
Massachusetts Institute of Technology Handout 18
6.857: Network and Computer Security October 8, 2002
Professor Ronald L. Rivest

Problem Set 3 Solutions

Problem 3-1. All your PRIMES is belong to us

This solution comes from Kenny C.K. Fong, Jonathan M. Hunt, Soyini D. Liburd, and Eduardo I.
McLean. Their solutions have been slightly edited.

(a) Generators of Z�

p

See http://web.mit.edu/6.857/www/handouts/H18/ for the source code from the TAs and the
6.857 student group.

(b) Expected amount of work to �nd primes and generators

We accepted a wide range of solutions as long as they had non-trivial lower and upper bounds. We
had hoped that you would produce a lower bound based on the �(n) � n

6 ln lnn formula. Most people
recognized this. The upper bound, however, is more interesting if we only select co-Sophie-Germain
primes.

Some groups did not realize that to eÆciently determine the order of an element (and hence,
whether it's a generator), we need the the prime factorization of p � 1. No one yet knows of an
eÆcient algorithm to do this without the prime factorization of p� 1.

Here is the solution from the student group:

Let p be a prime. Then �(p) = p� 1, where � is Euler's phi function. We know from part (a) that
the number of generators of Z�

p is �(�(p)) = �(p � 1). Moreover, jZ�

pj = p � 1. Therefore, for a

random prime p, the probability of a random element g 2 Zp being a generator of Z�

p is
�(p�1)
p�1 .

From class we know the theorem that �(n) > n
6 ln lnn for all positive integers n. Furthermore, since

p is b-bit long, we have that lg(p� 1) = b. We then obtain

�(p� 1) >
p� 1

6 ln ln(p� 1)
=

p� 1

6 ln lg(p�1)
lg e

=
p� 1

6 ln b
lg e

>
p� 1

6 ln b
:

To obtain an upper bound for �(p � 1), notice that p � 1 is even. Thus �(p � 1) = �(2 � p�1
2 ) =

�(2)�(p�1
2 ) = �(p�1

2 ) as �(2) = 1. Now, notice that �(p�1
2 ) is maximized when p�1

2 is a prime (i.e.

p is a safe prime), in which case �(p�1
2 ) = p�1

2 � 1 = p�3
2 . Hence, we have that

�(p� 1) = �(
p� 1

2
) �

p� 3

2
:

As a result, the probability of a random element g 2 Zp being a generator of Z�

p is given by

d = �(p�1)
p�1 , where

1

6 ln b
< d �

p� 3

2(p� 1)
:

To deduce the number of trials we would expect to make for our group to �nd a suitable prime p
such that each of our names is a generator of Z�

p, we �rst notice that the number of primes smaller
than or equal to x is given by �(x) � x

lnx by the Prime Number Theorem, and so the probability



2 Handout 18: Problem Set 3 Solutions

that a number p randomly selected from fi : 1 � i � x; i is oddg is prime is 2
lnx . In particular, we

have that

Prob[a b-bit random odd number is prime] =
2

ln 2b
=

2
lg 2b

lg e

=
2 lg e

b
:

Now, given a b-bit prime p, the probability of a random element g 2 Zp being a generator of Z�

p is
d. Assuming that our names are random and independent, the probability that each of our names
is a generator of Z�

p is given by ds. Hence, the number of trials we would expect to make for our
group to �nd a suitable prime p such that each of our names is a generator of Z�

p is

1
2 lg e
b

� ds
=

b

2ds lg e
:

(c) Find a prime

Here is the solution from the student group:

Because of the random nature of our program, we ran it several times to get a better estimate of
the number of random numbers we would need to try before obtaining a suitable prime.

On average, 28,432 random numbers were tried before we found a suitable prime.

Run 1 names generate(\Soyini Kenny Eduardo Jonathan", 64): Each name in (Soyini Kenny Ed-
uardo Jonathan) is a generator of: 17,561,978,140,628,705,999.

12,628 random numbers were tried before we obtained this result.

Run 2 names generate(\Soyini Kenny Eduardo Jonathan", 64): Each name in (Soyini Kenny Ed-
uardo Jonathan) is a generator of: 16,301,950,415,158,093,319.

