6.826—Principles of Computer Systems 2004

9. Atomic Semantics of Spec

This handout defines the semantics of the atomic part of the Spec language fairly carefully. It
tries to be precise about all difficult points, but is sloppy about some things that seem obviousin
order to keep the description short and readable. For the syntax and an informal account of the
semantics, see the Spec reference manual, handout 4.

There are three reasons for giving a careful semantics of Spec:
1. Togiveaclear and unambiguous meaning for Spec programs.

2. Tomakeit clear that thereis no magic in Spec; its meaning can be given fairly easily and
without any exotic methods.

3. To show the versatility of Spec by using it to defineitself, which is quite different from the
way we useit in therest of the course.

This handout is divided into two parts. In the first half we describe semi-formally the essential
ideas and most of the important details. Then in the second half we present the compl ete atomic
semantics precisely, with a small amount of accompanying explanation.

Semi-formal atomic semantics of Spect

Our purposeisto makeit clear that there is no arm waving in the Spec notation that we have
given you. A trandlation of thisinto fancy wordsisthat we are going to study aformal semantics
of the Spec language.

Now that is aformidable sounding term, and if you take a course on the semantics of pro-
gramming languages (6.821—Gifford, 6.830}—Meyer) you will learn all kinds of fancy stuff
about bottom and stack domains and fixed points and things like that. Y ou are not going to see
any of that here. We are going to do a very simple minded, garden-variety semantics. We arejust
going to explain, very carefully and clearly, how it isthat every Spec construct can be
understood, as atransition of a state machine. So if you understand state machines you should be
ableto understand all this without any trouble.

One reason for doing thisis to make sure that we really do know what we are talking about. In
general, descriptions of programming languages are not in that state of grace. If you read the
Pascal manual or the C manual carefully you will come away with a number of questions about
exactly what happensif | do this and this, questions which the manual will not answer
adequately. Two reasonably intelligent people who have studied it carefully can come to
different conclusions, argue for along time, and not be able to decide what is the right answer by
reading the manual.

! These semi-formal notes take the form of adialogue between the lecturer and the class. They were originally
written by Mitchell Charity for the 1992 edition of this course, and have been edited for this handout.

Handout 9. Atomic Semantics of Spec 1

6.826—Principles of Computer Systems 2004

Thereis one class of mechanisms for saying what the computer should do that often does answer
your questions precisely, and that is the instruction sets of computers (or, in more modern
language, the architecture). These specs are usually written as state machines with fairly smple
transitions, which are not beyond the power of the guy who iswriting the manual to describe
properly. A programming language, on the other hand, is not like that. It has much more power,
generdity, and wonderfulness, and also much more room for confusion.

Another reason for doing thisisto show you that our methods can be applied to a different kind
of system than the ones we usually study, that is, to a programming language, a notation for
writing programs or a notation for writing specs. We are going to learn how to write a spec for
that particular class of computer systems. Thisisavery different application of Spec from the
last one we looked at, which was file systems. For describing a programming language, Spec is
not theideal descriptive notation. If you were in the business of giving the semantics of
programming languages, you wouldn’t use Spec. There are many other notations, some of them
better than Spec (although most are far worse). But Spec is good enough; it will do the job. And
thereisalot to be said for just having one notation you can use over and over again, as opposed
to picking up anew one each time. There are many pitfallsin devising anew notation.

Those are the two themes of thislecture. We are going to get down to the foundations of Spec,
and we are going to see another, very different application of Spec, a programming language
rather than afile system.

For this lecture, we will only talk about the sequential or atomic semantics of Spec, not about
concurrent semantics. Consider the program:

x, y=20
thread 1: thread 2:
<< X 1= 3 >> << Z 1= X 4+ Y >>
<< Yy =4 >>

In the concurrent world, it is possible to get any of thevalues 0, 3, or 7 for z. In the sequentia
world, which we arein today, the only possible valuesare 0 and 7. It is asimpler world. We will
betalking later (in handout 17 on formal concurrency) about the semantics of concurrency,
which is unavoidably more complicated.

In a sequential Spec program, there are three basic constructs (corresponding to sections 5, 6, and
7 of the reference manual):

Expressions
Commands
Routines

For each of these wewill give ameaning function, Mg, mc, and MR, that takes a fragment of Spec
and yields its meaning as some sort of Spec value. We shall see shortly exactly what type of
valuesthese are.

In order to describe what each of these things means, wefirst of all need some notion of what
kind of thing the meaning of an expression or command might be. Then we haveto explainin
detail the exact meaning of each possible kind of expression. The basic technique we use isthe

Handout 9. Atomic Semantics of Spec 2

6.826—Principles of Computer Systems 2004

standard one for a situation where you have things that are made up out of smaller things:
structural induction.

Theidea of structural induction isthis. If you have something which is made up of an 2 and as,
and you know the meaning of each, and have away to put them together, you know how to get
the meaning of the bigger thing.

Some ways to put things together in Spec:

State

What are the meanings going to be? Our basic notion is that what we are doing when writing a
Spec program is describing a state machine. The central properties of a state machine are that it
has states and it has transitions.

A stateisafunction from namesto values: state: Name -> value. For example:

VAR x: Int
y: Int

If there are no other variables, the state simply consists of the mapping of the names "x" and "y
to their corresponding values. Initially, we don’'t know what their values are. Somehow the
meaning we give to this whole construct has to express that.

