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7. Disksand File Systems

Motivation

Thetwo lectures on disks and file systems are intended to show you a number of things:
Some semi-realistic examples of specs.
Many important coding techniques for file systems.
Some of the tradeoffs between a simple spec and efficient code.
Examples of abstraction functions and invariants.
Encoding: a genera technique for representing arbitrary types as byte sequences.
How to model crashes.
Transactions: a genera technique for making big actions atomic.

There are alot of ideas here. After you have read this handout and listened to the lectures, it'sa
good ideato go back and reread the handout with thislist of themesin mind.

Outline of topics
We give the specs of disksand filesin the pisk and rile modules, and we discuss a variety of
coding issues:
Crashes
Disks
Files
Caching and buffering of disks and files
Representing files by trees and extents
Allocation
Encoding and decoding
Directories
Transactions
Redundancy

Crashes
The specs and code here are without concurrency. However, they do alow for crashes. A crash

can happen between any two atomic commands. Thus the possibility of crashesintroduces a
limited kind of concurrency.
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When a crash happens, the volatile global state isreset, but the stable state is normally
unaffected. We express precisely what happens to the global state as well as how the module
recovers by including a crash procedure in the module. When a crash happens:

1. Thecrash procedureisinvoked. It need not be atomic.

2. If thecrash procedure does a crasu command, the execution of the current invocations (if
any) stop, and their local state is discarded; the same thing happens to any invocations
outside the module from within it. After crasy, no procedure in the module can be invoked
from outside until crash returns.

3. Thecrash procedure may do other actions, and eventually it returns.
4. Normal operation of the module resumes; that is, external invocations are now possible.

Y ou can tell which parts of the state are volatile by looking at what crash does; it will reset the
volatile variables.

Because crashes are possible between any two atomic commands, atomicity isimportant for any
operation that involves a change to stable state.

The meaning of a Spec program with this limited kind of concurrency is that each atomic
command correspondsto atransition. A hidden piece of state called the program counter keeps
track of what transitions are enabled next: they are the atomic commands right after the program
counter. There may be several if the command after the program counter has [] asits operator.
In addition, a crash transition is always possible; it resets the program counter to anull value
from which no transition is possible until some external routine isinvoked and then invokesthe
Crash routine.

If there are non-atomic procedures in the spec with many atomic commands, it can be rather
difficult to see the consequences of a crash. It is therefore clearer to write a spec with as much
atomicity as possible, making it explicit exactly what unusual transitions are possible when
there’sacrash. We don’t always follow this style, but we give some examples of it, notably at
the end of the section on disks.

Disks
Essential properties of adisk:

Storage is stable across crashes (we discuss error models for disksin the pisk spec).

It's organized in blocks, and the only atomic update is to write one block.

Random access is about 100k times slower than random access to RAM (10 msvs. 100 ns)
Sequential accessis 10-100 times slower than to RAM (40 MB/s vs. 400-6000 MB/s)
Costs 50 times less than RAM ($0.75/GB vs. $100/GB) in February 2004.

MTBF 1 million hours = 100 years.

Performance numbers:

Blocks of .5k - 4k bytes
40 MB/sec sequential, sustained (more with paralel disks)
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3 ms average rotationa delay (10000 rpm = 6 msrotation time)
7 ms average seek time; 3 ms minimum

It takes 10 msto get anything at all from arandom place on the disk. In another 10 msyou can
transfer 400 KB. Hence the cost to get 400 KB is only twice the cost to get 1 byte. By reading
from severa disksin paralle (called striping or RAID) you can easily increase the transfer rate
by afactor of 5-10.

Performance techniques:

Avoid disk operations: use caching
Do sequentia operations: allocate contiguously, prefetch, writeto log
Write in background (write-behind)

A spec for disks

Thefollowing module describes a disk psk as afunction from apa to adisk block pg, which is
just asequence of pesize bytes. The psk function can also yield ni1, which represents a
permanent read error. The module isa class, so you can instantiate as many pisks as needed.
The state is one psk for each pisk. Thereis anew method for making anew disk; think of thisas
ordering anew disk drive and plugging it in. An extent e represents a set of consecutive disk
addresses. The main routines are the read and write methods of pisk: read, which reads an
extent, and write, which writesn disk blocks worth of data sequentially to the extent E{da, n}.
The write is not atomic, but can be interrupted by a failure after each single block iswritten.

Usually aspec like thisiswritten with a concurrent thread that introduces permanent errorsin the
recorded data. Since we haven't discussed concurrency yet, in this spec we introduce the errors
in reads, using the adderrors procedure. An error sets ablock to ni1, after which any read that
includes that block raises the exception error. Strictly speaking thisisillegal, since read isa
function and therefore can’t call the procedure adderrors. When we learn about concurrency we
can move Adderrors t0 aseparate thread; in the meantime we take the liberty, since it would be
areal nuisance for read to be a procedure rather than a function.

Since neither Spec nor our underlying model deals with probabilities, we don’'t have any way to
say how likely an error is. We duck this problem by making adaerrors completely non-
deterministic; it can do anything from introducing no errors (which we must hopeis the usual
case) to clobbering the entire disk. Characterizing errors would be quite tricky, since disks
usually have at least two classes of error: failures of single blocks and failures of an entire disk.
However, any user of this module must assume something about the probability and distribution
of errors.

Transient errors are less interesting because they can be masked by retries. We don’t model
them, and we also don’t model errors reported by writes. Finaly, aredistic error model would
include the possibility that a block that reports aread error might later be readable after all.

CLASS Disk EXPORT Byte, Data, DA, E, DBSize, read, write, size, check, Crash

TYPE Byte = IN O .. 255
Data = SEQ Byte
DA = Nat % Disk block Address
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DB = SEQ Byte % Disk Block
SUCHTHAT (\db| db.size = DBSize)
Blocks = SEQ DB
E = [da, size: Nat] % Extent, in disk blocks
WITH {das:=EToDAs, "IN":=(\ e, da | da IN e.das)}
Dsk = DA -> (DB + Null) % aDB or nil (error) for each DA
CONST DBSize := 1024 % bytesin adisk block
VAR disk : Dsk

% overrides StdNew
% s1ize blocks, arbitrary contents

APROC new(size: Int) -> Disk = <<
VAR dsk | dsk.dom = size.seq.rng =>
self := StdNew(); disk := dsk; RET self >>

FUNC read(e) -> Data RAISES {notThere, error} =
check (e) ; AddErrors() ;
VAR dbs := e.das * disk | % contents of the blocksin e
IF nil IN dbs => RAISE error [*] RET BToD(dbs) FI

PROC write(da, data) RAISES {notThere} =
VAR blocks := DToB(data), i := 0 |
% Atomic by block, and in order
check (E{da, blocks.size});
DO blocks!i => WriteBlock(da + i, blocks(i)); i + := 1 OD

% failsif data not amultiple of DBsize

APROC WriteBlock(da, db) = << disk(da) := db >> % the atomic update. PRE: disk!da

FUNC size() -> Int = RET disk.dom.size

APROC check(e) RAISES {notThere} = % every DAineisindisk.dom
<< e.das.rng <= disk.dom => RET [*] RAISE notThere >>

PROC Crash() = CRASH % no global volatile state

FUNC EToDAs(e) -> SEQ DA = RET e.da .. e.da+e.size-1 %e.das

% Internal routines

% Functions to convert between Data and Blocks.

FUNC BToD(blocks) -> Data = RET + : blocks

FUNC DToB(data ) -> Blocks = VAR blocks | BToD(blocks) = data => RET blocks
% Undefined if data.size isnotamultipleof DBsize

APROC AddErrors() = % clobber some blocks
<< DO RET [] VAR da :IN disk.dom | disk(da) := nil OD >>

END Disk

This module doesn’t worry about the possibility that adisk may fail in such away that the client
can't tell whether awriteisstill in progress; thisis asignificant problem in fault tolerant systems
that want to allow a backup processor to start running adisk as soon as possible after the primary
fails.

Many disks do not guarantee the order in which blocks are written (why?) and thus do not
implement this spec, but instead one with aweaker write:
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PROC writeUnordered(da, data) RAISES {notThere} =
VAR blocks := DToB(data) |
% Atomic by block, in arbitrary order; assumes no concurrent writing.
check (E{da, blocks.size});
DO VAR i | blocks(i) # disk(da + i)| => WriteBlock(da + i, blocks(i)) OD

In both specswrite establisheSblocks = E{da, blocks.size}.das * disk, Whichisthe
sameasdata = read(E{da, blocks.size}), and both change each disk block atomically.
writeUnordered Says nothing about the order of changes to the disk, so after a crash any subset
of the blocks being written might be changed; write guarantees that the blocks changed are a
prefix of al the blocks being written. (writeunordered would have other differencesfrom
write if concurrent access to the disk were possible, but we have ruled that out for the moment.)

Clarifying crashes

In this spec, what happens when there' s a crash is expressed by the fact that write isnot atomic
and changes the disk one block at atimein the atomic writeBlock. We can make this more
explicit by making the occurrence of a crash visible inside the spec in the value of the crashea
variable. To do this, we modify crash so that it temporarily makes crashed true, to givewrite
achanceto seeit. Then write can be atomic; it writes all the blocks unless crashed istrue, in
which case it writes some prefix; thiswill happen only if write isinvoked between the crashed
:= true and the crasu commands of crash. To describe the changes to the disk neatly, we
introduce an internal function Newpisk that maps a dsk value into another onein which disk
blocks at da are replaced by corresponding blocks defined in bs.

Again, thiswouldn’t beright if there were concurrent accesses to pi sk, since we have made all
the changes atomically, but it gives the possible behavior if the only concurrency isin crashes.

VAR [crashed : Bool := false

RPROC write(da, data) RAISES {notThere} = [<<
VAR blocks := DToB(data) |
check (E{da, blocks.size});

% falsif data not amultiple of DBsize

IF crashed => % if crashed, write some prefix
VAR i | i < blocks.size => blocks := blocks.sub(0, i)
[1 SKIP FI;
disk := NewbDisk(disk, da, blocks)
5]
FUNC NewDisk (dsk, da, bs: (Int -> DB)) -> Dsk = % result is dsk overwritten with bs at daj

RET dsk + (\ da’ | da’ - da) * bs

PROC Crash() = |crashed := true;| CRASH; |crashed := false|

For unordered writes we need only a slight change, to write an arbitrary subset of the blocksiif
there' sacrash, rather than a prefix:

IF crashed => % if crashed, write some subset

VAR [w: SET I | w <= blocks.dom => blocks := blocks.[restrict (w)
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Specifying files
This section gives avariety of specsfor files. Codefollows in later sections.

