
Massachusetts Institute of Technology Handout 17
6.857: Network and Computer Security October 3, 2002
Professor Ronald L. Rivest

Problem Set 2 Solutions

Problem 1-1. One-Time Pads

We received a lot of nice and different solutions to this problem. We had a hard time picking the
nicest.

The two main approaches to breaking the messages of one group of messages sharing the same
One-Time Pad were:

(a)Guessing a totally blank message and trying to recognize English patterns in the other mes-
sages of the same group, and reiterate for the other messages to get even more chunks of the
plaintexts. This method provides a fast start, but does not scale that well.

(b)Making smart guesses. While this method makes the decoding of the first message more
tedious, it scales better.

There were as many variants as languages/tools used to solve this problem: Perl, C, C++, C#,
Java, Maple, Emacs and Excel.

We provide here an excellent solution to this problem combining both approaches, and their re-
spective advantages: fast start from the all-blank messages trials, and scalability from the educated
guesses. Also, the coding is really neat.

This solution has been brought to you by: Jim Paris, David Mellis, Chris Elledge, and Hernan
Lombardo.

It is easy to figure out when two messages use the same OTP. Note that, due to the strange message
format, for any two messages x and y,

0 ≤ xi ⊕ yi < 16

for all individual bytes i ∈ [0, 191]. Therefore, by taking two encoded messages x′ = x ⊕ p and
y′ = y⊕ q and XORing them together, we get x′⊕ y′ = (x⊕ y)⊕ (p⊕ q), which in turn equals x⊕ y
if they used the same pad p = q. So, if all bits of x′ ⊕ y′ are less than 16, we can be reasonably
certain that the same OTP was used; otherwise, we can be fully certain that different OTPs were
used.

At this point, we wrote a program to figure this out, as well as decode all of the messages. It was
written iteratively, repeatedly looking at the output, deciding what other useful stuff it could do
to figure out the contents, and modifying it accordingly. The basic idea is to XOR together two
messages with the same OTP, then XOR that again with a guess at one of the messages – if the
guess is correct, then the result is another valid message. The iterative process we went through
was something like this:

•Figure out which messages have the same OTP

•For each pair, guess that one of the messages is all spaces and XOR that

•Since many messages do contain many spaces, this gave us enough information to just look at
the results and figure out the message format (which is now placed in the “goal” variable)

2 Handout 17: Problem Set 2 Solutions

•Let the program use “goal” as guesses and iteratively refine the guesses until we decode as
much as possible

•Add the “smartfillin” function to fix up “obvious” parts of the data (completing the word
“TOMORROW”, for example).

•Run the program again. Now it decodes everything.

The source code is available at (it has neat comments about what the various functions do, and
more details about the steps):

http://web.mit.edu/6.857/www/handouts/H17/solve.c

(a)It turns out that only 7 pads are used for the 24 messages:

messages with pad 1: 02 03 09 16
messages with pad 2: 06 07 11
messages with pad 3: 04 10 12
messages with pad 4: 05 13
messages with pad 5: 01 14 19 21
messages with pad 6: 08 17 18 22 23
messages with pad 7: 15 20 24

Running the code, we get:

Now decoding messages with pad 1: 02 03 09 16

TO: RACHEL .FROM: PAUL .WHEN: TODAY .TIME: 11:00PM.WHERE: VIENNA .DATE: WED 03 JUL 2002.

TO: DAVID .FROM: RACHEL .WHEN: TODAY .TIME: 12:00PM.WHERE: BUDAPEST .DATE: THU 08 AUG 2002.

TO: BOB .FROM: CHARLIE.WHEN: .TIME: .WHERE: .DATE: THU 05 SEP 2002.

TO: ALICE .FROM: BOB .WHEN: .TIME: .WHERE: .DATE: SUN 22 SEP 2002.

Now decoding messages with pad 2: 06 07 11

TO: PAUL .FROM: MARY .WHEN: .TIME: .WHERE: .DATE: SAT 14 SEP 2002.

TO: ALICE .FROM: BOB .WHEN: TOMORROW.TIME: 04:15PM.WHERE: PARIS .DATE: WED 25 SEP 2002.

TO: JOHN .FROM: KELLY .WHEN: .TIME: .WHERE: .DATE: THU 15 AUG 2002.

