6.826—Principles of Computer Systems 1999

2. Overview and Background

This is a course for computer system designers and builders, and for people who want to really
understand how systems work, especially concurrent, distributed, and fault-tolerant systems.

The course teaches you

how to write precise specifications for any kind of computer system,

what it means for an implementation to satisfy a specification, and

how to prove that it does.
It also shows you how to use the same methods less formally, and gives you some suggestions
for deciding how much formality is appropriate (less formality means less work, and often a
more understandable spec, but also more chance to overlook an important detail).

The course also teaches you a lot about the topics in computer systems that we think are the mos
important: persistent storage, concurrency, naming, networks, distributed systems, transactions,
fault tolerance, and caching. The emphasis is on

careful specifications of subtle and sometimes complicated things,

the important ideas behind good implementations, and

how to understand what makes them actually work.
We spend most of our time on specific topics, but we use the general techniques throughout. We
emphasize the ideas that different kinds of computer system have in common, even when they
have different names.

The course uses a formal language called Spec for writing specs and implementations; you can
think of it as a very high level programming language. There is a good deal of written

introductory material on Spec (explanations and finger exercises) as well as a reference manual
and a formal semantics. We introduce Spec ideas in class as we use them, but we do not devote
class time to teaching Spec per se; we expect you to learn it on your own from the handouts.

Because we write specs and do proofs, you need to know something about logic. Since many
people don't, there is a concise treatment of the logic you will need at the end of this handout.

This is not a course in computer architecture, networks, operating systems, or databases. We will
not talk in detail about how to implement pipelines, memory interconnects, multiprocessors,
routers, data link protocols, network management, virtual memory, scheduling, resource
allocation, SQL, relational integrity, or TP monitors, although we will deal with many of the

ideas that underlie these mechanisms.

Topics

General

Specifications as state machines.

The Spec language for describing state machines (writing specs and implemghtati
What it means to implement a spec.

Using abstraction functions and invariants to prove that a program implements a spec.

Handout 2. Overview and Background

6.826—Principles of Computer Systems 1999

What it means to have a crash.
What every system builder needs to know about performance.

Specific

Disks and file systems.

Practical concurrency using mutexes (locks) and condition variables; deadlock.
Hard concurrency (without locking): models, specs, proofs, and examples.
Transactions: simple, cached, concurrent, distributed.

Naming: principles, specs, and examples.

Distributed systems: communication, fault-tolerance, and autonomy.
Networking: links, switches, reliable messages and connections.

Remote procedure call and network objects.

Fault-tolerance, availability, consensus and replication.

Caching and distributed shared memory.

EDrevious editions of the course have also covered security (authentication, authorization,
encryption, trust) and system management, but this year we are omitting these topics in order to
spend more time on concurrency and semantics and to leave room for project presentations.

Prerequisites

There are no formal prerequisites for the course. However, we assume some knowledge both of
computer systems and of mathematics. If you have taken 6.033 and 6.042, you should be in good
shape. If you are missing some of this knowledge you can pick it up as we go, but if you are
missing a lot of it you can expect to have serious trouble. It's also important to have a certain
amount of maturity: enough experience with systems and mathematics to feel comfortable with
the basic notions and to have some reliable intuition.

If you know the meaning of the following words, you have the necessary background. If a lot of
them are unfamiliar, this course is probably not for you.

Systems

Cache, virtual memory, page table, pipeline

Process, scheduler, address space, priority

Thread, mutual exclusion (locking), semaphore, producer-consumer, deadlock
Transaction, commit, availability, relational data base, query, join

File system, directory, path name, striping, RAID

LAN, switch, routing, connection, flow control, congestion

Capability, access control list, principal (subject)

If you have not already studied Lampson’s paper on hints for system design, you should do so as
background for this course. It is Butler Lampson, Hints for computer system d@sigeedings

of the Ninth ACM Symposium on Operating Systems Principlgsber 1983, pp 33-48. There

is a pointer to it on the course Web page.