Wetreat afile asjust a sequence of bytes, ignoring permissions, modified dates and other
paraphernalia. Files have names, and for now we confine ourselvesto a single directory that
maps names to files. We call the name a‘ path name’ px with an eye toward later introducing
multiple directories, but for now we just treat the path name as a string without any structure. We
package the operations on files as methods of pn. The main methods are read and write; we
define the latter initially aswriteatomic, and later introduce less atomic variationswrite and
WriteUnordered. There are also boring operations that deal with the size and with file names.

MODULE File EXPORT PN, Byte, Data, X, F, Crash =

TYPE PN = String % Path Name
WITH {read:=Read, write:=WriteAtomic, size:=GetSize,
setSize:=SetSize, create:=Create, remove:=Remove,
rename: =Rename }

1 = Int
Byte = IN O .. 255
Data = SEQ Byte
X = Nat % byte-in-fileindeX
F = Data % File
D = PN -> F % Directory
VAR d ;= D{} % undefined everywhere

Note that the only state of the specis g, sincefiles are only reachable through 4.

There aretiresome complicationsin write caused by the fact that the arguments may extend
beyond the end of the file. These can be handled by imposing preconditions (that is, writing the
spec to do zavoc when the precondition isn't satisfied), by raising exceptions, or by defining
some sensible behavior. This spec takes the third approach; newrile computes the desired
contents of thefile after the write. So that it will work for unordered writes as well, it handles
gparse data by choosing an arbitrary data’ that agreeswith data where data is defined.
Compare it with Disk.NewDisk.

FUNC Read(pn, x, 1) -> Data = RET d(pn).seg(x, 1)
% Returns as much data as available, up to i bytes, starting at x.

APROC WriteAtomic(pn, x, data) = << d(pn) := NewFile(d(pn), x, data) >>

FUNC NewFile (f0, x, data: Int -> Byte) -> F =
% £ isthe desired find file. Fill in space between £0 and x with zeros, and undefined data elements arbitrarily.

VAR z := data.dom.max, z0 := f0.size , £, data’ |
data’ .size = z /\ data’.restrict(data.dom) = data

/\ f.size = {z0, x+z}.max

/\ (ALL i | (i1INoO .. {x, z0}.min-1 ==> £(i) = £0(1) )
/\ (i IN z0 .. x-1 ==> f(i) = 0 )
/\ (i IN x .. X+z-1 ==> f (i) = data’ (i-x)
/\ (i IN x+z .. z0-1 ==> f(i) = £0(i) ) )

=> RET £
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FUNC GetSize(pn) -> X = RET d(pn).size

APROC SetSize(pn, x) = << VAR z := pn.size |
IF x <= z => << d(pn) := pn.read(0, z) >> % truncate
[*] pn.write(z, 0.fill(x - z + 1)) % handles crashes likewrite
FI >>
APROC Create(pn) = << d(pn) := F{} >>
APROC Remove (pn) = << d := d{pn -> } >>
APROC Rename (pnl, pn2) = << d(pn2) := d(pnl); Remove (pnl) >>
PROC Crash() = SKIP % no volatile state or non-atomic changes

END File

writeAtomic changesthe entirefile contents at once, so that a crash can never leavethefilein
an intermediate state. Thiswould be quite expensive in most code. For instance, consider what is
involved in making awrite of 20 megabytes to an existing file atomic; certainly you can’t
overwrite the existing disk blocks one by one. For this reason, real file systems don’t implement
writeAtomic. Instead, they changethefile contents alittle at atime, reflecting the fact that the
underlying disk writes blocks one at atime. Later we will see how an atomic write could be
implemented in spite of the fact that it takes several atomic disk writes. In the meantime, hereis
amorerealistic spec for write that writesthe new bytesin order. Itisjust likepisk.write
except for the added complication of extending the file when necessary, which istaken care of in

NewFile.
APROC Write(pn, x, data) = <<
IF crashed => % if crashed, write some prefix
VAR i | i < data.size => data := data.sub(0, 1)
[*] SKIP FI;
d(pn) := NewFile(d(pn), x, data) >>
PROC Crash() = [crashed := true; CRASH; crashed := false

This spec reflects the fact that only asingle disk block can be written atomically, so thereisno
guarantee that all of the data makesit to the file before a crash. At thefilelevel itisn't
appropriate to deal in disk blocks, so the spec promises only bytewise atomicity. Actual code
would probably make changes one page at atime, so it would not exhibit al the behavior
alowed by the spec. There's nothing wrong with this, as long as the spec is restrictive enough to
satisfy itsclients.

write does promise, however, that £ (i) ischanged no later than £ (i+1) . Some file systems
make no ordering guarantee; actually, any file system that runs on a disk without an ordering
guarantee probably makes no ordering guarantee, since it requires considerable care, or
considerable cost, or both to overcome the consequences of unordered disk writes. For such afile
system the following writeUnordered is appropriate; itisjust likepisk.writeUnordered.

APROC WriteUnordered(pn, x, data) = <<
IF crashed => % if crashed, write some subset
VAR [w: SET I | w <= data.dom| => data := data.[restrict (w)
[*] SKIP FI;
d(pn) := NewFile(d(pn), x, data) >>
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Notice that although writing afileisnot atomic, ri1e’sdirectory operations are atomic. This
corresponds to the semantics that file systems usually attempt to provide: if thereis afailure
during acreate, Remove, OF Rename, the operation is either completed or not done at all, but if
thereisafailure during awrite, any amount of the data may be written. The other reason for
making this choice in the spec is ssmple: with the abstractions available there’s no way to express
any sensibleintermediate state of adirectory operation other than rename (Of course sloppy code
might leave the directory scrambled, but that has to count as a bug; think what it would look like
in the spec).

The spec we gavefor setsize madeit asatomic aswrite. Thefollowing spec for setsize is
unconditionally atomic; this might be appropriate because an atomic setsize iseasier to
implement than a general atomic write:

APROC SetSize(pn, x) = << d(pn) := (d(pn) + 0.fill(x)).seg(0, x) >>

Here is another version of newFile, written in amore operational stylejust for comparison. It is
ahit shorter, but less explicit about the relation between theinitial and fina states.

FUNC NewFile (f0, x, data: Int -> Byte) -> F = VAR z0 := f0.size, data’ \
data’.size = data.dom.max =>

data’ := data’ + data;
RET (x > 20 => £f0 + 0.f1i1ll(x - z0) [*] fO.sub(0, x - 1))
+ data’

+ fO0.sub(f.size, z0-1)
Our File Specismissing some things that are important in real file systems:

Access control: permissions or access control lists on files, ways of defaulting these when a
fileis created and of changing them, an identity for the requester that can be checked against
the permissions, and away to establish group identities.

Multiple directories. We will discuss this when we talk about naming.
Quotas, and what to do when the disk fills up.
Multiple volumes or file systems.

Backup. Wewill discuss this near the end of this handout when we describe the copying file
system.

Cached and buffered disks

The simplest way to decouplethe file system client from the slow disk isto provide code for the
Disk abstraction that does caching and write buffering; then the file system code need not
change. The basic ideas are very similar to the ideas for cached memory, although for the disk
we preserve the order of writes. We didn't do this for the memory because we didn’t worry about
failures.

Failures add complications; in particular, the spec must change, since buffering writes means that
some writes may belost if thereis acrash. Furthermore, the client needs away to ensure that its
writes are actualy stable. We therefore need anew spec Bpisk. To get it, weadd topisk a
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variable o1dpisks that remembers the previous states that the disk might revert to after acrash
(note that thisis not necessarily all the previous states) and code to use o1dpisks appropriately.
BDisk.write NOlonger needsto test crashed, sinceit’s now possible to lose writes even if the
crash happens after thewrite.

CLASS BDisk EXPORT ..., sync = % write-buffered disk

TYPE ...

CONST ...

VAR disk : Dsk % asinDisk
loldpisks SET Dsk := {}|

APROC write(da, data) RAISES {notThere} = <<

<< VAR blocks := DToB(data) |
check (E{da, blocks.size});
disk := NewDisk(disk, da, blocks);
oldDisks \/ := {i | i < blocks.size
NewDisk (disk, da, blocks.sub(0, 1i))};
Forget ()
>>
FUNC NewDisk (dsk, da, bs: (Int -> DB)) -> Dsk = % result is dsk overwritten with bs at da

RET dsk + (\ da’ | da’ - da) * bs

PROC sync() = oldDisks := {disk} % make disk stable
PROC Forget() = VAR ds: SET Dsk | oldDisks := oldDisks - ds + {disk}
% Discards an arbitrary subset of the remembered disk states.

PROC Crash() = CRASH; |<< VAR d :IN oldDisks | disk := d; sync() >>
END BDisk

Forget iSthere so that we can write an abstraction function for code for that doesn't defer all its
disk writes until they are forced by sync. A writethat actually changes the disk needs to change
oldDisks, because o1dpisks containsthe old state of the disk block being overwritten, and
thereis nothing in the state of the code after the write from which to compute that old state. Later
we will study abetter way to handle this problem: history variables or multi-valued mappings.
They complicate the code rather than the spec, which is preferable. Furthermore, they do not
affect the performance of the code at all.

A wesker spec would revert to a state in which any subset of the writes has been done. For this,
change the assignment to o1dpisks inwrite, aong the lines we have seen before. We apply the
changes to any old disk, not just to the current one, to allow changes to the disk from several
write Operationsto be reordered.

oldDisks:= {|d :IN oldDisks, w: SET I | w <= blocks.don| |

NewDisk (d, da, blocks.restrict (w)])};

The module Buf feredpisk below iscodefor Bpisk. It copies newly written datainto the cache
and does the writes later, preserving the origina order so that the state of the disk after a crash
will aways bethe state at some time in the past. In the absence of crashes thisimplementspisk
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and is completely deterministic. We keep track of the order of writes with a queue variable,
instead of keeping adirty bit for each cache entry as we did for cached memory. If we didn’t do
thewritesin order, there would be many more possible states after a crash, and it would be much
more difficult for a client to use this module. Many real disks have this unpleasant property, and
many real systems deal with it by ignoring it.

A gtriking feature of this codeisthat it uses the same abstraction that it implements, namely
BDisk. Thecodefor Bpisk that it useswe call upisk (u for ‘underlying’). Wethink of it asa
‘physical’ disk, and of courseit is quite different from Buf feredpnisk: it contains SCSI
controllers, magnetic heads, etc. A module that implements the same interface that it usesis
sometimes called afilter or a stackable module. A Unix filter like sed isafamiliar example that
uses and implements the byte stream interface. We will see many other examples of thisin the
course.

Invocations of upisk arein bold type, so you can easily see how the module depends on the
lower-level codefor Bpisk.