Next, if wewritex := 1, after that the value of x is 1. So the meaning of this had better ook
something like atransition that changes the state, so that no matter what the x was before, itis 1
afterwards. That's what we want this assignment to mean.

Spec is much simpler than C. In particular, it does not have “references’ or “pointers’. When
you are doing problems, if you feel the urgeto call malioc, the correct thing to do isto make a
function whose range is whatever sort of thing you want to alocate, and then choose a new
element of the domain that isn’'t being used already. Y ou can use the integers or any convenient
sort of name for the domain, that is, to name the values. If you define a crass, Spec will do this
for you automatically.

So the stateis just these name-to-value mappings.

Names

Spec has a module structure, so that names have two parts, the module name and the simple
name. When referring to a variable in another module, you need both parts.

MODULE M MODULE N

VAR x M.x := 3

Handout 9. Atomic Semantics of Spec 3

6.826—Principles of Computer Systems 2004

To simplify the semantics, we will usem. x as the name everywhere. In other words, to apply the
semantics you first must go through the program and replace every x declared in the current
modulem with m. x. This converts al references to global variables into these two part names, so
that each name refers to exactly one thing. This transformation makes things simpler to describe
and understand, but uglier to read. It doesn’t change the meaning of the program, which could
have been written with two part namesin the first place.

All the globa variables have these two part names. However, local variables are not prefixed by
the module name:

PROC
VAR 1 | ... 1

Thisis how wetell the global state apart from the local state. Global state names have dots, local
state names do not.

Question: Can modul es be nested?

No. Spec is meant to be suitable for the kinds of specs and code that we do in this course, which
are no more than moderately complex. Features not really needed to write our specs are left out
to keep it simpler.

Expressions

What should the meaning of an expression be? Note that expressions do not affect the state.

The type for the meaning of an expressioniss -> v: an expression is afunction from state to
value (weignore for now the possibility that an expression might raise an exception). It can bea
partial function, since Spec does not require that all expressions be defined. But it hasto be a
function—we require that expressions are deterministic. We want determinism so something like
f(x) = f£(x) dwayscomesout true. Reasoningisjust too hard if thisisn’t true. If afunctionis
nondeterministic then obviously this needn’t come out true. (The classic example of a
nondeterministic function is arandom number generator.)

So, expressions are deterministic and do not affect state.
Question: What about assignments?

Assignments are not expressions. If you have been programming in C, you have theweird idea
that assignments are expressions. Spec, however, takes a hard line that expressions must be
deterministic or functional; that is, their values depend only on the state. This means that
functions, which are the abstraction of expressions, are not allowed to affect the state. The whole
point of an assignment is to change the state, so an assignment cannot be an expression.

Handout 9. Atomic Semantics of Spec 4

6.826—Principles of Computer Systems 2004

There are three types of expressions:

Type Example Meaning
constant 1 (\ s | 1)
variable x (\ s | s("x"))

function invocation £ (x) next sub-section

(The type of these lambda’sis not quite right, aswe will see later).

Note that we have to keep the Spec in which we are writing the semantics separate from the Spec
of the semantics we are describing. Therefore, we had to write s ("x") instead of just x, because
itisthe x of the target Spec we are talking about, not the x of the describing Spec.

Thethird type of expression is function invocation. Wewill only talk about functions with a
single argument. If you want a function with two arguments, you can make one by combining the
two arguments into a tuple or record, or by currying: defining a function of the first argument
that returns a function of the second argument. Thisisa minor complication that weignore.

What about x + y? Thisisjust shorthand for T."+" (x, y), whereT isthetype of x. Everything
that is not a constant or avariableis an invocation. This should be afamiliar concept for those of
you who know Scheme.

Semantics of function invocation

What are the semantics of function invocation? Given afunction T -> u, the correct type of its
meaningis (T, s) -> U, sincethefunction can read the state but not modify it. Next, how are
we going to attach a meaning to an invocation £ (x) ? Remember the rule of structural induction.
In order to explain the meaning of a complicated thing, you are supposed to build it out of the
meaning of simpler things. We know the meaning of x and of £. We need to come up with amap
from states to values that is the meaning of £ (x) . That is, we get our hands on the meaning of £
and the meaning of x, and then put them together appropriately. What is the meaning of £? It is
s("En). So,

f(x) means ... s("f") ... s("x")
How are we going to put it together, remembering the type wewant for £ (x), whichiss -> u?
f(x) means (\ s | s("t") (s("x"), s)))

Now this could be complete nonsense, for instanceif s (v£") evaluatesto aninteger. If s ("£")
isn't afunction then this doesn’t typecheck. But there is no doubt about what this meansif it is
legal. It meansinvoke the function.

That takes care of expressions, because there are no other expressions besides these. Structural
induction says you work your way through al the different ways to put little things together to
make big things, and when you have done them all, you are finished.

Question: What about undefined functions?

Handout 9. Atomic Semantics of Spec 5

6.826—Principles of Computer Systems 2004

Thenthe (T, s) -> umappingis partial.
Question: Isf (x) = f(x) if £ (x) isundefined?

No, it's undefined. But those are deep waters and | propose to stay out of them.

Commands

What is the type of the meaning of acommand? Well, we have states and values to play with,
and wehaveused up s -> v on expressions. What sort of thing isacommand? It’s atransition
from one state to another.

Expressions; s -> v
Commands. s -> s ?

