6.829 Computer Networks

Inter-Domain Routing -- BGP

Dina Katabi - MIT

Some Slides are from T. Griffin, N. McKewon, and Ion Stoica
The Internet is a Network of Networks

- The Internet is a network of Autonomous Systems (ASs)
 - E.g., MIT, AT&T, Stanford, ...
- Internally, each AS runs its own routing protocol → Autonomy
- Across ASs, we run a different routing protocol (called BGP)
Outline

• Review of intra-Domain Routing

• Inter-Domain Routing

• BGP
The Job of a Switch (or Router)

- A switch has input links and output links.
- A switch sends a packet on the output link leading toward the packet’s destination node.
- A switch does not care of who generated the packet.
How does the switch know which output link leads to a packet destination?

- Packet header has the destination
- Switch looks up the destination in its table to find output link
- Table is built using a routing protocol
Intra-Domain Routing

- **Objective:** Allows each node in the network (i.e., in the AS) to find the shortest path to all other reachable nodes

 - Network is a graph
 - Links have costs (may refer to delay, 1/BW, congestion, etc.)
 - “Shortest path” means the path with the minimum total link cost

- Note paths from a node, e.g., B, form a shortest path tree rooted at B
Requirement from a Routing Protocol

- Correctness
 - Each route must lead to the correct destination
- Completeness
 - If destination is reachable, the protocol should find a route
- Convergence
 - If network graph does not change, the routes must eventually converge (i.e., stop changing)
- Loop-freedom
 - After convergence, the routes have no loops
Two Common Intra-Domain Routing Protocols
(expected to know from undergrad.)

• Link State (Based on Dijkstra shortest path alg.)
 • Each node tells everyone about its neighbors and link costs
 • Each node obtains the network graph
 • Each node locally computes paths form itself to everyone

• Distance Vector (Based on Bellman-Ford shortest path alg.)
 • A node tells only its neighbors its shortest path cost to every node in network
 • Each node updates its shortest path based on the shortest path of its neighbors
 • No one has the full graph
Example Distance Vector Routing

Find routes from all nodes to E; assume all links have a cost of 1

Each node periodically sends a vector of <destination:spcost> pairs to all its neighbors.

On hearing announcement,
if (my spcost to dst > spcost in announcement + link_cost),
 My spcost == spcost in announcement + link cost
 Next-hop == node that sent me the announcement

Example Distance Vector Routing

Find routes from all nodes to E; assume all links have a cost of 1

E: spcost=2; next-hop C
E: spcost=2; next-hop D
E: spcost=1; next-hop E
E: spcost 0, self
Outline

• Review of intra-Domain Routing
• Inter-Domain Routing
• BGP
Requirements of Inter-Domain Routing

• Scalability
 • Small routing tables: Cannot have an entry per machine → causes large look up delay
 • Small message overhead and fast convergence: A link going up or down should not cause routing messages to spread to the whole Internet

• Policy-compliant
 • Shortest path is not the only metric; Internet Service Providers (ISPs) want to maximize revenues!
Idea for Scaling

- Need less information with increasing distance to destination

→ Hierarchical Routing
The Internet Hierarchy

- Internally, each AS runs its own routing protocol (link state or distance vector) \(\rightarrow \) Autonomy
- Across ASs, we run a different routing protocol (called BGP) \(\rightarrow \) Hierarchy \(\rightarrow \) More scalable
Hierarchical Addressing

- Each IP address is 4 bytes, e.g., 18.0.1.2
- The IP address space is divided into line segments (i.e., contiguous chunk of addresses)
- Each segment is described by a prefix.
- A prefix is of the form x/y where x is the prefix of all addresses in the segment, and y is the length of the segment in bits
- e.g. The prefix 128.9/16 represents the segment containing addresses in the range: 128.9.0.0 ... 128.9.255.255.

\[
\begin{align*}
&128.9.0.0 & 142.12/19 \\
&128.9/16 & 2^{16} \\
&18/8 & 2^{32}-1 \\
&128.9.16.14 &
\end{align*}
\]
Hierarchical Address Allocation

