5. Examples of Specifications and Implementations

This handout is a supplement for the first two lectures. It contains several example specifications and implementations, all written using Spec.

Section 1 contains a specification for sorting a sequence. Section 2 contains two specifications and one implementation for searching for an element in a sequence. Section 3 contains specifications for a read/write memory. Sections 4 and 5 contain implementations for a read/write memory based on caching and hashing, respectively. Finally, Section 6 contains an implementation based on replicated copies.

1. Sorting

The following specification describes the behavior required of a program that sorts sets of some type \(T \) with a \(< \times < \) comparison method. We do not assume that \(< \times < \) is antisymmetric; in other words, we can have \(t_1 \leq t_2 \) and \(t_2 \leq t_1 \) without having \(t_1 = t_2 \), so that \(< \times < \) is not enough to distinguish values of \(T \). For instance, \(T \) might be the record type \(\text{name:} \text{String, salary:} \text{Int} \] with \(< \times < \) comparison of the salary field. Several \(T \)'s can have different \(\text{name} \)s but the same \(\text{salary} \).

\[
\text{APROC Sort(a: SET T) -> SEQ T} = << \text{VAR b: SEQ T} | (\text{ALL i: T} | \text{a.count(i) = b.count(i)}) / \backslash \text{Sorted(b)} \gg \text{RET b} >>
\]

This specification uses the auxiliary function \(\text{Sorted} \), defined as follows.

\[
\text{FUNC Sorted(a: SEQ T) -> Bool} = \text{RET (ALL i \in a.dom – \{0\} | a(i-1) \leq a(i))}
\]

If we made \(\text{Sort} \) a \(\text{FUNC} \) rather than a \(\text{PROC} \), what would be wrong?\(^1\) What could we change to make it a \(\text{FUNC} \)?

We could have written this more concisely as

\[
\text{APROC Sort(a: SET T) -> SEQ T} = << \text{VAR b :IN a.perms | Sorted(b)} \gg \text{RET b} >>
\]

using the \(\text{perms} \) method for sets that returns a set of sequences that contains all the possible permutations of the set.

2. Searching

\text{Search specification}

We begin with a specification for a procedure to search an array for a given element. Again, this is an \(\text{APROC} \) rather than a \(\text{FUNC} \) because there can be several allowable results for the same inputs.

\[
\text{APROC Search(a: SEQ T, x: T) -> Int RAISES (NotFound)} = \text{RET i} [^*\text{] RAISE NotFound}
\]

Or, equivalently but slightly more concisely:

\[
\text{APROC Search(a: SEQ T, x: T) -> Int RAISES (NotFound)} = \text{RET i} [^*\text{] RAISE NotFound}
\]

\text{Sequential search implementation}

Here is an implementation of the \(\text{Search} \) specification given above. It uses sequential search, starting at the first element of the input sequence.

\[
\text{APROC SeqSearch(a: SEQ T, x: T) -> Int RAISES (NotFound)} = \text{RET i} [^*\text{] RAISE NotFound}
\]

\text{Alternative search specification}

Some searching algorithms, for example, binary search, assume that the input argument sequence is sorted. Such algorithms require a different specification, one that expresses this requirement.

\[
\text{APROC Search1(a: SEQ T, x: T) -> Int RAISES (NotFound)} = \text{RET i} [^*\text{] RAISE NotFound}
\]

You might consider writing the specification to raise an exception when the array is not sorted:

\[
\text{APROC Search2(a: SEQ T, x: T) -> Int RAISES (NotFound, NotSorted)} = \text{RET i} [^*\text{] RAISE NotSorted}
\]

This is not a good idea. The whole point of binary search is to obtain \(O(\log n) \) time performance (for a sorted input sequence). But any implementation of the \(\text{Search2} \) specification requires an \(O(n) \) check, even for a sorted input sequence, in order to verify that the input sequence is in fact sorted.

This is a simple but instructive example of the difference between defensive programming and efficiency. If \(\text{Search} \) were part of an operating system interface, it would be intolerable to have \(\text{HAVOC} \) as a possible transition, because the operating system is not supposed to go off the deep end no matter how it is called (though it might be OK to return the wrong answer if the input isn’t sorted; what would that specify)? On the other hand, the efficiency of a program often depends on assumptions that one part of it makes about another, and it’s appropriate to express such an assumption in a spec by saying that you get \(\text{HAVOC} \) if it is violated. We don’t care to be more specific about what happens because we intend to ensure that it doesn’t happen. Obviously a program written in this style will be more prone to undetected or obscure errors than one that checks the assumptions, as well as more efficient.
3. Read/write memory

