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1 Introduction

The big picture — and where we end up at the end of the lecture — is a voting scheme where (a)
each voter casts exactly one ballot and (b) voting is anonymous. We delve into two areas on our
way to this goal: Blind Signatures, which allow for anonymous voting, and Paillier Cryptosystem,
which gives us the ability to sum up votes even though they have been encrypted. From there, we
try out a voting scheme without privacy and show how privacy without cheating can be added to
this pretty simple scheme.

2 Outline

• Homomorphic Encryption

• Blind Signatures

• Paillier Cryptosystem

• Electronic Voting with Paillier Cryptosystem and Blind Signatures

Historical Note: Bush signed the ”Help America Vote Act of 2002”1 today. This act will give
states $3.9 billion to replace outdated punch-card and lever voting machines, and to improve voter
education and poll-worker training.

3 Homomorphic Encryption

• Homomorphic Encryption

The encryption algorithm E() is homomorphic if given E(x) and E(y), one can obtain E(x ⊥ y)
without decrypting x, y for some operation ⊥.

• RSA (Multiplicative Homomorphism)

Given ci = E(mi) = me
i mod N

c1 = me
1 modN

c2 = me
2 modN

c1 · c2 = me
1 ·me

2 modN = (m1 ·m2)e modN
0May be freely reproduced for educational or personal use.
1http://www.cnn.com/2002/ALLPOLITICS/10/29/elec02.bush.changes.ap/index.html
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2 4 BLIND SIGNATURES

RSA demonstrates a multiplicative homomorphic property: E(m1) · E(m2) = E(m1 ·m2)

4 Blind Signatures

Before we cover Paillier Cryptosystem, let’s think about how a vote can be anonymized. To achieve
this, we use Blind Signatures.

User Signer

m //

σ(m)=md (mod N)oo

The diagram above shows how ordinary RSA signatures work.

In order to sign, the signer needs to know what the message m is.

User Signer

m //

σ(m·re)=σ(m)·r (mod N)oo

With blind signatures, the signer does not know what the message m

is but is still able to sign the message.

Calculation performed by Signer on last sending:
σ(m · re) = (m · re)d = md · red = md · r = σ(m) · r (mod N)

Note The symbols e and d refer to the encryption and decryption keys, respectively. Also note,
when you divide the response by r, you get the signature of the message σ(m) : σ(m)·r

r = σ(m).

• Physical Example of Blind Signature Scheme

Materials: Envelope, White paper, Carbon paper

1. Place the carbon paper on top of the white paper

2. Place both items in the envelope and seal

3. Sign on the envelope

In the end, the signer does not know what he has signed.

• Examples

In the top figure x represents a coin in the special form ′′Bank...r′′, where r is a random number.
σ(x) is a coin signed by the bank. Hence, the bank recognizes its signature but cannot trace the



3

Figure 1: Two examples of Blind Signatures.

coin. The initial signing is information theoretically secure; however, problems arise when user tries
to spend a coin multiple times.

Similarly, in the bottom figure, the registrar signs the voter’s sealed vote, which the voter then
passes on to the counter.

5 Paillier Cryptosystem

5.1 Key Generation

Like RSA, pick two primes p, q and let N = p · q — but here we are going to work mod N2. Note
that ϕ(N2) = N · ϕ(N) = N · ϕ(p) · ϕ(q) and that all elements have order dividing ϕ(N2). Create
PK = (N, g) where g has order a multiple of N and SK = (λ(n)) where λ(n) =lcm(p − 1, q − 1)
(where “lcm” denotes lowest common multiple).
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5.2 Encryption

To encrypt a message m ∈ ZN :

• Choose x ∈R Z∗N .

• Produce an encryption E(m) = gmxN mod N2.

Doing some arithmetic, here we can show that Paillier has the following useful property:

E(m1) = gm1xN1 modN2

E(m2) = gm2xN2 modN2

E(m1) · E(m2) = gm1+m2(x1x2)N modN2 = E(m1 +m2)

Paillier demonstrates an additive homomorphic property.

5.3 Decryption

Use L(u) = (u−1)
N for u ≡ 1 (mod N). Note that the formula for L(u) is not modulo anything.

If c = E(m), then

m =
(
L(cλ(n) mod N2)
L(cλ(n) mod N2)

)
mod N

Proof is given in [1].

5.4 Benefits of Paillier Cryptography

• It gives the homomorphic property we want for voting.

• It is semantically secure, assuming that it is hard to distinguish N th residues from non-N th

residues mod N2 (in addition to the DLP). Semantically secure means that you cannot distin-
guish E(0) from E(1) better than 50% as N →∞.

6 Voting with Paillier Cryptosystem and Blind Signatures

6.1 Motivation: Bulletin Board Voting

We are aiming to use E(m1) · E(m2) = E(m1 +m2) so that we can add up the votes.

Imagine that we have a large public bulletin board with candidates X, Y, Z and voters V1, . . . , Vn.
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X Y Z
V1 1 0 0
V2 0 1 0
V3 1 0 0

Total 2 1 0

With a regular bulletin board we have the
ballots in plaintext. X, Y, and Z denote
candidates. The Vi are voters. The entry
1 represents a vote for a candidate.

X Y Z
V1 C1X C1Y C1Z

V2 C2X C2Y C2Z

V3 C3X C3Y C3Z

Total CX CY CZ

C1X , etc., denote votes encrypted using
some public key scheme, with the private
keys owned by election officials.

If we have the additive homomorphic property, we only need to decrypt the figures in the row of
totals, thereby providing voter privacy. We want to find E(Tj) =

∏
iEij .

Question : Does encryption have to be randomized?
Answer : Yes. Encryptions of 0s must look different, so that an adversary will not

be able to tell whether two people made the same vote by simply checking
whether the ciphertexts are the same. Similarly encryptions of 1s must
also look different. Hence, simple RSA is therefore not suitable for this
application.

6.2 Correctness

Now that we have these two tools, Paillier Cryptosystem and Blind Signatures, we can return to our
public bulletin board of votes.

• To stop a voter from submitting multiple votes for one candidate (or negative votes) we have
to make sure that mij ∈ {0, 1} and that the row subtotal ∈ {0, 1}.

• We also need to enforce non-malleability. For example if Alice’s vote were mij ∈ {0, 1}, Bob
could negate Alice’s ballot in this fashion by computing:

E(1)
E(mij)

= E(1) · E(−mij) = E(1−mij)

The solution is to use zero knowledge proofs.

• To prove the vote is correct:

Voter System

u
commitment/witness

//

challengeoo e ∈R {0, 1, . . . , A− 1}

response // check
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This round is performed t times.

Fiat-Shamir trick: replace e ∈R {0, 1, . . . , A − 1} with e = hash(commitment) to make it
a non-interactive ZK proof. Hence, commitment/witness and response can be reduced to one
message.

• We now show how the voter can prove that he knows how he is voting (knows m), when using
Paillier encryption.

c = gmxN mod N2

Voter System

r∈RZN
s ∈R Z∗N

u=gr sNmodN2
//

eoo e ∈R {0, 1, . . . , A− 1}

v=r−em
w = s x−e g(r−em)÷N

v,w // check gv ce wN ?= u

The check becomes

gr−em (gm xN )e (s x−e g(r−em)÷N )N ?= u⇐⇒ gr sN
?= u

After t successful challenges, the chance of forgery is ' 1
At .

Question : How can you stop decryption of individual entries with the secret key d?
Who should control the secret key?

Answer : Use secret sharing to divide d such that any t shares are to be used to
recreate d. Unfortunately, this still leaves key generation and decryption
(recombination of shares) as vulnerable points.
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