Massachusetts Institute of Technology Handout 8
6.857: Network and Computer Security September 25, 2001
Professor Ronald L. Rivest

Problem Set 1 Solutions

Problem 1-1. Hash functions

The hash function is described by the picture below. The input message m is broken into 8-byte
blocks m = mq, mao, ..., my. The last block is padded with zeros on the right as needed. The first
block, mi, is used as the key to encrypt the initial vector 0x00010002 using the RC5-16/12/8
cipher. Each subsequent message block is used as the key to encrypt the output of the previous
encryption operation. The message digest, h(m) = d, is the result of the final encryption operation.
R(C5-16/12/8 is a cipher that operates on two 16-bit words at a time, has 12 rounds, and requires
an 8-byte key.

my ma mp

f

0x00010002 — | RC5 ~ RC5 ——= — RC5 —=d

16/12/8 16/12/8 16/12/8

(a) Describe an attack that inverts this hash function.
Cristian Cadar, Catalin Francu, and Ovidiu Gheorghioiu gave us this solution:

Because this hash function involves breaking the message into blocks, and, moreover, the RC5
cipher allows decryption, we can mount the following attack:

Let Dgiqrt be the start digest (0x00010002 in this case) and Ds;op be the desired digest. Consider
a set A of pairs (D, M), such that Dy, encrypts to D using the corresponding, 8-byte message
M as a key. Similarly, consider a set B of pairs (D, M) such that D encrypts to Ds;ep, using the
corresponding, 8-byte message M as a key. If a digest D appears in both A and B (that is, there
is a pair (D, M;) in A and a pair (D, M) in B), then we have inverted the hash function for the
case of Dgp: the 16-byte concatenation of My and My will hash Dygrt to Dyop. If the sets A and
B are large enough, there is a high probability that such a D exists.

In the proposed attack, we start with two empty sets A and B. At each step, we generate a random,
8-byte message M, we encrypt Dgiqry with key M into Dy, and we decrypt Dyop, again with key
M, into D,. It follows that we can add the pairs (D1, M) and (D3, M) to A and B, respectively.
We then check whether D is present in a pair of B, or, alternatively, whether Dy is present in
a pair of A. If either of these is true, then A and B contain a common digest and, as explained
above, we have inverted the function. The figure below gives an example.

In this figure, if Dgyqrt encrypts to Dy using the key My, and if D), = Dy encrypts to Dop using
the key My, then the 16-byte message m = (M7, Ms) breaks the code.

If we use a constant-time set membership operation (e.g., a hash table), then the running time of
this algorithm is simply O(N), where N is the number of operations used. In practice, the program
always found a solution within 1 second. How come? A probabilistic analysis follows.

We want to assess P(N), the probability that we find an inversion in N attempts or less. A bit of
dynamic programming helps. Obviously, P(0) = 0 — we cannot expect to win without running any
trials! Now three things may happen at the N + 15 trial:

2 Handout 8: Problem Set 1 Solutions

Dstart = 0x0001 0002 ~| OxDC98 F5EF = Dstop

Figure 1: Our evil plot

eWe may have already found a hit in the first N experiments;

oDy 1 is equal to one of D, D5, ..., DY;. Because D; are pseudo-random 32-bit numbers, each
equality happens with probability 2732.

oDy, is equal to one of Dy, Do,..., Dyn,;.

Consequently, P(N + 1) = P(N) + [1l — P(N)](Np + (1 — Np)(N + 1)p), where p = 5. The
consequences are most remarkable. The table below shows that most of the times we can crack the
code with less than 100,000 experiments — a trifle for today’s computational power.

A slightly more intuitive way to model the probability is that P(N) =1— (1 — %)N where g = 232,
Consider the probability of failure of the first member of set B matching anything in set A. This is
% =1 — & since the member from set B can be one of ¢ values and N of these values will result
in success. Now consider the probability of failure that none of the members of B match with any
member of A. Because each comparison is independent and the size of both sets is IV, this probability

is (1 — %)N. Hence the probability of success is 1 minus that value = P(N) =1 — (1 — %)N.

Table 1: Probability versus the number of trials
Number of trials [N] | Probability of success [P(N)] |

0 0.0000
20000 0.0889
40000 0.3110
60000 0.5675
80000 0.7746

100000 0.9025
120000 0.9650
140000 0.9895
160000 0.9974
180000 0.9994
200000 0.9999

(b) Implement your attack and find a message that hashes to 0xDC98 F5EF.

Handout 8: Problem Set 1 Solutions 3

Jessica Huang, Kai Huang, Edward Huang, and Melissa Shi gave us this entertaining set of hash
inversions:

We implemented our attack in C. The commented code and sample output are available on the
6.857 Web page.

(Extra!) We wanted to find meaningful input messages that hashed to the target message vector.
We refined our program to select keys from a list of common English words, all less than eight letters
long. We also changed the message length to 32 characters. This new code is also attached for
reference, but it is not commented. The following are some interesting four-word phrases that hash
to the target.