27,639 random numbers were tried before we obtained this result.

Run 3 names generate(\Soyini Kenny Eduardo Jonathan", 64): Each name in (Soyini Kenny Ed-
uardo Jonathan) is a generator of: 3,765,661,111,182,547,667.

45,027 random numbers were tried before we obtained this result.

(d) Finding co-Sophie-Germain primes

Here is the solution from the student group:

By the Prime Number Theorem, the probability that a random b-bit number is prime is given by

�(2b)

2b
=

1

2b
�

2b

ln 2b
=

1
lg 2b

lg e

=
lg e

b
:

Suppose we randomly choose a 1024-bit number q. The probability that q is a prime is therefore
lg e
1024 . In order for q to be a Sophie-Germain prime, we also need 2q+1 to be prime. Note that 2q+1

would be a 1025-bit number, so the probability that 2q + 1 is prime is given by lg e
1025 . Assuming

that the likelihood pf q being prime and 2q + 1 being prime is independent, the probability that
a random 1024-bit number is a Sophie-Germain Prime is thus lg e

1024 �
lg e
1025 . Hence, the number of

1024-bit Sophie-Germain primes we would expect to exist is given by

� lg e

1024
�

lg e

1025

�
� 21024 =

21024 lg2 e

1049600
:



Handout 18: Problem Set 3 Solutions 3

Contributors

Solution Design: (entire group e�ort) - Kenny Fong, Jonathan Hunt, Soyini Liburd, Eduardo
McLean.
Solution Implementation: Soyini Liburd.
Write Up: Kenny Fong, Soyini Liburd.
Code Design and Implementation: Soyini Liburd, Eduardo McLean.
Proof Reading: (entire group e�ort) - Kenny Fong, Jonathan Hunt, Soyini Liburd, Eduardo
McLean.
Acknowledgement: the TAs

Problem 3-2. A MAC based on a block cipher

There were many attacks possible on this MAC scheme. Here we present a couple of excellent
solutions. The �rst solution below comes from Stephen Boyer, Xiang Chen, Joseph Corral, and
Carolyn Ng.

Using a chosen-plaintext attack on Alice's encryption scheme, we are able to successfully produce
new ciphertexts not identical to any seen before that Bob would accept as valid. We achieve this
by performing the following steps:

1. We provide Alice with the plaintext to encrypt of the form Mt =M1 +M2 +M2 where each
Mi is a 128-bit block (we repeat the last block). Here + denotes concatenation.

2. Alice will then produce the ciphertext Ct using AES in the following way: Ct = IV1 + C1 +
C2 + C3 + C4.

3. We then construct a new ciphertext to Bob under the form Cforged = (IV 1 �M1) + C1 +
C2 + C3.

4. Bob then decrypts the message which, when veri�ed, is the valid message 0 +M2 with IV
IV 1 �M1 and checksum M2.

5. To verify the checksum, Bob computers 0 �M2, which is just M2 so he trusts the forged
message.

Solution: Stephen Boyer, Xiang Chen Written by: Stephen Boyer Proofread by: Entire Group



4 Handout 18: Problem Set 3 Solutions

The following solution comes from Jim Paris, David Mellis, Chris Elledge, and Hernan Lombardo.

We can get Alice to sign two messages M and M 0, and then splice these two messages together to
produce a new message M 00 which Bob will see as authentic. The splice scrambles one block at the
beginning of the message and one block at the splice point, but leaves the data otherwise intact.
To do this, consider the following, without loss of generality:

Alice's scheme takes plaintext fM1;M2; : : : ;Mng and produces ciphertext fC1; C2; : : : ; Cn+1g. The
process looks like this, where IV is random and MC =M1 �M2 � : : : �Mn. (The AES steps are
numbered for clarity; they are all identical operations utilizing some unknown key K).