CLASS BufferedDisk % implements BDisk
EXPORT Byte, Data, DA, E, DBSize, read, write, size, check, sync, Crash =

TYPE % Data, DA, DB, Blocks, E asinDisk

I = Int

J = Int

Queue = SEQ DA % dataisin cache
CONST

cacheSize = 1000

queueSize = 50
VAR udisk : Disk

cache : DA -> DB := {}

queue := Queue{}

o°

ABSTRACTION FUNCTION bdisk.disk = udisk.disk + cache
ABSTRACTION FUNCTION bdisk.oldDisks =
{ g: Queue | g <= queue | udisk.disk + cache.restrict(q.rng) }

o°

o°

INVARIANT queue.rng <= cache.dom
INVARIANT queue.size = queue.rng.size
INVARIANT cache.dom.size <= cacheSize
INVARIANT queue.size <= queueSize

% if queued then cached
% no duplicatesin queue
% cache not too big

% gueue not too big

o o°

o°

% overrides St dNew

APROC new(size: Int) -> BDisk = <<
= udisk.new(size); RET self >>

self := StdNew(); udisk :

PROC read(e) -> Data RAISES {notThere} =
% We could make provision for read-ahead, but do not.

check (e) ;
VAR data := Data{}, da := e.da, upTo := e.da + e.size
DO da < upTo =>
IF cachel!da => data + := cache(da); da + := 1
[*] % read asmany blocks from disk as possible
VAR i := RunNotInCache (da, upTo),
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buffer := udisk.read(E{da, i}),

k := MakeCacheSpace (i) |

% k blocks will fit in cache; add them.

DO VAR j :IN k.seq | ~ cache!(da + j) =>
cache(da + j) := udisk.DToB (buffer) (j)

OD;

data + := buffer; da + := 1

FI
OD; RET data

PROC write(da, data) RAISES {notThere} =

VAR blocks := udisk.DToB(data) |
check (E{da, blocks.size});
DO VAR 1 :IN gueue.dom | queue (i) IN da .. da+size-1 => FlushQueue (i) OD;
% Do any previously buffered writes to these addresses. Why?
VAR j := MakeCacheSpace (blocks.size), 1 := 0

IF j < blocks.size => udisk.write(da, data)
% Don't cache if the write is bigger than the cache.
[*] DO blocks!i =>

cache(da+i) := blocks(i); queue + := {da+i}; i + := 1
oD
FI
PROC Sync () = FlushQueue (queue.size - 1)
PROC Crash() = CRASH; cache := {}; queue := {}

FUNC RunNotInCache (da, upTo: DA) -> I =
RET {i | da + i <= upTo /\ (ALL j :IN i.seq | ~ cache!(da + j)}.max

PROC MakeCacheSpace (i) -> Int =

% Make room for i new blocksin the cache; returningmin (i, the number of blocks now available) .
% May flush queue entries.

% POST: cache.dom.size + result <= cacheSize

s

PROC FlushQueue(i) = VAR g := queue.sub(0, i) |

% Write queueentrieso .. i and removethem from queue.

% Should try to combine writes into the biggest possible writes
DO g # {} => udisk.write(g.head, 1); g := g.tail OD;
queue := queue.sub (i + 1, queue.size - 1)

END BufferedDisk

This code keeps the cache as full as possible with the most recent data, except for gigantic
writes. It would be easy to change it to make non-deterministic choices about which blocks to
keep in the cache, or to take advice from the client about which blocks to keep. The latter would
require changing the interface to accept the advice, of course.

Notethat the only state of Bpisk that this module can actually revert to after acrash istheonein
which none of the queued writes has been done. Y ou might wonder, therefore, why the body of
the abstraction function for Bpisk.oldpisks hasto involve queue. Why can’t it just be
{udisk.disk}? Thereason isthat when theinternal procedure Flushgueue does awrite, it
changes the state that a crash revertsto, and there’ s no provision in the Bpi sk spec for adding
anything to o1dpisks except during write. SO oldpisks hastoinclude al the states that the

Handout 7. Disks and File Systems 11

6.826—Principles of Computer Systems 2004

disk can reach after a sequence of ‘interna’ writes, that is, writesdone in FlushQueue. And this
isjust what the abstraction function says.

Building other kinds of disks

There are other interesting and practical ways to code adisk abstraction on top of a‘base’ disk.
Some examples that are used in practice:

Mirroring: use two base disks of the same sizeto code asingle disk of that size, but with
much greater availability and twice the read bandwidth, by doing each write to both base
disks.

Striping: use n base disks to code asingle disk n times as large and with n times the
bandwidth, by reading and writing in paralel to al the base disks

RAID: use n base disks of the same sizeto code asingle disk n-1 times as large and with n-1
times the bandwidth, but with much greater availability, by using the nth disk to store the
exclusive-or of the others. Then if one disk fails, you can reconstruct its contents from the
others.

Shapshots: use ‘ copy-on-write' to code an ordinary disk and some number of read-only
‘snapshots’ of its previous state.

Buffered files

We need to make changes to the ri1e spec if wewant the option to code it using buffered disks
without doing too many syncs. One possibility isdo abdisk. sync a the end of each write.
This spec is not what most systems implement, however, because it’ stoo slow. Instead, they
implement aversion of rile with the following additions. This version allows the data to revert
to any previous state since the last sync. The additions are very much like those we made to
Disk to get BDisk. For simplicity, wedon't change o1dpirs for operations other than write and
setsize (well, except for truncation); real systems differ in how much they buffer the other
operations.

MODULE File EXPORT ..., Sync =
TYPE ...
VAR d := D{}

o0ldDs : SET D := {}
APROC Write(pn, x, byte) = << VAR f0 := d(pn) |

d(pn) := NewFile(f0, x, data);

oldDs \/ := {i [ i < data.size |

d{pn -> NewFile(f0, x, data.sub(0, 1)))} >>

RPROC Sync() = << oldDirs := {dir} >3
PROC Crash() = CRASH; |<< VAR d :IN oldDirs => dir := d; Sync() >>
END File
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Henceforth we will use Fi1e to refer to the modified module. Since we are not giving code for,
we leave out Forget for simplicity.

Many file systems do their own caching and buffering. They usually loosen this spec so that a
crash resets each file to some previous state, but does not necessarily reset the entire systemto a
previous state. (Actually, of course, real file systems usually don’'t have a spec, and it is often
very difficult to find out what they can actually do after acrash.)

MODULE File2 EXPORT ..., Sync =
TYPE ...

OldFiles = PN -> SET F
VAR d := D{}

oldFiles := OldFiles{* -> {}}
APROC Write(pn, x, byte) = << VAR f0 := d(pn) |

d(pn) := NewFile(f0, x, data);

loldFiles(pn) \/ := {i | i < data.size | NewFile(f0, x, data.sub(0, 1i)))} >3
APROC Sync() = << [oldFiles:= OldFiles{* -> {}}] >>
PROC Crash() =

CRASH;

<< VAR 4’ | d’.dom = d.dom

/\ (ALL pn :IN d.dom | 4’ (pn) IN oldFiles(pn) \/ {d(pn)})
=>d := d' >>

END File

A picky point about Spec: A function constructor like (\ pn | {d(pn)}) isnogood asavalue
for o1driles, because the value of the global variable a in that constructor is not captured when
the constructor is evaluated. Instead, this function uses the value of 4 when it isinvoked. Thisis
alittlewelrd, but it isusually very convenient. Hereit is a pain; we avoid the problem by using a
local variable a whose value is captured when the constructor is evaluated in snapshotb.

A still weaker spec alows 4 to revert to astate in which any subset of the byte writes has been
done, except that thefiles still have to be sequences. By anal ogy with unordered Boisk, we
changethe assignment to oldriles inwWrite.

oldFiles (pn) := {[f :IN oldFiles(pn), w: SET i | w <= data.dom |

NewFile (f, x, data.restrict(w))} »>»>

Coding files

The main issue is how to represent the bytes of the file on the disk so that large reads and writes
will befast, and so that thefilewill till be there after a crash. The former requires using
contiguous disk blocks to represent the file as much as possible. The latter requires a
representation for o that can be changed atomically. In other words, the file system state has type
PN -> SEQ Byte, and we haveto find adisk representation for the seq Byte that is efficient,
and one for the function that is robust. This section addresses the first problem.
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The simplest approach isto represent afile by a sequence of disk blocks, and to keep an index
that is a sequence of the pa’s of these blocks. Just doing this naively, we have

TYPE F = [das: SEQ DA, size: N] % Contents and size in bytes

The abstraction function to the spec saysthat thefileisthefirst £. size bytesin the disk blocks
pointed to by <. Writing this as though both ri1e and its code Fmp1o had thefile £ asthe state,
we get

File.f = (+ : (FImplOo.f.das * disk.disk)).seg(0, FImploO.f.size)

or, using thedisk . read method rather than the state of aisk directly

File.f = (+ : {da :IN FImplO.f.das | | disk.read(E{da, 1})}).seg(0,

But actually the state of File isd, so we should have the same state for rImp1 (with the different
representation for =, of course), and

File.d = (LAMBDA (pn) -> File.F =
VAR f := FImplo.d(pn) |
RET (+ : (f.das * disk.disk)) .seg(0, f.size)

% failsif d isundefined at pn

We need an invariant that says the blocks of each file have enough space for the data.
% INVARIANT ( ALL f :IN d.rng | f.das.size * DBSize >= f.size )

Then it's easy to see how to code read:

PROC read(pn, x, i) =

VAR f := dir(pn),
diskData := + : (da :IN f.das | | disk.read(E{da, 1})},
fileData := diskData.seg(0, f.size) |

RET fileData.seg(x, 1)
To codewrite we need away to allocate free pas; we defer thisto the next section.
There are two problems with using this representation directly:

1. Theindex takesup quite alot of space (with 4 byte pa’s and pesize = 1Kbyteit takes .4% of
the disk). Since RAM costs about 50 times as much as disk, keeping it all in RAM will add
about 20% to the cost of the disk, which isa significant dollar cost. On the other hand, if the
index isnot in RAM it will take two disk accesses to read from arandom file address, which
isasignificant performance cost.

2. Theindex isof variable length with no small upper bound, so representing theindex on the
disk isnot trivial either.

To solvethefirst problem, store pisk.E'sin theindex rather than pa’s. A single extent can
represent lots of disk blocks, so thetotal size of theindex can be much less. Following thisidea,
we would represent the file by asequence of pisk. 'S, stored in asingledisk block if it isn’t too
big or in afile otherwise. This recursion obviously terminates. It has the drawback that random
access to the file might become slow if there are many extents, because it’s necessary to search
them linearly to find the extent that contains byte x of thefile.
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To solve the second problem, use some kind of tree structure to represent the index. In standard
Unix file systems, for example, the index is a structure called an inode that contains:

asequence of 10 pa’s (enough for a 10 KB file, which iswell above the median file size),
followed by

the pa of anindirect pe that holds pesize /4 = 250 or so pa’s (enough for a 250 KB file),
followed by

the pa of a second-leve indirect block that holdsthepa’s of 250 indirect blocks and hence
points to 2502 = 62500 pa’s (enough for a62 MB file),

and so forth. Thethird level can address a 16 GB file, which is enough for today's systems.