Now decoding messages with pad 3: 04 10 12

TO: PAUL .FROM: ALICE .WHEN: TOMORROW.TIME: 09:20AM.WHERE: ATHENS .DATE: FRI 31 MAY 2002.

TO: CHARLIE.FROM: KELLY .WHEN: .TIME: .WHERE: .DATE: SUN 01 SEP 2002.

TO: BOB .FROM: CHARLIE.WHEN: TODAY .TIME: 04:20PM.WHERE: ROME .DATE: FRI 13 SEP 2002.

Now decoding messages with pad 4: 05 13

TO: DAVID .FROM: SUSAN .WHEN: .TIME: .WHERE: .DATE: TUE 10 SEP 2002.

TO: KELLY .FROM: SUSAN .WHEN: TOMORROW.TIME: 10:30AM.WHERE: WARSAW .DATE: SUN 01 SEP 2002.

Now decoding messages with pad 5: 01 14 19 21

TO: DAVID .FROM: RACHEL .WHEN: .TIME: .WHERE: .DATE: WED 07 AUG 2002.

TO: CHARLIE.FROM: KELLY .WHEN: TOMORROW.TIME: 03:50PM.WHERE: STOCKHOLM .DATE: SAT 07 SEP 2002.

TO: KELLY .FROM: SUSAN .WHEN: .TIME: .WHERE: .DATE: FRI 30 AUG 2002.

TO: MARY .FROM: ALICE .WHEN: .TIME: .WHERE: .DATE: MON 02 SEP 2002.

Now decoding messages with pad 6: 08 17 18 22 23

TO: JOHN .FROM: KELLY .WHEN: TODAY .TIME: 05:25PM.WHERE: MADRID .DATE: FRI 30 AUG 2002.

TO: PAUL .FROM: ALICE .WHEN: .TIME: .WHERE: .DATE: MON 27 MAY 2002.

TO: MARY .FROM: ALICE .WHEN: TOMORROW.TIME: 08:30AM.WHERE: COPENHAGEN .DATE: TUE 10 SEP 2002.

TO: SUSAN .FROM: JOHN .WHEN: .TIME: .WHERE: .DATE: FRI 16 AUG 2002.

TO: PAUL .FROM: MARY .WHEN: TODAY .TIME: 06:10PM.WHERE: HELSINKI .DATE: THU 19 SEP 2002.

Now decoding messages with pad 7: 15 20 24

TO: RACHEL .FROM: PAUL .WHEN: .TIME: .WHERE: .DATE: SAT 30 JUN 2002.

TO: DAVID .FROM: SUSAN .WHEN: TOMORROW.TIME: 01:45PM.WHERE: LONDON .DATE: MON 12 SEP 2002.

TO: SUSAN .FROM: JOHN .WHEN: TOMORROW.TIME: 02:55PM.WHERE: PRAGUE .DATE: MON 19 AUG 2002.

(b)From the decoded messages, we see that the only time “Paul” meets “Mary” is on September
19 in “Helsinki” at 06:10PM. We’ve missed the meeting, so we can’t intercept them.

(c)From the decoded messages, we see that “Alice” and “Bob” plan on meeting on September
26 at 04:15PM in “Paris”. Our Secret Agent ManTM is on his way!

Handout 17: Problem Set 2 Solutions 3

(Jim Paris wrote most of the code and this writeup. David Mellis had most of the ideas about pattern
matching and filling in what we know, and also figured out the message format. Chris Elledge and Hernan
Lombardo gave additional ideas and support during the whole process. Secret Agent ManTM just watched.)

For your reference, we used the following code to design and try to break the messages:

http://web.mit.edu/6.857/www/handouts/H17/otp.jar

Using the second approach exclusively, starting by breaking the group of 5 messages (as suggested
as a hint by the problem) takes about 5 to 10 minutes by first guessing “Copenhagen”, while
breaking the other groups should take less than a couple of minutes per group if you first try to
guess the chunk with all the blank fields:
“.when: .time: .where: .date: ”.

Problem 1-2. Hashes do grow in trees, you know

Here is one of the excellent solutions, written by Kenny C. K. Fong, Jonathan M. Hunt, Soyini D.
Liburd, and Eduardo I. McLean. We have annotated their solution a little bit.

(a) Proving a leaf

Several solutions said that direct ancestors (the path to the root itself) must appear in the signature.
This is not necessary because the signature verifier must recompute the path anyway. The verifier
cannot trust that the path is what the signer claims without recomputing it. This led to signature
sizes off by a factor of 2.

