6.826—Principles of Computer Systems 2004

8. Generalizing Abstraction Functions

In this handout, we give anumber of examples of specs and code for which simple abstraction
functions (of the kind we studied in handout 6 on abstraction functions) don't exist, so that the
abstraction function method doesn’t work to show that the code satisfies the spec. We explain
how to generalize the abstraction function method so that it always works.

We begin with an example in which the spec maintains state that doesn’t actually affect its
behavior. Optimized code can simulate the spec without having enough state to generate all the
state of the spec. By adding history variables to the code, we can extend its state enough to
define an abstraction function, without changing its behavior. An equivalent way to get the same
result is to define an abstraction relation from the code to the spec.

Next welook at code that simulates a spec without taking exactly one step for each step of the
spec. Aslong asthe external behavior isthe same in each step of the simulation, an abstraction
function (or relation) is still enough to show correctness, even when an arbitrary number of
transitions in the spec correspond to a single transition in the code.

Finally, welook at an example in which the spec makes a non-deterministic choice earlier than
the choiceis exposed in the external behavior. Code may make this choice later, so that thereis
no abstraction relation that generates the premature choice in the spec’s state. By adding
prophecy variablesto the code, we can extend its state enough to define an abstraction function,
without changing its behavior. An equivalent way to get the same result is to use an abstraction
relation and define a backward simulation from the code to the spec.

If we avoided extra state, too few or too many transitions, and premature choices in the spec, the
simple abstraction function method would always work. Y ou might therefore think that all these
problems are not worth solving, because it sounds as though they are caused by bad choicesin
the way the spec is written. But thisiswrong. A spec should be written to be as clear as possible
to the clients, not to make it easy to prove the correctness of code for. The reason for these
prioritiesisthat we expect to have many more clients for the spec than implementers. The
examples below should make it clear that there are good reasons to write specs that create these
problems for abstraction functions. Fortunately, with all three of these extensions we can always
find an abstraction function to show the correctness of any code that actually is correct.

A statistical database

Consider the following spec of a“ statistical database” module, which maintains a collection of
values and allows the size, mean, and variance of the collection to be extracted. Recall that the

3" db(i)

mean m of a sequence db of sizen > 0isjust the average— , and thevarianceis

Handout 8. Generalizing Abstraction Functions 1

6.826—Principles of Computer Systems 2004

Y (b(i)-m)* Y db(i)?

—m?. (We make the standard assumptions of commutativity,

n
associativity, and distributivity for the arithmetic here.)

MODULE StatDB [V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V,
w/n: (V,Int)->V}]
EXPORT Add, Size, Mean, Variance =

VAR db : SEQ V := {} % amultiset; we don’t care about the order
APROC Add(v) = << db + := {v}; RET >>
APROC Size() -> Int = << RET db.size >>
APROC Mean() -> V RAISES {empty} = <<

IF db = {} => RAISE empty [*] VAR sum := (+ : db) | RET sum/Size() FI >>
APROC Variance() -> V RAISES {empty} = <<

IF db = {} => RAISE empty

[*] VAR avg := Mean(), sum := (+ : {v :IN db | | (v - avg)**2}) |

RET sum/Size ()

FI >>

END StatDB

This specisavery natural one that follows directly from the definitions of mean and variance.

The following code for the statps module does not retain db. Instead, it keeps track of the size,
sum, and sum of squares of the valuesin ab. Simple algebra shows that thisis enough to
compute the mean and variance incrementally, as statbBImpl does.

MODULE StatDBImpl % implements Stat DB

[V WITH {Zero: ()->v, "+": (V,V)->V, (V,V)->Vv, "-": (V,V)->V,
w/ms (V,Int)->V}]
EXPORT Add, Size, Mean, Variance =
VAR count =0
sum = V.Zero ()
sumSquare = V.Zero ()
APROC Add(v) = << count + := 1; sum + := Vv; sumSquare + := vV**2; RET >>
APROC Size() -> Int = << RET count >>
APROC Mean() -> V RAISES {empty} =

<< IF count = 0 => RAISE empty [*] RET sum/count FI >>

APROC Variance() -> V RAISES {empty} = <<
IF count = 0 => RAISE empty
[*] RET sumSquare/count - Mean ()**2
FI >>

END StatDBImpl

StatDBImpl implements statDg, in the sense of trace set inclusion. However we cannot prove
this using an abstraction function, because each nontrivial state of the code corresponds to many

Handout 8. Generalizing Abstraction Functions 2

6.826—Principles of Computer Systems 2004

states of the spec. This happens because the spec contains more information than is needed to
generate its external behavior. In this example, the states of the spec could be partitioned into
equival ence classes based on the possible future behavior: two states are equivalent if they give
rise to the same future behavior. Then any two equivalent states yield the same future behavior
of the module. Each of these equival ence classes corresponds to a state of the code.

To get an abstraction function we must add history variables, as explained in the next section.