Thus theinode itself has room for 13 pa’s. These systems duck the first problem; their extents
are always asingle disk block.

We give code for that incorporates both extents and trees, representing afile by a generalized
extent that is atree of extents. The leaves of the tree are basic extents pisk .k, that is, references
to contiguous segquences of disk blocks, which are the units of i/o for disk.read and
disk.write. The purpose of such ageneral extent is simply to define a sequence of disk
addresses, and the E . das method computes this sequence so that we can useit in invariants and
abstraction functions. The tree structure is there so that the sequence can be stored and modified
more efficiently.

An extent that contains a sequence of basic extentsis called alinear extent. To do fast i/o
operations, we need a linear extent which includes just the blocks to be read or written, grouped
into the largest possible basic extents so that disk . read and disk.write can work efficiently.
Flatten computes such alinear extent from a genera extent; the spec for F1atten given below
flattens the entire extent for the file and then extracts the smallest segment that contains all the
blocks that need to be touched.

Read and write just call Flatten to get therelevant linear extent and then call disk.read and
disk.write Onthebasic extents; write may extend thefilefirst, and it may have to read the
first and last blocks of the linear extent if the data being written does not fill them, since the disk
can only write entire blocks. Extending or truncating afile is more complex, because it requires
changing the extent, and also because it requires allocation. Allocation is described in the next
section. Changing the extent requires changing the tree.

Thetreeitself must be represented in disk blocks; methods inspired by B-trees can be used to
change it while keeping it balanced. Our code shows how to extract information from the tree,
but not how it isrepresented in disk blocks or how it is changed. In standard Unix file systems,
changing the tree isfairly simple because abasic extent is aways asingle disk block in the
multi-level indirect block scheme described above.

We give the abstraction function to the simple code above. It just saysthat thepas of afileare
the ones you get from Flatten.
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The code below makes heavy use of function composition to apply some function to each
element of asequence: s * £iS{£f(s(0)), ., f(s(s.size-1))}.If £yieldsaninteger or a
sequence, the combination + : (s * £) addsup or concatenatesall the £ (s (1)) .

MODULE FSImpl = % implementsFile

TYPE N = Nat
E = [c: (Disk.DA + SE), size: N] % size = #of DA'Sine
SUCHTHAT (\e | Size(e) = e.size)
WITH {das:=EToDAs, le:=ETOLE}
BE = E SUCHTHAT (\e| e.c IS Disk.DA) % Basic Extent
LE = E SUCHTHAT (\e| e.c IS SEQ BE) % Linear Extent: sequence of BES
WITH {"+":=Cat}
SE = SEQ E % Sequence of Extents: may be tree
X = File.X
F = [e, size: X] % size = #of bytes
PN = File.PN % Path Name
CONST DBSize := 1024
VAR d : File.PN -> F := {}
disk

% ABSTRACTION FUNCTION File.d = (LAMBDA (pn) -> File.F = dlpn =>
% Thefileisthefirst £ . size bytesin the disk blocks of the extent £ . e
VAR f := d(pn),
data := + : {be :IN Flatten(f.e, 0, f.e.size).c | | disk.read(be)} |
RET data.seg(0, f.size) )

% ABSTRACTION FUNCTION FImplO.d = (LAMBDA (pn) -> FImplO.F =
VAR f := d(pn) | RET {be :IN Flatten(f.e, 0, f.e.size).c | | be.c}

FUNC Size(e) -> Int = RET ( e IS BE => e.size [*] + :(e.c * Size) )
% # of DA’ s reachable from e. Should beequal toe . size.

FUNC EToDAs(e) -> SEQ DA = % e.das
% The sequence of DA’ s defined by e. Just for specs.
RET ( e IS BE => {i :IN e.size.seq | | e.c + i} [*] + :(e.c * EToDAs) )
FUNC ETOLE(e) -> LE = % e.le
% The sequence of BE’sdefined by e.
RET ( e IS BE => LE{SE{e}, e.size} [*] + :(e.c * ETOLE ) )

FUNC Cat (lel, le2) -> LE =
% The " +" method of LE. Mergeel and e2 if possible.
IF el = {} => RET le2
[] e2 = {} => RET lel
[1 VAR el := lel.c.last, e2 := le2.c.head, se |
IF el.c + el.size = e2.c =>

se := lel.c.reml + SE{E{el.c, el.size + e2.size}} + le2.c.tail
[*] se := lel.c + le2.c
FI;
RET LE{se, lel.size + le2.size}
FI
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FUNC Flatten(e, start: N, size: N) -> LE = VAR le0 := e.le, lel, le2, le3 \
% Theresult le issuchthat le.das = e.das.seg(start, size);
% Thisisfewer than size DA'sif e getsused up.
% It'sempty if start >= e.size
% Thisisnot practical code; see below.
le0 = lel + le2 + 1le3

/\ lel.size = {start, e.size}.min

/\ le2.size = {size, {e.size - start, 0}.max}.min

=> RET le2

END FSImpl

Thisversion of F1atten isnot very practical; in fact, it is more like a spec than code for. A
practical one, given below, searches the tree of extents sequentially, taking the largest possible
jumps, until it finds the extent that contains the startth pa. Then it collects extents until it has
gotten size Da’'S. Note that because each e . size givesthe total number of pa’sine, Flatten
only needstime 1og (e.size) tofind thefirst extent it wants, provided thetreeis balanced. This
isastandard trick for doing efficient operations on trees: summarize the important properties of
each subtreein itsroot node. A further refinement (which we omit) isto store cumulative sizesin
an s so that we can find the point we want with a binary search rather than the linear search in
the po loop below; we did thisin the editor buffer example of handout 3.

FUNC Flatten(e, start: N, size: N) -> LE =

VAR z := {size, {e.size - start, 0}.max}.min |
IF z =0 => RET E{c := SE{}, size := 0}
[*] e IS BE => RET E{c := e.c + start, size := z}.le
[*] VAR se := e.c AS SE, sbe : SEQ BE := {}, at := start, want := z |
DO want > 0 => % maintain at + want <= Size(se)
VAR el := se.head, e2 := Flatten(el, at, want) |
sbe := sbe + e2.c; want := want - e2.size;
se := se.tail; at := {at - el.size, 0}.max
OD;
RET E{c := sbe, size := z}
FI
Allocation

We add something to the state to keep track of which disk blocks are free:

VAR free: DA -> Bool

We want to ensure that afree block is not also part of afile. In fact, to keep from losing blocks, a
block should be freeiff itisn’t in afile or some other data structure such as an inode:

PROC IsReachable(da) -> Bool =
RET ( EXISTS £ :IN d.rng | da IN f.e.das \/ ...

% INVARIANT (ALL da | IsReachable(da) = ~ free(da) )

This can't be coded without some sort of |og-like mechanism for atomicity if we want separate
representationsfor free and £. e, that is, if we want any code for £ree other than the brute-force
search implied by 1sreachable itsdf. Thereason is that the only atomic operation we have on
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the disk isto write a single block, and we can’t hope to update the representations of both free
and £ .e with asingle block write. But ~ 1sReachable ishot satisfactory codefor free, even
though it does not require a separate data structure, because it' s too expensive — it traces the
entire extent structure to find out whether ablock isfree.

A weaker invariant allows blocks to belost, but still ensures that the file datawill beinviolate.
Thisisn’t asbad asit sounds, because blocks will only belost if thereis a crash between writing
the allocation state and writing the extent. Also, it’ s possible to garbage-collect the lost blocks.

% INVARIANT (ALL da | IsReachable(da) ==> ~ free(da))

A wesker invariant than thiswould be a disaster, since it would allow blocksthat are part of a
fileto be free and therefore to be allocated for another file.

The usual representation of free iISaseo Bool (often called abit table). It can be stored in a
fixed-sizefilethat is alocated by magic (so that the code for allocation doesn’'t depend on itself).
Toreducethe size of free, the physical disk blocks may be grouped into larger units (usually
caled ‘clusters’) that are allocated and deall ocated together.

Thisisafairly good scheme. The only problem with it is that the table size grows linearly with
the size of the disk, even when there are only afew largefiles, and concomitantly many bits may
have to be touched to alocate asingle extent. Thiswill certainly be trueif the extent islarge, and
may be true anyway if lots of alocated blocks must be skipped to find afree one.

The alternative is atree of free extents, usually coded as a B-tree with the extent size as the key,
so that we can find an extent that exactly fitsif thereis one. Another possibility isto use the
extent address as the key, since we also care about getting an extent close to some existing one.
These goals are in conflict. Also, updating the B-tree atomically is complicated. Thereis no best
answer.

Encoding and decoding

To store complicated values on the disk, such as the function that constitutes a directory, we need

to encode them into a byte sequence, since pisk.pata iSSEQ Byte. (Wealso need encoding to
send values in messages, an important operation later in the course.) It's convenient to do this
with apair of functions for each type, called Encode and pecode, which turn avalue of thetype
into a byte sequence and recover the value from the sequence. We package them up into an
EncDec pair.

TYPE Q = SEQ Byte
EncDec = [enc: Any -> Q, dec: Q -> Any] % Encode/Decode pair
SUCHTHAT (\ed: EncDec | ( EXISTS T: SET Any |
ed.enc.dom = T
/\ (ALL t :IN T | dec(enc(t)) = t) ))

Other names for ‘encode’ are ‘serialize (used in Java), ‘pickle’, and ‘marshal’ (used for
encoding arguments and results of remote procedure calls).

A particular Encpec works only on values of asingle type (represented by the set T in the
SUCHTHAT, Since you can't quantify over typesin Spec). This means that enc is defined exactly
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on values of that type, and dec istheinverse of enc so that the process of encoding and then
decoding does not lose information. We do not assume that enc istheinverse of dec, sincethere
may be many byte sequences that decode to the same value; for example, if thevalueisaset, it
would be pointless and perhaps costly to insist on a canonical ordering of the encoding. In this
course we will generally assume that every type has methods enc and dec that form an Encpec
pair.

A typethat has other types as its components can have its Encpec defined in an obviousway in
terms of the Encpec’s of the component types. For example, aseq T can be encoded as a
sequence of encoded T's, provided the decoding is unambiguous. A functionT -> u can be
encoded as a set or sequence of encoded (T, u) pairs.

A directory is one example of a situation in which we need to encode a sequence of valuesinto a
sequence of bytes. A log is another example of this, discussed below, and a stream of messages
isathird. It's necessary to be able to parse the encoded byte sequence unambiguously and
recover the original values. We can express this idea precisely by saying that aparseis an
EncDec Sequence, alanguageis a set of parses, and the language is unambiguous if for every
byte sequence g the language has at most one parse that can completely decode q.

