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What is a P2P system?

• A distributed system architecture in which:
• There’s no centralized control
• Nodes are symmetric in function

• Large number of (unreliable) nodes
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What can P2P teach us about 
infrastructure design?

• Resistant to DoS and failures

• Safety in numbers, no single point of failure

• Self-assembling

• Nodes insert themselves into structure

• No manual configuration or oversight

• Flexible: nodes can be

• Widely distributed or colocated

• Powerful hosts or low-end PCs

• Each peer brings a little bit to the dance

• Aggregate is equivalent to a big distributed server 
farm behind a fat network pipe



General Abstraction?

• Big challenge for P2P: finding content
• Many machines, must find one that holds data
• Not too hard to find �hay�, but what about 
�needles�?

• Essential task: lookup(key)
• Given key, find host that has data (�value�) 

corresponding to that key

• Higher-level interface: put(key,val)/get(key)
• Easy to layer on top of lookup()
• Allows application to ignore details of storage
• Good for some apps, not for others



Data-centric network abstraction

• TCP provides a �conversation� abstraction
socket = connect (IP address, port);
send(data on socket); /* goes to IP addr / TCP port */

• A DHT provides a �data-centric� abstraction as 
an overlay over the Internet
• A key is a semantic-free identifier for data
• E.g., key = hash(filename)

DHT Infrastructure

Distributed application
get (key) value (data)

put(key, value)



DHT layering

• Application may be distributed over many nodes
• DHT distributes the key-value data store over many nodes
• Many applications can use the same DHT infrastructure

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address



Virtues of DHT Interface

• Simple and useful
• put/get API supports wide range of apps

• No structure/meaning imposed on keys
• Scalable, flat name space
• Location-independent names à easy to replicate 

and move keys (content)

• Key/value pairs are persistent and global
• Can store other keys (or other names or IP 

addresses) in DHT values
• And thus build complex data structures



Some DHT applications
• Storage systems

• Persistent backup store (�P2P backup�)
• Read/Write file systems
• Cooperative source code repository

• Content distribution
• �Grassroots� Web replication & content distribution
• Robust netnews (Usenet)
• Resilient Web links, untangling the Web from DNS
• Web archiver with timeline

• Communication
• Handling mobility, multicast, indirection
• Email spam control
• Better firewalls and coping with NATs
• Various naming systems 

• Distributed database query processing; event 
notification
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put(K1,V1)
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get(K1)
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Designing a good lookup algorithm

• Map every conceivable key identifier to 
some machine in the network
• Store key-value on that machine
• Update mapping/storage as items and 

machines come and go

• Note: User does not choose key 
location
• Not really restrictive: key in DHT can be a 

pointer



Requirements

• Load balance
• Want responsibility for keys spread �evenly�

among nodes

• Low maintenance overhead
• As nodes come and go

• Efficient lookup of key to machine
• Fast response

• Little computation/bandwidth (no flooding 
queries)

• Fault tolerance to sudden node failures



Consequences

• As nodes come and go, costs too much 
bandwidth to notify everyone immediately

• So, nodes only aware of some subset of DHT: 
their neighbors

• In particular, home node for key might not 
be a neighbor

• So, must find right node through a sequence 
of routing hops, asking neighbors about 
their neighbors…



Maintenance

• As nodes come and go, maintain set of 
neighbors for each machine
• Keep neighbor sets small for reduced overhead

• Low degree

• Maintain routing tables to traverse neighbor 
graph
• Keep number of hops small for fast resolution

• Low diameter



Degree-Diameter Tradeoff

• Suppose machine degree d
• Each neighbor knows d nodes, giving d2 at 

distance 2
• Up to distance h, can reach 1+d2+d3…+dh ~ dh

• If n nodes, need dh > n to reach all nodes
• Therefore, h > logd n

• Consequences:
• For h = 2 (two-hop lookup), need d > Ön
• With degree d = 2, get h=log2 n



Tradeoffs

• With larger degree, we can hope to 
achieve
• Smaller diameter
• Better fault tolerance

• But higher degree implies
• More neighbor-table state per node
• Higher maintenance overhead to keep 

neighbor tables up to date



Routing

• Low diameter is good, but not enough

• Item may be close: But how to find it?

• Need routing rules:
• Way to assign each item to specific 

machine

• Way to find that node by traversing (few) 
routing hops



Routing by
Imaginary Namespace Geography

• Common principle in all DHT designs
• Map all (conceivable) keys into some 

abstract geographic space
• Place machines in same space
• Assignment: key goes to �closest� node
• Routing: guarantee that any node that is not 

the destination has some neighbor �closer�
to the destination
• Route by repeatedly getting closer to destination



The Chord algorithm

N32
N90

N105

N60

• Each node has 160-bit ID

Circular
ID space

• ID space is circular
K20

K5

K80

• Data keys are also IDs

(N90 is responsible for 
keys K61 through K90)

• A key is stored on the
next higher node

• Good load balance
• Consistent hashing
• Easy to find keys slowly 
by following chain of 
successors



Fast routing with a small routing table

• Each node�s routing 
table lists nodes:
• ½ way around circle

• ¼ way around circle

• …

• next around circle

• The table is small:
• At most log N entries

N80

½¼

1/8

1/16
1/32
1/64
1/128



Chord lookups take O(log N) hops
• Every step reduces 

the remaining 
distance to the 
destination by at 
least a factor of 2

Node N32 looks up key K19

N32

N10
N5

N110

N99

N80
N60

N20

K19

• Lookups are fast:
• At most O(log N)

steps
• Can be made even 

faster in practice

½

¼



Lookups: ½ log N steps

Why ½?



Joining: linked list insert

N36

N40

N25

1. Lookup(36)
K30
K38



Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38



Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30



Join (4) 
[Done later, in stabilization]

N36

N40

N25

4. Set N25�s successor
pointer

Update other routing entries in the background
Correct successors produce correct lookups

K30
K38

K30



Join and stabilization

N36

N40

N25



Fault-tolerance with successor lists

• When node n fails, each 
node whose finger tables 
include n must find n’s 
successor

• For correctness, however, 
need correct successor

• Successor list: each node 
knows about next r nodes on 
circle

• Each key is stored by the r
nodes after �owner� on the 
circle

• If r = O�log N), lookups are 
fast even when P(node 
failure) = 0.5

N32
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Redundancy Provides Failure Resilience
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• 1000 DHT nodes
• Average of 5 runs
• 6 replicas for each key 

(less than log N)

• Kill fraction of nodes
• Then measure how 

many lookups fail
• All replicas must be 

killed for lookup to fail
• Lookups still return 

fast!

When 50% of nodes fail, only 1.2% of lookups fail!