Thisis good for a subset of commands. But what about this one?
x =1 [] x :=2

Isits meaning a function from states to states? No, from states to sets of states. It can’t just bea
function. It has to be arelation. Of course, there are lots of waysto code relations as functions.
Theway weuseis:

Commands. (s, S) -> Bool

Thereisasmall complication because Spec has exceptions, which are useful for writing many
kinds of specs, not to mention programs. So we have to deal with the possibility that the result of
acommand is not a garden-variety state, but involves an exception.

To handle thiswe make a dight extension and invent a thing called an outcome, which isvery
much like a state except that it has some way of coding that an exception has happened. Again,
there are many ways to code that. The way we use is that an outcome has the sametypeasa
gtate: it’safunction from names to values. However, there are a couple of funny names that you
can't actually writein the program. One of them is $x, and we adopt the convention that if
o("sx") = v (empty string), then o isa garden-variety state. If o ("$x") = "exception-
name", then thereis that exception in outcome o. Some Spec commands, in particular »; » and
EXCEPT, do something special if one of their pieces produces an exception.

How do we say that o isrelated to s? The function returns true. We are encoding arelation
between states and outcomes as a function from a state and outcome to aBool. Thefunction is
supposed to give back true exactly when the relation holds.

So the meaning of acommand has the relation type (s, o) -> Bool. Wecall thistypeatr, for
Atomic TRansition.

Now we just work our way through the command constructs (with an occasional digression).

Commands — assignment

x =1

Handout 9. Atomic Semantics of Spec 6

6.826—Principles of Computer Systems 2004
orin genera
variable := expression

What we have to come up with for the meaning is an expression of the form
s, of ...

So when does the relation hold for x := exp? Wdll, perhapswhen o (x) = exp? (ME isthe
meaning function for expressions.)

o("x") = ME(e) (s)
. Thisis astart, since the valid transition
x=0 x=1
y=0 y=0
would certainly be allowed. But what others would be allowed? What about:
x=0 x=1
y=0 y=94

It would & so be allowed, so this can’'t be quite right. Half right, but missing something
important. Y ou have to say that you don’'t mess around with therest of the state. The way you do
that isto say that the outcome is equal to the state except at the variable.

o = s{"x" -> ME(e) (s)}

Thisisjust a Spec function constructor, of theform £{arg -> value}. Notethat we are using
the semantics of expressions that we defined in the previous section.

Aside—an alternate encoding for commands
Aswe said before, there are many ways to code the command relation. Another possibility is:
Commands. s -> SET S

This encoding seems to make the meanings of commands clumsier to write, though it is entirely
equivalent to the one we have chosen.

Thereisathird approach, which has alot of advantages: write predicates on the state values. If x
and y arethe state variablesin the pre-state, and x’ and y’ the state variables in the post-state,
then

(x' =1 /\y =y
is another way of writing

o = s{"x" -> 1}

Handout 9. Atomic Semantics of Spec 7

6.826—Principles of Computer Systems

In fact, this approach is another way of writing programs. Y ou could write everything just as
predicates. (Of course, you could also write everythingintheugly o = s{...} form, but that
would look pretty awful. The predicates don’t look so bad.)

Sometimesit’s actually nice to do this. Say you want to write the predicate that says you can
have any value at all for x. The Spec

VAR z | x := z

isjust

(in the smple world where the only state variables are x and y). Thisis much simpler that the
previous, rather inscrutable, piece of program. So sometimes this predicate way of doing things
can be alot nicer, but in general it seems to be not as satisfactory, mainly becausethe y’ =y stuff
cluttersthings up alot.

That was just an aside, to let you know that sometimes it’ s convenient to describe the things that
can go on in a spec using predicates rather than functions from state pairs to Boo1l.

Commands — routine invocation p (x)

What are the semantics of routine invocation? Well, it has to do something with s. Theideais
that p is an abstraction of a state transition, so its meaning will be arelation of type atr. What
about the argument x? There are many ways to deal with it. Our way isto use another pseudo-
variable sa to pass the argument and get back the result.

The meaning of p (e) iSgoing to be

Takethe state,
append the argument,
get p’s meaning

, o)) and invoke it

or, writing the whole thing on one linein the normal way,

(\'s, o| (s
{"$a" -> ME(e) (s)}
ME (p) (s)

(\ s, o | ME(p) (s) (s{"$a" -> ME(e) (s)}, o))

What does this say? This invocation relates a state to an outcome if, when you take that state, and
modify its $a component to be equal to the value of the argument, the meaning of the routine
relates that state to the outcome. Another way of writing this, which isn’t so nested and might be
clearer, would be to introduce an intermediate state s . Now we have to use L.aMBDA:

(LAMBDA (s, o)->Bool = VAR s’ = s{"$a" -> ME(e) (s)} | RET ME(p) (s) (s’, o))

These two are exactly the same thing. The invocation relates s to o iff theroutinerelates s’ to o,
where s’ isjust s with the argument passing component modified. sa isjust away of
communicating the argument value to the routine.

Question: Why useME (p) (s) rather than Mr?

Handout 9. Atomic Semantics of Spec

2004

6.826—Principles of Computer Systems 2004

MR IS the meaning function for routines, that is, it turns the syntax of a routine declaration into a
function on states and arguments that is the meaning of that syntax. We would usemr if wewere
looking at aFunc. But p isjust avariable (of courseit had better be bound to aroutine value, or
thiswon't typecheck).

