Abstraction Functions and Invariants

This handout describes the main techniques used to prove correctness of state machines: abstraction functions and invariant assertions. We demonstrate the use of these techniques for some of the examples from handout 5.

Throughout this handout, we consider modules all of whose externally invocable procedures are APROCS. We assume that the body of each such procedure is executed all at once. Also, we do not consider procedures that modify global variables declared outside the module under consideration.

Modules as state machines

Our methods apply to an arbitrary state machine or automaton. In this course, however, we use a Spec module to define a state machine. Each state of the automaton designates values for all the variables declared in the module. The initial states of the automaton consist of initial values assigned to all the module’s variables by the Spec code. The transitions of the automaton correspond to the invocations of APROCS together with their result values.

An execution fragment of a state machine is a sequence of the form $s_0, \pi_1, s_1, \pi_2, \ldots$, where each s is a state, each π is a label for a transition (an invocation of a procedure body), and each consecutive $(s_i, \pi_{i+1}, s_{i+1})$ triple follows the rules specified by the Spec code. (We do not define these rules here—wait for the lecture on formal semantics.) An execution is an execution fragment that begins in an initial state.

Figure 1 shows some of the states and transitions of the state machine for the SimpleMemory module, and Figure 2 does likewise for the WBCache module. The arrow for each transition is labeled by the procedure name, arguments, and result.

External behavior

Usually, a client of a module is not interested in all aspects of its execution, but only in some kind of external behavior. Here, we formalize the external behavior as a set of traces. That is, from an execution (or execution fragment) of a module, we extract the trace, which is the sequence of invocations of exported routines that occur in the execution (or fragment). Then the external behavior of the module is the set of traces that are obtained from all of its executions.
Figure 1: Part of the \textit{SimpleMemory} state machine

Figure 2: Part of the \textit{WBCache} state machine
In the sequential Spec that we are studying now, a module only makes a transition when an exported routine is invoked. Later, however, we will introduce modules with internal transitions, and then the distinction between the executions and the external behavior will be important.

For example, the set of traces generated by the `SimpleMemory` module includes the following trace:

```
(Reset (d))
(Read (a1), d)
(Write (a2, d'))
(Read (a2), d')
```

However, the following trace is not included:

```
(Reset (d))
(Read (a1), d')
(Write (a2, d'))
(Read (a2), d) should have returned d'
```

In general, a trace is included in the external behavior of `SimpleMemory` if every `Read (a)` operation returns the last value written to `a` by a `Write`, `Reset` or `Swap` operation, or returned by a `Read` operation; if there is no such previous operation, then `Read (a)` returns an arbitrary value.

Implements relation

In order to understand what it means for one state machine to implement another one, it is helpful to begin by considering what it means for one atomic procedure to implement another. The meaning of an atomic procedure is a relation between an initial state just before the procedure starts (sometimes called a ‘pre-state’) and a final state just after the procedure has finished (sometimes called a ‘post-state’). This is often called an ‘input-output relation’. For example, the relation defined by a square-root procedure is that the post-state is the same as the pre-state, except that the square of the procedure result is close enough to the argument.

We say that procedure `P` implements spec `S` if the relation defined by `P` (considered as a set of ordered pairs) is a subset of the relation defined by `S`. This means that `P` never does anything that `S` couldn’t do. However, `P` doesn’t have to do everything that `S` can do. An implementation of square root is probably deterministic and always returns the same result for a given argument. Even though the spec allows several results (all the ones that are within the specified tolerance), we don’t require an implementation to be able to produce all of them; instead we are satisfied with one.

Actually this is not enough. The definition we have given allows `P`’s relation to be empty, that is, it allows `P` not to terminate. This is usually called ‘partial correctness’. In addition, we usually want to require that `P`’s relation be total on the domain of `S`; that is, `P` must produce some result whenever `S` does. The combination of partial correctness and termination is usually called ‘total correctness’.

