6.857 Computer and Network Security

September 25, 2001

Lecture Notes 6: More Number Theory, El Gamal

Lecturer: Ron Rivest Scribe: Bailey/Cholankeril/Kwon/Zitser

1 Outline:

- Erratum
- GCD & Modular Inverses
- Order & Generators & Discrete Log Problem
- El Gamal Signatures

2 Erratum

In the previous lecture, there was a small error in the definition of a Carmichael number. The corrected definition is as follows:

Definition (corrected): An integer n > 1 is a <u>Carmichael number</u> if,

$$a^{n-1} \equiv 1 \pmod{n}$$

$$\forall_a, 1 \le a < n, \text{ s.t. } gcd(a, n) = 1$$

Question: Are there any proofs on the density of Carmichael numbers?

Answer: Yes. There are some bounds on the density of Carmichael numbers. These numbers are very rare, annoying obstacles.

3 GCD, Modular Inverses

Definition 1 $d \mid a$ ("d divides a") if $\exists k$ s.t. a = kd

Fact 1 $\forall d, d \mid 0$. This includes $0 \mid 0$. If $a \neq 0$, then $0 \nmid a$

Definition 2 A <u>divisor</u> of an integer a is any $d \ge 0$ s.t. $d \mid a$

Definition 3 If d is a divisor of a and also of b, then d is a <u>common divisor</u> of a and b.

⁰May be freely reproduced for educational or personal use.

Example 1 7 is a common divisor of 14 and 77.

Definition 4 The greatest common divisor, gcd(a,b), of two integers a and b is the largest of their common divisors. (But gcd(0,0) = 0 by definition.)

$$gcd(0,5) = 5$$

 $gcd(24,30) = 6$
 $gcd(4,7) = 1$

Question: How are GCD's defined when negative numbers are involved?

Answer: They are defined the same way they are defined for positive numbers.

Question: And what are the divisors of a negative number?

Answer: By the definition of divisibility, $a \mid n$ implies $a \mid -n$, so negative numbers are considered to be divisible by the same numbers their positive counterparts are divisible by.

Definition 5 Integers a and b are relatively prime if gcd(a, b) = 1.

Fact 2 If p is prime and $1 \le a < p$, then gcd(a, p) = 1.

Fact 3 It is easy to compute gcd(a,b). This is surprising because you might think that in order to compute the \overline{GCD} of a and b you would need to figure out their divisors, i.e. solve the factoring problem. But, as you will see, we don't need to figure out the divisors of a and b to find their GCD.

3.1 Euclid's Algorithm

Euclid's Algorithm is probably one of the world's oldest computing algorithms. It allows us to easily calculate the greatest common divisor of any two integers a and b. The algorithm is illustrated below:

Assume $a \ge 0, b \ge 0$

$$gcd(a,b) = \begin{cases} a & \text{if } b = 0\\ gcd(b, \ a \ \text{mod} \ \ b) & \text{otherwise} \end{cases}$$

Example 2 Using Euclid's Algorithm, find the greatest common divisor of 12 and 33.

$$\begin{array}{rcl} \gcd(12,33) & = & \gcd(33,12) \\ & = & \gcd(12,9) \\ & = & \gcd(9,3) \\ & = & \gcd(3,0) \\ & = & 3 \end{array}$$

Question: Why does Euclid's algorithm always terminate?

Answer: $a \mod b$ is always less than b. Hence, on each recursive call, the second argument is strictly less than it was on the previous call.

Theorem 1 The time to compute gcd(a, b) is $O(\log b)$.

Proof: See CLRS, Chapter 31. ■

Intuitive Proof:

In a typical scenario, $gcd(b, a \mod b)$ is about b/2. If we imagine b to be to be expressed in bits, this is equivalent to taking one bit off of b. So the order of execution will be roughly log b. The actual worst case is for a pair of fibonnaci numbers; they decrease by the golden ration on each iteration.

Theorem 2 $(\forall a, b), \exists x, y \ s.t. \ ax + by = gcd(a, b) \ where \ x, y \ are integers.$

Proof: By example, (Euclid's Extended Algorithm)

```
 \begin{array}{lll} \gcd(12,33) & 33=1*33 \\ \gcd(33,12) & 12=1*12 \\ \gcd(12,9) & 9=1*33-2*12 \\ \gcd(9,3) & 3=3*12-1*33 \end{array}
```

3 and -1 are the values of x and y that satisfy the statement: $\forall_{a,b}$ it is true that gcd(a,b) = ax + by for some pair of integers x, y.

Corollary 1 It is easy to find such x and y. The method used to find x and y s.t. ax+by=gcd(a,b) is called Euclid's Extended Algorithm.

Corollary 2 Given prime p and a where $1 \le a < p$, it is easy to find an x s.t. $ax \equiv 1 \pmod{p}$ [i.e. $x = a^{-1} \pmod{p}$]. Or equivalently, ax + py = 1

Fact 4 The above works even if p is not prime, as long as gcd(a, p) = 1.

4 Orders & Generators & DLP

By Fermat's Theorem, $a^{p-1} \equiv 1 \pmod{p}$ if p is prime and $a \not\equiv 0 \pmod{p}$.

Definition 6 The least positive x s.t. $a^x \equiv 1 \pmod{p}$ is called the order of a, mod p.