Aside—an alternate encoding for invocation

Hereisadifferent way of communicating the argument value to the function; you can skip this
section if you like. We could take the view that the routine definition

PROC P(i: Int) = ...

is defining awhole flock of different commands, one for every possible argument value. Then
we need to pick out the right one based on the argument value we have. If we coded it this way
(and it is merely a coding thing) we would get:

ME (p) (s) (ME(e) (s)) (s,0)

This says, first get M (p) , the meaning of p. Thisis no longer atransition but a function from
argument values to transitions, because the ideais that for every possible argument value, we are
going to get a different meaning for the routine, namely what that routine does when given that
particular argument value. So we pass it the argument value Mk (e) (s), and invoke the resulting
transition.

These two alternatives are based on different choices about how to code the meaning of routines.
If you code the meaning of a routine simply as atransition, then Spec picks up the argument
value out of the magic sa variable. But there is nothing mystical going on here. Setting sa
corresponds exactly to what we would do if we were designing a calling sequence. We would
say “| am going to pass the argument in register 1”. Here, register 1is sa.

The second approach is alittle bit more mystical. We are taking more advantage of the won-
derful abstract power and generality that we have. If someone writes afactorial function, we will
treat it as an infinite supply of different functions with no arguments; one computes the factorial
of 1, another the factoria of 2, another the factorial of 3, and so forth. In

ME (p) (s) (ME(e) (s)) (s, o), ME(p) (s) istheinfinite supply, ME(e) (s) istheargument that
picks out a particular function, to which wefinaly pass (s, o).

However, there are lots of other ways to do this. One of the things which makes the semantics
game hard is that there are many choices you can make. They don’t really make that much
difference, but they can create alot of confusion, because

e abad choice can leave you in abriar patch of notation,
e you can get confused about what choice was made, and
e every author uses adightly different scheme.
So, whilethis

RET ME(p) (S) (S("$a" -> ME(e) (s)),o0)

and this

Handout 9. Atomic Semantics of Spec 9

6.826—Principles of Computer Systems 2004

VAR s’ := s{"$a" -> ME(e) (s)} | RET ME(p) (s) (s’,0)
are two ways of writing exactly the same thing, this
RET ME (p) (s) (ME(e) (s)) (s,0)

isdifferent, and only makes sense with a different choice about what the meaning of afunction
is. Thelatter is more elegant, but we use the former because it is |ess confusing.

Stepping back from these technical details, what the meaning function is doing istaking an
expression and producing its meaning. The expression is a piece of syntax, and there are alot of
possible ways of coding the syntax. Which exact way we choose isn’t that important.

Now we return to the meanings of Spec commands.

Commands — Sk1p
(\ s, o s =o0)

In other words, the outcome after sx1p isthe same as the pre-state. Later on, in the formal half of
the handout, we give atable for the commands which takes advantage of the fact that thereisa
lot of boilerplate—the (\ s, o | ...) stuff isalwaysthe same, and so isthe treatment of
exceptions. So the table just shows, for each syntactic form, what goes after the |.

Commands — Havoc
(\ s, o | true)

In other words, after ravoc you can have any outcome. Actually thisisn't quite good enough,
since we want to be able to have any sequence of outcomes. We deal with this by introducing
another magic state component shavoc With aBool value. Once shavoc iStrue, any transition
can happen, including one that leaves it true and therefore allows havoc to continue. We express
this by adding to the command boilerplate the digunct s ("$havoc), so that if $shavoc istruein
s, any command relates s to any o.

Now for the compound commands.
Commands—c1 [] c2
MC (cl1) MC (c2)
(s, o) (s, o)
\/
or ononeline,
MC(cl1) (s, o) \/ MC(c2) (s, o)

Non-deterministic choiceisthe‘or’ of therelations.

Commands—c1 [*] c2

Itisclear we should begin with

Handout 9. Atomic Semantics of Spec 10

6.826—Principles of Computer Systems 2004 6.826—Principles of Computer Systems 2004

MC(cl) (s, o) \/ .. \/ IsX(o’) /\ o’ ("$x") IN xs) /\ MC(c2) (o’ {"$x" -> ""}, o)

But what next? One possibility is
~ MC(cl) (s, o) /\ ...

Thisisin theright direction, but not correct. Else meansthat if there is no possible outcome of
c1, then you get to try c2. So there are two possible ways for an elseto relate astate to an

outcome. Oneisfor c1 to relate the state to the outcome, the other is that thereis no possible way

to make progresswith c1 in the state, and c2 to relates the state to the outcome.
The correct encoding is

MC(cl) (s,0) \/ (ALL o' | ~ MC(cl) (s, o')) /\ MC(c2) (s,0))
Commands—c1 ; c2

Although the meaning of semicolon may seem intuitively obvious, it is more complex than one

might first suspect—more complicated than “or”, for instance, even though “or” isless familiar.

We interpreted the command c1 [1 c2 asmMc(cl) \/ MC(c2). Becausesemicolonisa
sequential composition, it requires that our semantics move through an intermediate state.

If these were functions (if we could describe the commands as functions) then we could simply
describe a sequential composition as (r2 (F1 s)). However, because Spec is not afunctional
language, we need to compose relations, in other words, to establish an intermediate state as a
precursor to the final output state. As afirst attempt, we might try:

(LAMBDA (s, o) -> Bool = RET
(EXISTS o’ | MC(cl) (s, o’) /\ MC(c2) (o', 0)))

In words, this says that you can get from s too viac1 ; c2 if there exists an intermediate state
o’ such that c1 takes you from s to o’ and c2 takesyou from o’ to o. Thisisindeed the
composition of the relations, which we can write more concisely asmc (c1) * Mc(c2). Butis
this always the meaning of »; »? In particular, what if c1 produces an exception?