We accepted answers of 560 or 580 bytes, depending if you considered the leaf itself as part of
the signature. Usually we do not consider the value being authenticated as part of the signature
though. A few teams made off-by-one errors. As defined by the problem set, a tree with depth t
has 2t leaves. Therefore the path length is t, not t − 1. Consider the case of t = 2 and draw the
tree and signature...

The signer should publish the sibling of xs and the siblings of all ancestors of xs in order to reveal
xs and prove it is part of the tree rooted at X (the ancestors of xs are the tree nodes along the
path between xs and the root X). Since the depth of the Merkle tree is t, there are t tree nodes
(i.e. the siblings) in total in the proof, and so t hash function evaluations are required on the part
of the verifier to check the proof. The sibling of xs is itself a leaf and so its length is 160 bits;
furthermore, the siblings of the ancestors of xs are hash values of h and so are 160 bits long. Hence,
the length of every tree node in the proof is 160 bits, whereas the length of the proof is 160t bits,
i.e., 20t bytes.

(b) Why do we force wi to end with a zero bit?

The best way to answer this question is to ask yourself what happens if you instead define wi = i||vi.
In this case, the signatures are malleable as shown below. In fact, we could make the last bit random
or even make the parent of xwi the hash of a single leaf instead of two leaves. That is, we don’t
really need an xi||vi||1 node.

If we do not force wi to end with a zero bit, an eavesdropping adversary can make an existential
forgery. To illustrate this attack, assume that wi does not end with the zero bit, i.e., wi = i||vi.
Suppose, without loss of generality, that the signer Alice publishes a proof of vi = 1 as the i-th

4 Handout 17: Problem Set 2 Solutions

value of the hash digest; the proof consists of i, vi = 1, and the proof that xwi is in the tree rooted
at X (note that wi = i||1 because vi = 1). From part (a), we know that the proof that xwi is in
the Merkle tree consists of the sibling of xwi and the siblings of all ancestors of xwi . Now, suppose
that the adversary Eve eavesdrops this proof of vi = 1. Then Eve can forge a proof of vi = 0 as
the i-th value of the hash digest as follows. The proof of vi = 0 consists of i, vi = 0, and the proof
that xw′i is in the Merkle tree rooted at X, where w′i = i||0. The proof that xw′i is in the Merkle
tree consists of xwi (which is the sibling of xw′i) and the siblings of all ancestors of xwi (which are
also the siblings of all ancestors of xw′i). The implication of Eve’s ability to forge a proof of vi = 0
is that she can forge a message whose hash digest is the same as Alice’s except the i-th bit.

(c) How long is the signature? How many hash function evaluations are required to check the
signature? (Give upper and lower bounds.)

There were several correct answers for this question, but all had the same form: you had to realize
that signatures of various bits may overlap in the Merkle hash tree. Some students only included
the bits for the proofs of leaves – neglecting the space needed to represent i and vi. However,
it’s not necessary to include i and vi if both parties have an established protocol such that the
placement in the tree is implied. So we accepted both answers.

One question we did not ask is how long it takes a signer to generate a signature. Or how much
space it takes to store the tree. In fact, the signer will have to run approximately 2t+1 − 1 hash
operations because the root node cannot be computed without all the children nodes known!

The signature consists of a proof of vi as the i-th value of the hash digest of the message, for all
i ∈ {0, . . . , 159}. The proof of each vi consists of i (26 bits), vi (1 bit), and the proof that xwi is in
the tree rooted at X (160t bits from part (a)). Therefore, the proof of each vi is (160t + 27) bits
long. There are 160 such bits in the hash digest to be authenticated, so the length of the signature
is 160(160t+ 27) bits, i.e., 20(160t+ 27) bytes.

