for that address.

The usual way to prove that a property P is an invariant is by induction on the length of finite
executions leading to the states in question. That is, we must show the following:

(Basis, length = 0) P is true in every initial state.

(Inductive step) If (t, π, t') is a transition and P is true in t, then P is also true in t'.

Not all invariants are proved directly by induction, however. It is often better to prove invariants
in groups, starting with the simplest invariants. Then the proofs of the invariants in the later
groups can assume the invariants in the earlier groups.

Example: We sketch a proof that the property MajReg.Inv is in fact an invariant.

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 9

Basis: In any initial state, a single (arbitrarily chosen) default value v appears in all the copies,
along with the sequence number 0. This immediately implies both parts of the invariant.

Inductive step: Suppose that (t, π, t’) is a transition and Inv is true in t. We consider cases based
on π. If π is an invocation or response, or the body of a Read procedure, then the step does not
affect the truth of Inv. So it remains to consider the case where π is a Write, say Write(v).

In this case, the second part of the invariant for t (i.e., the fact that the highest n appears in more
than half the copies), together with the fact that the Write reads a majority of the copies, imply
that the Write obtains the highest n, say i. Then the new n that the Write chooses must be the
new highest n. Since the Write writes i+1 to a majority of the copies, it ensures the second part
of the invariant. Also, since it associates the same v with the sequence number i+1 everywhere it
writes, it preserves the first part of the invariant.

Proofs using abstraction functions

Example: We sketch a proof that the function WBCache.AF given above is an abstraction
function from WBCache to Memory. In this proof, we get by without any invariants.

For Condition 1, suppose that t is any initial state of WBCache. Then AF(t) is some (memory) state
of Memory. But all memory states are allowable in initial states of Memory. Thus, AF(t) is an initial
state of Memory, as needed. For Condition 2, suppose that t and AF(t) are states of WBCache and
Memory, respectively, and suppose that (t, π, t’) is a step of WBCache. We consider cases, based on
π.

For example, suppose π is Read(a). Then the step of WBCache may change the cache and
memory by writing a value back to memory. However, these changes don’t change the
corresponding abstract memory. Therefore, the memory correspondence given by AF holds after
the step. It remains to show that both Reads give the same result. This follows because:

The Read(a) in WBCache returns the value t.c(a) if it is defined, otherwise t.m(a).

The Read(a) in Memory returns the value of AF(t).m(a).

The value of AF(t).m(a) is equal to t.c(a) if it is defined, otherwise t.m(a). This is by the
definition of AF.

For another example, suppose π is Write(a,v). Then the step of WBCache writes value v to
location a in the cache. It may also write some other value back to memory. Since writing a
value back does not change the corresponding abstract state, the only change to the abstract state
is that the value in location a is changed to v. On the other hand, the effect of Write(a,v) in
Memory is to change the value in location a to v. It follows that the memory correspondence,
given by AF, holds after the step.

We leave the other cases, for the other types of operations, to the reader. It follows that AF is an
abstraction function from WBCache to Memory. Then Theorem 1 implies that WBCache implements
Memory, in the sense of trace set inclusion.

Example: Here is a similar analysis for MajReg, using MajReg.AF as the abstraction function.

6.826—Principles of Computer Systems 2004

Handout 6. Abstraction Functions and Invariants 10

FUNC AF() -> V = RET m.rng.max.v

This time we depend on the invariant MajReg.Inv. Suppose π is Read(a). No state changes
occur in either module, so the only thing to show is that the return values are the same in both
modules. In MajReg, the Read collects a majority of values and returns a value associated with
the highest n from among that majority. By the invariant that says that the highest n appears in a
majority of the copies, it must be that the Read in fact obtains the highest n that is present in the
system. That is, the Read in MajReg returns a value associated with the highest n that appears in
state t.

On the other hand, the Read in Register just returns the value of the single variable m in state s.
Since AF(t) = s, it must be that s.m is a value associated with the highest n in t. But the uniqueness
invariant says that there is only one such value, so this is the same as the value returned by the
Read in MajReg.

Now suppose π is Write(v). Then the key thing to show is that AF(t’) = s’. The majority invariant
implies that the Write in MajReg sees the highest n i and thus i+1 is the new highest n. It writes
(i+1, v) to a majority of the copies. On the other hand, the Write in Register just sets m to v.
But clearly v is a value associated with the largest n after the step, so AF(t’) = s’ as required.

It follows that AF is an abstraction function from MajReg to Register. Then Theorem 1 implies
that MajReg implements Register.