Handout 2. Overview and Background

6.826—Principles of Computer Systems 1999

Programming

Invariant, precondition, weakest precondition, fixed point
Procedure, recursion, stack

Data type, sub-type, type-checking, abstraction, representation
Object, method, inheritance

Data structures: list, hash table, binary search, B-tree, graph

Mathematics

Function, relation, set, transitive closure

Logic: proof, induction, de Morgan’s laws, implication, predicate, quantifier
Probability: independent events, sampling, Poisson distribution

State machine, context-free grammar

Computational complexity, unsolvable problem

If you haven'’t been exposed to formal logic, you should study the summary at the end of this
handout.

References

These are places to look when you want more information about some topic covered or alluded
to in the course, or when you want to follow current research. You might also wish to consult
Prof. Saltzer’s bibliography for 6.033, which you can find on the course web page.

Books

Some of these are fat books better suited for reference than for reading cover to cover, especially
Cormen, Leiserson, and Rivest, Jain, Mullender, Hennessy and Patterson, and Gray and Reuter.
But the last two are pretty easy to read in spite of their encyclopedic character.

Systems programming Greg Nelson, edSystems Programming with ModulaFenticeHall,

1991. Describes the language, which has all the useful features of C++ but is much simpler and
less error-prone, and also shows how to use it for concurrency (a version of chapter 4 is a
handout in this course), an efficiently customizable i/o streams package, and a window system.

Performance Jon BentleyWriting Efficient ProgramsPrentice-Hall, 1982. Short, concrete,
and practical. Raj JaifThe Art of Computer Systems Performance Analyiley, 1991. Tells
you much more than you need to know about this subject, but does have a lot of realistic
examples.

Algorithms and data structures Robert SedgwickAlgorithms Addison-Wesley, 1983. Short,

and usually tells you what you need to know. Tom Cormen, Charles Leiserson, and Ron Rivest,
Introduction to AlgorithmsMcGraw-Hill, 1989. Comprehensive, and sometimes valuable for

that reason, but usually tells you a lot more than you need to know.

Distributed algorithms: Nancy LynchDistributed AlgorithmsMorgan Kaufmann, 1996. The
bible for distributed algorithms. Comprehensive, but a much more formal treatment than in this
course. The topic is algorithms, not systems.

Handout 2. Overview and Background

6.826—Principles of Computer Systems 1999

Computer architecture: John Hennessy and David Pattergdomputer Architecture: A

Quantitative Approach2nd edition, Morgan Kaufmann, 1995. The bible for computer
architecture. The second edition has lots of interesting newialaéspecially on

multiprocessor memory systems and interconnection networks. There’s also a good appendix on
computer arithmetic; it's useful to know where to find this information, though it has nothing to
do with this course.

Transactions, data bases, and fault-tolerancelim Gray and Andreas Reutéransaction
Processing: Concepts and Technigudsrgan Kaufmann, 1993. The bible for transaction
processing, with much good material on data bases as well; it includes a lot of practical
information that doesn’t appear elsewhere in the literature.

Networks: Radia Perlmarinterconnections: Bridges and Routefgidison-Wesley, 1992. Not
exactly the bible for networking, but tells you nearly everything you might want to know about
how packets are actually switched in computer networks.

Distributed systems Sape Mullender, edDistributed System®nd ed., Addison-Wesley, 1993.

A compendium by many authors that covers the field fairly well. Some chapters are much more
theoretical than this course. Chapters 10 and 11 are handouts in this course. Chapters 1, 2, 8, anc
12 are also recommended. Chapters 16 and 17 are the best you can do to learn about real-time
computing; unfortunately, that is not saying much.

User interfaces Alan CooperAbout Face DG Books, D95. Principles, lots of examples, and
opinionated advice, much of it good, from the original designer of Visual Basic.

Journals

You can find all of these in the LCS reading room. The cryptic strings in brackets are call
numbers there. You can also find the last few years of the ACM publications at www.acm.org.

For the current literature, the best sources are the proceedings of the following conferences. ‘Sig’
is short for “Special Interest Group”, a subdivision of the ACM that deals with one field of
computing. The relevant ones for systems are SigArch for computer architecture, SigPlan for
programming languages, SigOps for operating systems, SigComm for communications, and
SigMod for data bases.

