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Problem Set 3

This problem set is due on Thursday, October 3, 2002 at the beginning of class. Late homeworks
will not be accepted. This entire problem set is a group problem set. You must, however, continue
to cite your sources properly.

At the end of each problem, tell us how each person contributed (writing, designing, coding,
proof reading, never showed up, etc).

Problem 3-1. All your PRIMES is belong to us1

You are a new technical lead at PRIMES Computer, Inc. Your job is to manufacture groovy primes.
Your boss, Austin M. Powers2, has generated a special task for your group.

In a 6.857 lecture secretly simulcast at PRIMES Computer, Inc., you learned about primality testing
and generators of a group Z∗p where p is prime. Austin has assigned you the task of generating
such values.

Austin says you may use any programming language you like, though we recommend Java because
of its BigInteger package. The numbers you will be working with are quite large – plain old long or
integer types won’t be large enough. If you use C or C++, you could try the GNU mp package.
If you use this package, you are on your own though.

In this problem, you may not use any built-in procedures for primality testing, prime number
generation, or generator discovery. You can assume you have a source of randomness. If you
borrow any code, cite the appropriate authors. Moreover, you must explain how and why any
borrowed code works with inline comments.

We recommend you read Chapter 31 of CLRS [1] and perhaps pages 160–164 of HAC [3].

(a) Generators of Z∗p
Write a function to generate a b-bit prime given parameters b and a source of randomness. Your
function should produce a b-bit number that has an overwhelming probability of being prime. Write
a second function that given g, p, and the prime factorization of p− 1 tests whether the element g
is a generator of Z∗p where p is prime.

Using these functions, write a program that given a list of names, a number b, and a source of
randomness, produces a b-bit prime number p for such that each name (treated as an element of
Zp) is a generator of Z∗p .

A potentially comforting fact is that the number of generators of Z∗p is φ(φ(p)) where φ is Euler’s
phi function. In the special case where your prime p = 2q+ 1 and q is prime, then φ(φ(p)) = q− 1.
If you generate a prime p with this form3, then you already know the factors of p− 1.

To encode names as elements, take the hexadecimal ASCII representation. Then combine the digits
into a single number. The first letter of a name is the high order byte, the last letter of the name

1

Somebody set us up the factors at http://www.planettribes.com/allyourbase/index.shtml2Modular is his middle name.
3You have no chance to factor, make your time.
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is the low order byte, etc. If your group consisted of members Kevin, Thien-Loc, and Ron, your
names and elements would be:
Name ASCII Hex Element in decimal
Kevin 0x4B 65 76 69 6E 323824806254
Thien-Loc 0x54 68 69 65 6E 2D 4C 6F 63 1557050158367982251875
Ron 0x52 6F 6E 5402478

Print out and submit your code. Please make sure there are no line-wrap problems.

(b) Expected amount of work to find primes and generators

For a random prime number p, what is the approximate probability of a random element g ∈ Zp
being a generator of Z∗p? You can assume p is large.

How many trials do you expect to make for your group to find a suitable prime p such that each
of your names is a generator of Z∗p? Give your estimate in terms of b (the size of a b-bit prime p)
and the number of students in your group s.

(c) Find a prime

Using your program from part (a), find a prime number p where your first names are generators of
Z∗p . (1) Tell us this prime. You can try for any size prime. We recommend trying small bit sizes
(e.g., 64) for testing. If you finish early, try to generate a 1024-bit prime (this could take a lot of
time especially in Java, so only do this for fun if you have time).

(2) In your final run of the working program, how many trials did it take to find a suitable prime?
That is, how many random numbers did you try before finding a suitable prime?

(d) Finding co-Sophie-Germain primes

We alluded to Sophie-Germain primes in part (a). A number q is a Sophie-Germain prime if 2q+ 1
is also prime. We then call the value 2q+1 a co-Sophie-Germain prime (or sometimes a safe prime).

While we know there are an infinite number of primes, it’s an open problem whether there are an
infinite number of Sophie-Germain primes. It turns out that in practice, however, Sophie-Germain
primes are not too rare.

Assuming that the likelihood of q being prime and 2q+1 being prime is independent, approximately
how many 1024-bit Sophie-Germain primes would you expect to exist?

