
Distributed Hash Tables and Chord

Hari Balakrishnan
6.829 Fall 2018

October 30, 2018

What is a P2P system?

• A distributed system architecture in which:
• There’s no centralized control
• Nodes are symmetric in function

• Large number of (unreliable) nodes

Node

Node

Node Node

Node

Internet

What can P2P teach us about
infrastructure design?

• Resistant to DoS and failures

• Safety in numbers, no single point of failure

• Self-assembling

• Nodes insert themselves into structure

• No manual configuration or oversight

• Flexible: nodes can be

• Widely distributed or colocated

• Powerful hosts or low-end PCs

• Each peer brings a little bit to the dance

• Aggregate is equivalent to a big distributed server
farm behind a fat network pipe

General Abstraction?

• Big challenge for P2P: finding content
• Many machines, must find one that holds data
• Not too hard to find �hay�, but what about
�needles�?

• Essential task: lookup(key)
• Given key, find host that has data (�value�)

corresponding to that key

• Higher-level interface: put(key,val)/get(key)
• Easy to layer on top of lookup()
• Allows application to ignore details of storage
• Good for some apps, not for others

Data-centric network abstraction

• TCP provides a �conversation� abstraction
socket = connect (IP address, port);
send(data on socket); /* goes to IP addr / TCP port */

• A DHT provides a �data-centric� abstraction as
an overlay over the Internet
• A key is a semantic-free identifier for data
• E.g., key = hash(filename)

DHT Infrastructure

Distributed application
get (key) value (data)

put(key, value)

DHT layering

• Application may be distributed over many nodes
• DHT distributes the key-value data store over many nodes
• Many applications can use the same DHT infrastructure

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

Virtues of DHT Interface

• Simple and useful
• put/get API supports wide range of apps

• No structure/meaning imposed on keys
• Scalable, flat name space
• Location-independent names à easy to replicate

and move keys (content)

• Key/value pairs are persistent and global
• Can store other keys (or other names or IP

addresses) in DHT values
• And thus build complex data structures

Some DHT applications
• Storage systems

• Persistent backup store (�P2P backup�)
• Read/Write file systems
• Cooperative source code repository

• Content distribution
• �Grassroots� Web replication & content distribution
• Robust netnews (Usenet)
• Resilient Web links, untangling the Web from DNS
• Web archiver with timeline

• Communication
• Handling mobility, multicast, indirection
• Email spam control
• Better firewalls and coping with NATs
• Various naming systems

• Distributed database query processing; event
notification

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: Peers

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: Overlay

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: put()

put(K1,V1)

put(K1,V1)
K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: put()

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: put()

get(K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: get()

get(K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

A DHT in Operation: get()

Designing a good lookup algorithm

• Map every conceivable key identifier to
some machine in the network
• Store key-value on that machine
• Update mapping/storage as items and

machines come and go

• Note: User does not choose key
location
• Not really restrictive: key in DHT can be a

pointer

Requirements

• Load balance
• Want responsibility for keys spread �evenly�

among nodes

• Low maintenance overhead
• As nodes come and go

• Efficient lookup of key to machine
• Fast response

• Little computation/bandwidth (no flooding
queries)

• Fault tolerance to sudden node failures

Consequences

• As nodes come and go, costs too much
bandwidth to notify everyone immediately

• So, nodes only aware of some subset of DHT:
their neighbors

• In particular, home node for key might not
be a neighbor

• So, must find right node through a sequence
of routing hops, asking neighbors about
their neighbors…

Maintenance

• As nodes come and go, maintain set of
neighbors for each machine
• Keep neighbor sets small for reduced overhead

• Low degree

• Maintain routing tables to traverse neighbor
graph
• Keep number of hops small for fast resolution

• Low diameter

Degree-Diameter Tradeoff

• Suppose machine degree d
• Each neighbor knows d nodes, giving d2 at

distance 2
• Up to distance h, can reach 1+d2+d3…+dh ~ dh

• If n nodes, need dh > n to reach all nodes
• Therefore, h > logd n

• Consequences:
• For h = 2 (two-hop lookup), need d > Ön
• With degree d = 2, get h=log2 n

Tradeoffs

• With larger degree, we can hope to
achieve
• Smaller diameter
• Better fault tolerance

• But higher degree implies
• More neighbor-table state per node
• Higher maintenance overhead to keep

neighbor tables up to date

Routing

• Low diameter is good, but not enough

• Item may be close: But how to find it?

• Need routing rules:
• Way to assign each item to specific

machine

• Way to find that node by traversing (few)
routing hops

Routing by
Imaginary Namespace Geography

• Common principle in all DHT designs
• Map all (conceivable) keys into some

abstract geographic space
• Place machines in same space
• Assignment: key goes to �closest� node
• Routing: guarantee that any node that is not

the destination has some neighbor �closer�
to the destination
• Route by repeatedly getting closer to destination

The Chord algorithm

N32
N90

N105

N60

• Each node has 160-bit ID

Circular
ID space

• ID space is circular
K20

K5

K80

• Data keys are also IDs

(N90 is responsible for
keys K61 through K90)

• A key is stored on the
next higher node

• Good load balance
• Consistent hashing
• Easy to find keys slowly
by following chain of
successors

Fast routing with a small routing table

• Each node�s routing
table lists nodes:
• ½ way around circle

• ¼ way around circle

• …

• next around circle

• The table is small:
• At most log N entries

N80

½¼

1/8

1/16
1/32
1/64
1/128

Chord lookups take O(log N) hops
• Every step reduces

the remaining
distance to the
destination by at
least a factor of 2

Node N32 looks up key K19

N32

N10
N5

N110

N99

N80
N60

N20

K19

• Lookups are fast:
• At most O(log N)

steps
• Can be made even

faster in practice

½

¼

Lookups: ½ log N steps

Why ½?

Joining: linked list insert

N36

N40

N25

1. Lookup(36)
K30
K38

Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

Join (4)
[Done later, in stabilization]

N36

N40

N25

4. Set N25�s successor
pointer

Update other routing entries in the background
Correct successors produce correct lookups

K30
K38

K30

Join and stabilization

N36

N40

N25

Fault-tolerance with successor lists

• When node n fails, each
node whose finger tables
include n must find n’s
successor

• For correctness, however,
need correct successor

• Successor list: each node
knows about next r nodes on
circle

• Each key is stored by the r
nodes after �owner� on the
circle

• If r = O�log N), lookups are
fast even when P(node
failure) = 0.5

N32

N10
N5

N110

N99

N80
N60

N20
K19

K19

N40 K19

Redundancy Provides Failure Resilience
Fa

ile
d

Lo
ok

up
s

(F
ra

ct
io

n)

Failed Nodes (Fraction)

• 1000 DHT nodes
• Average of 5 runs
• 6 replicas for each key

(less than log N)

• Kill fraction of nodes
• Then measure how

many lookups fail
• All replicas must be

killed for lookup to fail
• Lookups still return

fast!

When 50% of nodes fail, only 1.2% of lookups fail!