The simplest form of read/write memory is a single read/write register, say of type \(D \) (for data), with arbitrary initial value. The following Spec module describes this:

\[
\text{MODULE Register} \ [D] \ \text{EXPORT} \ \text{Read, Write} = \\
\text{VAR} \ x : D \quad \% \text{arbitrary initial value} \\
\text{APROC} \ \text{Read()} -> D = << \text{RET} \ x >> \\
\text{APROC} \ \text{Write}(d) = << x := d >> \\
\text{END Register}
\]

Now we give a specification for a simple addressable memory with elements of type \(D \). This is like a collection of read/write registers, one for each address in a set \(A \). In other words, it’s a function from addresses to data values. For variety, we include new \text{Reset} and \text{Swap} operations in addition to \text{Read} and \text{Write}.

\[
\text{MODULE Memory} \ [A, D] \ \text{EXPORT} \ \text{Read, Write, Reset, Swap} = \\
\text{TYPE} \ M = A -> D \\
\text{VAR} \ m := \text{Init()} \\
\text{APROC} \ \text{Init()} -> M = << \text{VAR} \ m' | (\text{ALL} a | m'!a) => \text{RET} \ m' >> \\
\% \text{Choose an arbitrary function that is defined everywhere.} \\
\text{APROC} \ \text{Init}(a) -> D = << \text{RET} \ m(a) >> \\
\text{APROC} \ \text{Write}(a, d) = << m(a) := d >> \\
\text{APROC} \ \text{Reset}(d) = << m := M(*) -> d >> \\
\% \text{Set all memory locations to} \ d. \\
\text{APROC} \ \text{Swap}(a, d) -> D = << \text{VAR} \ d' := m(a) | m(a) := d; \text{RET} \ d' >> \\
\% \text{Set location} \ a \ \text{to the input value and return the previous value.} \\
\text{END Memory}
\]

The next three sections describe implementations of Memory.

4. Write-back cache implementation

Our first implementation is based on two memory mappings, a main memory \(m \) and a write-back cache \(c \). The implementation maintains the invariant that the number of addresses at which \(c \) is defined is constant. A real cache would probably maintain a weaker invariant, perhaps bounding the number of addresses at which \(c \) is defined.

\[
\text{MODULE WBCache} \ [A, D] \ \text{EXPORT} \ \text{Read, Write, Reset, Swap} = \\
\% \text{implements Memory} \\
\text{TYPE} \ M = A -> D \\
\text{C} = A -> D \\
\text{CONST} \ \text{Csize} : \text{Int} := \ldots \quad \% \text{cache size} \\
\text{VAR} \ m := \text{InitM()} \\
\text{c} := \text{InitC()} \\
\text{APROC} \ \text{InitM()} -> M = << \text{VAR} \ m' | (\text{ALL} a | m'!a) => \text{RET} \ m' >> \\
\% \text{Returns a} \ M \ \text{with arbitrary values.} \\
\text{APROC} \ \text{InitC()} -> C = << \text{VAR} \ c' | c'.\text{dom.size} = \text{CSize} => \text{RET} \ c' >> \\
\% \text{Returns a} \ C \ \text{that has exactly} \ \text{CSize} \ \text{entries defined, with arbitrary values.} \\
\text{APROC} \ \text{Read}(a) -> D = << \text{Load}(a); \text{RET} \ c(a) >> \\
\text{APROC} \ \text{Write}(a, d) = << \text{IF} \ ~c!a \ \text{SKIP} \ FI; \ c(a) := d >> \\
\% \text{Makes room in the cache if necessary, then writes to the cache.} \\
\text{APROC} \ \text{Reset}(d) = \ldots \quad \% \text{exercise for the reader} \\
\text{APROC} \ \text{Swap}(a, d) -> D = << \text{VAR} \ d' | \text{Load}(a); d' := c(a); c(a) := d; \text{RET} \ d' >> \\
\% \text{Internal procedures.} \\
\text{APROC} \ \text{Load}(a) = << \text{IF} \ ~c!a \ \text{SKIP} \ FI; \ c(a) := m(a) >> \\
\% \text{Ensures that address a appears in the cache.} \\
\text{APROC} \ \text{FlushOne()} = \\
\% \text{Removes one (arbitrary) address from the cache, writing the data value back to main memory if necessary.} \\
\% \text{RET} \ \text{c(a)} \ \text{if} \ c(a) \ \text{is in the cache, and} \ m(a) \ \text{otherwise.} \\
\text{FUNC} \ \text{Dirty}(a) -> \text{Bool} = \text{RET} \ c(a) / \ c(a) \ # m(a) \\
\% \text{Returns true if the cache is more up-to-date than the main memory.} \\
\text{END WBCache}
\]

The following Spec function is an abstraction function mapping a state of the \text{WBCache} module to a state of the \text{Memory} module. It’s written to live inside the module. It says that the contents of location \(a \) is \(c(a) \) if \(a \) is in the cache, and \(m(a) \) otherwise.

\[
\text{FUNC} \ \text{AF}() -> M = \text{RET} (\ \text{\{a | c(a) * m(a) \})}
\]
5. Hash table implementation

Our second implementation of Memory uses a hash table for the representation.