TYPE M = SEQ Q % for segmenting aQ
P = SEQ EncDec % Parse
% A sequence of decoders that parses a Q, as defined by IsParse below
Language = SET P
FUNC IsParse(p, q) -> Bool = RET ( EXISTS m |
+ m = Qg % m segments g

% m istheright size
% each p decodesitsm

/\ m.size = p.size
/\ (ALL i :IN p.dom | (p(i).dec)!m(i)] )

FUNC IsUnambiguous (l: Language) -> Bool = RET (ALL g, pl, p2]|
pl IN 1 /\ p2 IN 1 /\ IsParse(pl, q) /\ IsParse(p2, q) ==> pl = p2)

Of course ambiguity is not decidablein general. The standard way to get an unambiguous
language for encodings is to use type-length-value (TLV) encoding, in which theresult g of

enc (x) Starts with some sort of encoding of x’s type, followed by an encoding of g's own length,
followed by a g that contains the rest of the information the decoder needs to recover x.

FUNC IsTLV(ed: EncDec) -> Bool =
RET (ALL x :IN ed.enc.dom | (EXISTS d1, 42, d3 |
ed.enc(x) = dl + d2 + d3 /\ EncodeType(x) = dl
/\ (ed.enc(x).size).enc = d2 ))

In many applications thereis a grammar that determines each type unambiguously from the
preceding values, and in this case the types can be omitted. For instance, if the sequenceisthe
encoding of aseo T, then it’sknown that all thetypesareT. If thelength is determined from the
typeit can be omitted too, but thisis done less often, since keeping the length means that the
decoder can reliably skip over parts of the encoded sequence that it doesn’t understand. If
desired, the encodings of different types can make different choices about what to omit.

Thereisan international standard called ASN-1 (for Abstract Syntax Notation) that defines a
way of writing a grammar for alanguage and deriving the Encpec pairs automaticaly from the
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grammar. Like most such standards, it is rather complicated and often yields somewhat
inefficient encodings. It's not as popular asit used to be, but you might stumble across it.

Another standard way to get an unambiguous language is to encode into S-expressions, in which
the encoding of each value is delimited by parentheses, and the type, unless it can be omitted, is
given by thefirst symbol in the S-expression. A variation on this scheme which is popular for
Internet Email and Web protocols, isto have a‘header’ of theform

attributel: valuel
attribute2: value2

with various fairly ad-hoc rules for delimiting the values that are derived from early conventions
for the human-readabl e headers of Email messages.

The trendy modern version serialization languae is called XML (eXtensible Markup Language).
It generalizes S-expressions by having labeled parentheses, which you write <foo> and </ foos.

In both TLV and S-expression encodings, decoding depends on knowing exactly where the byte
sequence starts. Thisisnot a problem for o’s coming from afile system, but it is a serious
problem for ¢'s coming from awire or byte stream, since the wire produces a continuous stream
of voltages, hits, bytes, or whatever. The process of delimiting a stream of symbolsinto ¢’sthat
can be decoded is caled framing; wewill discussit later in connection with networks.

Directories

Recall that ap isjusta px -> . We have seen various waysto represent . The simplest code
relies on an Encpec for an entire . It represents ap asafile containing enc of theen -> F map
asaset of ordered pairs.

There are two problems with this scheme:

e Lookupinalargep will beslow, sinceit requires decoding the whole p. This can befixed
by using a hash table or B-tree. Updating the p can still be done as in the simple scheme, but
thiswill also be slow. Incremental updateis possible, if more complex; it also has atomicity
issues.

e |f wecan't do an atomic file write, then when updating a directory we are in danger of
scrambling it if there is a crash during the write. There are various ways to solve this
problem. The most general and practical way isto use the transactions explained in the next
section.

Itisvery common to code directories with an extralevel of indirection called an ‘inod€’, so that
we have

TYPE INo = Int % Inode Number
D = PN -> INo
INoMap = 1INo -> F

VAR d D := {}
inodes INoMap := {}
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You can seethat inodes isjust like adirectory except that the names are 1no’ sinstead of p’'s.
There are three advantages:

Because 1o’ s are integers, they are cheaper to store and manipulate. It's customary to
provide an open operation to turn a p into an 1no (usually through yet another level of
indirection called a‘file descriptor’), and then use the 1no as the argument of read and
Write.

Because 1no’sare integers, if F isfixed-size (asin the Unix example discussed earlier, for
instance) then inodes can be represented as an array on the disk that isjust indexed by the
INo.

The enforced level of indirection means that file names automatically get the semantics of
pointers or memory addresses. two of them can point to the same file variable.

The third advantage can be extended by extending the definition of b so that the value of a pn
can be another e, usually called a“symbolic link”.

PN -> (INo |+ PN)

TYPE D =

Transactions

We have seen several examples of ageneral problem: to give a spec for what happens after a
crash that is acceptable to the client, and code for that satisfies the spec even though it has only
small atomic actions at its disposal. In writing to afile, in maintaining allocation information,
and in updating a directory, we wanted to make a possibly large state change atomic in the face
of crashes during its execution, even though we can only write a single disk block atomically.

The general technique for dealing with this problem is called transactions. General transactions
make large state changes atomic in the face of arbitrary concurrency aswell as crashes; we will
discussthislater. For now we confine ourselves to ‘ sequential transactions’, which only take care
of crashes. Theideaisto conceal the effects of a crash entirely within the transaction abstraction,
so that its clients can program in a crash-free world.

The code for sequential transactionsis based on the very general idea of adeterministic state
machine that has inputs called actions and makes a deterministic transition for every input it
sees. The essentia observation is that:

If two instances of adeterministic state machine start in the same state and see the
same inputs, they will make the same transitions and end up in the same state.

Thismeansthat if we record the sequence of inputs, we can replay it after a crash and get to the
same state that we reached before the crash. Of course this only worksif we start in the same
state, or if the state machine has an ‘idempotency’ property that allows usto repeat the inputs.
More on this below.

Hereisthe spec for sequential transactions. There' sa state that is queried and updated (read and
written) by actions. We keep a stable version ss and avolatile version vs. Updates act on the
volatile version, which is reset to the stable version after acrash. A ‘commit’ action atomically
setsthe stable state to the current voltile state.
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MODULE SeqTr [ % Sequentia Transaction

v, % Value of an action
S WITH { s0: ()-> S } % State; s0 initialy
] EXPORT Do, Commit, Crash =
TYPE A = S->(V, 8) % Action
VAR ss := S.s0() % Stable State
vs := S.s80() % Volatile State
APROC Do(a) -> V = << VAR v | (v, vs) := a(vs); RET v >>
APROC Commit () = << SS := Vs >>
APROC Crash () = << vs := s8 >> % Abort isthe same
END SeqTr

In other words, you can do awhole series of actions to the volatile state vs, followed by a
commit. Think of the actions as reads and writes, or queries and updates. If there' s a crash before
the commi t, the state revertsto what it was initially. If there s a crash after the commit, the state
revertsto what it was at the time of the commit. An action is just afunction from an initial state
to afinal state and aresult value.

There are many coding techniques for transactions. Here isthe simplest. It breaks each action
down into a sequence of updates, each one of which can be done atomically; the most common
example of an atomic update is awrite of asingle disk block. The updates also must have an
‘idempotency’ property discussed later. Given a sequence of po's, each applying an action, the
code concatenates the update sequences for the actions in avolatilelog that is a representation of
the actions. commit writes thislog atomically to a stable log. Once the stable log is written, rRedo
appliesthe volatile log to the stable state and erases both logs. crash resets the volatile to the
stable log and then applies the log to the stable state to recover the volatile state. It then uses
Redo to update the stable state and erase thelogs. Note that we give s an+» method s + 1 that
appliesalog to a state.

This scheme reduces the problem of implementing arbitrary changes atomically to the problem
of atomically writing an arbitrary amount of stuff to alog. Thisis easier but still not trivial to do
efficiently; wediscussit at the end of the section.

We begin with codethat is simple, but somewhat impractical. It uses lazy evaluation for ss,
representing it as the result of applying a stable log (sequence of updates) s1 to afixed initial
state. By contrast, there’ s an explicit vs variable aswell asavolatilelog v1, with an invariant
relating them.

MODULE SimpleLogRecovery [ % implements SeqTr

v, % Value of an action
S0 WITH { s0: () -> SO } % State
] EXPORT Do, Commit, Crash =
TYPE A = S->(V, S) % Action
U = S ->8 % atomic Update
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L = SEQ U % Log
S = SO0 WITH { "+":=DolLog } % State; s+1 applies1 tos
VAR vs := S.s0() % Volatile State
sl ;= L{} % Stable Log
vl := L{} % Volatile Log
% ABSTRACTION to SeqTr
SeqTr.ss = S.s0 + sl
SeqTr.vs = vs
% INVARIANT vs = S.s0 + sl + vl
FUNC DolLog (s, 1) -> S = % s+l = DolLog (s, 1)

% Apply the updatesin 1 to the state s.
1={} => RET s [*] RET DoLog((l.head) (s),1l.tail))

We can write this more concisely as applying the composition of the updatesin 1 to s:

FUNC DolLog (s, 1) -> S = RET (* : 1) (s) % s+l = DoLog (s, 1)

APROC Do(a) -> V = << VAR v, 1 | (v, vs + 1) = a(vs) =>

% Find an 1 (asequence of updates) that has the same effect as a on the current state. Compare SeqTr . Do
vl := vl + 1; vs := vs + 1; RET v >>

PROC Commit () = << sl := vl >>

PROC Crash() =

CRASH;
<< vl := {}; vs := S.80() >>; % crash erasesvs, vl
<< vs := S.80 + sl >>; % recovery restores vs

END SimpleLogRecovery

Thisisnot so great for three reasons:

1. sl growswithout bound

2. Thetimeto recover vs likewise grows without bound.

3. Thesizeof vs grows, so wewill in general have to represent part of it on the disk, but we
don’t take any advantage of the fact that this part is stable.

To overcome these problems, we introduce more elaborate code that maintains an explicit ss,
and uses s1 only for the changes made since ss was updated.

This moduleis not finished. It needsto be differentiated from SLR, and it needs to have anon-
deterministic action that updates ssfrom dl.
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MODULE LogRecovery [ % implements SeqTr

% Parameters and types asin SimpleLogRecovery

VAR [ss := S.s0()] % Stable State
vs := S.s0() % Volatile State
sl := L{} % Stable Log
vl := L{} % Volatile Log
% ABSTRACTION to SeqTr
SeqTr.ss = ss + sl
SeqTr.vs = vs
% INVARIANT vs = ss + Vvl
FUNC DoLog (s, 1) -> S = % s+l = DoLog (s, 1)

% Apply the updatesin 1 to the state s.
1={} => RET s [*] RET DoLog((l.head) (s),1l.tail))

APROC Do(a) -> V =
% Find an 1 (asequence of updates) that has the same effect as a on the current state.