Now we are ready to consider modules with state. Suppose that `T` and `S` are any modules that have the same external interface (set of procedures that are exported and hence may be invoked externally). In this discussion, we will often refer to `S` as the `specification` module and `T` as the `implementation`. Then we say that `T` implements `S` if every trace of `T` is also a trace of `S`. That is, the set of traces generated by `T` is a subset of the set of traces generated by `S`.
This says that any external behavior of the implementation T must also be an external behavior of the spec S. Another way of looking at this is that we shouldn’t be able to tell by looking at the implementation that we aren’t looking at the spec, so we have to be able to explain every behavior of T as a possible behavior of S.

The reverse, however, is not true. We do not insist that the implementation must exhibit every behavior allowed by the spec. In the case of the simple memory the spec is completely deterministic, so the implementations cannot take advantage of this freedom. In general, however, the spec may allow lots of behaviors and the implementation choose just one. The spec for sorting, for instance, allows any sorted sequence as the result of Sort; there may be many such sequences if the ordering relation is not total. The implementation will usually be deterministic and return exactly one of them, so it doesn’t exhibit all the behavior allowed by the spec.

Safety and liveness

Just as with procedures, this subset requirement is not strong enough to satisfy our intuitive notion of implementation. In particular, it allows the set of traces generated by T to be empty; in other word, the implementation might do nothing at all, or it might do some things and then stop. The analog of this for a simple sequential procedure is non-termination. Usually we want to say that the implementation of a procedure should terminate, and similarly we want to say that the implementation of a module should keep doing things. More generally, when we have concurrency we usually want the implementation to be *fair*, that is, to eventually service all its clients, and more generally to eventually make any transition that continues to be enabled.

It turns out that any external behavior (that is, any set of traces) can be described as the intersection of two sets of traces, one defined by a *safety* property and the other defined by a *liveness* property.\(^1\) A safety property says that in the trace nothing bad every happens, or more precisely, that no bad transition occurs in the trace. It is analogous to partial correctness for a stateless procedure, and it can always be defined by a state machine that never makes a bad transition. If a trace doesn’t have a safety property, you can always find this out by looking at a finite prefix of the trace, in particular, at a prefix that includes the first bad transition.

A liveness property says that in the trace something good eventually happens. It is analogous to termination for a stateless procedure. You can never tell that a trace doesn’t have a liveness property by looking at a finite prefix, since the good thing might happen later. A liveness property cannot be defined by a state machine. It is usual to express liveness properties in terms of *fairness*, that is, in terms of a requirement that if some transition stays enabled continuously it eventually occurs (weak fairness), or that if some transition stays enabled intermittently it eventually occurs (strong fairness).

With a few exceptions, we don’t deal with liveness in this course. There are two reasons for this. First, it is usually not what you want; more often, you want a result within some time bound, which is a safety property, or you want a result with some probability, which is altogether outside the framework we have set up. Second, liveness proofs are usually hard.

Figure 3: Abstraction function for WBCache
Abstraction functions and simulation

The definition of ‘implements’ as inclusion of external behavior is a sound formalization of our intuition. It is difficult to work with directly, however, since it requires reasoning about infinite sets of infinite sequences of actions. We would like to have a way of proving that T implements S that allows us to deal with one of T’s actions at a time. The method we are going to use is based on abstraction functions.

An abstraction function maps each state of the implementation T to a state of the specification S. For example, each state of the WBCache module gets mapped to a state of the SimpleMemory module. The abstraction function explains how to interpret each state of the implementation as a state of the specification. For example, Figure 3 depicts part of the abstraction function from WBCache to SimpleMemory. Here is a definition of this abstraction function in Spec, copied from handout 5.

\[
\text{FUNC } \text{AF}(m, c, \text{CSize: Int}) \rightarrow M = \text{RET} (\forall a | c!a \Rightarrow c(a) \ [*] m(a))
\]

You might think that an abstraction function should map the other way, from states of the specification to states of the implementation, explaining how to represent each state of the specification. This doesn’t work, however, because there is usually more than one way of representing each state of the specification. For example, for the WBCache implementation of SimpleMemory, if an address is in the cache, then the value stored for that address in memory does not matter. There are also choices about which addresses appear in the cache. Thus, many states of the implementation can represent the same state of the specification. In other words, the abstraction function is many-to-one.