MODULE HashMemory [A WITH \(hf: A \rightarrow \text{Int} \), D] EXPORT Read, Write, Reset, Swap = % Implements Memory.
% The module expects that the hash function \(A.hf \) is total and that its range is \(0 \ldots n \) for some \(n \).

\[
\text{TYPE Pair} = [a, d] \\
\text{B} = \text{SEQ Pair} \quad \% \text{Bucket in hash table} \\
\text{HashT} = \text{SEQ B} \\
\text{VAR} \ nb := \text{NumB()} \quad \% \text{Number of Buckets} \\
\text{m} := \text{HashT.fill(B(), nb)} \quad \% \text{Memory hash table; initially empty} \\
default : D \quad \% \text{arbitrary default value} \\
\text{APROC} \text{Read}(a) \rightarrow D = << \text{VAR} b := \text{m}(a.hf), i: \text{Int} | \\
i := \text{FindEntry}(a, b) \except \text{NotFound} \Rightarrow \text{RET} \text{default} ; \text{RET} b(i).d >> \\
\text{APROC} \text{Write}(a, d) = << \text{VAR} b := \text{DeleteEntry}(a, \text{m}(a.hf)) | \\
\text{m(a.hf)} := b + (\text{Pair}(a, d)) >> \\
\text{APROC} \text{Reset}(d) = << m := \text{HashT.fill(B(), nb)} ; \text{default} := d >> \\
\text{APROC} \text{Swap}(a, d) \rightarrow D = << \text{VAR} d' | d' := \text{Read}(a) ; \text{Write}(a, d) ; \text{RET} d' >>
\]
% Internal procedures.

\[
\text{FUNC} \text{NumBs()} \rightarrow \text{Int} = \\
\% \text{Returns the number of buckets needed by the hash function; havoc if the hash function is not as expected.} \\
\text{IF} \text{VAR} n: \text{Nat} | \text{A.hf.rng} = (0 \ldots n).\text{set} \Rightarrow \text{RET} n + 1 [\!* \text{HAVOC} \text{FI} \\
\text{APROC} \text{FindEntry}(a, b) \rightarrow \text{Int \ RAISES (NotFound)} = \\
\% \text{If a appears in a pair in b, returns the index of some pair containing a; otherwise raises NotFound.} \\
\text{VAR} i :\text{IN} b.\text{dom} | b(i).a = a \Rightarrow \text{RET} i [\!* \text{RAISE NotFound >>} \\
\text{APROC} \text{DeleteEntry}(a, b) \rightarrow B = \text{VAR} i: \text{Int} | \\
\% \text{Removes some pair with address a from b, if any exists.} \\
i := \text{FindEntry}(a, b) \except \text{NotFound} \Rightarrow \text{RET} b ; \\
\text{RET}.b.sub(0, i-1) + b.sub(i+1, b.size-1) >> \\
\text{END} \text{HashMemory}
\]

Note that \text{FindEntry} and \text{DeleteEntry} are APROCS because they are not deterministic when given arbitrary \(b \) arguments.

The following is a key invariant that holds between invocations of the operations of HashMemory:

\[
\text{FUNC Inv()} \rightarrow \text{Bool} = \text{RET} \\
(\text{nb} > 0 \\n/ \m.size = \text{nb} \\
/ (\text{ALL} a | a.hf \text{IN m.dom})} \\
/ (\text{ALL} i | \text{IN m.dom, p :IN m(i).rng | p.a.hf} = i) \\
/ (\text{ALL a | \{} j :\text{IN m(a.hf).dom | m(a.hf)(j).a = a \}.size} <= 1) \\)
\]

This says that the number of buckets is positive, that the hash function maps all addresses to actual buckets, that a pair containing address \(a \) appears only in the bucket at index \(a.hf \) in \(m \), and that at most one pair for an address appears in the bucket for that address. Note that these conditions imply that in any reachable state of HashMemory, each address appears in at most one pair in the entire memory.