When c1 produces an exception, we should not execute c2. Our first try does not capture that
possibility. To correct for this, we need to verify that o+ isanormal state. If it is an exceptiona
state, then it isthe result of the composition and we ignore c2.

(EXISTS o’ | MC(cl) (s, o’) /\ (~IsX(o’) /\ MC(c2)

\/ IsX(o’) /\ o' = 0))
Commands—c1 EXCEPT xs => c2

Now, what if we have a handler for the exception? If we assume (for simplicity) that all
exceptions are handled, we simply have the complement of the semicolon case. If there san
exception, then do c2. If there’ s no exception, do not do c2. We also need to include an
additional check to insure that the exception considered is an element of the exception set—that
isto say, that it isahandled exception.

(EXISTS o’ | MC(cl) (s, o’) /\
(((~IsX(o’) \/ ~o’ ("$x") IN xs) /\ o' = o)

Handout 9. Atomic Semantics of Spec 11

)

So, with this semantics for handling exceptions, the meaning of:

(cl EXCEPT xs => c2); c3

if normal do c1, N0 c2, do c3

if exception, handled do c1, doc2, doc3

if exception and not handled do c1, N0 c2, NO ¢3

Commands—vVAR id: T | co

Theideais “there existsavalue for id such that co succeeds’. This intuition suggests something
like

(EXISTS v :IN T | MC(c0) (s{"id" -> v}, o))

However, if welook carefully, we seethat id isleft defined in the output state o. (Why isthis
bad?) To correct this omission we need to introduce an intermediate state o from which we may
arrive at the final output state o where id is undefined.

(EXISTS v :IN T, o’ | MC(cO) (s("id" -> v}, o’) /\ o = o’ (id -> })

Routines

In Spec, routines include functions, atomic procedures, and procedures. For simplicity, we focus
on atomic procedures. How do we think about aprocs?

We know that the body of an aproc describes transitions from its input state to its output state.
Given this transition, how do we handle the results? We previoudly introduced a pseudo name sa
to which a procedure’ s argument value is bound. The caller also collects the value from sa after
the procedure body’ s transition. Refer to the definition of Mr below for a more complete
discussion.

In reality, Spec is more complex because it attempts to make rReT more convenient by allowing it
to occur anywherein aroutine. To accommodate this, the meaning of RET e iSto set $a to the
value of e and then raise the special exception sreT, which is handled as part of theinvocation.

Formal atomic semantics of Spec

In the rest of the handout, we describe the meaning of atomic Spec commandsin complete detail,
except that we do not give precise meanings for the various expression forms other than lambda
expressions; for the most part these are drawn from mathematics, and their meanings should be
clear. We also omit the detailed semantics of modules, which is complicated and uninteresting.

Handout 9. Atomic Semantics of Spec

12

6.826—Principles of Computer Systems 2004

Overview

The semantics of Spec are defined in three stages: expressions, atomic commands, and non-
atomic commands (treated in handout 17 on formal concurrency). For the first two thereis no
concurrency: expressions and atomic commands are atomic. This makesit possible to give their
meanings quite simply:

Expressions as functions from states to results, that is, values or exceptions.

Atomic commands as relations between states and outcomes: a command relates an initial
state to every possible outcome of executing the command in theinitial state.

An outcome maps names (treated as strings) to values. It also maps three special strings that are
not program names (we call them pseudo-names):

$a, which is used to pass argument and result valuesin an invocation;

$x, Which records an exceptional outcome;

$havoc, Which istrueif any sequence of later outcomesis possible.

A stateisanormal outcome, that is, an outcome which is not exceptional; it has $x=nox. The
looping outcome of a command is encoded as the exception $1oop; since thisisnot an identifier,
you can't writeitin ahandler.

The state is divided into aglobal state that maps variables of theformm. ia (for which ia is
declared at thetop level in modulem) and alocal state that maps variables of the form id (those
whose scope isavar command or aroutine). Routines share only the globa state; the ones
defined by r.ameDa also have aninitial local state, while the ones declared in a routinebec1 start
with an empty local state. We leave as an exercise for the reader the explicit construction of the
global state from the collection of modules that makes up the program.

We give the meaning of a Spec program using Spec itself, by defining functions me, mc, and Mr
that return the meaning of an expression, command, and routine. However, we use only the
functiona part of Spec. Spec is not ideally suited for thisjob, but it is serviceable and by using it
we avoid introducing a new notation. Also, it isinstructive to see how the task iswriting this
particular kind of spec can be handled in Spec.

Y ou might wonder how this spec is related to code for Spec, that is, to a compiler or interpreter.
It doeslook alot like an interpreter. Aswith other specs written in Spec, however, this oneis not
practical code becauseit uses existential quantifiers and other forms of non-determinism too
freely. Most of these quantifiers are just there for clarity and could be replaced by explicit
computations of the needed values without much difficulty. Unfortunately, the quantifier in the
definition of var does not have this property; it actually requires a search of all the values of the
specified type. Since you have aready seen that we don’t know how to give practical code for
Spec, it shouldn’t be surprising that this handout doesn’t contain one.

Note that before applying these rules to a Spec program, you must apply the syntactic rewriting
rulesfor constructslikevar id := e and cLass that are given in the reference manual. You
must also replace all global names with their fully qualified forms, which include the defining
module, or ciobal for names declared globally (see section 8 of the reference manual).