<< VAR v, 1 | (v, vs + 1) = a(vs) =>
vl := vl + 1; vs := vs + 1; RET v >>

PROC Commit () = << sl := vl >>; Redo()
PROC Redo() = % replay v1, then clear s1

DO vl # {} => << ss := ss + vl.head; vl := vl.tail >> OD; << sl := {} >>
PROC Crash() =

CRASH;

<< vl := {}; vs := S.50() >>; % crash erasesvs, vl

<< vl := 8l; vs := ss + V1 >>; % recovery restores them

Redo () % and repeats the Redo; thisis optional

END LogRecovery

For this redo crash recovery to work, 1 must have the property that repeatedly applying prefixes
of it, followed by the whole thing, has the same effect as applying the whole thing. For example,
supposel = L{a,b,c,d,e}. Thenwv{a,b,d, &, [&,[a,b,c,d,la,0.[a,b,c.d,€,d,[a,b,c,d, €}
must have the same effect as 1 itself; here we have grouped the prefixes together for clarity. We
need this property because a crash can happen while redo is running; the crash reapplies the
whole log and runs redo again. Another crash can happen while the second redo is running, and
so forth.

This ‘hiccup’ property follows from ‘log idempotence':

s +1+1==s5+1 (1)
From thiswe get (recall that < isthe‘prefix’ predicate for sequences).

k<l==>(s+k+1=s54+1) (2)
becausex < 1impliesthereisa1’ suchthatx + 1’ - 1, and hence

s+k+1=s+k+ (k+1") = (s + k + k) + 1’

= (s +k) +1" =s+ (k+1") =8 +1
From (2) we get the property we want:

IsHiccups(k, 1) ==> (s + k + 1 =85 + 1) (3)
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where

FUNC IsHiccups(k, 1) -> Bool =
% k is a sequence of attemptsto complete 1
RET k = {}
\/ (EXISTS k’, 1’| k=% +1" /N1 # {} /N1 <=1
/\ IsHiccups(k’, 1) )
because we can keep absorbing the last hiccup 1 into the final complete 1. For example, taking
some liberties with the notation for sequences:
abcaaabcdababcdeaabede
abcaaabcdababcde + (a + abcde)

= abcaaabcdababcde + abcde by (2)

= abcaaabcdab + (abcde + abcde)

= abcaaabcdab + abcde by (2)

= abcaaabcd + (ab + abcde)

= abcaaabcd + abcde by (2)
and so forth.

To prove (3), observe that

IsHiccups(k, 1) /\ k # {} ==> k =k’ + 1’ /\ 1’ <= 1 /\ IsHiccups(k’, 1).
Hence

s+k+1l = (s+k’)+1’+1 = s+k’+1 by (2)
andx’ < k.ButwehavesHiccups (k’, 1), S0we can proceed by induction until x* = {}
and we have the desired resullt.

We can get log idempotence if the v’s commute and are idempotent (that is,u * u = u), orif
they are all writes. More generally, for arbitrary u’swe can attach au1p to each v and record it in
s when the u is applied, so we can tell that it shouldn’t be applied again. Calling the original state
ss, and defining ameaning method that turns au record into a function, we have

TYPE
S
1)

[ss, tags: SET UID]
[uu: $S->8S, tag: UID] WITH { meaning:=Meaning }

FUNC Meaning(u, s)->S =
u.tag IN s.tags => RET s
[*] RET S{ (u.uu) (s.ss), s.tags + {u.tag} }

% u aready done

If al theu’sin 1 have different tags, we get |og idempotence. The tags make u’s ‘testable’ in the
jargon of transaction processing; after a crash we can test to find out whether au has been done
or not. In the standard database code each v works on one disk page, the tag is the ‘log sequence
number’, the index of the updatein thelog, and the update writes the tag on the disk page.

Writing the log atomically

Thereis gtill an atomicity problem in this code: commit atomicaly does<< s1 := v1 >>,and
thelogs can belarge. A simple way to use adisk to code alog that requires this assignment of

arbitrary-sized sequencesisto keep the size of s1 in a separate disk block, and to write all the

datafirst, then do a sync if necessary, and finally write the new size. Since s1 is always empty
before this assignment, in this representation it will remain empty until thesingle pisk.write
that setsits size. Thisis rather wasteful code, sinceit does an extradisk write.
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More efficient code writes a‘ commit record’ at the end of thelog, and treats the log as empty
unless the commit record is present. Now it's only necessary to ensure that the log can never be
mis-parsed if acrash happenswhileit’s being written. An easy way to accomplish thisisto write
adigtinctive ‘ erased value into each disk block that may become part of the log, but this means
that for every disk writeto alog block, there will be another writeto eraseit. To avoid this cost
we can use aring buffer of disk blocks for the log and a sequence number that increments each
time the ring buffer wraps around; then ablock is‘erased’ if its sequence number is not the
current one. There' s still acost to initialize the sequence numbers, but it’s only paid once. With
careful code, asingle bit of sequence number is enough.

In some applications it’s inconvenient to make room in the data stream for a sequence number
every pBsize bytes. To get around this, use a‘displaced’ representation for thelog, in which the
first data bit of each block is removed from its normal position to make room for the one bit
sequence number. The displaced bits are written into their own disk blocks at convenient
intervals.

Another approach is to compute a strong checksum for the log contents, write it at the end after
all the other blocks are known to be on the disk, and treat the log as empty unless a correct
checksumiis present. With a good n-bit checksum, the probability of mis-parsingis 2™

Redundancy

A disk has many blocks. We would like some assurance that the failure of a single block will not
damage alarge part of the file system. To get such assurance we must record some critical parts
of the representation redundantly, so that they can be recovered even after afailure.

The simplest way to get this effect isto record everything redundantly. This gives us more: a
singlefailure won't damage any part of thefile system. Unfortunately, it is expensive. In current
systems thisis usually done at the disk abstraction, and is called mirroring or shadowing the
disk.

The alternative isto record redundantly only the information whose loss can damage more than
onefile: extent, alocation, and directory information.

Another approach isto
do all writesto alog,
keep a copy of thelog for along time (by writing it to tape, usually), and
checkpoint the state of the file system occasionally.

Then the current state can be recovered by restoring the checkpoint and replaying the log from
the moment of the checkpoint. This method is usually used in large database systems, but not in
any file systems that | know of.

We will discuss these methods in more detail near the end of the course.
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Copying File Systems

Thefile system described in Fs1mp1 above separates the process of adding pe’sto the
representation of afile from the process of writing data into the file. A copying file system (CFS)
combines these two processesinto one. It iscalled a‘log-structured’ file system in the literaturet,
but as we shall see, thelog isnot the mainidea. A CFSis based on three idess:

e Useagenerationa copying garbage collector (called a cleaner) to reclaim pe’sthat are no
longer reachable and keep all the free spacein asingle (logically) contiguous region, so that
thereisno need for abit table or free list to keep track of free space.

e Do all writes sequentialy at one end of thisregion, so that existing datais never overwritten
and new datais sequential.

e Logand cache updates to metadata (the index and directory) so that the metadata doesn’t
have to be rewritten too often.

A CFSisavery interesting example of the subtleinterplay among the ideas of sequential
writing, copying garbage collection, and logging. This section describes the essentials of a CFS
in detail and discusses more briefly a number of refinements and practical considerations. It will
repay careful study.

Hereisapicture of adisk organized for a CFS:
abc==defgh====ijkl=m=nopgrs-----------------
In this picture letters denote reachable blocks, ='s denote unreachable blocks that are not part of
the free space, and -’ s denote free blocks (contiguous on the disk viewed as aring buffer). After
the cleaner copies blocks a -e the pictureis
——————— fgh====ijkl=m=nopgrsabcde------------
because the data a - e has been copied to free space and the blocks that used to hold a-e arefree,
together with the two unreachable blocks which were not copied. Then after blocksg and j are
overwritten with new valuesc and 7, the pictureis
——————— f=h====i=kl=m=nopgrsabcdeGJ----------
The new data e and g has been written into free space, and the blocks that used to hold g and 5
are now unreachable. After the cleaner runs to completion the pictureis
————————————————————— nopgrsabcdeGIfhiklm----

Prosand cons
A CFS hastwo main advantages:

e All writing is done sequentially; as we know, sequential writes are much faster than random
writes. We have a good technique for making disk reads faster: caching. As main memory
caches get bigger, more reads hit in the cache and disks spend more of their time writing, so
we need atechnique to make writes faster.

1 M. Rosenblum and J. Osterhout, The design and implementation of alog-structured file system, ACM
Transactions on Computer Systems, 10, 1, Feb. 1992, pp 26-52.
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e Thecleaner can copy reachable blocks to anywhere, not just to the standard free space
region, and can do so without interfering with normal operation of the system. In particular, it
can copy reachable blocks to tape for backup, or to a different disk drive that is faster,
cheaper, less full, or otherwise more suitable as a home for the data.

There are some secondary advantages. Since the writes are sequential, they are not tied to disk
blocks, so it’s easy to writeitems of various different sizes without worrying about how they are
packed into pr’s. Furthermore, it's easy to compress the sequential stream asit’s being written?,
and if thedisk isa RAID you never have to read any blocks to recompute the parity. Finaly,
thereis no bit table or freelist of disk blocks to maintain.

Thereis aso one mgjor drawback: unlesslarge amounts of datain the samefile are written
sequentially, afilewill tend to have lots of small extents, which can cause the problems
discussed on page 13. In Unix file systems most files are written al at once, but thisis certainly
not true for databases. Ways of dleviating this drawback are the subject of current research. The
cost of the cleaner is also a potential problem, but in practice the cost of the cleaner seemsto be
small compared to the time saved by sequentia writes.

Updating metadata

For the CFS to work, it must update the index that points to the ps’s containing the file dataon
every write and every copy done by the cleaner, not just when the file is extended. And in order
to keep the writing sequential, we must handle the new index information just like thefile data,
writing it into the free space instead of overwriting it. This means that the directory too must be
updated, since it points to the index; we write it into free space as well. Only theroot of the

entire file system iswritten in afixed location; this root says where to find the directory.

Y ou might think that all this rewriting of the metadata is too expensive, sinceasinglewriteto a
file block, whether existing or new, now triggers three additional writes of metadata: for the
index (if it doesn’t fit in the directory), the directory, and the root. Previously none of these
writes was needed for an existing block, and only the index write for anew block. However, the
scheme for logging updates that we introduced to code transactions can also handl e this problem.
Theideaisto write the changesto the index into alog, and cache the updated index (or just the
updates) only in main memory. An example of alogged changeis“block 43 of file ‘alpha’ now
has disk address 385672”. Later (with any luck, after several changesto the same piece of the
index) we write theindex itself and log the consequent changes to the directory; again, we cache
the updated directory. Still later we write the directory and log the changes to the root. We only
write a piece of metadata when:

We run out of main memory space to cache changed metadata, or
The log gets so big (because of many writes) that recovery takes too long.