History variables

The problem in the statpe exampleisthat the spec states contain more information than the
code states. A history variable is avariable that is added to the state of the code T in order to
keep track of the extrainformation in the spec Sthat was left out of the code. Even though the
code has been optimized not to retain certain information, we can put it back in to prove the code
correct, aslong aswedo it in away that does not change the behavior of the code. What we do is
to construct new code TH (T with History) that has the same behavior as T, but abigger state. If
we can show that TH implements S, it followsthat T implements S, sincetraces of T = traces of
TH c traces of S.

In this example, we can simply add an extra state component do (which is the entire state of
statDB) to the code statpBImpl, and useit to keep track of the entire collection of elements,
that is, of the entire state of statpg. This gives the following module:

MODULE StatDBImplH ... = % implements Stat DB

VAR count =0 % as before

sum ;= V.Zero() % as before

sumSquare = V.Zero () % as before

[ap : SEQ V := {} % history: state of StatDB
APROC Add(v) = <<

count + := 1; sum + := V; sumSquare + := V**2;

db + := {v};| RET >>

% The remaining procedures are as before

END StatDBImplH

All we have done hereisto record some additional information in the state. We have not
changed the way existing state components are initialized or updated, or the way results of
procedures are computed. So it should be clear that this module exhibits the same external
behaviors as the code statpeImpl given earlier. Thus, if we can provethat statDBImplH
implements statps, then it followsimmediately that statpBImpl implements statpa.

However, we can prove that statbeImplH implements statDs using an abstraction function.
The abstraction function, ar, simply discards all components of the state except av. The
following invariant of statpBImp1H describes how db isrelated to the other state:

INVARIANT
count = db.size

Handout 8. Generalizing Abstraction Functions 3

6.826—Principles of Computer Systems 2004

(+ : db)
(+ : {v :IN db | | v**2})

/\ sum
/\ sumSquare

That is, count, sum and sumSquare contain the number of e ementsin db, the sum of the
elementsin ab, and the sum of the squares of the elementsin db, respectively.

With thisinvariant, it is easy to prove that aF is an abstraction function from statpBImp1H to
statbB. This proof shows that the abstraction function is preserved by every step, because the
only variablein statps, db, is changed in exactly the same way in both modules. The interesting
thing to show isthat the size, Mean, and variance operations produce the same results in both
modules. But this follows from the invariant.

In general, we can augment the state of code for with additional components, called history
variables (because they keep track of additional information about the history of execution),
subject to the following constraints:

1. Everyinitial state hasat least one value for the history variables.
2. Noexisting step is disabled by the addition of predicatesinvolving history variables.

3. A vaueassigned to an existing state component does not depend on the value of a history
variable. One important case of thisisthat areturn value does not depend on a history
variable.

These constraints guarantee that the history variables simply record additiona state information
and do not otherwise affect the behaviors exhibited by the module. If the modul e augmented with
history variablesis correct, the original module without the history variablesis also correct,
because they have the same traces.

This definition isformulated in terms of the underlying state machine modd. However, most
people think of history variables as syntactic constructs in their own particular programming
languages; in this case, the restrictions on their use must be defined in terms of the language
syntax.

In the statpe example, we have simply added a history variable that records the entire state of
the spec. Thisis not necessary; sometimes there might be only a small piece of the state that is
missing from the code. However, the brute-force strategy of using the entire spec state asa
history variable will work whenever any addition of history variables will work.

Abstraction relations

If you don't like history variables, you can define an abstraction relation between the code and
the spec; it’s the same thing in different clothing.

An abstraction relation is a simple generalization of an abstraction function, allowing severa
states in Sto correspond to the same statein T. An abstraction relation is a subset of
states(T) x states(S) that satisfies the following two conditions:

1. Iftisanyinitia state of T, then thereisan initia state sof Ssuch that (t, s) € R.

Handout 8. Generalizing Abstraction Functions 4

6.826—Principles of Computer Systems 2004
s2 ;n’ s2'
sl T s1l’
AR
AR AR
AR
t——T—) ¢’

2. If tand sarereachable states of T and Srespectively, with (t, s) € R, and (t, =, t') is astep of
T, then thereis astep of Sfrom sto some s, having the same trace, and with (t', s) € R.

The pictureillustrates the ides; it is an elaboration of the picture for an abstraction function in
handout 6. It shows t related to s1 and s2, and an action &t taking each of them into a state
rdatedtot’.

It turns out that the same theorem holds as for abstraction functions:

Theorem 1: If thereis an abstraction relation from T to S, then T implements S that is, every
traceof Tisatraceof S.

Thereason isthat for T to simulate Sit isn't necessary to have afunction from T statesto S
states; it's sufficient to have arelation. A way to think of thisisthat thetwo modules, T and S,
arerunning in parallel. The execution is driven by module T, which executesin any arbitrary
way. Sfollows along, producing the same externaly visible behavior. The two conditions above
guarantee that there is always some way for Sto do this. Namely, if T beginsin any initial statet,
wejust allow Sto begin in some related initia state s, as given by (1). Then as T performs each
of its transitions, we mimic the transition with a corresponding transition of Shaving the same
externaly visible behavior; (2) says we can do so. In thisway, we can mimic the entire execution
of T with an execution of S.