A lower bound for the number of hash function evaluations required to check the signature is
yielded in the case that the 160 leaves to be authenticated are as close to each other as possible in
the Merkle tree so as to maximize the degree of overlapping among those immediate hash values
obtained during verification. The definition of wi forces that for any full subtree of depth 2 (with
4 leaves) rooted at a node at level t − 2 of the Merkle tree, one can find at most one leaf to be
authenticated by the signature. Hence, a scenario in which the 160 leaves to be authenticated
are as close to each other as possible is that they are located within the leftmost 4 × 160 = 640
leaves in the Merkle tree (see Figure 1). We can now divide the Merkle tree into three areas.
Within the area between levels t − 2 and t, 160 × 2 = 320 hash function evaluations are required.
Within the area between levels t− 10 and t− 2 (note that dlg 160e = 8 and t− 10 = (t− 2)− 8),
80 + 40 + 20 + 10 + 5 + 3 + 2 + 1 = 161 hash function evaluations are required, because all the 160
grandparents (at level t− 2) of the 160 leaves to be authenticated are consecutive. Within the area
above level t− 10, only t− 10 hash function evaluations are required, because all branches leading
to the leftmost 640 leaves merge to a single node at level t − 10 and so now we just need to head
towards the root by following a single path. To conclude, a lower bound for the number of hash
function evaluations required to check the signature is given by 320 + 161 + (t− 10) = 471 + t.

On the contrary, an upper bound for the number of hash function evaluations required to check the
signature is yielded in the case that the 160 leaves to be authenticated is as far away from each other
as possible in the Merkle tree. In other words, the 160 leaves should be evenly spread out at the

Handout 17: Problem Set 2 Solutions 5

bottom level (see Figure 2). In this case, we count the number of hash function evaluations required
using a top-down approach rather than a bottom-up approach. We divide the Merkle tree into 2
areas. Within the area above level 8 (= dlg 160e), immediate hash values for verification of different
leaves overlap , and so 128+64+32+16+8+4+2+1 = 255 hash function evaluations are required.
Within the area below level 8, signature verification for each of the 160 leaves follows a single path
between the leaf and one unique node at level 8, and these 160 paths do not intersect each other
(because these paths have to spread out evenly in the huge Merkle tree so that their ends, i.e. the
160 leaves to be authenticated, are also evenly spread out at the bottom level). Therefore, in this
area, 160(t− 8) hash function evaluations are required. Hence, an upper bound for the number of
hash function evaluations required to check the signature is given by 255+160(t−8) = 160t−1025.

(d) What properties should the hash function have?

The hash function should have the following properties:

1. It should be One-Way. Given one node, it should be infeasible for someone to compute the
values of its children. For example, people should not be able to compute the values of the
secret children from the value of the public root.

2. It should be Collision Resistant. It should be infeasible to find two different inputs that hash
to the same output value. Otherwise, for example, it would be possible to sign one message,
and have an adversary claim that you signed another message (that has the same proof).

(e) How do signature size and verification speed compare with 1,024-bit RSA with small public
exponent size? (You can find suitable information on the Web...)

Because the hash function is 160 bits, we had hoped you would evaluate the only 160-bit hash
function we discussed in lecture: SHA-1. We also accepted comparisons to MD5 performance (about
twice as fast as SHA-1) and parameterized performance (e.g., hash H can process X bytes/sec).
The verification performance of the RSA and Merkle methods are surprisingly close. The RSA
verification method is slow, but the small public exponent makes verification must faster than the
average modular exponentiation. The Merkle hash tree verification requires several hundred hash
operations, but each operation is very fast.

According to slides 21–22 on http://www.cs.wpi.edu/∼rek/Adv nets/Spring2002/Kerberos.ppt,
a modern machine achieves a SHA-1 throughput of 59.369 MB/sec and a 1,024-bit RSA verification
(presumably low-exponent) of 0.23 ms/verification. Neglecting startup overheads, we can assume
SHA-1 can make 1,556,322 hash operations/sec when the input is always 320 bits (each Merkle tree
node is the hash of two 160-bit values). Then a single SHA-1 hash of 320 bits should take about
0.6425µsec. That means we can do 358 SHA-1 operations for each RSA signature verification.
Since verification in the Merkle scheme varies between 499 and 3,455 hash operations (according to
part (c)), the Merkle verification is slightly slower (0.32 ms minimum, 2.2 ms maximum). However,
there may be start up overheads in SHA-1 (hashing 320 bits probably doesn’t reach the asymptotic
running time). So the verification is likely no faster than determined above.

From part (c), we know that the signature size of the proposed authentication scheme is 20(160t+27)
bytes. If t = 28, then the signature size is about 88 Kbytes, which is too large. However, a 1,024-bit
RSA signature has size 1,024 bits only [1].