The following Spec function is an abstraction function between states of the HashMemory module and states of the Memory module:

\[
\text{FUNC AF()} \rightarrow M = \text{RET} \\
(\Lambda(a) \rightarrow D = \\
\text{IF} \text{VAR} i :\text{IN m.dom, p :IN m(i).rng | p.a = a} \rightarrow \text{RET} p.d [\!* \text{RET default \ FI}]
\]

That is, the data value for address \(a \) is any value associated with address \(a \) in the hash table; if there is none, the data value is the default value. Spec says that a function is undefined at an argument if its body can yield more than one result value. The invariants given above ensure that the \text{LAMBDA} is actually single-valued for all the reachable states of HashMemory.

Of course HashMemory is not a fully detailed implementation. Its main deficiency is that it doesn’t explain how to maintain the variable-length bucket sequences, which is usually done with a linked list. However, the implementation does capture all the essential details.

6. Replicated copies

Our final implementation is based on some number \(k \geq 1 \) of copies of each memory location. Initially, all copies have the same default value. A \text{Write} operation only modifies an arbitrary \(k \) of the copies. A \text{Read} operation only modifies an arbitrary \(k \) of the values it sees. In order to allow the \text{Read} to determine which value is the most recent, each \text{Write} records not only its value, but also a sequence number.

For simplicity, we just show the module for a single read/write register. The constant \(k \) determines the number of copies.

MODULE MajorityRegister [D] = % implements Register
\[\text{CONST} k = 5\]

\[
\text{TYPE} N = \text{Nat} \quad \% \text{ints between 1 and k} \\
\text{Kint} = \text{SET KInt} \quad \% \text{all majority subsets of KInt} \\
\text{SUCHTHAT} (\text{\{m: Maj | m.size} > k/2) \\
\text{TYPE P} = [D, \text{seqno: N}] \quad \% \text{Pair} \\
M = \text{\text{Kint} -> P} \quad \% \text{Memory} \\
S = \text{\text{SET P}}
\]

\[
\text{VAR} \text{default : D} \\
\text{m} := M[\text{* -> P[default, seqno} = 0)]} \\
\text{APROC Read()} \rightarrow D = << \text{RET ReadPair(),d >>} \\
\text{APROC Write(d) = << \text{VAR} i: \text{Int, maj |} \\
\% \text{Determines the highest sequence number i, then writes d paired with i+1 to some majority m} \text{maj} \text{of the copies.}
\]
\[i := \text{ReadPair().seqno}; \]

\[
\text{DO VAR } j :\text{IN maj} \mid m(j).\text{seqno} \# i+1 \Rightarrow m(j) := P\{d := d, \text{seqno} := i+1\} \text{ OD} >>
\]

% Internal procedures.

APROC ReadPair() -> P = \[
\text{VAR } s := \text{ReadMaj()} \mid \text{Returns a pair with the largest sequence number from some majority of the copies.} \\
\text{VAR } p :\text{IN } s \mid p.\text{seqno} = (p' :\text{IN } s \mid p'.\text{seqno}).\text{max} \Rightarrow \text{RET } p >>
\]

APROC ReadMaj() -> S = \[
\text{VAR } \text{maj} \mid \text{RET } \{ i :\text{IN } \text{maj} \mid \text{m(i)} \} >>
\]

% Returns the set of pairs belonging to some majority of the copies.

END MajorityRegister

We could have written the body of \text{ReadPair} \text{as}
\[
\text{VAR } s := \text{ReadMaj()} \mid \text{RET } s.\text{fmax}((\ p1, p2 \mid p1.\text{seqno} \leq p2.\text{seqno})) >>
\]

except that \text{fmax} always returns the same maximal \(p\) from the same \(s\), whereas the \text{VAR} in \text{ReadPair} chooses one non-deterministically.

The following is a key invariant for \text{MajorityRegister}.

FUNC Inv(m: M) -> Bool = RET
\[
(\text{ALL } p :\text{IN } m.\text{rng}, p' :\text{IN } m.\text{rng} \mid p.\text{seqno} = p'.\text{seqno} \Rightarrow p.d = p'.d) \\
\lor (\text{EXISTS } \text{maj} \mid (\text{ALL } i :\text{IN } \text{maj}, p :\text{IN } m.\text{rng} \mid m(i).\text{seqno} \geq p.\text{seqno}))
\]

The first conjunct says that any two pairs having the same sequence number also have the same data. The second conjunct says that the highest sequence number appears in some majority of the copies.

The following \text{Spec} function is an abstraction function between states of the \text{MajorityRegister} module and states of the \text{Register} module.

FUNC AF() -> D = RET m.\text{rng}.\text{fmax}((\ p1, p2 \mid p1.\text{seqno} \leq p2.\text{seqno})).d

That is, the abstract register data value is the data component of a copy with the highest sequence number. Again, because of the invariants, there is only one \(p.d\) that will be returned.