An abstraction relation for statps

Recall that in the statpe example we couldn’t use an abstraction function to prove that the code
satisfies the spec, because each nontrivial state of the code corresponds to many states of the
spec. We can capture this connection with an abstraction relation. The relation that worksis
described in Spec! as:

% state of StatDBImpl
% state of StatDB

TYPET = [count: Int, sum: V, sumSquare: V]
S = [db: SEQ V]

FUNC AR(t, s) -> Bool =

1 Thisis one of several waysto represent arelation, but it is the standard one in Spec. Earlier we described the
abstraction relation as a set of pairs (t, S). Interms of AR, thissetis {t, s | AR(t, s) | (t, s)}orsimply
AR. set, Using one of Spec’s built-in methods on predicates. Y et another way to writeitisasafunction T ->
SET S.Intermsof &R, thisfunctionis (\ t | {s | AR(t, s)} orsimplyAR.setF, using another built-in
method. These different representations can be confusing, but different aspects of the relation are most easily
described using different representations.

Handout 8. Generalizing Abstraction Functions 5

6.826—Principles of Computer Systems 2004

RET db.size = count
/\ (+ : db)) = sum
/\ (+ : {v :IN db | | v**2}) = sumSquare

The proof that ar is an abstraction relation is straightforward. We must show that the two
propertiesin the definition of an abstraction relation are satisfied. In this proof, the abstraction
relation is used to show that every response to a size, mean or variance query that can be given
by statpeImpl can also be given by statps. The new state of statps isuniquely determined by
the code of statpr. Then the abstraction relation in the prior states together with the code
performed by both modules shows that the abstraction relation still holds for the new states.

An abstraction relation for Majreg

Consider the abstraction function given for majreg in handout 5. We can easily writeit asan
abstraction relation from MajReg t0 Register, Not depending on theinvariant to makeit a
function. Recall the types:

TYPE P = [V, NI % Pair of value and sequence number
M = C->P % Memory: apair at each copy
FUNC AR(m, v) -> Bool = VAR n := m.rng.max.n | RET (P{v, n} IN m.rng)

For (1), supposethat tisany initial state of Mmajreg. Then there is some default value v such that
all copieshavevauev andn = oint. Let sbethe state of rRegister with valuev; then sisan
initial state of Register and (t, s) € AR, as needed.

For (2), supposethat t and s are reachabl e states of Majreg and Register, respectively, with (t,
9) € AR, and (t, w, t') astep of Majreg. Becauset isareachable state, it must satisfy the
invariants given for Majreg. We consider cases, based on 1. Again, the interesting cases are the
procedure bodies.

Abstraction relations vs. history variables

Notice that the invariant for the history variable ab above bears an uncanny resemblanceto the
abstraction relation ar. Thisis not an accident—the same ideas are used in both proofs, only
they appear in dightly different places. The following table makes the correspondence explicit.

Abstraction relation to history variable History variable to abstraction relation

Given an abstraction relation ar, defineta by | Given tx, T extended with a history variablen,
adding the abstract state s as a state variableto | theré saninvariant 1 (t, h) relatingn tothe
T. AR defines an invariant on the state of Tu: state of T, and an abstraction function

AR(t, s). AF(t, h) -> s suchthat Ta Simulatess.

Definear(t, s) =

(EXISTS h | I(t, h) /\ AF(t, h) = s)
Thatis, t isrelated to s if there savauefor n
in state t that AF mapsto s.

Definear((t, s)) = s

Handout 8. Generalizing Abstraction Functions 6

6.826—Principles of Computer Systems 2004

For each step (¢, =, t’) of T,and s suchthat | For each step (¢, =, t’) of T, and n such that
AR(t, s) holds, the abstraction relation gives | theinvariant 1 (t, h) holds, Tu has a step
uss’ suchthat (t, =, t’) simulates (s, =, ((t, h), m, (t’, h")) that smulates (s,
s’).Add ((t, s), p, (t’, s’)) asa n, s’) wheres = AF(t, h) ands’ =
transition of Tu. This maintains the invariant. AF(t’, h’).SOAR(t’, s’) asrequired.

This correspondence makesiit clear that any code that can be proved correct using history
variables can aso be proved correct using an abstraction relation, and vice-versa. Some people
prefer using history variables because it allows them to use an abstraction function, which may
be simpler (especially in terms of notation) to work with than an abstraction relation. Others
prefer using an abstraction relation because it allows them to avoid introducing extra state
components and explaining how and when those components are updated. Which you useis just
amatter of taste.

Taking several stepsin the spec

A simple generalization of the definition of an abstraction relation (or function) allowsfor the
possibility that a particular step of T may correspond to more or less than one step of S. Thisis
fing, aslong asthe externally-visible actions are the same in both cases. Thusthisdistinctionis
only interesting when there are internal actions.

Formally, a (generalized) abstraction relation R satisfies the following two conditions:
1. Iftisany initial state of T, then thereisan initial state sof Ssuch that (t,s) € R.

