
6.857 Computer and Network Security October 24, 2002

Lecture Notes 14 : Certificate chains
Lecturer: Ron Rivest Scribe: Alwen/Burns/Ma

1 Introduction

We begin with a quick overview of the structure of the Domain Name System, followed by an
introduction to the X.509 public key infrastructure. After defining the goals for a PKI, SPKI/SDSI
is introduced through a series (3) of attempts at designing a PKI. The first approach consists of
ACLs which are essentially lists of PK’s. Next, a first level of indirection is introduced, which leads
to problems with PK’s being maintained between domains. Finally, group structures are introduced,
and the SPKI/SDSI PKI is presented. We end with a quick example of how such a PKI structure
might look.

2 Outline

• DNS

• X.509

• SPKI/SDSI

– Certificates

– ACL’s Naive Approach

– ACL’s with 1 Level of Indirection

– ACL’s with Groups (SPKI/SDSI)

– Simple Model

3 Domain Name System (DNS)

DNS is the global system which maps names→ IP addresses. (www.poledancing.com→ 66.115.151.162
for example). DNS is structured as a tree where the root node points to servers which handle com,
org, edu, . . .

However such a structure is not ideal. For one thing, it has a single point of failure at the root node,
as was demonstrated by the Denial of Service attack last Monday on the (13) root servers. About
half of them went down. The DNS SEC project proposes to secure the DNS system.1

0May be freely reproduced for educational or personal use.
1see: http://www.nlnetlabs.nl/dnssec/

1



2 4 PUBLIC KEY INFRASTRUCTURE AND X.509

Figure 1: DNS-tree structure

4 Public Key Infrastructure and X.509

A PKI (such as X.5092 for example) maps Names → public keys. X.509 is arranged as a strict
tree structure. The first level is the most general, and each subsequent level provides greater
detail. For example the first level (i.e. root) is an all encompassing node which points to the
country nodes. Each country node then points to organization nodes, which in turn point to di-
vision nodes, which finally point to a specific name. The address of this leaf then consists of
co=us/org=IBM/div=TJWatson/name=Don Coppersmith.

Figure 2: X.509-tree structure

2http://www.ietf.org/rfc/rfc2459.txt



3

5 Goals for a PKI

The following are goals for a PKI which were considered during the design of the SPKI/SDSI PKI.

• A PKI should not be Centralized, instead should be hierarchical with a top-down structure.
→ In other words a PKI should be distributed and decentralized, with a bottom-up design.

• A PKI should be flexible (should have groups).

• A PKI should be easy to use. (So it should use local names rather than global names.)

6 SPKI/SDSI

6.1 Certificates

The main cryptographic primitive employed by SPKI/SDSI is certificates. There are two kinds.

• ”name certs” which define a local name.

• ”authorization certs” which grant authorization.

Public keys are the principals, because only things signed by them can be recognized. Compare to
X.509 for example, where users are the main objects. Names (also called “identifiers”) are for the
interface (so that people can remember something to refer to the keys), and can be chosen arbitrarily.
Each PK has its own namespace, in which it can certify the validity of local names and bind them
to a principal by producing a certificate to bind the name to a public key. Such namespaces are
not related to each other. So if K1 signs (A,PK1) and K2 signs (A,PK2), then A has different
definitions in the namespaces of K1 and K2. When we say K signs (A,PK) what is meant is that
the corresponding secret key to K is used to produce a name cert. A name cert is a tuple (K,A, S, V )
which is issued by the owner of K (i.e. has SK for K) where:

• K A is the local name being validated.

• S is the subject = definition of name. This may be a public key or another identifier.

• V is the validity period.

• K A→ S is then signed by K.

• KLCS can sign (K rivest,Krivest) which would say “in KLCS ’s name space, K rivest is
defined by the PK Krivest”.



4 6 SPKI/SDSI

6.2 Access Control – Naive Approach

In the naive approach, the Access Control List (ACL) = {PK0, PK1, etc}. In other words, the ACL
is simply a list of public keys. A typical request for access might look something like this:

1. PK identifies itself (without proof) and requests access to a resource.

2. Guardian checks if PK is in the ACL.

3. If not it returns an error message, otherwise it returns the file encrypted with PK.

Figure 3: Access Control – Naive Approach

However this requires the guardian to maintain potentially unreasonably long lists of public keys for
each resource and things become very messy quickly when users change their public keys.

6.3 Access control with 1 level of indirection

So to avoid the problems of needing to modify the ACL each time a user changes their public key, a
level of indirection is introduced. This means that keys can now be assigned identifiers, so the ACL’s
are of the form {KLCS rivest, KLCS kaashoek, KIBM dom, etc}. Therefore, if a key changes, all
that need be done is to issue a new certificate binding the new key to the same identifier, instead of
changing the entire ACL. With this new scheme a typical request for a resource might look something
like this:

1. Krivest (= Rivest’s public key) requests access to a resource.

2. Gaurdien responds “sorry, resource protected by ACL = ...”.

3. Krivest resends request (this time signed) along with proof that Krivest is authorized,
(KLCS rivest,Krivest) signed by KLCS .

However, the guardian has to maintain other parties’ PKs, e.g., LCS has to maintain PKs is-
sued by IBM, MIT, etc. So to avoid this, an extra level of indirection is introduced. To in-
clude KMIT ron rivest in an ACL, the definition KLCS rivest → KMIT ron rivest is cre-
ated (by KLCS). Now for Krivest to get accepted by a guardian, a certificate chain of the form
(KLCS rivest → KMIT ron rivest) and (KMIT ron rivest → Krivest) is needed. In other
words, a chain beginning at the public key and ending in a valid identifier listed in LCS’s ACL is
required. A name can have multiple values (KLCS rivest → PK1) and (KLCS rivest → PK2)



6.4 Access Control with Groups (SPKI/SDSI) 5

Figure 4: Access Control with 1 Level of Indirection

for example. Similarly, KLCS faculty → KLCS rivest means KLCS rivest is a subset of KLCS

faculty.

This could lead to the problem of ACLs quickly becoming unreasonably long.

6.4 Access Control with Groups (SPKI/SDSI)

To solve this problem, the concept of groups is introduced. Using the fact that names can have
multiple definitions, abstract names can be introduced forming groups (such as Kfaculty). Thus a
typical ACL may be as simple as ACL = {faculty}, and a typical request for access would look
something like this:

1. PK sends a request.

2. Guardian responds by sending the ACL

3. PK sends the request again, this time signed with a SK along with a proof that PK is in
fact included through some level of indirection in the ACL, in the form of a certificate chain
beginning at PK and ending in a name in the ACL.

Figure 5: Access Control with Groups (SPKI/SDSI)



6 6 SPKI/SDSI

6.5 Simple Model

ACL = KLCS faculty uses a 3-certificate chain:

1. KLCS faculty→ KLCS rivest

2. KLCS rivest→ KMIT ron rivest

3. KMIT ron rivest→ PK0

Figure 6: Simple Certificate Chain