IV C1

M1 M2 M3 M4 M5 MC

C2 C3 C4 C5 C6

1 2 3 4 5 6

Now assume we just sent her M , and so we now have C as well as IV , and we can compute MC

easily. In other words, we know all of the variables shown in the diagram. Now send a new message
M 0 to get a second set:

M
0

1 M
0

2 M
0

3 M
0

4 M
0

5 M
0

C

C 0

6C 0

5C 0

4C 0

3C 0

2C 0

1IV 0

1 2 3 4 5 6

Let's now attempt to merge these ciphertexts: let's say that we want to send a message M 00 to
Bob that consists of M1;M2;M3;M

0

4;M
0

5. Looking at the diagram for this encryption, we have
something like this:



Handout 18: Problem Set 3 Solutions 5

IV C1

M1 M2 M3

C2 C3

1 2 3 4 5 6

M
0

4 M
0

5 M
0

C

C
0

6C
0

5C
0

4

This is not fully correct; the dotted line through encryption 4 indicates that the result is not C 0

4

as desired. However, we can �x this. We know that E(C 0

3 �M 0

4) = C 0

4, and so we can replace M 0

4

with (M 0

4 � C 0

3 � C3) so that encryption 4 gets the same input as before and once again produces
C 0

4. The encryption now looks like this:

IV C1

M1 M2 M3

C2 C3

1 2 3 4 5 6

M 0

5 M 0

C

C 0

6C 0

5C 0

4

(M 0

4 � C 0

3 � C3)

Now the ciphertext properly corresponds to the message blocks listed. However, the checksum M 0

C

is not correct for this message. Since we can't change the checksum without changing the ciphertext,
we instead note that bits in M1 and IV are interchangeable for the purposes of encryption, and
we can therefore change M1 as necessary to force the checksum of the entire message to equal M 0

C .
That is, we want

M 0

C =M 00

1 �M2 �M3 � (M 0

4 � C 0

3 � C3)�M 0

5

which we get by setting

M 00

1 =M 0

C �M2 �M3 � (M 0

4 � C 0

3 � C3)�M 0

5

To keep C1 unchanged, we need IV
00�M 00

1 = IV �M1, which we get by setting IV
00 = IV �M1�M

00

1 .
The �nal diagram looks like this:



6 Handout 18: Problem Set 3 Solutions

C1

M2 M3

C2 C3

1 2 3 4 5 6

M
0

5 M
0

C

C
0

6C
0

5C
0

4

(M 0

4 � C
0

3 � C3)

(IV �M1 �M
00

1 )

(M 00

1 = : : :)

To summarize: each encryption operation works on the same input as it did in either the �rst or
second message sent to Alice, and so we know it will generate the ciphertext blocks shown. We
send Bob the encrypted message�

IV 00 = IV �M1 �M 00

1

C 00 = fC1; C2; C3; C
0

4; C
0

5; C
0

6g

and he will decrypt it into the messages shown in the previous diagram. The checksum is correct,
so Bob will assume that the message is valid and was generated by Alice, but it wasn't.

Since none of the operations relied on block counts or the location of the splice, this method can
trivially be extended to splice two messages of any length at any point, and can easily be used
again to splice more than two messages.

Finally, a much simpler answer to this question: Send Alice fM1;M2;M1�M2g, and she will reply
with fIV;C1; C2; C3; C4g. Send Bob fIV;C1; C2; C3g and he will consider it a valid message even
though it's not what Alice returned.

(David Mellis came up with the basic idea, and Jim Paris, Chris Elledge, and Hernan Lombardo helped

formalize it into this answer. Jim Paris wrote it up.)

Problem 3-3. Block ciphers need to be non-aÆne

There were quite a few common errors throughout the problem. The most common mistakes/inexactitues
are summarized in Notes.

Note: TAES (like AES) is a family of functions indexed by a key. In this problem, we study the
breaking of one (any one) function in the family.

I - TAES is an aÆne transformation

Note: In linear algebra, we always represent vectors as column vectors, so that all linear transfor-
mations can be represented by matrices (and vice versa). You could also work with the vectors
represented by 4 x 4 arrays as in [1], but it would be much harder to capture all linear transforma-
tions with matrices.