2. If tand sarereachable states of T and Srespectively, with (t, s) € R, and (t, &, t') is a step of
T, then there is an execution fragment of Sfrom sto some s, having the same trace, and with
t,s)e R

Only the second condition has changed, and the only difference is that an execution fragment (of
any number of steps, including zero) is allowed instead of just one step, as long asit hasthe
sametrace, that is, aslong as it looks the same from the outside. We generdlize the definition of
an abstraction function in the same way. The same theorem still holds:

Theorem 2: If thereis ageneralized abstraction function or relation fromTto S, then T
implements S, that is, every trace of T isatrace of S

From now on in the course, when we say “ abstraction function” or “abstraction relation”, we will
mean the generalized versions.

Some examples of the use of these generalized definitions appear in handout 7 on file systems,
where there are internal transitions of code that have no counterpart in the corresponding specs.
We will see exampleslater in the course in which single steps of code correspond to several
steps of the specs.

Here, we give a simple example involving alarge write to a memory, which is donein one step
in the spec but in individual stepsin the code. The specis:

Handout 8. Generalizing Abstraction Functions 7

6.826—Principles of Computer Systems 2004

MODULE RWMem [A, V] EXPORT BigRead, BigWrite =

TYPE M = A ->V

VAR memory : M

FUNC BigRead() -> M = RET memory

APROC BigWrite(m: M) = << memory := m; RET >>
END RWMem

Thecodeis:

MODULE RWMemImpl [A, V] EXPORT BigRead, BigWrite =

TYPE M = A ->V

VAR memory HY
fpending : SET A := {}]

FUNC BigRead() -> M = pending = {} => RET memory

PROC BigWrite(m) =
<< pending := memory.dom >>; L
DO << VAR a | a IN pending => memory(a) := m(a); pending - := {a} >> OD;
RET

END RWMemImpl

We can prove that RwMenImpl implements RwMem using an abstraction function. The state of
RwWMemImpl includes program counter valuesto indicate intermediate positionsin the code, as
well asthe values of the ordinary state components. The abstraction function cannot yield partial
changes to memory; therefore, we define the function as if an entire abstract Bigwrite occurred
at the point where the first change occurs to the memory occurs in RwMemImpl. (Alternative
definitions are possible; for instance, we could have chosen the last change.) The abstraction
function is defined by:

RWMem.memory = RWMemImpl.memory UNIESSpending IS nonempty. In this case
RWMem.memory = m, WheréBigwrite (m) isthe active Bigwrite that made pending non-
empty. RwMem'S pc for an active Bigread isthe same as that for RwMemImpl. RwuMenm’s pc for
an activeBignrite isbeforethebody if the pcin rRwMemImp1 isat the beginning of the body;
otherwiseit is after the body.

In the proof that thisis an abstraction function, all the atomic stepsin aBigwrite Of RWMemImpl
except for the step that writes to memory correspond to no steps of rwMem. Thisistypical: code
for usually has many more transitions than a spec, because the code is limited to the atomic
actions of the machineit runs on, but the spec has the biggest atomic actions possible because
that isthe ssimplest to understand.

Note that the guard in RWEMemImpl.BigRead prevents aBigread from returning an intermediate
state of memory, which would be a transition not allowed by the spec. Of course this can’t happen
unlessthereis concurrency.

Handout 8. Generalizing Abstraction Functions 8

6.826—Principles of Computer Systems 2004

In this example, it is also possible to interchange the code and the spec, and show that rRwMem
implements rRwMemImpl. This can be done using an abstraction function. In the proof that thisis
an abstraction function, the body of aBigwrite in RwMem corresponds to the entire sequence of
steps comprising the body of theBigwrite iN RWMemImpl.

Exercise: Add crashesto this example. The spec should contain acomponent o1dstates that
keeps track of the results of partial changesthat could result from a crash during the current
BigWrite. A crash during aBigwrite in the spec can set the memory nondeterministically to
any of the statesin oldstates. A crash in the code simply discards any active procedure. Prove
the correctness of your code using an abstraction function. Compare this to the specsfor file
system crashes in handout 7.

Prematur e choice

In all the examples we have done so far, whenever we have wanted to prove that one module
implements another (in the sense of trace inclusion), we have been able to do this using either an
abstraction function or elseits dightly generalized version, an abstraction relation. Will this
alwayswork? That is, do there exist modules T and S such that the traces of T are dl included
among the traces of S, yet thereis no abstraction function or relation from T to S? It turns out that
there do—abstraction functions and relations aren't quite enough.

Toillustrate the problem, we give avery simple example. Itistrivial, sinceitsonly point isto
illustrate the limitations of the previous proof methods.

Example: Let Nonpet be a state machine that makes a nondeterministic choice of 2 or 3. Then it
outputs 1, and subsequently it outputs whatever it chose.

MODULE NonDet EXPORT Out =

VAR 1 :=0
APROC Out () -> Int = <<
IF i =0 =>BEGIN i :=2 [] 1 := 3 END; RET 1

[*] RET i FI >>

END NonDet

Let LateNonpet be a state machine that outputs 1 and then nondeterministically chooses whether
to output 2 or 3 thereafter.