To recover wereplay the active tail of thelog, starting before the oldest logged change whose
metadata hasn't been rewritten. This means that we must be able to read the log sequentially

2M. Burrows et ., On-line compression in alog-structured file system, Proc. 5th Conference on Architectural
Support for Programming Languages and Operating Systems, Oct. 1992, pp 2-9. This does require some blocking
so that the decompressor can obtain theinitial state it needs.
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from that point. It's natural to write thelog to free space along with everything else. While we
are at it, we can also log other changes like renames.

Notethat a CFS can use exactly the same directory and index data as an ordinary file system, and
in fact exactly the same code for read. To do this we must give up the added flexibility we can
get from sequential writing, and write each ps of datainto aps on the disk. Several codes have
donethis (but the simple code below does not).

Thelogged changes serve another purpose. Because afile can only be reached from asingle
directory entry (or inode), the cleaner need not trace the directory structure in order to find the
reachable blocks. Instead, if the block at da was written as block b of file £, it’s sufficient to look
at thefileindex and find out whether block b of file £ isstill at da. Butthetriple (b, £, da) is
exactly the logged change. To take advantage of this we must keep the logged change aslong as
da remains reachable since the cleaner needsiit (it's called ‘ segment summary’ information in the
literature). We don’t need to replay it on recovery once its metadata is written out, however, and
hence we need the sequential structure of thelog only for the active tail.

Existing CFS's use the extralevel of naming called inodes that is described on page 19. The
inode numbers don’t change during writing or copying, so theen -> 1no directory doesn’t
change. Theroot points to index information for theinodes (called the ‘inode map’), which
points to inodes, which point to data blocks or, for largefiles, to indirect blocks which point to
data blocks.

Segments

Running the cleaner isfairly expensive, sinceit hasto read and write the disk. It' s therefore
important to get as much value out of it as possible, by cleaning lots of unreachable data instead
of copying lots of datathat is still reachable. To accomplish this, divide the disk into segments,
large enough (say 1 MB or 10 MB) that the time to seek to a new segment is much smaller than
thetime to read or write awhole segment. Clean each segment separately. Keep track of the
amount of unreachable space in each segment, and clean a segment when (unreachable space) *
(age of data) exceeds athreshold. Rosenblum and Osterhout explain thisrule, which issimilar in
spirit to what a generational garbage collector3 does; the goal isto recover as much free space as
possible, without allowing too much unreachable space to pile up in old segments.

Now the free spaceisn’t physically contiguous, so we must somehow link the segmentsin the
active tail together. We also need atable that keeps track for each segment of whether it isfree,
and if not, what its unreachable space and age are; thisis cheap because segments are so large.

Backup

Aswe mentioned earlier, one of the major advantages of a CFSisthat it is easier to back up.
There are several reasons for this.

3 H. Lieberman and C. Hewitt, A real-time garbage collector based on the lifetimes of objects, Comm. ACM 26, 6,
June 1983, pp 419-429.

Handout 7. Disks and File Systems 29

6.826—Principles of Computer Systems 2004

1. You can take a snapshot just by stopping the cleaner from freeing cleaned segments, and then
copy theroot information and the log to the backup medium, recording the logged data
backward from the end of the log.

2. Thisbackup data structure allows asinglefile (or asmall set of files) to be restored in one
pass.

3. It'sonly necessary to copy thelog back to the point at which the previous backup started.

4. Thedisks reads done by backup are sequential and therefore fast. Thisis an important issue
when thefile system occupies many terabytes. At the 40 MB/s peak transfer rate of the disk,
it takes 2.5 10* seconds, or about a quarter of aday, to copy aterabyte. This meansthat a
small number of disks and tapesrunning in parallel can doit in afraction of aday. If the
transfer rate is reduced to 1 MB/s by lots of seeks (which iswhat you get with random seeks
if the average block sizeis 10 KB), the copying time becomes 10 days, which isimpractical.

5. If alargefileis partialy updated, only the updates will be logged and hence appear in the
backup.

6. It'seasy to merge severa incremental backupsto make a full backup.

To get these advantages, we have to retain the ordering of segmentsin the log even after
recovery no longer needsit.

There have been severd research implementations of CFS's, and at least one commercial one
called Spiralog in Digital Equipment Corporation’s (now Compaq's) VMS system. Y ou can read
agood deal about it at http://www.digital.com/info/DTIMO00/.

A simple CFSimplementation

We give code for copyingFs of a CFSthat contains all the essential ideas (except for segments,
and therule for choosing which segment to clean), but simplifies the data structures for the sake
of clarity. copyingFs treats the disk asaroot pe plusaring buffer of bytes. Sincewritingis
sequential thisis practical; the only cost is that we may have to pad to the end of aps
occasionally in order to do async. A pa istherefore a byte address on the disk. We could
dispense with the structure of disk blocks entirely in the representation of files, just write the
data Of each File.write tothedisk, and make aFsimpl . BE point directly to the resulting byte
sequence on the disk. Instead, however, we will stick with tradition, tekese = pa, and represent
afileasaseo pa plusitssize.

So the disk consists of aroot page, abusy region, and afreeregion (aswe have seen, in areal
system both busy and free regions would be divided into segments); see the figure below. The
busy region is a sequence of encoded 1tem’s, wherean rtem iseither ab or achange toaoe ina
file or to thep. The busy region starts at busy and ends just before free, which always points to
the start of adisk block. We could write £ree into the root, but then making anything stable
would require a (non-sequential) write of the root. Instead, the busy region endswith a
recognizable endpg, put there by sync, so that recovery can find the end of the busy region.
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dpa isthe address of the latest directory on the disk. The part of the busy region after apa isthe
activetail of the log and contains the changes that need to be replayed during recovery to
reconstruct the current directory; this arrangement ensures that we start the replay with ad to
which it makes sense to apply the changes that follow.

This code does bytewise writes that are buffered in buf and flushed to the disk only by sync.
Hence after a crash the state revertsto the state at the last sync. Without the replay done during
recovery by applyLog, it would revert to the state the last time the root was written; be sure you
understand why thisis true.

We assume that a sequence of encoded 1tem’sfollowed by an endps can be decoded
unambiguously. See the earlier discussion of writing logs atomically.

Other simplifications:

1. Westoretheseg pa that pointsto the filepr’sright in the directory. Inreal lifeit would be a
tree, along one of the lines discussed in FsImp1, so that it can be searched and updated
efficiently even when it islarge. Only thetop levels of the tree would be in the directory.

2. Wekeep the entire directory in main memory and writeit all out asasingle rtem. Inred life
we would cache parts of it in memory and write out only the parts that are dirty (in other
words, that contain changes).

3. Wewrite adatablock as part of the log entry for the change to the block, and makethepa’s
in thefile representation point to these log entries. In real life the logged change information
would be batched together (as ‘ segment summary information’) and the data written

P busy region N
3 active log tail
R <
bottom sBusy busy sDirDA next free top
freeregiop|  volatilefree, |, stable | | volatile | freeregion
stable busy
\ 4 A A A 4
i |root pe’splusoldpir’s . | pe’sandcurrent |minspace
Y e b and pirchange’S Dir DirChange’S bytes el
L ogical Write
view _buffer .
inRAM [ pus sameas
logical view
A y
rootprnspe ﬁfa;;é??gtegégr; same aslogical view ene oo™
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separately, so that recovery and cleaning can read the changes efficiently without having to
read the file data as well, and so that contiguous data blocks can be read with asingle disk
operation and no extra memory-to-memory copying.

We allocate spacefor datain write, though we buffer the datain buf rather than writing it
immediately. In rea life we might cache newly written datain the hope that another adjacent
writewill come a ong so that we can alocate contiguous space for both writes, thus reducing
the number of extents and making alater sequential read faster.

Because we don’t have segments, the cleaner ways copies items starting at busy. Inreal life

it would figure out which segments are most profitable to clean.

6. We run the cleaner only when we need space. In real life, it would run in the background to
take advantage of times when the disk isidle, and to maintain a healthy amount of free space
so that writes don’t have to wait for the cleaner to run.

7. Wetreat writeData and writeRoot asatomic. Inreal life we would use one of the
techniques for making log writes atomic that are described on page 23.

8. Wetreat 1nit and crash asatomic, mainly for convenience in writing invariants and
abstraction functions.In real life they do several disk operations, so we have to lock out
external invocations while they are running.

9. Weignore the possibility of errors.

MODULE CopyingFS EXPORTS PN, Sync =

% implements File, uses Disk

TYPE DA = Nat % Disk Addressin bytes
WITH "+":=DAAdd, "-":=DASub}
LE = SEQ DA % Linear Extent
Data = File.Data
X = File.X
F = [le, size: X] % size = #of bytes
PN = String WITH [...] % Path Name
D = PN -> F
Item = (DBChange + DChange + D + Pad) % item on the disk
DBChange [pn, x, dbl % db isdataat x infilepn
DChange = [pn, dOp, x] % x only for SetSize
DOp = ENUM|[create, delete, setSize]
Pad = [size: X] % For fillingup aDB;
% Pad{x}.enc.size = x.
IDA = [item, dal
SI = SEQ IDA % for parsing the busy region
Root = [dDA: DA, busy: DA] % assume encoding < DBSize
CONST
DBSize = Disk.DBSize
diskSize = 1000000
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rootDA =0
bottom = rootDA + DBSize % smallest DA outside root
top = (DBSize * diskSize) AS DA
ringSize := top - bottom
endDB = DB{...} % starts unlike any Item

VAR % All volatile; stable datais on disk.
d : D := {}
sDDA : DA = bottom % = ReadRoot () .dDA
sBusy : DA = Bottom % = ReadRoot () .busy
busy : DA = bottom
free : DA := bottom
next : DA = bottom % DA to write buf at
buf : Data := {} % waiting to be written
disk % the disk

ABSTRACTION FUNCTION File.d = ( LAMBDA (pn) -> File.F =

% Thefileisthe datapointed to by the DA'Sinits F.
VAR f := d(pn), diskData := + :(f.le * ReadOneDB) |

RET diskData.seg(0, f.size) )
ABSTRACTION FUNCTION File.oldDs = { SD(), 4 }

INVARIANT 1: ( ALL f :IN d.rng | f.le.size * DBSize >= f.size )
% The blocks of afile have enough space for the data. From FSImpl .

The reason that o1aps doesn’'t contain any intermediate statesis that the stable state changes
only in async, which shrinks o1dps to just 4.

During normal operation we need to have the variables that keep track of the region boundaries
and the stable directory arranged in order around the disk ring, and we need to maintain this
condition after a crash. Here are the relevant current and post-crash variables, in order (see below
for Minspace). The‘post-crash’ column gives the value that the ‘ current’ expression will have
after a crash.