Theorem 3 - Lagrange

The order of any element a, modulo p (where p is prime and $a \not\equiv 0 \mod p$) is a divisor of p-1.

Proof: See CLRS, Chapter 31.

Example 3 Calculate the orders of various elements modulo 7 p = 7 and p-1 = 6. The divisors of 6 are 1, 2, 3, 6. So all of the numbers in \mathbb{Z}_7^* must have order 1, 2, 3, or 6 modulo 7.

$a \in Z_p^*$	a^2	a^3	a^4	a^5	a^6	$\mathit{order}(a)$
6	$6^2 = 1$	$6^3 = 6$	1	6	1	2
2	4	1	2	4	1	3
3	2	6	4	5	1	6

Definition 7 g is a generator of Z_p^* if the order of g mod p is equal to p-1.

Question: Can generators of groups be even?

Answer: Yes. But there aren't any modulo 7. If you play around with primes other than 7, you should be able to find even generators.

Theorem 4 If p is prime, then $\exists g$ s.t. g is a generator mod p.

Fact 5 If p is prime and g is a generator mod p, then for every y in Z_p^* (i.e. in $\{1, 2, \ldots, p-1\}$) \exists a unique $x(0 \le x < p-1)$ s.t. $g^x \equiv y \pmod{p}$

Definition 8 In the above theorem, x is called the discrete logarithm of y modulo p, base g

Theorem 5 If p is prime, then g is a generator mod p iff $g^{(p-1)/q} \not\equiv 1 \pmod{p}$ for every prime q dividing p-1

Question: How many generators exist for Z_p^* ?

Answer: Enough to sample and find one efficiently. It's like finding a prime. We need to test whether a candidate number is a generator.

Question: How do we find generators for numbers mod a large prime? Does this require knowing ALL of the prime factors of p-1?

Answer: Rather than trying to find all q for a prime p to determine the generator g, we can take a different approach and pick our prime p, s.t. the factorization of p-1 is known, allowing us to easily find the generator g.

```
Idea: Let factorization of p-1 be known (e.g., p-1=2*q, where q is prime). Pick g at random. Test g^{(p-1)/2} \not\equiv 1 \pmod{p} & g^{(p-1)/q} \not\equiv 1 \pmod{p} \to g is a generator mod p, otherwise pick another g.
```

There are lots of generators, so this works. Yields p, g where p is prime and g is a generator mod p.

4.1 Discrete Logarithm Problem

```
Given a prime p
a generator g \mod p
a value y \in \mathbb{Z}_p^*
Find x \text{ s.t. } y = g^x \pmod p
```

The discrete logarithm problem is believed to be computationally infeasible if p is large (e.g., 1024 bits) and p-1 has a large prime factor. It is as hard as trying to factor a 1024-bit number. This is useful for cryptography because we like to make the hard problem the adversary's problem.

Question: Are the discrete logarithm problem and the factoring problem equally hard in the sense that a problem of one type can be reduced to a problem of the other type?

Answer: No. They are closely related problems, but in the usual formulations no reductions exist. (But taking logs modulo a composite can help factor that composite.)

Question: Doesn't research in the area of discrete logarithms always contribute to solving the factoring problem, therefore making the discrete logarithm problem harder?

Answer: I'm not sure I understand this question. But these problems are closely related, and advances on one problem have usually been translatable into advances in the other.

```
x \to f(x) = g^x \pmod{p} is a one-way function.
```

5 El Gamal Signature Scheme

```
Keygen: generate a prime p (1024 bits) generator g of Z_p^* x \in_R \{0, 1, \dots, p-2\} y = g^x \pmod{p} PK = (p, g, y) SK = (x)
```

Question: Is it okay if we take the first n primes, multiply them all together and add or subtract 1 to get a prime number?

Answer: Those primes are bad for cryptography. If all the prime factors of p-1 are relatively small, lots of cryptographic attacks are possible. Generally, primes p such that p-1 has a big prime factor are much better.

```
Sign(M): (using SK \& PK)
m = h(M)
h is a collision-resistant hash function
k \in_R \{1, 2, \dots, p-2\} \text{ s.t. } gcd(k, p-1) = 1
(\in_R \text{ means choose at random} \to \text{randomized signature scheme})
r = g^k (\text{mod } p)
s = (m - rx)/k (\text{mod } p - 1)
output: \sigma = (r, s)
```

Note: k, r can be computed before the message is seen. In addition, you need a new k and r everytime you sign a message. Otherwise, it will not be secure.

```
Verify (M, \sigma, PK):
Output "Ok" if 0 < r < p
```

```
and y^r r^s \equiv g^m \pmod{p}, where m = h(M) Otherwise, output "Not Ok"
```

Question: Why does that work?

Answer:

```
g^{rx+ks} = g^{rx}g^{ks} \equiv g^m \pmod{p}
rx + ks \equiv m \pmod{p-1}
s \equiv (m-rx)/k \pmod{p-1} \text{ [if } gcd(k,p-1) = 1\text{]}.
```

Note: The security of the El Gamal signature scheme depends on DLP (otherwise an adversary could find x, and forge), but it is not equivalent to DLP.

Note: The El Gamal signature scheme can also be generalized to many other groups. e.g., elliptic curves, 2x2 matrices, etc.

Question: Is there a standard hash function for El Gamal?

Answer: It will work with any hash function, as long as both parties agree on which hash function is being used.