- Addresses that start with same prefix are co-located
 - E.g., all addresses that start with prefix 18/8 are in MIT

- Entries in the routing/forwarding table are for IP prefixes → shorter routing tables
- Forwarding tables in Berkeley can have one entry for all MIT’s machines. E.g., (18/8, output-link)
- Forwarding tables in Mechanical Engineering have one entry for all machines in EECS
- But, a switch on the 9th floor subnet knows about all machines on its subnet
A Router forwards a packet according to the entry in the forwarding table that has the longest matching prefix.
• Hierarchical addressing and routing give us scalability

• Still need to tackle policies
Inter-AS Relationship: Transit vs. Peering

- Transit relationship
 - One AS is a customer of the other AS, who is the provider; customer pays provider both for sending and receiving packets
- Peering relationship
 - Two ASs forward packets for each other without exchanging money
Policy-Based Routing

• Main Rule:
 • An AS does not accept transit traffic unless it makes money of it

• Rule translates into incoming and outgoing routing policies
Desirable Incoming Policies

- AS-2 likes AS-3 to use the peering link to exchange traffic between their customers → saves money because it bypasses AS-1
- But, AS-2 does not want to forward traffic between AS-3 and AS-4 because this makes AS-2 pay AS-1 for traffic that does not benefit its own customers
How Does AS-2 Control Incoming Traffic?

- AS-2 advertises to AS-3 a route to its customer’s IP prefix
- AS-2 does not tell AS-3 that it has a route to AS-4, i.e., it does not tell AS-3 routes to non-customers IP-prefixes
Desirable Outgoing Policies

- AS-2 prefers to send traffic to “A” via its customer AS-5 rather than its provider or peer despite path being longer.
How Does AS-2 Control Outgoing Traffic?

- AS-1, AS-3, and AS-4 advertise their routes to “A” to AS-2
- But AS-2 uses only AS-5’s route (i.e., it inserts AS-5’s route and the corresponding output link into its forwarding table)
Outline

• Review of intra-Domain Routing
• Inter-Domain Routing
• BGP
BGP: Border Gateway Protocol

1. Advertise whole path
 - Faster loop detection → an AS checks for its own AS number in advertisement and rejects route if it has its AS number

2. Incremental updates
 - AS sends routing updates only when its best/current route changes (Messages are reliably delivered using TCP)
 - Two types of update messages: announcement, e.g., “P:{AS-20, AS-6}” and withdrawals “withdraw P”
Enforcing Policies (i.e., making money) Using BGP

Route Export: controls incoming traffic
- AS advertises its customers (and internal prefixes) to all neighbors
- AS advertises routes learned from its peers or providers or customers to its customers (and internally)

Route Import: controls outgoing traffic
- For each dest. prefix, AS picks its best route from those in its routing table as follows:
 - Prefer route from Customer > Peer > Provider
 - Then, prefer route with shorter AS-Path
BGP

- **Update from neighbor AS**
 - Remove loops; Rank imported routes and update Routing table
 - Pick Best Route for forwarding
 - Export best route if desirable
 - Send Update to neighbors
BGP Update Message Processing

For each destination prefix,

- Learn paths from neighbors
- Ignore loopy paths and keep the rest in your routing table
- Order paths according to AS preferences
 - Customers > peers > providers
 - Path with shorter AS hops are preferred to longer paths
 - Other metrics
- Insert the most preferred path into your forwarding table
- Announce the most preferred path to a neighbor according to policies

When you receive a withdrawal

- If path not used, remove from learned path
- If best/used path
 - Remove the path from your forwarding and routing tables and insert the next preferred path in routing table into forwarding table
 - For each neighbor decide whether to tell him about the new path based on policies
 - If yes, then announce the new path which implicitly withdraws old path
 - If no, withdraw old path
Summary

• Hierarchical addressing and routing improve scalability
• Inter-domain routing is policy-based not shortest path
 • An AS forwards transit traffic only if it makes money from it
• BGP is a path vector routing algorithm that implements policy-based routing