Current Post-crash
busy SBusy start of busy region
SDDA SDDA most recent stable a
next end of stable busy region
free next end of busy region

free + minSpace() next + minSpace() end of cushion for writes

In addition, the stable busy region should start and end before or at the start and end of the
volatile busy region, and the stable directory should be contained in both. Also, the global
variablesthat are supposed to equal various stable variables (their names start with ‘s’) should in
fact do so. The analysis that leads to this invariant is somewhat tricky; | hopeit’ sright.

INVARIANT 2:

IsOrdered ((SEQ DA) {next + MinSpace(), sBusy, busy, sDDA, next, free,
free + MinSpace(), busy})
/\ EndDA() = next /\ next//DBSize = 0 /\ Root{sDDA, sBusy} = ReadRoot ()

Finaly,
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The busy region should contain al the items pointed to from pa’sin 4 or in global variables.
The directory on disk at sppa plus the changes between there and £ree should agree with a.

This condition should still hold after a crash.

INVARIANT 3:
IsAllGood (Parselog (busy, buf), d)
/\ IsAllGood (ParseLog(sBusy, {}), SD())

The following functions are mainly for the invariants, though they are also used in crash
recovery. ParseLog expects that the disk from aa to the next s with contents endps, plusdata,
isthe encoding of a sequence of Ttem’s, and it returns the sequence s1, each 1tem paired with its
DA. ApplyLog takes an s1 that starts with ap and returns the result of applying all the changesin
the sequenceto that p.

FUNC Parselog(da, data) -> SI = VAR si, end: DA |
% Parse the log from da to the next endDB block, and continue with data.

+ :(si * (\ ida | ida.item.enc) = ReadData(da, end - da) + data
/\ (ALL n :IN si.dom - {0} |
si(n).da = si(n-1).da + si(n-1).item.enc.size)
/\ si.head.da = da
/\ ReadOneDB (end) = endDB => RET si
FUNC Applylog(si) -> D = VAR 4’ := si.head.item AS D |
% si must start with aD. Apply all the changesto this D.
DO VAR item := si.head.item |

IF item IS DBChange
[] item IS DChange => d’ :=

=> d’ (item.pn) .le(item.x/DBSize) := si.head.da
% details omitted

[*] SKIP % ignore D and Pad
FI; si := si.tail
OD; RET d’
FUNC IsAllGood(si, d’) -> Bool = RET

% All d’ entries point to DBChange’sand si agreeswith d’
(ALL da, pn, item | d’!pn /\ da IN 4’ (pn).le /\ IDA{item, da} IN si
==> item IS DBChange)
/\ ApplyLog(si) = d’
FUNC SD() -> D = RET ApplyLog (ParseLog (sDDA), {})
% The D encoded by the Item at sDDA plus the following DChange'’s

FUNC EndDA() -> DA = VAR ida := Parselog (sDDA) .last |
% Return the DA of thefirst endDB after sDDA, assuming a parsable log.
RET ida.da + ida.item.enc.size

The minimum free space we need is room for writing out & when we are about to overwrite the
last previous copy on the disk, plus the wasted space in adisk block that might have only one
byte of data, plusthe endpz.

FUNC MinSpace() -> Int = RET d.enc.size + (DBSize-1) + DBsize

Thefollowing read and write procedures are much the same asthey would bein Fs1mp1, where
we omitted them. They are full of boring details about fitting things into disk blocks; we include
them here for compl eteness, and because the way write handles alocation is an important part
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of copyingFs. We continue to omit the other rile procedureslike setsize, aswell asthe
handling in app1yLog of the bchange itemsthat they create.

PROC Read(pn, x, size: X) -> Data =

VAR f := d(pn),
size := {{size, f.size - x}.min, 0}.max, % the available bytes
n := x/DBSize, % first block number
nSize := NumDBs (x, size), % number of blocks
blocks:=n .. n + nSize -1, % blocksweneedin f.1e

data

+ :(blocks * f.le * ReadItem * % all datain these blocks
(\ item | (item AS DBChange) .db)) |

RET data.seg(x//DBSize, size) % the data requested
PROC Write(pn, x, data) = VAR f := d(pn) |
% First expand data to contain all the DB’ s that need to be written
data := 0.fill(x - f.size) + data; % add 0’sto extend £ tox
x := {x, f.size}.min; % and adjust x to match
IF VAR y := x//DBSize | y # 0 => % fill toaDB in front
X := x - y; data := Read(pn, x, y) + data
[*] SKIP FI;
IF VAR y := data.size//DBSize | y # 0 => % fill toaDB in back
data + := Read(pn, x + data.size, DBSize - y)

[*] SKIP FI;
% Convert data into DB’s, write it, and compute thenew £ . 1e

VAR blocks := Disk.DToB(data), n := x/DBSize,
% Extend £ . 1e with 0’sto theright length.
le := f.le + LE.fi11(0, x + blocks.size - le.size),
i:=0
DO blocks!i =>
le(n + i) := WriteData (DBChange{pn, x, blocks(i)}.enc);
X + := DBSize; 1 + :=1
OD; d(pn).le := le

These procedures initialize the system and handle crashes. crash is somewhat idealized; more
realistic code would read the log and apply the changes to 4 as it reads them, but the logic would

be the same.
PROC Init() = disk := disk.new(diskSize); WriteD() % initially d is empty
PROC Crash() = << % atomic for simplicity
CRASH;
sDDA := ReadRoot () .sDDA; d := SD();
sBusy := ReadRoot () .busy; busy := sBusy;
free := EndDA(); next := free; buf := {} >>

These functions read an item, some data, or a single pe from the disk. They are boring. Read1tem
is somewhat unrealistic, sinceit just chooses asuitable sizefor the item a da sothat Ttem.dec
works. Inreal lifeit would read afew blocks at pa, determine the length of the item from the
header, and then go back for more blocks if necessary. It reads either from but or from the disk,
depending on whether da isin the write buffer, that is, between next and free.

FUNC ReadItem(da) -> Item = VAR size: X |

RET Item.dec( ( DABetween(da, next, free) => buf.seg(da - next, size)
[*] ReadData(da, size) ) )
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FUNC ReadData(da, size: X) -> Data = %1o0r 2disk.read’s
IF size + da <= top => % Int."+",NOtDA."+"
% Read the necessary disk blocks, then pick out the bytes requested.

VAR data := disk.read(LE{da/DBSize, NumDBs (da, size)}) |
RET data.seg(da//DBSize, size)
[*] RET ReadData(da, top - da) + ReadData(bottom, size - (top - da))

PROC ReadOneDB(da) = RET disk.read(LE{da/DBSize, 1}))

WriteData Writes some datato the disk. It is not boring, sinceit includes the write buffering, the
cleaning, and the space bookkeeping. The writes are buffered in but, and sync does the actual
disk write. In this module sync isonly called by writep, but sSinceit’saprocedurein rile it can
also be called by the client. When writepata needs spaceit calls ciean, which doesthebasic
cleaning step of copying a single item. There should be a check for afull disk, but we omit it.
This check can be done by observing that the loop in writepata advances free all the way
around the ring, or by keeping track of the available free space. Thelatter isfairly easy, but
crash would have to restore the information as part of its replay of the log.

These write procedures are the only onesthat actualy write into buf. sync and writeRoot
below are the only procedures that write the underlying disk.

PROC WriteData (data) -> DA = % just to buf, not disk
DO IsFull(data.size) => Clean() OD;
buf + := data; VAR da := free | free + := data.size; RET da

PROC WriteItem(item) = VAR g := item.enc | buf + := g; free + := g.size

% No check for space because thisisonly called by Clean, WriteD.

PROC Sync() =
% Actually writeto disk,in 1 or 2 disk.write’s (2 if wrapping).
% If we will write past sBusy, we have to update the root.
IF (sBusy - next) + (free - next) <= MinSpace() => WriteRoot () [*] SKIP FI;
% Pad buf to even DB’s. A loop because one Pad might overflow current DB .
DO VAR z := buf.size//DBSize | z # 0 => buf := buf + Pad{DBSize-z}.enc OD;
buf := buf + endDB; % add the end marker DB
<< % atomic for simplicity
IF buf.size + next < top => disk.write (next/DBSize, buf)
[*] disk.write(next /DBSize, buf.seg(0 , top-next ));
disk.write (bottom/DBSize, buf.sub(top-next, buf.size-1))
FI;
>>; free := next + buf.size - DBSize; next := free; buf := {}

The constraints on using free space are that c1ean must not cause writes beyond the stable sBusy
or into adisk block containing 1tem’s that haven't yet been copied. (If seusy isequd to busy and
in the middle of adisk block, the second condition might be stronger. It's necessary because a
writewill clobber the whole block.) Furthermore, there must be room to write an 1tem
containing a. Invariant 2 expresses al this precisely. In real life, of course, c1ean would be
caled in the background, the system would try to maintain afairly large amount of free space,
and only small parts of a would be dirty. c1ean drops bchange’s because they are recorded in
thep item that must appear later in the busy region.

FUNC IsFull(size: X) -> Bool = RET busy - free < MinSpace() + size
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PROC Clean() = VAR item := ReadItem(busy) | % copy the next item
IF item IS DBChange /\ d(item.pn).le(item.x/DBSize) = busy =>
d(item.pn) .le(item.x/DBSize) := free; WriteItem(item)

[1 item IS D /\ da = sDDA => WriteD() % the latest D
[*] SKIP % drop DChange, Pad
FI; busy := busy + item.enc.size

PROC WriteD() =

% Called only from Clean and Init. Could cal it more often to speed up recovery

%, after DO busy - free < MinSpace() => Clean() OD toget space.
sDDA := free; WriteItem(d); Sync(); WriteRoot ()

Theremaining utility functions read and write the root, convert byte sizesto oe counts, and
provide arithmetic on pa’s that wraps around from the top to the bottom of the disk. In real life
we don’t need the arithmetic because the disk is divided into segments and items don’t cross
segment boundaries; if they did the cleaner would have to do something quite special for a
segment that starts with the tail of an item.

FUNC ReadRoot () -> Root = VAR root, pad |

ReadOneDB (rootDA) = root.enc + pad.enc => RET root
PROC WriteRoot () = << VAR pad, db | db = Root{sDDA, busy}.enc + pad.enc =>
disk.write (rootDA, db); sBusy := busy >>

FUNC NumDBs (da, size: X) -> Int = RET (size + da//DBSize + DBSize-1)/DBSize
% The number of DB’s needed to hold size bytes starting at da .

FUNC DAAdd(da, i: Int) -> DA = RET ((da - bottom + i) // ringSize) + bottom

FUNC DASub(da, i: Int) -> DA = RET ((da - bottom - i) // ringSize) + bottom
% Arithmetic modulo the dataregion. abs (i) shouldbe< ringSize.

FUNC DABetween (da, dal, da2) -> Bool = RET da = dal \/ (da2 - dal) < (dal - da)

FUNC IsOrdered(s: SEQ DA) -> Bool =
RET (ALL i :IN s.dom - {0, 1} | DABetween(s(i-1), s(i-2), s(i)))

END CopyingFS
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