Symposium on Operating Systems Principles (SOSP; published as special issues of ACM
SigOpsOperating Systems Reviefall of odd-numbered years) [P4.35.06]

Operating Systems Design and Implementation (OSDI; Usenix Association, now published
as special issues of ACBigOps Reviewall of evennumbered years, except spring 1999
instead of fall 1998) [P4.35.U71]

Architectural Support for Programming Languages and Operating Systems (ASPLOS;
published as special issues of ACM Sig@gzerating Systems Revie8igArchComputer
Architecture Newsor SigPlan Noticesfall of evennumbered years) [P6.29.A7]

Applications, Technologies, Architecture, and Protocols for Computer Communication,
(SigComm conference; published as special issues of ACM SigGaonmputer
Communication Revievannual) [P6.24.D31]

Handout 2. Overview and Background

6.826—Principles of Computer Systems 1999

Principles of Distributed Computing (PODC; ACM; annual) [P4.32.D57]
Very Large Data Bases (VLDB; Morgan Kaufmann; annual) [P4.33.V4]

International Symposium on Computer Architecture (ISCA; published as special issues of
ACM SigArch Computer Architecture Neywannual) [P6.20.C6]

Less up to date, but more selective, are the journals. Often papers in these journals are revised
versions of papers from the conferences listed above.

ACM Transactions on Computer Systems

ACM Transactions on Database Systems

ACM Transactions on Programming Languages and Systems
There are often good survey articles in the less technical IEEE journals:

IEEE Computer Networks CommunicationSoftware

Handout 2. Overview and Background 5

6.826—Principles of Computer Systems 1999

Rudiments of logic

Propositional logic

The basic type iBool , which contains two elementse andfalse . Expressions in these
operators (and the other ones introduced later) are called ‘propositions

Basic operators.These arél (and),O (or), and~ (not)! The meaning of these operators can be
conveniently given by a ‘truth table’ which lists the valua of b for each possible

combination of values af andb (the operators on the right are discussed later) along with some
popular names for certain expressions and their operands.

negation conjunction disjunction equality implicatipn
not and or implies
a b ~a a [b a [b a=b a zDb a Ob
T T F T T T F T
T F F T F T F
F T T F T F T T
F F F F T F T
name of conjunct disjunct antecedent
name ob conjunct disjunct consequent

Note: In Spec we write=> instead of thé] that mathematicians use for implication. Logicians
write O for implication, which looks different but is shaped like thegart of O .

In case you have an expression that you can't simplify, you can always work out its truth value
by exhaustively enumerating the cases in truth table style. Since the table has only four rows,
there are only 16 Boolean operators, one for each possible arrangemeantsfin a column.

Most of the ones not listed don’t have common names, though ‘not and’ is called ‘nand’ and ‘not
or' is called ‘nor’ by logic designers.

TheOandO operators are
commutative and
associative and
distribute over each other.
That is, they are just like (times) and- (plus) on integers, except thatoesn't distribute over:
a+(b*c) Zz(@a+b)*(@a+c)
but O does distribute over:
a Ob Oc)=(a Ob) O(a Oc)
An operator that distributes ovEris called ‘conjunctive’; one that distributes oveis called
‘disjunctive’. Soboth O and are both conjunctive and disjunctive. This takes some getting used
to.

11t's possible to write all three in terms of the single operator ‘nor’ , but our goal is clarity, not minimality.

Handout 2. Overview and Background 6

6.826—Principles of Computer Systems 1999

The relation between these operators-aiggiven by DeMorgan’s laws (sometimes called the
“bubble rule” by logic designers), which say that you can puskide] or O by flipping from
one to the other:

~(@ 0Ob) = ~a O~b

~(@ 0Ob) = ~a O~b

Becauseool is the result type of relations like we can write expressions that mix up relations
with other operators in ways that are impossible for any other type. Notably
(a=b) = (@ Ob) O(~a 0O-~b))

Some people feel that the outer = in this expression is somehow different from the inner one, and

write it =. Experience suggests, however, that this is often a harmful distinction to make.