An abstraction function F is required to satisfy the following two conditions.

If s is any initial state of T, then $F(s)$ is an initial state of S.

If s and $F(s)$ are reachable states of T and S respectively, and (s, π, s') is a step of T, then there is a step of S from $F(s)$ to $F(s')$, having the same trace.

Condition 2 says that T simulates S; every step of T faithfully copies a step of S. It is stated in a particularly simple way, forcing the given step of T to simulate a single step of S. That is enough for the special case we are considering right now. Later, when we consider concurrent invocations for modules, we will generalize condition 2 to allow several steps of S rather than just a single step.

The diagram in Figure 4 represents condition 2. The dashed arrows represent the abstraction function F, and the solid arrows represent the transitions; if the lower (double) solid arrow exists in the implementation, the upper (single) solid arrow must exist in the specification. The diagram is sometimes called a “commutative diagram” because if you start at the lower left and follow arrows, you will end up in the same state regardless of which way you go.

An abstraction function is important because it can be used to show that one module implements another:

Theorem 1: If there is an abstraction function from T to S, then T implements S, i.e., every trace of T is a trace of $S.$
Note that this theorem applies to both finite and infinite traces.

Proof: (Sketch) Let β be any trace of T, and let α be any execution of T that generates trace β. Use Conditions 1 and 2 above to construct an execution α' of S with the same trace. That is, if s is the initial state of α, then let $F(s)$ be the initial state of α'. For each step of α in turn, use Condition 2 to add a corresponding step to α'.

More formally, this proof is an induction on the length of the execution. Condition 1 gives the basis: any initial state of T maps to an initial state of S. Condition 2 gives the inductive step: if we have an execution of T of length n that simulates an execution of S, any next step by T simulates a next step by S, so any execution of T of length $n+1$ simulates an execution of S.

Invariants

An invariant of a module is any property that is true of all reachable states of the module, i.e., all states that can be reached in executions of the module (starting from initial states). Invariants are important because condition 2 for an abstraction function requires us to show that the implementation simulates the spec from every reachable state, and the invariants characterize the reachable states. It usually isn’t true that the implementation simulates the spec from every state.

Here are examples of invariants for the HashMemory and MajorityRegister modules, written in Spec and copied from handout 5.

```spec
FUNC HashMemory.Inv(nb: Int, m: HashT, default: D) -> Bool = RET
  ( nb > 0 /
    m.size = nb /
    (ALL a | a.hf IN m.dom) /
    (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf = i) /
    (ALL a | ( j :IN m(a.hf) | m(a.hf)(j).a = a ).size <= 1 ) )

FUNC MajorityRegister.Inv(m: M) -> Bool = RET
```
\[(\forall p : \text{IN } m.\text{rng}, p' : \text{IN } m.\text{rng} \mid p.\text{seqno} = p'.\text{seqno} \implies p.\text{d} = p'.\text{d}) \land (\exists \text{maj} \mid (\forall i : \text{IN } \text{maj}, p : \text{IN } m.\text{rng} \mid m(i).\text{seqno} \geq p.\text{seqno}))\]

For example, for the HashMemory module, the invariant says (among other things) that a pair containing address \(a\) appears only in the appropriate bucket \(a.hf\), and that at most one pair for an address appears in the bucket for that address.

The usual way to prove that a property \(P\) is an invariant is by induction on the length of finite executions leading to the states in question. That is, we must show the following:

(Basis, length = 0) \(P\) is true in every initial state.

(Inductive step) If \((s, \pi, s')\) is a transition and \(P\) is true in \(s\), then \(P\) is also true in \(s'\).

Not all invariants are proved directly by induction, however. It is often better to prove invariants in groups, starting with the simplest invariants. Then the proofs of the invariants in the later groups can assume the invariants in the earlier groups.

Example: We sketch a proof that the property MajorityRegister.Inv is in fact an invariant.

Basis: In any initial state, a single (arbitrarily chosen) default value \(d\) appears in all the copies, along with the \(\text{seqno} 0\). This immediately implies both parts of the invariant.