RSA signature scheme with small public exponent size is characterized by its fast verification speed.
If the public exponent is small, say 17, then RSA verification involves 5 modular multiplications only.

6 Handout 17: Problem Set 2 Solutions

From [2], we know that 1,024-bit RSA verification (with a small public exponent) has a throughput
of 7.4 Kbits/sec on a 90 MHz Pentium. However, modular exponentiation is much slower than a
hash function evaluation. From [3], we can see that the throughput of MD5 is 136.7 Mbits/sec!
Recall from part (c) that the upper bound for the number of hash function evaluations required for
verification in the proposed authentication scheme is 160t− 1025. If t = 28, the verification speed
of the proposed scheme is just 3456 hash function evaluations (one more hash function evaluation
is needed to hash the message with h), which is not much, taking the extreme high speed of a hash
function evaluation into account. Hence, the verification speed of the proposed scheme is faster
than that of 1,024-bit RSA.

Contributors
Solution Design: (entire group effort) - Kenny Fong, Jonathan Hunt, Soyini Liburd, Eduardo
McLean.
Write Up: Kenny Fong, Soyini Liburd.
Proof Reading: (entire group effort) - Kenny Fong, Jonathan Hunt, Soyini Liburd, Eduardo
McLean.

References
1. Robert Zuccherato, Elliptic Curve Cryptography Support in Entrust. May 9, 2000.
2. How fast is RSA? http://www.x5.net/faqs/crypto/q9.html
3. The hash function RIPEMD-160. http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

Problem 1-3. Block cipher security

(a) Key size

Essays covered a wide array of issues. A few essays misunderstood Triple-DES (3DES) though.
Triple-DES is not three times as strong as single DES. Rather, it is at most twice as strong with its
112-bit key. The encrypt-decrypt-encrypt chain consists of encryption with key 1, decryption with
key 2, and encryption with key 3. This is useful for preventing meet-in-the-middle attacks while
also allowing backwards compatibility. Setting key 1 = key 2 makes the chain exactly single DES.

Here is an excellent essay from Mike Hamler, Richard Hu, Flora Lee, and Neil Sanchala. It addresses
the major issues of selecting symmetric key sizes.

Recently, the National Institute for Standards and Technology adopted a new encryption algorithm,
AES, as the new standard encryption. The standard previously had been DES which was created
by IBM in 1976.1 However, when the 56-bit key size for DES was judged to be insufficient, a search
for a new encryption scheme began. In the meantime, people utilized Triple-DES. Triple-DES uses
112-bit keys and is therefore believed to be much more secure than DES. However, NIST decided
to implement and disseminate an entirely new algorithm rather than continuing the trend of re-
encrypting something multiple times in order to achieve longer key lengths. This decision was wise
because certain algorithms do not scale well, a new algorithm cuts off old attacks, and also because
of the change of the attitude toward encryption.

Certain algorithms and technology do not scale well. It is not necessarily efficient to merely con-
tinually encrypt multiple times in order to achieve longer key lengths. For example, in order to
achieve a 112-bit key length with DES, we cannot simply encrypt a plaintext message twice. Such

1www.nist.gov

Handout 17: Problem Set 2 Solutions 7

a scheme is thwarted by a meet-in-the-middle attack. Therefore in order to double the key size, the
user must actually run DES three times, encrypt-decrypt-encrypt.2 As we wish to increase the key
size more and more, we may have to run DES a disproportionate number of times. This method is
extremely inefficient. Instead, if we implement a new encryption scheme, we can keep our current
efficiency while attempting to maintain the level of security. In addition, this repeated encryption
does not always scale well with the key length either. Continuing the DES example, in Triple-DES,
certain keys cannot be used because if the decrypt key is the same as either of the encrypt keys
then the end result is just DES-level encryption. This artifact cuts down the space of available keys
down and does not give us true 112-bit key length protection.3

Furthermore, merely re-encrypting the plaintext with an established cipher does not solve the
original problem. Even though established ciphers may have stood the test of time, it does not
mean that they still do not contain risks. For example, the EFF built a DES cracking machine. It
recovers the DES key under a variety of attack models.2 This information about the implementation
of the cracking machine implies that it uses an approach to crack DES that is slightly better than
brute-force. There still exists slight flaws in DES that can be exploited to recover the key in
better than brute-force time. These flaws are not solved when the key length is expanded and in
fact may lull many people into a false sense of security. Only by implementing an entirely new
encryption scheme can we remove these flaws. While the new encryption scheme may have its own
shortcomings, it at least forces hackers to try and find them.