Implication . We can define an ordering 8nol with false > true , that is false is greater
thantrue . The non-strict version of this ordering is called ‘implication O (rather
than= or >= as we do with other types; logicians writéljtwhich also looks like an ordering
symbol). Satrue [false) = false (read this as:tfue is greater than or equal ftgse
is false) but all other combinations ate . The expressioa [b is pronounceda implies
b”, or “if a thenb”.2

There are lots of rules for manipulating expressions contalihingpe most useful ones are
given below. If you remember that is an ordering you'll find it easy to remember most of the
rules, but if you forget the rules or get confused, you can turil tiveo [J by the rule

@ Ob) =-a Ob |
and then just use the simpler rules{if], and~. So remember this even if you forget
everything else.

The point of implication is that it tells you when one proposition is stronger than another, in the

sense that if the first one is true, the second is also true (becauseaifdooth 0 b aretrue ,
thenb must barue since it can't béalse).3 So we use implication all the time when reasoning
from premises to conclusions. Two more ways to pronoanceb are ‘a is stronger than”

and ‘b follows froma”. The second pronunciation suggests that it's sometimes useful to write
the operands in the other orderpa8l a , which can also be pronouncedi$ weaker thaa” or

“b only if a”; this should be no surprise, since we do it with other orderings.

Of course, implication has the properties we expect of an ordering:

Transitive: Ifa 0 b andb O ¢ thena O ¢ .4

2 |t sometimes seems odd tiate impliesb regardless of what is, but the “if ... then” form makes it clearer
what is going on: ifalse istrue you can onclude anything, but of course it isn’'t. A proposition that implies
false is called ‘inconsistent’ because it implies anything. Obviously it's bad to think that an inconsistent

proposition is true. The most likely way to get into this hole is to think that each of a collection of innocent looking

propositions is true when their conjunction turns out to be inconsistent.

3 It may also seem odd thatse > true rather than the other way around, sitrae seems better and so
should be bigger. But in fact if we want to conclude lots of things, being cléslseto is better becausefilse

is true we can conclude anything, but knowing that is true doesn’t help at all. Strong propositions are as
close tofalse as possible; this is logical brinkmanship. For exampléb is closer tdalse thana (there are

more values of the variablasandb that make ifalse), and clearly we can conclude more things from it than from
a alone.

4We canalsowritethiga Ob) O(® Oc¢) O Oc).

Handout 2. Overview and Background 7

6.826—Principles of Computer Systems 1999

Reflexive:a O a .
Anti-symmetric: Ifa O b andb O a thena=b .5

Furthermore;- reverses the sense of implication (this is called the ‘contrapositive
(@ Ob) = (~b 0 ~a)
More generally, you can move a disjunct on the right to a conjunct on the left by negating it.
Thus
(@ Ob Oc) = (a O~b O c)
As special cases in addition to the contrapositive we have
(@ O0b) =(a O~b 0O false) = ~(a O~b)
(@ O b) = (true 0 ~a 0Ob) = false
sincefalse andtrue are the identities fdr andl.

Ofalse =~a Ob
O~a Ob =~a Ob

We say that an operatoy is ‘monotonic’ in an operand if replacing that operand with a stronger
(or weaker) one makes the result stronger (or weakegidely, bp is monotonic in its first
operand” means thataf 00 b then(aop c) 0 (bopc) .BothOandOare monotonic; in

fact, any conjunctive operator is monotonic, becauselif b thena=(a [Ob) , Soaopc=

(@ Ob)opc=aopc Obopc [bopec.

If you know what a lattice is, you will find it useful to know that the set of propositions forms a
lattice with(as its ordering and (remember, thinkbfas “greater than or equal”):

top =false
bottom =true
meet =00 least upper bound, &0 Ob) O a and & Ob) Ob
join =0 greatest lower bound, s®o 0 (a 0Ob) andb O (a Ob)

This suggests two more expressions that are equivalenfta :

@ Ob=@=(@a Oby) ‘and’ing a weaker term makes no difference,

because [0 b iff a= least upper bound(b).

