

L23- 1

The Confluence of the λ -calculus

Arvind Laboratory for Computer Science M.I.T.

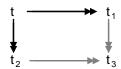
December 4, 2002

http://www.csg.lcs.mit.edu/6.827

L23-2 Arvind

Confluence aka Church-Rosser Property

A reduction system R is said to be *confluent (CR)*, if $t \rightarrow t_1$ and $t \rightarrow t_2$ then there exits a t_3 such that $t_1 \rightarrow t_3$ and $t_2 \rightarrow t_3$.



Fact: In a confluent system, if a term has a normal form then it is *unique*.

Theorem: The λ -calculus is confluent.

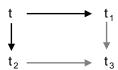
Theorem: An orthogonal TRS is confluent.

December 4, 2002

L23-3 Arvind

The Diamond Property

A reduction system R is said to have the *diamond* property , if t --> t_1 and t --> t_2 then there exits a t_3 such that t_1 --> t_3 and t_2 --> t_3 .



Theorem: If R has the diamond property then R is confluent.

Fact: The λ -calculus does not have the diamond property.

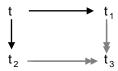
December 4, 2002

http://www.csg.lcs.mit.edu/6.827

L23-4

Weak Confluence

A reduction system R is said to be *weakly confluent* (WCR), if $t \to t_1$ and $t \to t_2$ then there exits a t_3 such that t_1 t_3 and t_2 t_3 .



In a WCR system one step divergence can be contained!

Theorem: If R is CR then R is also WCR.

Theorem: If R is WCR then \underline{R} is also WCR.

December 4, 2002

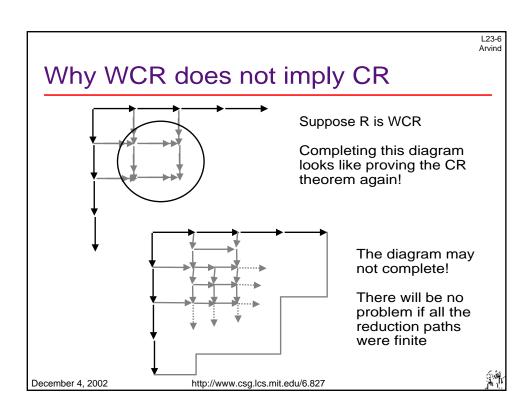
L23-5 Arvind

WCR does not imply CR

Example:

$$\begin{array}{ll} F(x) & \rightarrow G(x) \\ F(x) & \rightarrow 1 \\ G(x) & \rightarrow F(x) \\ G(x) & \rightarrow 0 \end{array}$$

December 4, 2002



L23-7 Arvind

Strongly Normalizing Systems

Let (Σ, R) be a TRS and t be a term

t is in *normal form* if it cannot be reduced any further.

Term t is strongly normalizing (SN) if every reduction sequence starting from t terminates eventually.

R is strongly normalizing (SN) if for all terms every reduction sequence terminates eventually.

R is weakly normalizing (WN) if for all terms there is some reduction sequence that terminates.

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

Neumann's Lemma

If a reduction system R is SN and WCR then R is CR.

How does it help us when an R is not SN?

Only "old" redexes need to be performed to close the diagram

⇒define a new reduction system for doing just the "old" redexes.

Is such a system SN?

December 4, 2002

L23-9 Arvind

Underlining and Development

Underline some redexes in a term.

Development is a reduction of the term such that only underlined redexes are done.

Complete Development is a reduction sequence such that all the underlined redexes have been performed.

$$(\underline{S} \ K \ x \ (\underline{K} \ y \ z))$$

$$\rightarrow (\underline{S} \ K \ x \ y) \qquad \rightarrow K \ (\underline{K} \ y \ z) \ (x \ (\underline{K} \ y \ z))$$

$$\rightarrow K \ y \ (x \ (\underline{K} \ y \ z))$$

$$\rightarrow K \ y \ (x \ (\underline{K} \ y \ z))$$

$$\rightarrow K \ y \ (x \ y)$$

By underlining redexes we can distinguish between old and newly created redexes in a reduction sequence.

