Distributed Hash Tables and Chord

Hari Balakrishnan
6.829 Fall 2018
October 30, 2018

I I I .
II MASSACHUSETTS
INSTITUTE OF
TECHMOLOGY

What is a P2P system?

[
= %Node]
Internet
g —a
Node Node

e A distributed system architecture in which:
e There’s no centralized control
e Nodes are symmetric in function

e Large number of (unreliable) nodes

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

What can P2P teach us about
infrastructure design?

Resistant to DoS and failures

 Safety in numbers, no single point of failure
Self-assembling

e Nodes insert themselves into structure

« No manual configuration or oversight
Flexible: nodes can be

e Widely distributed or colocated

e Powerful hosts or low-end PCs
Each peer brings a little bit to the dance

» Aggregate is equivalent to a big distributed server
farm behind a fat network pipe

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

General Abstraction?

e Big challenge for P2P: finding content

e Many machines, must find one that holds data

« Not too hard to find “hay”, but what about
“needles”™?

e Essential task: lookup(key)

o Given key, find host that has data (“value™)
corresponding to that key

e Higher-level interface: put(key,val)/get(key)
 Easy to layer on top of lookup()
» Allows application to ignore details of storage
e Good for some apps, not for others

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Data-centric network abstraction

« TCP provides a “conversation” abstraction
socket = connect (IP address, port);
send(data on socket); /* goes to IP addr / TCP port */

« A DHT provides a “data-centric” abstraction as
an overlay over the Internet

e A key is a semantic-free identifier for data
e E.g., key = hash(filename)

put(ke i, Valuei
‘ get (key) ‘ | value (data)

I I I N .
I I MASSACHUSE
IMSTITUTE OF
TECHNOLOGY

L=

DHT layering
~ Distributed application

put(key, data) l get (key) l 1 data
Distributed hash table

lookup(key) l | node IP address
| node | | node | - | node |

o Application may be distributed over many nodes
e DHT distributes the key-value data store over many nodes
e Many applications can use the same DHT infrastructure

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

Virtues of DHT Interface

e Simple and useful

e put/get API supports wide range of apps
e No structure/meaning imposed on keys
e Scalable, flat name space
e Location-independent names - easy to replicate
and move keys (content)
o Key/value pairs are persistent and global

e Can store other keys (or other names or IP
addresses) in DHT values

e And thus build complex data structures

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Some DHT applications

Storage systems
o Persistent backup store (“P2P backup”)
e Read/Write file systems
« Cooperative source code repository

Content distribution
o “Grassroots” Web replication & content distribution
e Robust netnews (Usenet)
« Resilient Web links, untangling the Web from DNS
« Web archiver with timeline

Communication
« Handling mobility, multicast, indirection
e Email spam control
« Better firewalls and coping with NATs
e Various naming systems

Distributed database query processing; event U

II MASSACHUSETTS

notification INSTITUTE OF

A DHT in Operation: Peers

KV
- KV
- +
1
= ¢V L
KV E KV
— = I
KV g
-]
= | e S
Ik v i

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

A DHT in Operation: Overlay

I I I .
II MASSACHUSETTS
INSTITUTE OF
TECHMOLOGY

A DHT in Operation: put()

|

Tk Vv

A DHT in Operation: put()

A DHT in Operation: put()

(K1!V1) KV
N—

KV

»
=)

N
KV fzj\ L

’j
s
KV
KV |

WAV

I I I .
II MASSACHUSETTS
INSTITUTE OF
TECHMOLOGY

A

KV

DHT in Operation: get()

(v /\

KV

A DHT in Operation: get()

Designing a good lookup algorithm

e Map every conceivable key identifier to
some machine in the network
o Store key-value on that machine
e Update mapping/storage as items and
machines come and go

e Note: User does not choose key
location

e Not really restrictive: key in DHT can be a
pointer

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Requirements

Load balance

« Want responsibility for keys spread “evenly”
among nodes

Low maintenance overhead
e As nodes come and go

Efficient lookup of key to machine
e Fast response

o Little computation/bandwidth (no flooding
queries)

Fault tolerance to sudden node failures

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Consequences

As nodes come and go, costs too much
bandwidth to notify everyone immediately

50, nodes only aware of some subset of DHT:

their neighbors

In particular, home node for key might not
be a neighbor

5o, must find right node through a sequence
of routing hops, asking neighbors about
their neighbors...