@ Ob=b=(Oby) ‘or'ing a stronger term makes no difference,

becausea [0 b iff b= greatest lower bounay(b).
Predicate logic

Propositions that have free variables, ikes orx<3 [x<5 , demand a little more

machinery. You can turn such a proposition into one without a free variable by substituting some

value for the variable. Thus#fx) isx<3 thenP(5) is5<3="false . To get rid of the free
variable without substituting a value for it, you can take the ‘and’ or ‘or’ of the proposition for
all the possible values of the free variable. These have special names andénotation

Ox|PX) = P(x1) Opx2) 0O.. for allx, P(x) . In Spec,

(ALL X | P(x)) or O: {x | P(x)}

5Thus(a=b)=(a
written “a iff b”.

6 There is no agreement on what symbol should separatextiee Ox from theP(x) . We use ‘|’ here as Spec does,
but other people use ‘.’ or " or just a space, or wfitex) and(Ox) . Logicians traditionally writéx) and(Ox) .

Ob Ob O a),whichiswhya=b is sometimes pronounced if and only ifb” and

Handout 2. Overview and Background 8

6.826—Principles of Computer Systems 1999

Ox| P(x) = P(x1) Opx2) 0O.. there exists ar such thab(x) . In Spec,

(EXISTS x | P(x)) or : {x| P(x)}

Here thexi range over all the possible values of the free varidblés. first is called ‘universal
guantification’; as you can see, it corresponds to conjunction. The second is called ‘existential
guantification’ and corresponds to disjunction. If you remember this you can easily figure out
what the quantifiers do with respect to the other operators.

In particular, DeMorgan’s laws generalize to quantifiers:
~(Ox]PX) = (Ox | ~P(x))
~(Ox|PX) = (Ox|~P(x))

Also, becausé&l and are conjunctive and therefore monotomi@nddare conjunctive and
therefore monotonic.

It is not true that you can reverse the order ahd, but it's sometimes useful to know that
havingOfirst is stronger:
Oyl O x|Pxy) 0 Ox| OylPXxy)

Intuitively this is clear: g that works for every can surely do the job for each particwar

If we think of P as a relation, the consequent in this formula say®tisabtal (relates every to
somey). It doesn't tell us anything about how to fingt ¢hat is related te. As computer

scientists, we like to be able to compute things, so we prefer to have a function that computes
or the set of’s, fromx. This is called a ‘Skolem function’; in Spec you whtéunc (Or P.setF

for the set)P.func is total ifP is total. Or, to turn this around, if we have a total functisuich
thatO x | P(x, f(x)) , then certainlyix| DOy|P(xY) ; in fact,y = f(x) will do.

Amazing.

7 In general this might not be a countable set, so the conjunction and disjunction are written in a somewhat
misleading way, but this complication won’t make any difference to us.

Handout 2. Overview and Background 9

6.826—Principles of Computer Systems 1999

Summary of logic
TheOandO operators are commutative and associative and distribute over each other.

DeMorgan’s laws: ~(a 0Ob) = ~a O~b

~(a 0Ob) = ~a

Implication: (@ Ob) =-~a

Implication is the ordering in a lattice (a partially ordered set in which every subset has a least

upper and a greatest lower bound) with

top =false
bottom =true
meet =0
join =0

For allx, P(x) :

Ox|P(X) = P(x1)

There exists ar such thaP(x):

Ox | P(x) = P(x1)

Index for logic

~, 6

and, 6

antecedent, 6
Anti-symmetric, 8
associative, 6

bottom, 8
commutative, 6
conjunction, 6
conjunctive, 6
consequent, 6
contrapositive, 8
DeMorgan’s laws, 7, 9
disjunction, 6
disjunctive, 6
distribute, 6
existential quantification, 9
EXISTS, 9

follows from, 7

free variables, 8
greatest lower bound, 8
ifathenb, 7
implication, 6, 7

join, 8

lattice, 8

least upper bound, 8

Handout 2. Overview and Background

sofalse [true

least upper bound, &0 [Ob) 0O a
greatest lower bound, so [0 (a Ob)

Opx2)y 0O..

Opx2) O..

meet, 8
monotonic, 8
negation, 6

not, 6

only if, 7
operators, 6

or, 6

ordering on Bool, 7
predicate logic, 8
propositions, 6
quantifiers, 9
reflexive, 8
Skolem finction, 9
stronger than, 7
top, 8

transitive, 8

truth table, 6
universal quantification, 9
weaker than, 7

10