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

The Underlined λ -calculus

$$E = x \mid \lambda x.E \mid E \mid (\underline{\lambda}x.E) \mid E$$

Reduction rules:

$$\begin{array}{ll} \beta:?(??x?.M?) \text{ A $-->$M[A/x]$} & \textit{the λ-calculus} \\ \underline{\beta}: \ (\underline{\lambda}x.M) \text{ A $-->$M[A/x]$} & \textit{the $\underline{\lambda}$-calculus} \\ \underline{\beta}' = \beta \ U \ \beta & \end{array}$$

Erasure:

? Er?
$$\underline{\lambda}$$
-term --> λ -term

December 4, 2002

L23-11 Arvind

Complete Development An Example

$$M = (\lambda x.x x) (I (I a))$$

where $I = (\lambda x.x)$

Underline some redexes

$$M = (\underline{\lambda}x.x x) (\underline{I} (I a))$$

$$\rightarrow (\underline{\mathsf{I}}\ (\mathsf{I}\ \mathsf{a}))\ (\underline{\mathsf{I}}\ (\mathsf{I}\ \mathsf{a}))$$

$$\rightarrow (\mathsf{I}\ \mathsf{a})\ (\underline{\mathsf{I}}\ (\mathsf{I}\ \mathsf{a}))$$

$$\rightarrow (\mathsf{I}\ \mathsf{a})\ (\mathsf{I}\ \mathsf{a})$$

$$\begin{array}{l} \rightarrow (\underline{\lambda}x.x\ x)\ (I\ a) \\ \rightarrow (I\ a)\ (I\ a) \end{array}$$

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

L23-

Underlined Reduction Systems are SN

Theorem: For every reduction system R, \underline{R} is strongly normalizing.

Proof strategy:

Assign a *weight* to each term M such that the weight decreases after each reduction.

 $M \longrightarrow N \Rightarrow ?M < |M|$ where |M| represents the weight of M.

Thus, if

$$M --> M_1 --> M_2 --> ...$$

$$\Rightarrow |M| > |M_1| > |M_2| > \dots$$

 \Rightarrow since for all M, |M| > 0, the reduction terminates!

Decreasing weight property

December 4, 2002

L23-13 Arvind

Assigning Weights (The λ –calculus)

Associate a positive integer to each *variable* occurrence in M

| M |: sum of the weights occurring in M

Weights, like underlined λ , are carried through the reduction unchanged.

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

L23-14 Arvind

Decreasing Weight Property (dwp)

M has decreasing weight property if for every $\underline{\beta}$ -redex ($(\underline{\lambda}x.P)$ Q) in M, |x| > |Q| for each free occurrence of x in P

Examples

$$M_1 = (\underline{\lambda}x. x^6 x^7) (\underline{\lambda}y. y^2 y^3)$$

$$M_2 = (\underline{\lambda}x. x^4 x^7) (\underline{\lambda}y. y^2 y^3)$$

December 4, 2002

L23-15 Arvind

Initial Weight Assignment

Lemma: There exits an initial weight assignment for each M such that M has dwp.

Proof:

1. Assign the weight 2^m to the mth variable occurrence from the right

$$M = \dots x \dots \dots \\ \Rightarrow |x| = 2^m$$

2. M has the dwp since

$$2^{n} > 2^{n-1} + 2^{n-2} + ... + 1$$

Example:

$$(x y ((\lambda z.z) (x x)))$$

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

Reduction Decreases the Weight of a term with dwp

Lemma: If M has dwp and M --> N then |N| < |M|

Proof:

Suppose ($(\underline{\lambda}x.P)$ Q) is the redex that is reduced when M --> N.

Cases

(i) x is not in FV(P):

(ii) x is in FV(P):

December 4, 2002

L23-17 Arvind

dwp is Preserved Under Reduction

Lemma: If M --> N and M has dwp then so does N.

Proof: Suppose M --> N by doing the redex $R_0 \equiv (\lambda x.P_0) Q_0$. Examine the effect of R_0 -reduction on some other redex $R_1 \equiv (\lambda y.P_1) Q_1$ in M.

Cases on relative position of R₀ and R₁

- 1. R₀ and R₁ are disjoint
- 2. R₁ is inside R₀ (effect on subterms)
- 3. R₀ is inside R₁ (effect on the context)

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

dwp is Preserved Under Reduction

continued-1

Suppose M --> N by doing the redex $R_0 \equiv (\underline{\lambda}x.P_0) \ Q_0$. Examine the effect of R_0 -reduction on $R_1 \equiv (\underline{\lambda}y.P_1) \ Q_1$.