Lastly, the risk of AES having a fatal flaw that is not discovered within the first month of its
inception is very small. There has been a major change in attitude toward encryption as was
demonstrated by NIST. NIST called for a public competition of encryption schemes which was
helpful as people tried to crack other people’s schemes 4. In the past, this was not the case as
certain agencies such as the NSA tried to dictate the limits and tried to restrict access to encryption
schemes. Especially since the inception of the Internet and distributed computing programs such
as SETI, more and more people are getting involved in helping review and test encryption schemes.
For example, in a recent issue of Crypto-gram, a free monthly newsletter released by Bruce Schneier,
it describes a recent claim of a flaw in AES.5 Before the Internet, this type of information would
not have been able to spread so quickly and to so many people. This makes battle-testing new
encryption schemes less risky than in the past.

Because of the change in attitude toward encryption and the spread of knowledge, thanks in part
to the Internet, developing and testing new encryption schemes is not as risky as it once was. This
revelation makes it more attractive for the NIST to establish new standards for encryption instead
of trying to patch the old ones through a tactic such as repeated encryption. The new standards
come with flaws that are unknown to both hacker and to client, as opposed to old standards that
may not scale well and may have slight flaws that compound themselves as we try to enlarge their
key space.

(b) P = NP or 6= NP. That is the question.

There were several great essays arguing for or against Ben. This excellent essay comes from Brent
Buddensee, Ariel Segall, and David Wilson.

26.857 Problem Set #2
3www.tropsoft.com
46.857 Lecture 5
5CRYPTO-GRAM, September 15, 2002

8 Handout 17: Problem Set 2 Solutions

Ben Bitdiddle’s assertion that 128-bit keys are too large because the probability of one being found
in a known plaintext attack is less than the probability that we will discover that P = NP is flawed.
This assertion does not address the heart of the matter: whether a 128-bit key is appropriate for
good security. We claim that a 128-bit key is not too large, and that the probability of discovering
that P = NP is irrelevant.

If P = NP, several of the assumptions upon which modern cryptography is based will fall apart.
Assigning a probability to whether or not it will be proved in a given time period, however, is
meaningless. Even with a useful probability, it is irrelevant for this question. Either P = NP, or
it does not. If it does, then we don’t need to worry about key size, since the relevant algorithms
will become useless; if it does not, then the probability of proving that it does is effectively zero,
and the effectiveness of our key size can be determined normally.

A more useful inspection of the usefulness of a 128-bit key would be to see how it holds up against
likely modern and future adversaries. According to Handout 8, a conservative estimate of the key
length necessary to protect information from an organization with the resources of an intelligence
agency in 1995 was 75 bits. Applying Moore’s Law, we can guess that the equivalent key length
necessary for security in 2002 is 80 bits. Twenty years from now, 98 bits will be the minimum
necessary for thorough protection from brute force attacks if these guidelines continue to hold.

What does it mean for a key to be too small? If a key is too short, an adversary can trivially brute-
force the key values to decrypt a message. A key being too large is much harder to define. According
to these numbers, a 128-bit key is significantly larger than is necessary for even moderately long-
term solution. On the other hand, the numbers mentioned are guidelines, and assume that the
algorithms are perfect and that Moore’s Law continues to hold. The difference in processing power
necessary to perform encryption using a 128-bit key is not significantly greater than that required
to encrypt using a 100-bit key. Each extra bit doubles the work required on an adversary’s part,
however. If we are trying to design a secure algorithm, extra bits in the key certainly won’t hurt,
and can mean a dramatic increase in effectiveness.

Ben Bitdiddle may be correct that the 128-bit key is not necessary for good security, but the
difference in computation on the user’s part between minimum security and overly strong security
is so small that we can err on the side of safety without even worrying much about legacy systems.
128-bit keys should provide secrecy even from well-budgeted intelligence agencies for decades as
long as the algorithm is not broken. Average individual users and small corporations may not
require the level of cryptographic protection offered by such a large key, but a security standard
should allow for the most significant protection possible without causing undue trouble to the
user. Although perhaps somewhat larger than minimally necessary, a 128-bit key standard fits this
specification nicely.