MODULE LateNonDet EXPORT Out =

VAR 1 :=0

APROC Out () -> Int = <<
‘IF i=0w=>1:=1 [*] 1 =1 =>BEGIN i :=2 [] 1 := 3 END [*] SKIP FI;
RET i >>

END LateNonDet

Handout 8. Generalizing Abstraction Functions 9

6.826—Principles of Computer Systems 2004
Clearly Nonpet and LateNonpet havethe sametraces: out () = 1; out() = 2; ... and
out() = 1; out() = 3;Canweshow theimplements relationshipsin both directions

using abstraction relations?

Well, we can show that Nonpet implements LateNonpet With an abstraction function that isjust
theidentity. However, no abstraction relation can be used to show that LateNonpet implements
NonDet. The problem isthat the nondeterministic choice in nonpet occurs before the output of 1,
whereas the choicein LateNonDet occurs later, after the output of 1. It isimpossible to use an
abstraction relation to simulate an early choice with alater choice. If you think of constructing an
abstract execution to correspond to a concrete execution, this would mean that the abstract
execution would have to make a choice before it knows what the code is going to choose.

Y ou might think that this exampleisunrealistic, and that this kind of thing never happensin real
life. The following three examples show that thisiswrong; we will study codefor al of these
examples later in the course. We go into alot of detail here because most people find these
situations very unfamiliar and hard to understand.

Premature choice: Reliable messages

Hereisaredlistic example (somewhat simplified) that illustrates the same problem: two specs for
reliable channds, which wewill study in detail later, in handout 26 on reliable messages. A
reliable channd accepts messages and delivers them in FIFO order, except that if thereisa crash,
it may lose some messages. The straightforward spec drops some queued messages during the
crash.

MODULE ReliableMsg [M] EXPORT Put, Get, Crash =

VAR g : SEQ M := {}

APROC Put (m) = << g+ := {m} >>

APROC Get() -> M = << VAR m := g.head | g := g.tail; RET m >>
APROC Crash() = << VAR @' | g’ <<= g => g := q' >>

% Drop any of the queued messages (< <= is non-contiguous subsequence)

END ReliableMsg

Most practical code (for instance, the Internet’ s TCP protocol) has cases in which it isn’'t known
whether amessage will belost until long after the crash. Thisis because they ensure FIFO
delivery, and get rid of retransmitted duplicates, by numbering messages sequentially and
discarding any received message with an earlier sequence number than the largest one already
received. If the underlying message transport is not FIFO (like the Internet) and there are two
undelivered messages outstanding (which can happen after a crash), the earlier onewill belost if
and only if the later one overtakes it. Y ou don’t know until the overtaking happens whether the
first message will be lost. By this time the crash and subsequent recovery may be long since
over.

Thefollowing spec models this situation by ‘marking’ the messages that are queued at the time
of acrash, and optionally dropping any marked messagesin get.

MODULE LateReliableMsg [M] EXPORT Put, Get, Crash =

Handout 8. Generalizing Abstraction Functions 10

6.826—Principles of Computer Systems 2004

VAR q : SEQ [m, mark: Booll] := {}

APROC Put (m)
APROC Get () -> M
<< @[VAR x := g.head | g := g.tail;

<< g + := {m} >>

IF x.mark => SKIP []| RET x.m [FI OD >>

APROC Crash() = <<fg := {x :IN g | | x{mark := true}}| >>
% Mark all the queued messages. This is a sequence, not a set constructor, so it doesn’t reorder the messages.

END LateReliableMsg

Likethe simpleNonpet example, these two specs are equivalent, but we cannot prove that
LateReliableMsg implementsreliableMsg With an abstraction relation, because rReliableMsg
makes the decision about what messages to drop sooner, in crash. LateReliableMsg makesthis
decision later, in get, and so does the standard code.

Premature choice: Consensus

For another examples, consider the consensus problem of getting a set of processto agree on a
single value chosen from some set of allowed values; we will study this problem in detail |ater,
in handout 18 on consensus. The spec doesn’t mention the processes at al:

MODULE Consensus [V] EXPORT Allow, Outcome =

VAR outcome (V + Null) := nil % Data value to agree on
APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >>
FUNC Outcome() -> (V + Null) = RET outcome [] RET nil

END Consensus

This spec chooses the value to agree on as soon as the value is allowed. outcome may return nil
even after the choiceis made because in distributed codeit’s possible that not all the participants
have heard what the outcome is. Code for almost certainly saves up the allowed values and does
alot of communication among the processes to come to an agreement. The following spec has
that form. It is more complicated than thefirst one (more state and more operations), and closer
to code, using an internal agree action to mode what the processes do in order to choose a
value,

MODULE LateConsensus [V] EXPORT Allow, Outcome =

VAR outcome (V + Null) := nil % Data value to agree on
[allowed : SET V := {}]

APROC Allow(v) = << ‘allowed \/ := {v}‘ >>

FUNC Outcome() -> (V + Null) = RET outcome [] RET nil

APROC Agree() = << VAR v | v IN allowed /\ outcome = nil => outcome := v >3

END LateConsensus

It should be clear that these two modules have the same traces: a sequence of Al1ow (x) and
outcome () = y actionsinwhich every y isether ni1 or the same value, and that valueis an

Handout 8. Generalizing Abstraction Functions 11

6.826—Principles of Computer Systems 2004

argument of some preceding a11ow. But thereis no abstraction relation from Lateconsensus to
Consensus, because thereis no way for Lateconsensus to come up with the outcome before it
doesitsinterna agree action.