Handout 18: Problem Set 3 Solutions 7

(I-a)

The domains and codomains (a.k.a. ranges) of ShiftRow, MixColumn, AddRoundKey, and TAES

are the set of all possible states: S = (GF(28))16. Indeed, these transformations operate on states
to give other states. As de�ned in [1], a state is composed of four rows of four bytes (for the 128-bit
version), each byte being an element of the �eld GF(28). Reordering those elements in a column,
we get a column vector of dimension 16.

We can reorder the elements in two orders:

- By row �rst:
(a0;0; a0;1; a0;2; a0;3; a1;0; : : : ; a3;3)

- By column �rst (which would be the natural order since AES follows this order):
(a0;0; a1;0; a2;0; a3;0; a0;1; : : : ; a3;3)

In the following, we give the matrices for the two conventions (A for the row-�rst order, A0 for the
column-�rst order).

1.ShiftRow is a linear transformation (b = 0) where:

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 0
0 1 0 0

0 0 1 0

0 0 0 1
1 0 0 0

0 0 1 0

0 0 0 1
1 0 0 0

0 1 0 0

0 0 0 0 1
1 0 0 0

0 1 0 0

0 0 1 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

; A0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

2.MixColumn is a linear transformation (b = 0) where:

A =

0
BB@

2 � I4 3 � I4 1 � I4 1 � I4
1 � I4 2 � I4 3 � I4 1 � I4
1 � I4 1 � I4 2 � I4 3 � I4
3 � I4 1 � I4 1 � I4 2 � I4

1
CCA ; A0 =

0
BB@

M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 M

1
CCA

where I4 is the identity matrix of dimension 4, and M the MixColumn matrix de�ned in [1]:

I4 =

0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ; and M =

0
BB@

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

1
CCA



8 Handout 18: Problem Set 3 Solutions

3.AddRoundKey is a aÆne transformation where A = I16 is the identity matrix of dimension 16,
and b is the round key (as the bitwise XOR is the addition in the �eld GF(28)).

(I-b)

Let f :

�
E ! F

x 7! A1 � x+ b1
and g :

�
F ! G

y 7! A2 � y + b2

Then 8x 2 E; g Æ f(x) = g(f(x)) = A2 � (A1 � x+ b1) + b2 = (A2 � A1) � x+ (A2 � b1 + b2).

Therefore, g Æ f is an aÆne transformation with A = A2 �A1 and b = A2 � b1 + b2.

By obvious induction, the composition of any (�nite) number of aÆne transformations is also aÆne.

As TAES is the composition of a �nite number of ShiftRow, MixColumn, AddRoundKey transfor-
mations, TAES is also aÆne.

Note: The number of such transformations is not 3, since we have many rounds.

(I-c)

TAES being aÆne, 9A; b such that 8x 2 S; TAES(x) = A � x+ b.

We know TAES is invertible (as the general AES is, since we can encrypt/decrypt uniquely).

Note: First, we need to prove that the matrix A is invertible. Let us prove it by contradiction.

If A were not invertible, then A would not be 1-1. Which means that we could �nd
x1 6= x2 such that A � x1 = A � x2. Then, we would have A � x1 + b = A � x2 + b, i.e.
TAES(x1) = TAES(x2), and TAES would not be 1-1, thus not invertible.

Now, A being invertible, we have:

TAES(x) = y

, A � x+ b = y

, A � x = y � b

, x = A�1(y � b)
, x = A�1 � y + (�A�1 � b)

Therefore, TAES�1 is aÆne too.

II - An aÆne transformation is easily breakable

In the following, for convenience, all indices start at 1, not 0.

(II-a)

We just need one pair, if x = 0. Indeed, since g(0) = b, knowing the pair (0, g(0)) enables us to
recover b, and reduces the resolution of g(x) = A � x+ b to that of f(x) = A � x.

(II-b)

Since A has n:n = n2 unknown coeÆcients, and each pair (x; f(x)) yields n linear equations, we
need at least n pairs.