Handout 9. Atomic Semantics of Spec 13

6.826—Principles of Computer Systems 2004

Terminology

We begin by giving the types and special values used to represent the Spec program whose
meaning is being defined. We use two methods of functions, + (overlay) and restrict, that are
defined in section 9 of the reference manual.

TYPE V = (Routine + ...) % Value
Routine = aTr % defined as the last type below
Id = String % Identifer

SUCHTHAT (\ id | (EXISTS c: Char, sl: String, s2: String |
id = {c} + s1 + s2 /\ c IN letter + digit
/\ sl.rng <= letter\/digit\/{’_ '} /\ s2.rng <= {"''}))
Name = String
SUCHTHAT (\ name | name IN ids \/ globals

\/ {v|$au’ ngxn, “$havoc"})

X = String % eXception
SUCHTHAT (\ x | x IN ids \/ {noX, retX, loopX, typeX})

XS = SET X % eX ception Set

o] = Name -> V WITH {isX:=0IsX} % Outcome

S = O SUCHTHAT (\ o | ~ o.isX) % State

ATr = (8, 0) -> Bool % Atomic Transition
CONST

letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz".rng

digit = "0123456789".rng

ids = {id | true}

globals = {id1, id2 | id1 + "." + id2}

nox Z

retX = "Sret"

loopX = "$loop"

typeX = "S$type error"

truev : Vv % thevalue true
FUNC OIsX (o) -> Bool = RET o("$x") # noX %o0.isX

To write the meaning functions we need types for the representations of the main non-terminals
of thelanguage: id, name, exceptionSet, type, exp, cmd, routineDecl, module, and
program. Rather than giving the detailed representation of these types or a complete set of
operations for making and analyzing their values, we write c« c1 [] c2 » for acommand
composed from subcommands c1 and <2 with [1, and so forth for the rest of the command
forms. Similarly wewriteg« e1 + e2 » andR« FUNC Succ(x: INT)->INT = RET x+1 » for
theindicated expression and function, and so forth for the rest of the expression and routine
forms. This notation makes the spec much more readable. 14, Name, and xs are declared above.

TYPE T = SET V % Type
E = [...] % Expression
c = [...] % Command
R = [id4, ...] % RoutineDec!
Mod = [id, tops: SET TopLevell] % Module
TopLevel = (R + ...) % module toplevel decl

Prog = [ms: SET Mod, ts: SET TopLevel] % Program

Handout 9. Atomic Semantics of Spec 14

6.826—Principles of Computer Systems 2004 6.826—Principles of Computer Systems 2004

The meaning of an id or var isjust the string, of an exceptionset the set of strings that are the Command Predicate
exceptionsin the set, of atype the set of values of the type. For the other constructs there are
meaning functions defined below: Mz for expressions and mc and Mz for atomic commands and SKIP °©=s
routines. The meaning functions for module, toplevel, and program are left as exercises. HAVOC true

i RET e o = s{"$x" -> retX, $a -> ME(e) (s)}
EXpreSSOﬂS RET o = s{"$x" -> retX}
An expression maps a state to a value or exception. Evaluating an expression does not change the RAISE id o = s{"$x" -> mign}
state. Thus the meaning of expressionsis given by a partial function me with type

el (e2) (EXISTS r: Routine |

E->S->(V + X);thatis, given an expression, Mk returns a function from states s to results
(valuesv or exceptions x). ME is defined informally for all of the expression formsin section 5 of
the reference manual. The possible expression forms are literal, variable, and invocation. We

r = ME(el) (s) /\ r(s{"$a" -> ME(e2) (s)}, o))

. oM - _ A - - var := e [1] o = s{var -> ME(e) (s)}
give formal definitions only for invocations and r.amepx literas; they are written in terms of the var :i= el(e2) [1] MC(C« el(e2); var := $a ») (s, o)
meaning of commands, so we postpone them to the next section
) e => co0 E(e) (s) = truev /\ MC(cO0) (s, o)
Type checking cl [<2 clcl) (s, o) \/ MC (c2) (s, o)
For type checking to work we need to ensure that the value of an expression always has the type cl [*] c2 Clcl) (s, o) \/ (MC(c2)(s, o)
of the expression (that is, is amember of the set of values that is the meaning of the type). We do /\ ~(EXISTS o' | MC(c1) (s, o')))
this by structural induction, considering each kind of expression. The type checking of return c1 ; e2 MC(cl) (s, o) /\ o .isX
values ensures that the result of an invocation will haveits declared type. Literals aretrivial, and \/ (EXISTS o' | MC(cl) (s, o') /\ ~ o'.isX
the only other expression formisavariable. A variable declared with var isinitidized to avalue J\ MC(c2) (0", 0))
of itstype. A formal parameter of aroutineisinitialized to an actual by an invocation, and the
type checking of arguments (see Mr below) ensuresthat thisis avalue of the variable' stype. The cl EXCEPT xs => C2 MC(cl) (s, o) /\ ~ o ("$x") IN xs
value of avariable can only be changed by assignment. \/ (EXISTS o' | MC(cl) (s, o') /\ o'("$x") IN xs