Notethat if outcome didn’t have the option to return ni1 even after outcome # nil, these

modules would not be equivalent, because Lateconsensus would alow the behavior
Allow(1l); Outcome()=nil, Allow(2), Outcome ()=1

and consensus would not.

Premature choice: Multi-word clock
Hereisathird example of premature choice in a spec: reading a clock. The spec issimple:

MODULE Clock EXPORT Read =

VAR t : Int % the current time
THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t
PROC Read() -> Int = << RET t >>

END Clock

Thisisin aconcurrent world, in which several threads can invoke read concurrently, and Tick is
ademon thread that is entirely internal. In that world there are three transitions associated with
each invocation of read: entry, body, and exit. The entry and exit transitions are external because
Read is exported.

We may want code for that allows the clock to have more precision than can be carried in a
single memory location that can be read and written atomically. We could easily achieve thisby
locking the clock representation, but then a low process holding the lock (for instance, one that
gets pre-empted) could block other processes for along time. A clever ‘wait-free’ code for Read
(which appearsin handout 17 on formal concurrency) reads the various parts of the clock
representation one at atime and puts them together deftly to come up with aresult whichis
guaranteed to be one of the values that t took on during this process. The following spec
abstracts this strategy; it breaks reada down into two atomic actions and returns some value, non-
deterministically chosen, between the values of t at these two actions.

MODULE LateClock EXPORT Read =

VAR t : Int % the current time
THREAD Tick() = DO << t := t + 1 >> OD % demon thread advances t
PROC Read() -> Int = [VAR tl: Int |[|

[<< €1 := t >>; << VAR t2 | tl <= t2 /\ t2 <= t => RET t2 >3

END LateClock

Again both specs have the same traces: a sequence of invocations and responses from read, such
that for any two readsthat don’'t overlap, the earlier onereturnsasmaller value tr. In ciock the
choice of tr depends on when the body of read runsrelative to the various Ticks. In Lateclock

Handout 8. Generalizing Abstraction Functions 12

6.826—Principles of Computer Systems 2004

thevar t2 makesthe choice of tr, and it may choose avalue of t some time ago. Any
abstraction relation from Lateclock to clock hasto preserve t, because a thread that does a
complete rRead exposes the value of ¢, and this can happen between any two other transitions.
But Latec1lock doesn’t decide its return value until its last atomic command, and when it does, it
may choose an earlier value than the current t; no abstraction relation can explain this.

Prophecy variables

Oneway to cope with these examples and others like them is to use ad hoc reasoning to show
that Latespec implements spec; wedid thisinformally in each example above. This strategy is
much easier if we make the transition from premature choice to late choice at the highest level
possible, aswe did in these examples. It' s usually too hard to show directly that a complicated
module that makes a late choice implements a spec that makes a premature choice.

But it isn't necessary to resort to ad hoc reasoning. Our trusty method of abstraction functions
can aso do thejob. However, we have to use adifferent sort of auxiliary variable, onethat can
look into the future just as a history variable looks into the past. Just aswe did with history
variables, we will show that amodule TP (T with Prophecy) augmented with a prophecy
variable has the same traces as the original module T. Actually, we can show that it has the same
finite traces, which is enough to take care of safety properties. It also has the sameinfinite traces
provided certain technical conditions are satisfied, but we won’t worry about this because we are
not interested in liveness. To show that the traces are the same, however, we have to work
backward from the end of the trace instead of forward from the beginning.

A prophecy variable guesses in advance some non-deterministic choicethat T is going to make
later. The guess gives enough information to construct an abstraction function to the spec that is
making a premature choice. When execution reaches the choice that T makes non-
deterministically, TP makes it deterministically according to the guessin the prophecy variable.
TP hasto choose enough different values for the prophecy variable to keep from ruling out any
executions of T.

The conditions for an added variable to be a prophecy variable are closely related to the ones for
ahistory variable, as the following table shows.

6.826—Principles of Computer Systems 2004

component must not depend on the value of
ahistory variable. Oneimportant case of
thisis that areturn value must not depend
on ahistory variable.

4. Iftisaninitial state of T and (t, p) isastate
of TP, it must be an initial state.

History variable Prophecy variable

1. Eveyinitia statehas at least onevaluefor | 1. Every state has at least one value for the
the history variable. prophecy variable.

2. Noexisting step is disabled by new guards | 2. No existing step is disabled in the

involving a history variable. backward direction by new guards
involving aprophecy variable. More
precisely, for each step (t, w, t') and state
(t', p') there must be ap such that thereisa
step ((t, p), =, (t', pY).

3. Same condition

3. A vaueassigned to an existing state

Handout 8. Generalizing Abstraction Functions 13

If these conditions are satisfied, the state machine TP with the prophecy variable will have the
same traces as the state machine T without it. Y ou can see thisintuitively by considering any
finite execution of T and constructing a corresponding execution of TP, starting from the end.
Condition (1) ensures that we can find alast state for TP. Condition (2) saysthat for each
backward step of T thereis a corresponding backward step of TP, and condition (3) saysthat in
this step p doesn't affect what happensto t. Finally, condition (4) ensures that we end up in an
initial state of TP.