Problem 3-2. A MAC based on a block cipher

Alice missed Professor Rivest’s lecture recommending that to obtain both confidentiality and au-
thentication, one should first encrypt the message, then append a MAC of the ciphertext to the
end of the ciphertext.

So, for her project she implements the following procedure. In her project all messages are a
sequence of 128-bit blocks exactly (no partial blocks). She first appends a checksum block to
the end of the message, where the checksum block is the XOR of the message blocks. Then she
encrypts the message/checksum sequence using AES in CBC mode using a randomly-chosen IV.
The unencrypted IV, as usual, becomes the first block of ciphertext.

The recipient Bob first decrypts the message/checksum sequence, and then checks that the checksum
is correct. If the checksum is not correct, Bob concludes that the ciphertext was forged or altered
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in some manner; it is not authentic. Of course, Alice and Bob share a secret key for the encryption
operation.

Alice figures that since the message and checksum are encrypted, an adversary who doesn’t know
the encryption key should not be able to forge a ciphertext that Bob will accept as authentic.

Show that Alice’s scheme is insecure against a chosen plaintext attack, in which an adversary can
arbitrarily choose a number of plaintext queries, and obtain Alice’s encryption of each of them (with
checksum). The adversary is judged to have succeeded if he can then produce a new ciphertext,
not identical to any that Alice returned to him, that Bob would nonetheless accept as authentic.
The attack may or may not need to be adaptive, in which later queries depend on the responses
obtained to earlier queries.

Problem 3-3. Block ciphers need to be non-affine

Eager to become a zillionaire soon, Kevin Nguyen decides to design a secure telephone protocol.
In order to convince the investors to fund his start-up, he needs to present a live demo. As usual,
he devotes the task of designing the crypto component to Thien-Loc Fu.

In need of a fast but secure cipher for real-time encryption/decryption, Thien-Loc opts for a hard-
ware implementation of 128-bit AES. Unfortunately, Thien-Loc’s prototype is too slow and too
costly for Kevin’s needs. Instead of further optimizing the hardware circuits, Thien-Loc decides to
modify AES to improve performance and reduce costs. He gets rid of the S-box (that is, replaces
it with the identity function).

You can refer to Handout 9, and especially [2] for a detailed description of AES.

Definitions: Let E and F be GF(28)-vector spaces of dimension m and n.

1.A function/transformation f : E → F is linear if it can be written as f(x) = A ∗ x, where A
is an n x m matrix with coefficients in GF(28)

2.A function/transformation g : E → F is affine if it can be written as g(x) = A ∗ x+ b, where
A is an n x m matrix with coefficients in GF(28) and b is a constant vector in F .

I - TAES is an affine transformation

In this part, we prove that TAES is an affine transformation.

(I-a) Without the S-box, TAES is a composition of the following operations: ShiftRow, MixColumn,
and AddRoundKey.

What are the domains and codomains of each of the aforementioned operations? What are the
domain and codomain of TAES?

Prove briefly that each of the aforementioned operations is an affine transformation.

(I-b) Prove that the composition of affine transformations is also affine. Deduce from part (a) that
TAES is affine.

(I-c) TAES is invertible. Is TAES−1 affine? Justify your answer.

II - An affine transformation is easily breakable

In this part, we show how to break an affine transformation.
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Let g be an affine transformation: g(x) = A ∗ x + b, where A is an n x n matrix with coefficients
in GF(28), and b is a column vector of dimension n with coefficients also in GF(28).

(II-a) Explain how you can reduce the resolution of g to that of the linear transformation f(x) =
A ∗ x. What is the minimum number of pairs (x, f(x)) that you need to know in order to achieve
that reduction? What properties do they need to satisfy in order to reach that minimum?

(II-b) What is the minimum number of pairs (x, f(x)) that you need to know in order to completely
break f? What properties do they need to satisfy in order to reach that minimum?

III - How to break TAES

We regroup here the results of parts I and II.

Describe a chosen plaintext attack, in which an adversary can arbitrarily choose a number of
plaintext queries, and obtain the TAES encryption of each of them.

What is the minimum number of messages do you need to query? Give a sequence of actual
plaintexts and explain how you use them (along with the corresponding ciphertexts) to break
TAES.
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