. . . /\ MC(c2) (o' {"$x" -> noXx}, o))
Anassignment var := e requiresthat thevaue of e havethetype of var. If thetype of e isnot

equd to thetype of var becauseit involves aunion or a sucuTtHaT, this check can’t be done VAR id: T | <O (EXISTS v, o' | v IN T
statically. To take account of this and to ensure that the meaning of expressions is independent of /\ MC(cO0) (s {id -> v}, o")
the static type checking, we assume that in the context var := etheaproneisreplaced by /\ o = o'{id -> })

e As t,where t isthedeclared type of var. Themeaning of e As tinstates iSME (e) (s) if

that isin t (the set of values of type t), and the exception typex otherwise; thlS@(CGpthl’l can't VAR id: T := e | c0 MC(C«VAR id: T | id = e => c0») (s, o)

be handled because it is not named by an identifier and is therefore afatal error. << CO >> MC (c0) (s, o)

We do not give practical code for the type check itself, that is, the check that avalue actually isa 1F c0 FI MC(c0) (s, o)

member of the set of values of a given type. Such code would require too many details about BEGIN cO END MC(cO0) (s, o)

how values are represented. Note that what many people mean by “type checking” is a proof that po co op isthefixed point of the equation ¢ = co; ¢ [*] SKIP

every expression in a program always has aresult of the correct type. Thiskind of completely

static type checking is not possible for Spec; the presence of unions and sucutaaT makes it _)) _ o

undecidable. Sections 4 and 5 of the reference manual define what it means for one type to fit [1] Thefirst casefor assignment appliesonly if theright sideisnot an invocation of an
another and for atypeto be suitable. These definitions are a sketch of how to code as much static aproC. Because an invocation of an aproc can have side effects, it needs different treatment.

type checking as Spec easily admits.

Table 1: The predicates that definemc (command) (s, o) when there are
no exceptions raised by expressions at the top level in command, and shavoc isfalse.

Handout 9. Atomic Semantics of Spec 15 Handout 9. Atomic Semantics of Spec 16

6.826—Principles of Computer Systems 2004

Atomic commands

An atomic command relates a state to an outcome; in other words, it is defined by an aTr (atomic

transition) relation. Thus the meaning of commandsis given by afunction mc with type c->aTr,
whereatr = (s, 0) -> Bool. Wecan definethe atr relation for each command by a
predicate: acommand relates state s to outcome o iff the predicate on s and o istrue. We give
the predicatesin table 1 and explain them informally below; the predicates apply provided there
are no exceptions.

Here are the details of how to handle exceptions and how to actualy define the mc function. Y ou
might want to look at the predicatesfirst, since the meat of the semanticsis there.

Thetable of predicates has been simplified by omitting the boilerplate needed to take account of
shavoc and of the possibility that an expression is undefined or yields an exception. If a
command containing expressions e1 and e2 has predicate p in the table, thefull predicate for the
command is

s ("$havoc") % anything if Shavoc
\/ ME (el)!s /\ ME(e2)!s % no outcome if undefined
/\ (ME(el)(s) IS V /\ ME(e2)(s) ISV /\ P
\/ ME(el) (s) IS X /\ o = s{ "$x" -> ME(el) (s) }
\/ ME(e2) (s) IS X /\ o = s{ "$x" -> ME(e2) (s) })

If the command contains only one expression e1, drop the terms containing e2. If it contains no
expressions, the full predicateisjust the predicate in the table.

Oncewe havethe full predicates, it is simple to give the definition of the function mc. It hasthe
form

FUNC MC(c) -> ATr =
IF

[1 VAR var, e | ¢ = «var := e» =>
RET (\ o, s | full predicate for this case)

[1 VAR cl, c2 | ¢ = «cl ; c2» =>
RET (\ o, s | full predicate for this case)

FI
Now to explain the predicates. First we do the simple commands, which don’t have
subcommands. All of these that don’t involve an invocation of an aproc are deterministic; in

other words, the relation isafunction. Furthermore, they are all total unlessthey involve an
invocation that is partial.

A reT produces the exception retx and leavesthe returned valuein sa.

A ra1se yidds an exceptiona outcome which records the exception id in $x.

Handout 9. Atomic Semantics of Spec 17

6.826—Principles of Computer Systems 2004

An invocation relates s to o iff theroutine which isthe value of e1 (produced by
ME (e1) (s)) does so after s ismodified to bind »sar to the actual argument; thus sa is
used to communicate the value of the actud to the routine.

An assignment |leaves the state unchanged except for the variable denoted by the | eft
side, which gets the value denoted by the right side. Recall that assignment to a
component of afunction, sequence, or record variableis shorthand for assignment of a
suitable constructor to the entire variable, as described in the reference manual. If the
right sideisan invocation of aprocedure, the vaue assigned isthe value of sa inthe
outcome of the invocation; thus sa also communicates the result of the invocation back to
theinvoker.

Now for the compound commands; their meaning is defined in terms of the meaning of their
subcommands.

A guarded command e -> c hasthe same meaning as c except that e must betrue.
A choicerelates s to o if either part does.
Aneésec1 [*] c2reatesstooif c1 doesorif c1 hasno outcome and c2 does.

A sequential composition c1 ; c2 relatess to o if thereis a suitable intermediate state,
or if o isan exceptional outcome of c1.

cl EXCEPT xs=>c2 iSthesameasc1 for anormal outcome or an exceptional outcome
not in the exception set xs. For an exceptiona outcome o’ in xs, c2 must relate o’ asa
normal state to o. Thisisthe dual of the meaning of c1 ; c2 if xs includes al
exceptions.

VAR id: t | c relatesstooif thereisavaluev of typet such that c relates (s with id
bound to v) to an o’ which isthe same as o except that id isundefined in o. It isthis
existential quantifier that makes the spec useless as an interpreter for Spec.