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Maintenance

e As nodes come and go, maintain set of
neighbors for each machine

« Keep neighbor sets small for reduced overhead
e Low degree

e Maintain routing tables to traverse neighbor
graph

o Keep number of hops small for fast resolution
e Low diameter

I I I .
II MASSAC
INSTITU
TECHMD

HUSETTS
aF

Degree-Diameter Tradeoff

e Suppose machine degree d

« Each neighbor knows d nodes, giving d? at
distance 2

« Up to distance h, can reach 1+d%+dB3...+d" ~ d"

e If n nodes, need d" > n to reach all nodes
e Therefore, h > log,n

o Consequences:

e For h = 2 (two-hop lookup), need d > \n
o With degree d = 2, get h=log, n

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Tradeoffs

e With larger degree, we can hope to
achieve

« Smaller diameter
e Better fault tolerance

e But higher degree implies
e More neighbor-table state per node

e Higher maintenance overhead to keep
neighbor tables up to date

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Routing

e Low diameter is good, but not enough
e Iltem may be close: But how to find it?

e Need routing rules:

e Way to assign each item to specific
machine

 Way to find that node by traversing (few)
routing hops

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Routing by
Imaginary Namespace Geography

Common principle in all DHT designs

Map all (conceivable) keys into some
abstract geographic space

Place machines in same space

Assignment: key goes to “closest” node

Routing: guarantee that any node that is not

the destination has some neighbor “closer”
to the destination

e Route by repeatedly getting closer to destination

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

The Chord algorithm

e Each node has 160-bit ID
e ID space is circular
e Data keys are also IDs

e A key is stored on the
next higher node

e Good load balance

e Consistent hashing

e Easy to find keys slowly
by following chain of
SUCCEessSors

N105

Circular

ID space

N90

K80 [v40

(N90 is responsible for

keys

K61 through K90)

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Fast routing with a small routing table

e Each node’s routing
table lists nodes:

e 2 way around circle

e 4 way around circle

e next around circle 1/8 |¢

e The table is small: e
. 1/32
e At most log N entries 1/64

N80

I I I .
II MASSACHUSETTS
INSTITUTE OF
TECHMOLOGY

Chord lookups take O(log ~) hops

e Every step reduces

the remaining
distance to the
destination by at
least a factor of 2

e Lookups are fast:

e At most O(log N)
steps

e« Can be made even

faster in practice

N5

N110
1 N
N99

N10

K19

N20

N80

Ya

N60

N32

Node N32 looks up key K19

I I I .
II MASSACHUSE
INSTITUTE OF
TECHMOLOGY

L=

Path length

12

10 |

Lookups: 72 log N steps

1st and 99th percentiles ~e—

100 1000 10000 100000
Number of nodes

(a)
Why 12? L [T Q——

INSTITUTE OF
TECHMOLOGY

Joining: linked list insert

N36

1. Lookup(36)

N25

N40

K30
K38

MASSACHUSETTS
S (N 0

Join (2)

2. N36 sets its own

successor pointer

N25

N40

N36

K30
K38

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

Join (3)

3. Copy keys 26..36

from N40 to N36

N25

N40

N36 | K30

K30
K38

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

Join (4)

[Done later, in stabilization]

N25
4. Set N25’ s successor N36 | K30
pointer -
N40 K30
K38

Update other routing entries in the background

Correct successors produce correct lookups L [T Je——

L=

Join and stabilization

// join a Chord ring containing noden'. // called periodically. verifies n’s immediate
n.join(n’) // successor, and tells the successor about n.
predecessor = nil, n.stabilize()

— i r;
successor = n' find_successor(n); successor.predecesso

if (z € (n, successor))

sSuccessor = I,

N25 successor.notify(n);
: // n' thinks it might be our predecessor.
| N36 n.notify(n')
.~ if (predecessor is nil or n’ € (predecessor,n))
N40 predecessor = n',

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

Fault-tolerance with successor lists

When node n fails, each
node whose finger tables
include n must find n’s
successor

For correctness, however,
need correct successor

Successor list: each node
knows about next » nodes on
circle

Each key is stored by the r
nodes after “owner” on the NGO
circle

If » = O(log N), lookups are
fast even when P(node —
failure) = 0.5 I oz

Redundancy Provides Failure Resilience

0.020
N\
-
O 0.015 -
d
O
o ¢
L
N’
%2]
Q 0.010 -
-
Y4
o
o
—l
®
E 0.005 — *
L
L
0.000_W’IIII.IIII, lllllllll , IIIIIIII I lllllllll Illll
0.0 0.1 0.2 0.3 0.5
Failed Nodes (Fractlon)

e 1000 DHT nodes

e Average of 5 runs

e 6 replicas for each key
(less than log N)

« Kill fraction of nodes

e Then measure how
many lookups fail

o All replicas must be
killed for lookup to fail

e Lookups still return
fast!

When 50% of nodes fail, only 1.2% of lookups fail!

I .
I III MASSACHUSETTS

INSTITUTE OF
TECHMOLOGY