Let’sreview our examples and see how to add prophecy variables (that all start with p), marking
the additions with boxes. For LateNonpet P we add p1 that guesses the choice between 2 and 3.
The abstraction function isjust NonDet .i = LateNonDetP.pI.

VAR i :=0
pI := 0
APROC Out () -> Int = <<
IF i =0=>1i :=1; BEGIN pI := 2 [] pI := 3 END|
[*] i =1 => BEGIN [pI = 2 => i := 2 [] [pI = 3 =»] i := 3 END [*] SKIP FI;
RET i >>

For LateReliableMsgP We add appead flag to each marked message that forces et to discard
it. crash chooses which dead flagsto set. The abstraction function just discards the marks and
the dead messages.

VAR g : SEQ [m, mark: Bool, pDead: Bool] := {}

% ABSTRACTION FUNCTION ReliableMsg.q = {x :IN LateReliableMsg.q | ~ x.dead | x.m}

% INVARIANT (ALL i :IN g.dom | g(i).dead ==> g(i) .mark)

APROC Get () -> M =
<< DO VAR x := g.head |
g := g.tail; IF x.mark => SKIP [] |~ x.pDead => RET x.m FI OD >>
APROC Crash () = << [VAR pDeads: SEQ Bool | pDeads.size = g.size =>

g := {x :IN q, [pD :IN pDeads| | | x{mark := true, [pDead := pD}

Alternatively, we can prophesy the entire state of Re1iableMsg aswedid with db in statbs,
whichisalittleless natural in this case:

VAR [pQ : SEQ M := {]
[5 INVARIANT {x :IN g | ~ x.mark | x.m} <<= pQ /\ pQ <<= {x :IN q | | x.m}|
APROC Get () -> M

<< DO VAR x := g.head |

Handout 8. Generalizing Abstraction Functions 14

6.826—Principles of Computer Systems 2004
g := g.tail;
IF x.mark [/\ (pQ = {} \/ x.m # pQ.head)| => SKIP
[] pQ := po.tail;] RET x.m
FI OD >>

APROC Crash() =
<< VAR g’ | @' <<= g =>pQ := q'; q := {x :IN q | | x{mark := true}} >>

For Lateconsensusp we follow the example of Nonpet and just prophesy the outcome in a11ow.
The abstraction function is consensus . outcome = LateConsensusP.pOutcome

VAR outcome (V + Null) := nil % Data value to agree on

fpOut come (V + Null) := nil]

allowed : SET V := {}
APROC Allow(v) =

<< allowed \/ := {v}; [IF pOutcome = nil => pOutcome := v [] SKIP FI >>
APROC Agree() =

<< VAR v | v IN allowed /\ outcome = nil |[/\ v = pOutcome| => outcome := v >>

For L.ateciockp we choose the result at the beginning of read. The second command of read
has to choose this value, which meansit hasto wait until Tick has advanced t far enough. The
transition of Lateclockp that corresponds to the body of cl1ock.Rread isthe Tick that givest the
pre-chosen value. This seems odd, but since all these transitions are internal, they all have empty
external traces, so it is perfectly OK.

Should give the AF explicitly; it'sjust pr, right?

VAR t : Int % the current time
T ;. Int]

PROC Read() -> Int = VAR tl: Int |
<< tl := t; VAR t': Int | pT := t’| >>;

<< VAR t2 | tl <= t2 /\ t2 <= t |[/\ t2 = pT| => RET t2 >>

Most people find it much harder to think about prophecy variables than to think about history
variables, because thinking about backward execution does not come naturally. It's easy to see
that it’s harmless to carry along extrainformation in the history variablesthat isn’t allowed to
affect the main computation. A prophecy variable, however, is alowed to affect the main
computation, by forcing a choice that was non-deterministic to be taken in a particular way.
Condition (2) ensuresthat in spite of this, no tracesof T areruled out in TP. It requires us to use
aprophecy variable in such away that for any possible choice that T could make later, there's
some choice that TP can make for the prophecy variable' s value that allows TP to later do what T
does.

Here is another way of looking at this. Condition (2) requires enough different values for the
prophecy variables p; to be carried forward from the points where they are set to the points where
they are used to ensure that as they are used, any set of choicesthat T could have madeis
possible for some execution of TP. So for each command that uses a p; to make a choice, we can
calculate the set of different values of the p; that are needed to alow all the possible choices.

Handout 8. Generalizing Abstraction Functions 15

6.826—Principles of Computer Systems 2004

Then we can propagate this set back through earlier commands until we get to the one that
chooses p;, and check that it makes enough different choices.

Because prophecy variables are confusing, it's important to use them only at the highest possible
level. If you write a spec SE that makes an early choice, and implement it with amodule T, don’t
try to show that T satisfies SE; that will be too confusing. Instead, write another spec S that
makes the choice later, and use prophecy variables to show that SL implements SE. Then show
that T implements SL; this shouldn’t require prophecy. We have given three examples of such SE
and SL specs; the implementations are given in later handouts.