<< ... »>, IF ... FIOrBEGIN ... END bracketsdon't affect mc.

The meaning of po ¢ op can’t be given so easily. It isthe fixed point of the sequence of longer
and longer repetitions of .2 Itispossiblefor po ¢ ob to loop indefinitely; in this caseit relates s
to s with "s$x"->100px. Thisisnot the same as relating s to no outcome, as false => SKIP
does.

The multiple occurrences of declinit and var in VAR declInit* and (varList) :=exp areleft
as boring exercises, along with routines that have several formals.

Routines

Now for the meaning of aroutine. We define a meaning function Mr for a routinebec1 that
relates the meaning of the routine to the meaning of the routine' s body; since the body isa

2 For the details of this construction see G. Nelson, A generalization of Dijkstra’s calculus, AcM Trans.
Programming Languages and Systems 11, 4, Oct. 1989, pp 517-562.

Handout 9. Atomic Semantics of Spec 18

6.826—Principles of Computer Systems 2004

command, we can get its meaning from mc. Theideais that the meaning of the routine should be
arelation of states to outcomes just like the meaning of acommand. In thisrelation, the pseudo-
name $a holdsthe argument in the initial state and the result in the outcome. For technical
reasons, however, we definemr to yield not an atr, but an s->aTr; aloca state (static below)
must be supplied to get the transition relation for the routine. For aLamepa thisloca stateis the
current state of its containing command. For a routine declared at top level in a module this state
isempty.

Thewmr function works in the obvious way:
Check that the argument value in sa has the type of the formal.
Remove local names from the state, since aroutine shares only global state with its invoker.

Bind the value to the formal.

1

2

3

4. Find out using mc how the routine body relates the resulting state to an outcome.

5. Maketheinvoker's outcome from the invoker’s local state and the routine'sfinal global state.
6

Deal with the various exceptionsin that outcome.

A retx outcome resultsin anormal outcome for the invocation if the result has the result
type of the routine, and a t ypex outcome otherwise.

A normal outcome is converted to typex, atype error, since the routine didn’t supply a
result of the correct type.

An exception raised in the body is passed on.

FUNC MR(r) -> (S->ATr) = VAR idl, id2, tl, t2, xs, cO |
r = R« APROC idl(id2: tl1)->t2 RAISES xs = << c0 >> »
\/ r = R« FUNC id1(id2: tl1)->t2 RAISES xs =
RET (\ static: s | (\ s, o |
s("Sa") IN t1
/\ (EXISTS g: S, s', o' |
g = s.restrict(globals)

c0 » =>
% if argument typechecks

% g isthe current globals

/\ s' = (static + g){id2 -> s("sa")} % s isinitia state for co
/\ MC(c0) (s', o') % apply c0
/\ o = (s + o'.restrict(globals)) % restore old locals from s
{mgx" -> % adjust $x in the outcome
(o' ("$x") = retX =>
(o'("sa") IN t2 => noX % retX meansnormal outcome

[*] typeX) % if result typechecks;
[*] o' ("$x") = noX => typeX % normal outcome means typeX;
[*] o' ("$x) % pass on exceptions

)

\/ ~ s("sa") IN tl /\ o = s{"$x" -> typeX} % argument doesn't typecheck
)) % end of the two lambdas

We leave the meaning of aroutine with no result as an exercise.

Handout 9. Atomic Semantics of Spec 19

6.826—Principles of Computer Systems 2004

Invocation and LAMBDA expressions

We have aready given in mc the meaning of invocations in commands, so we can use vc to deal
with invocationsin expressions. Here is the fragment of the definition of me that dealswith an &
that isan invocation e1 (e2) of afunction. It iswritten in terms of the meaningMc (c«el (e2) »)
of the invocation as a command, which is defined above. The meaning of the command is an
atomic transition aTr, apredicate on an initial state and an outcome of theroutine. In the
outcome the value of the pseudo-name sa isthe value returned by the function. The definition
given here discards any side-effects of the function; in fact, in alegal Spec program there can be
no side-effects, since functions are not allowed to assign to non-local variables or call
procedures.

FUNC ME(e) -> (S -> (V + X)) =
IF

[] VAR el, e2 | e = E«x el(e2) » =>
% if E isan invocation its meaning is this function from states to values
VAR aTr := MC(C« el(e2) ») |
RET (LAMBDA (s) -> V =
% the command must have a unique outcome, that is, aTr must bea
% function at s. SeeRelation in section 9 of the reference manual
VAR o := aTr.func(s) | RET (~0.isX => o("$a") [*] o("$x")))

FI
Theresult of the expression isthe value of $a in the outcomeiif it is normal, the value of sx if it

is exceptional. If the invocation has no outcome or more than one outcome, ME (e) (s) iS
undefined.

The fragment of ME for LamMBDA USes Mr to get the meaning of a Func with the same signature and
body. Aswe explained earlier, this meaning is a function from a state to a transition function,

and itisthevaueof ve ((LameDa ...)).Thevaueof (Lamepa ...), likethevaue of any
expression, istheresult of evaluatingme ((LameDA . ..)) onthecurrent state. Thisyiddsa

transition function as we expect, and that function captures the local state of the LamMeDa
expression; thisis standard static scoping. .

IF

[l VAR signature, c0 | e = E« (LAMBDA signature = c0) » =>
RET MR (R« FUNC idl signature = c0 »)

FI

Handout 9. Atomic Semantics of Spec 20