Inductive step: Suppose that \((s, \pi, s')\) is a transition and Inv is true in \(s\). We consider cases based on \(\pi\). If \(\pi\) is an invocation or response, or the body of a Read procedure, then the step does not affect the truth of Inv. So it remains to consider the case where \(\pi\) is a Write, say Write\((d)\).

In this case, the second part of the invariant for \(s\) (i.e., the fact that the highest seqno appears in more than half the copies), together with the fact that the Write reads a majority of the copies, imply that the Write obtains the highest seqno, say \(i\). Then the new seqno that the Write chooses must be the new highest seqno. Since the Write writes \(i+1\) to a majority of the copies, it ensures the second part of the invariant. Also, since it associates the same \(d\) with the seqno \(i+1\) everywhere it writes, it preserves the first part of the invariant.

Proofs using abstraction functions

Example: We sketch a proof that the function WBCache.AF given above is an abstraction function from WBCache to SimpleMemory. In this proof, we get by without any invariants.

For Condition 1, suppose that \(s\) is any initial state of WBCache. Then AF\((s)\) is some (memory) state of SimpleMemory. But all memory states are allowable in initial states of SimpleMemory. Thus, AF\((s)\) is an initial state of SimpleMemory, as needed. For Condition 2, suppose that \(s\) and AF\((s)\) are states of WBCache and SimpleMemory, respectively, and suppose that \((s, \pi, s')\) is a step of WBCache. We consider cases, based on \(\pi\).

For example, suppose \(\pi\) is Read\((a)\). Then the step of WBCache may change the cache and memory by writing a value back to memory. However, these changes don’t change the corresponding abstract memory. Therefore, the memory correspondence given by AF holds after the step. It remains to show that both Reads give the same result. This follows because:

The Read\((a)\) in WBCache returns the value \(s.c(a)\) if it is defined, otherwise \(s.m(a)\).
The Read(a) in SimpleMemory returns the value of AF(s).m(a).

The value of AF(s).m(a) is equal to s.c(a) if it is defined, otherwise s.m(a). This is by the definition of AF.

For another example, suppose π is Write(a,d). Then the step of WBCache writes value d to location a in the cache. It may also write some other value back to memory. Since writing a value back does not change the corresponding abstract state, the only change to the abstract state is that the value in location a is changed to d. On the other hand, the effect of Write(a,d) in SimpleMemory is to change the value in location a to d. It follows that the memory correspondence, given by AF, holds after the step.

We leave the other cases, for the other types of operations, to the reader. It follows that AF is an abstraction function from WBCache to SimpleMemory. Then Theorem 1 implies that WBCache implements SimpleMemory, in the sense of trace set inclusion.

Example: Here is a similar analysis for MajorityRegister, using MajorityRegister.AF as the abstraction function.

\[
\text{FUNC MajorityRegister.AF(m: M) -> D =}
\]
\[
\text{VAR p :IN m.rng | p.seqno = (p' :IN m.rng | | p'.seqno).max => RET p.d}
\]

This time we depend on the invariant MajorityRegister.Inv. Suppose π is Read(a). No state changes occur in either module, so the only thing to show is that the return values are the same in both modules. In MajorityRegister, the Read collects a majority of values and returns a value associated with the highest seqno from among that majority. By the invariant that says that the highest seqno appears in a majority of the copies, it must be that the Read in fact obtains the highest seqno that is present in the system. That is, the Read in MajorityRegister returns a value associated with the highest seqno that appears in state s.

On the other hand, the Read in Register just returns the value of the single variable x in state u. Since AF(s) = u, it must be that u.x is a value associated with the highest seqno in s. But the uniqueness invariant says that there is only one such value, so this is the same as the value returned by the Read in MajorityRegister.

Now suppose π is Write(d). Then the key thing to show is that AF(s') = u'. The majority invariant implies that the Write in MajorityRegister sees the highest seqno i and thus i+1 is the new highest seqno. It writes (i+1, d) to a majority of the copies. On the other hand, the Write in Register just sets x to d. But clearly d is a value associated with the largest seqno after the step, so AF(s') = u' as required.

It follows that AF is an abstraction function from MajorityRegister to Register. Then Theorem 1 implies that MajorityRegister implements Register.