Backward simulation

Just as we could use abstraction relations instead of adding history variables, we can usea
different kind of relation, satisfying different start and step conditions, instead of prophecy
variables. This new sort of relation also guarantees trace inclusion. Like an ordinary abstraction
relation, it allows construction of an execution of the spec, working from an execution of the
code. Not surprisingly, however, the construction works backwards in the execution of the code
instead of forwards. (Recall the inductive proof for abstraction relations.) Therefore, itiscaled a
backward simulation.

The following table gives the conditions for a backward simulation using relation R to show that
T implements S, aligning each condition with the corresponding one for an ordinary abstraction
relation. To highlight the rel ationship between the two kinds of abstraction mappings, an
ordinary abstraction relation is also called aforward simulation.

Forward simulation Backward simulation

1. If tisany initia state of T, thenthereisan | 1. If tisany reachable state of T, then therea
initial statesof Ssuch that (t,s) € R. state sof Ssuchthat (t,) € R.

2. If tand sarereachablestatesof Tand S 2. If t'and s are states of T and Srespectively,
respectively, with (t, s) € R, and (t, &, t') is with (t,s) e R, (t, &, t) isastepof T,and t
astep of T, then there is an execution isreachable, then thereis an execution
fragment of Sfrom sto some s, having the fragment of Sfrom some sto s, having the
sametrace, and with (t', s) € R. sametrace, and with (t, s) € R.

3. Iftisaninitia state of T and (t, s) € Rthen
sisaninitia stateof S.

(1) appliesto any reachable state t rather than any initia state, since running backwards we can
start in any reachable state, while running forwards we start in an initial state. (2) requires that
every backward (instead of forward) step of T beasimulation of astep of S. (3) isanew
condition ensuring that a backward run of T ending in an initial state simulates a backward run of
Sending in aninitia state; since a forward simulation never ends, it has no analogous condition.

Theorem 3: If there exists a backward simulation from T to Sthen every finite trace of T isaso
atraceof S

Handout 8. Generalizing Abstraction Functions 16

6.826—Principles of Computer Systems 2004

Proof: Start at the end of afinite execution and work backward, exactly aswe did for forward
simulations.

Notice that Theorem 3 only yields finite trace inclusion. That's different from the forward case,
where we get infinite trace inclusion aswell. Can we use backward simulations to help us prove
general traceinclusion? It turns out that this doesn’t aways work, for technical reasons, but it
works in two situations that cover al the cases you are likely to encounter:

e Theinfinite traces are exactly the limits of finite traces. Formally, we have the condition that
for every sequence of successively extended finite traces of S, thelimit isalso atrace of S.

e The correspondence relation relates only finitely many states of Sto each state of T.

In the NonDet example above, a backward simulation can be used to show that LateNonDet
implements Nonpet. In fact, the inverse of the relation used to show that Nonpet implements
LateNonDet Will work. Y ou should check that the three conditions are satisfied.

Backward simulations vs. prophecy variables

The same equivalence that holds between abstraction relations and history variables also holds
between backward simulations and prophecy variables. The invariant on the prophecy variable
becomes the abstraction relation for the backward simulation.

Completeness

Earlier we asked whether forward simulations always work to show trace inclusion. Now we can
ask whether it is always possible to use either a forward or a backward simulation to show trace
inclusion. The satisfying answer is that a combination of aforward and a backward simulation,
one after the other, will alwayswork, at least to show finite trace inclusion. (Technicalities again
arise in theinfinite case.) For proofs of this result and discussion of the technicalities, see the
papers by Abadi and Lamport and by Lynch and Vondrager cited below.

History and further reading

Theidea of abstraction functions has been around since the early 1970's. Tony Hoare introduced
itinaclassic paper (C.A.R. Hoare, Proof of correctness of data representations. Acta |nformatica
1(1972), pp 271-281). It was not until the early 1980’ sthat Lamport (L. Lamport, Specifying
concurrent program modules. ACM Transactions on Programming Languages and Systems 5, 2
(Apr. 1983), pp 190-222) and Lam and Shankar (S. Lam and A. Shankar, Protocol verification
via projections. IEEE Transactions on Software Engineering SE-10, 4 (July 1984), pp 325-342)
pointed out that abstraction functions can also be used for concurrent systems.

People call abstraction functions and relations by various names. ‘ Refinement mapping’ is
popular, especially among European writers. Some people say ‘ abstraction mapping'.

History variables are an old idea. They were first formalized (asfar as | know), in Abadi and
Lamport, The existence of refinement mappings. Theoretical Computer Science 2, 82 (1991), pp
253-284. The same paper introduced prophecy variables and proved the first completeness result.
For more on backward and forward simulations see N. Lynch and F. VVondrager, Forward and

Handout 8. Generalizing Abstraction Functions 17

6.826—Principles of Computer Systems

backward simulations—Part |: Untimed systems. Information and Computation 121, 2 (Sep.

1995), pp 214-233.

Handout 8. Generalizing Abstraction Functions

2004

18

6.826—Principles of Computer Systems 2004

Handout 8. Generalizing Abstraction Functions 19