Handout 18: Problem Set 3 Solutions 9

Let us have a closer look at the n linear equations. Knowing the pair (xi; yi = f(xi)) yields the
following linear equations (the superscript here is used as an index, and not with the standard
power meaning):

(Ri)

8>>><
>>>:

A1;1 � x
i
1 + A1;2 � x

i
2 + � � �+ A1;n � x

i
n = yi1

A2;1 � x
i
1 + A2;2 � x

i
2 + � � �+ A2;n � x

i
n = yi2

... +
... +

. . . +
... =

...
An;1 � x

i
1 + An;2 � x

i
2 + � � �+ An;n � x

i
n = yin

Thus, knowing n pairs (x1; y1 = f(x1)); : : : ; (xn; yn = f(xn)) yields n systems of n linear equations
(we take the jth equation given by each pair to form (Sj)):

8j 2 f1; 2; : : : ; ng; (Sj)

8>>><
>>>:

Aj;1 � x
1
1 + Aj;2 � x

1
2 + � � �+ Aj;n � x

1
n = y1j

Aj;1 � x
2
1 + Aj;2 � x

2
2 + � � �+ Aj;n � x

2
n = y2j

... +
... +

. . . +
... =

...
Aj;1 � x

n
1 + Aj;2 � x

n
2 + � � �+ Aj;n � x

n
n = ynj

Using matrix form:

8j 2 f1; 2; : : : ; ng; (Sj)

0
BBB@

x11 x12 � � � x1n
x21 x22 � � � x2n
...

...
. . .

...
xn1 xn2 � � � xnn

1
CCCA �

0
BBB@

Aj;1

Aj;2
...

Aj;n

1
CCCA =

0
BBB@

y1j
y2j
...
ynj

1
CCCA

Each system (Sj) is a system of n linear equations with n unknowns Aj;1; Aj;2; � � � ; Aj;n. A necessary
and suÆcient condition for the system (Sj) to have a uniquely determined solution is to have a
non-null determinant for the matrix (xik)i;k, i.e. that the (x

1; x2; : : : ; xn) be linearly independent.
Note that all systems (Sj) have the same (xik)i;k matrix, but with di�erent (ykj )k constants.

In conclusion, we just need n pairs (xi; yi = f(xi)) if the (x1; x2; : : : ; xn) are linearly independent.

Note: Considering all the equations as a system of n2 linear equations with n2 unknowns would
have forced us to relate the non-nullity of the n2 x n2 determinant to the linear independence of
the (x1; x2; : : : ; xn), which is a bit less straightforward.

III - How to break TAES

By part I, we know that TAES is aÆne. Therefore, 9A; b such that 8x 2 S; TAES(x) = A � x+ b.

We �rst query the null message m0 = 0, so that we get b = TAES(0).

Then, for i 2 f1; 2; : : : ; 16g, we query the message mi = 02�(i�1)jj01jj02�(16�i) in hexadecimal:
(m1;m2; � � � ;m16) is the unit basis of the vector space S.

Now we can compute the columns (A1; A2; : : : ; A16) of A as follows: Ai = TAES(mi)�TAES(m0).

We only needed to compute 16 matrix \additions"!!!

In conclusion, we only need 17 plaintext queries to entirely break TAES, i.e. encrypt any message
we want afterwards.



10 Handout 18: Problem Set 3 Solutions

Of course, then, by inverting the matrix A, we can also decrypt any message we want.

Remark: A similar ciphertext attach would have given us TAES�1 without much computation,
and then one matrix inversion would have given us TAES.

Last but not least: Two groups (Jim Paris, David Mellis, Chris Elledge, Hernan Lombardo &
Levente Jakab, Josh Marron, Paul Youn, Enrique Zolezzi) actually found better: you actually just
need one one plaintext (or ciphertext) query. Bravo!!!

A careful study of the details of the algorithm show that the matrix A is the result of the multi-
plication of the matrices of all the individual components (over all the rounds), and thus does not
depend on the key. In other words, A is constant (and publicly known) for the whole TAES family
(since the algorithm is public). The only unknown is thus the vector b, the recovering of which
needs only one plaintext (or ciphertext) query.

References

[1] Joan Daemen and Vincent Rijmen. Rijndael: the Advanced Encryption Standard. Dr. Dobb's
Journal, pages 137{139, March 2001.