"Shelat with rivest mnasty " "peace treaty too swiss "
"Kevin drummed kevin pointed " "states will debate vitally "
" boy kevin fu large " "protect who what from "
" +this 1lousy earthly client " "cakes for a fox "
"gallium revise kitty’s anatomy " "martian clatter beeps widely "
"washing all with might " " not used passive yet "
"praise tries all women " " her things spun through "
"now test on adults "

Problem 1-2. Le BigMAC

BigMAC(u,e) = (u® AESk(e), (AESk(u @ AESk(e))) @ e)
= (u ®f,9® 6)
= (la h)

The Web site will allow you to create new accounts and set passwords for any username not
already created. The Web site allows both printable and non-printable characters in usernames.
The account login process can be modeled as a function « which takes as input a username and
password to produce a cookie-based authenticator:

(u,e,(l,h)), if the password is correct for the username u
where e is a timestamp'
and (I, h) = BigMAC, (u,e)
INVALID, otherwise
After logging in and receiving a cookie-based authenticator, one can model the verification routine
on the BSJ Web server as:
true, if cookie can be unmarshalled to (u,e, (I, h))
and if e > the current time
and BigMAC,(u,e) = (I, h)
false, otherwise

a(u, password) —

w(cookie) —

You can assume the timestamp is in seconds since UNIX epoch time approximately 2 hours from the time of
login. This detail is not important for the break.

4 Handout 8: Problem Set 1 Solutions

There were many solutions to this problem, but all involved exploitation of the commutative prop-
erty of XOR in an adaptive chosen message attack. Timo Burkard, John Gu, and Kenneth Yu
provided this solution:

(a) Explain using the notation above how an interrogative adversary can make an existential forgery
for this user authentication scheme.

Assumptions:

eWe can create a new username.

eFor our existential forgery, the username that we forge will be such that it consists of 128 bits
that are practically garbage.

Description of the attack:

1.Create an Account for some user that doesn’t exist yet.

2.0btain a cookie for that user.

That cookie contains our username v and an expiration time e that has been issued by the server.
Furthermore, we are given BigMAC, (u,e) = (I,h) = (u ® AESk(e), (AESk(u @ AESk(e))) @ e)

Next, we create a second account and obtain a cookie for that account, consisting of u’, €', and its
BigMAC,(I', 1').
Next, we will construct a forged cookie that will grant access to some other user account that

we haven’t created (and that in fact will turn out to be have a rather awkward username, see
assumption above).

For the forged cookie, our expiration time e; we will use the expiration time of the second cookie
that we obtained, e’. Since we know u', AES(e') can easily be computed using the formula
AESy(e') =" @ u'. Hence, since ey = €', AESi(ep) =U' @ v/,

Using the same identity, we can easily figure out AESg(e), it is simply [& u.

In order to generate the second part of the BigMAC for our forged cookie, hy, we need to have
AES;(us ® AESi(es)). However, since we don’t know k, we cannot calculate this function ourselves
- we use some value of that function provided by the server. So we simply chose u; such that

ur @ AESi(ef) = e (so that the AES that we have to compute is simply AES,(e)), ie. uy =
e ® AESi(ef). (AESk(ey) has already been calculated, see above).

Now we can very easily calculate the BigMAC of the forged cookie, (I¢,hy):
lf =ur ®AESi(ef) = up @ (I' ® u') (see definition of ey above).
hf = (AESk(Uf D AESk(ef)) Der= AESk(e) D ey.

Notice that with very high probability, u¢ will be different from u and «’. Furthermore, the cookie
that we forged is valid. Therefore, we succeeded in making an existential forgery.

(b) Explain how an interrogative adversary can make a selective forgery for this user authentication
scheme if the account login process is instead:

(u,e, (I,h)), if the password is correct for the username u
a(u, password, e) — where (I, h) = BigMAC,(u,€)
INVALID, otherwise

Handout 8: Problem Set 1 Solutions 5

Assumptions:

eWhen creating cookies, we may transmit any 128-bit sequence as the desired expiration time
e to the server.

Attack to create a cookie for username u; with expiration time ey without knowing the password
of that account:

Create a new account for user u. Then, have the server create a cookie for that user with expiration
time es. Suppose that cookie has the BigMAC (u,ef) = (I, h). Now, by looking at the equations
in the problem statement, one can easily see that AESy(ef) =1 & u.

Next, we compute uy @ AES;(ef). This is trivial since both uy and AESg(ef) are known to us.
Let’s call the resulting value z. However, in order to compute the correct MAC for the forged
cookie (specifically, the second component of the MAC), we need to know AESy(x).

Since we don’t know k, it is impossible for us to directly compute the hash function. However, we
can use the following trick and get the server to compute it for us:

For our own user account u, we simply request the server to create a cookie with expiration time
z. (which is possible, by our assumptions stated above.)

Suppose the cookie returned for that user and expiration time has the BigMAC, (I, h'). By the
same argument that I used above, AES;(z) = u @ ['. Therefore, we now know AES,(z).

Computing the BigMAC,(ls, hy) for our forged cookie with username u s and expiration time ey is
now pretty straightforward:

lf ZUfGBAESk(ef) :chEB(l@u)
hy = (AESi(us ® AESk(ef))) @ ey = AESi(z) ®ef = (ud!l') ®ey.

By construction, this forged cookie is valid. Hence we managed to perform a selective forgery
by creating a valid cookie for a user u; and an expiration time ey, without knowing the user’s
password.