Case 2. R₁ is inside R₀ (effect on subterms)

2.1 R₁ is inside the rator,
$$\underline{\lambda}x.P_0$$

R₀ $\equiv (\underline{\lambda}x....(\underline{\lambda}y.P_1) Q_1)...) Q_0$

2.2 R₁ is inside the rand, Q₀

$$R_0 \equiv (\underline{\lambda}x.P_0)$$
 (...R₁...)

December 4, 2002

L23-19 Arvind

dwp is Preserved Under Reduction continued-2

Suppose M --> N by doing the redex $R_0 \equiv (\underline{\lambda}x.P_0) Q_0$. Examine the effect of R_0 -reduction on $R_1 \equiv (\underline{\lambda}y.P_1) Q_1$.

Case 3. R_0 is inside R_1 (effect on the context)

3.1 R₀ is inside the rator of R₁
R₁
$$\equiv (\underline{\lambda}y....((\underline{\lambda}x.P_0) Q_0)...) Q_1$$

3.2 R₀ is inside the rand of R₁
R₁
$$\equiv (\underline{\lambda}y.P_1) (...(\underline{\lambda}x.P_0) Q_0)...)$$

December 4, 2002

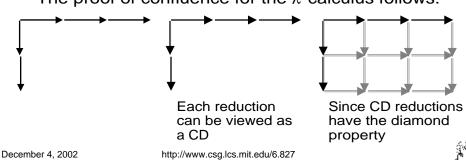
http://www.csg.lcs.mit.edu/6.827

Proof Strategy for CR

Define a new type of reduction called complete developments (CD) using the underlined λ -calculus.

Prove the diamond property for CD reductions, i.e., show that CD is SN and CD is WCR.

The proof of confluence for the λ -calculus follows:



L23-21 Arvino

$\underline{\lambda}$ -calculus is WCR

Suppose M --> M_1 by doing redex R_1 and M --> M_2 by doing redex R_2 .

We want to show that there exists an M_3 such that $M_1 \longrightarrow M_3$ and $M_2 \longrightarrow M_3$.

Cases on relative position of R₁ and R₂ in M.

- 1. R₁ and R₂ are disjoint
- Without loss of generality assume R₁ is inside R₂
 R₁ is in the rator of R₂
 - from the substitution lemma 2.2 R₁ is in the rand of R₂

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

L23-22 Arvind

Substitution Lemma

If x is not equal to y and x is not in FV(L) then M [N/x] [L/y] = M [L/y] [N[L/y]/x]

 $(\lambda y.(\lambda x.M) N) L$

December 4, 2002

L23-23 Arvino

Finite Development Theorem

Suppose M is a $\lambda\text{-term}$ and F is a set of redexes in M, then

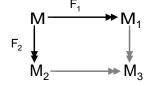
- 1. All developments of M related to F are finite
- 2. All complete developments of M related to F end with the same term.

The proof follows from the fact that the $\underline{\lambda}$ -calculus is SN and WCR

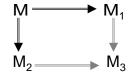
December 4, 2002

http://www.csg.lcs.mit.edu/6.827

CD Reduction has the Diamond Property



 M_3 is a CD of M with respect to F_1 U F_2



December 4, 2002

L23-25 Arvind

Orthogonal TRS

 Confluence of orthogonal TRS's can be shown in the same way.

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

Arvino

Orthogonal TRSs

A TRS is Orthogonal if it is:

- 1. Left Linear: has no multiple occurrences of a variable on the LHS of any rule, and
- 2. *Non Interfering:* patterns of rewrite rules are pairwise non-interfering

Theorem: An Orthogonal TRS is Confluent.

December 4, 2002

L23-27 Arvind

Orthogonal TRSs are CR

Proof outline:

- 1. R is orthogonal \Rightarrow R is orthogonal.
- 2. R is orthogonal \Rightarrow \Re is WCR \Rightarrow \Re is WCR.
- 3. <u>R</u> is SN
- 4. From 2. and 3. R is CR (Neumann's Lemma)
- 5. Transitive Closure of R = Transitive closure of \underline{R} \Rightarrow R is CR.

December 4, 2002

http://www.csg.lcs.mit.edu/6.827

β

If R is orthogonal then R is WCR

Case 1: α and β are disjoint

 α and β commute (trivially)

Case 2: α is a subexpression of β

 $(\Rightarrow \beta \text{ cannot be a subexpression of } \alpha?$

Case 2a: α ? Is reduced before β

Since R is orthogonal, reducing α ? cannot affect β

Case 2b: β ? Is reduced before α

???????**β΄αλλη destroy** or duplicate α?????????????????????

December 4, 2002