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Lecture Notes 20 : Smartcards, side channel attacks
Lecturer: Ron Rivest Scribe: Giffin/Greenstadt/Plitwack/Tibbetts

[These notes come from Fall 2001. These notes are neither sound nor complete. There is more
material than is covered in lecture, and some is missing. Check your own notes for new topics
brought up in 2002.]

Overview

Today’s lecture is about losing secrets. Thus far we have assumed that cryptographic operations are
isolated, with only inputs and outputs. Frequently, however, other kinds of information about the
information being processed can be gained. Today we consider these other ways of loosing keys.

1. Smart cards and protocols

2. Power Analysis

3. Glitches

4. Tamper Resistance

5. Timing

6. Errors

1 Smart Cards and Protocols

Smart cards have all kinds of covert channels.

There are a number of applications of smart cards. Here are a few:

• Bank authorizing a person to an ATM.
In this case the threat is that the ATM will get your secret key out. This is supposed to
be hard though, because your smart card doesn’t expose the secret key, it only does specific
cryptographic operations with it.

• Pay TV boxes use smart cards for decryption algorithms. A basic box on the antenna decrypts
the signal. It needs a smart card to allow the system and the keys to be changed easily.
In this case the customer is the enemy. He wants to find out what is on the smart card so he
can get free cable or sell boxes to offer other people free cable on the black market.

There are a number of successful attacks against smart cards.
0May be freely reproduced for educational or personal use.
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2 Simple Power Analysis

Use what is observable. Measuring the power usage is a good first step. Surprisingly, this a dev-
astating attack. Power usage correlates well with what is going on during the computation of a
cipher.

For example, with DES there are 16 rounds, and a power trace from a device will show 16 bumps
in the power usage. From this you can get secret key information out. Loading a 1 into a register
bit is different (in terms of power usage) from loading a 0. Some implementations let you just read
off the key. Others only give you information like how many 1s and 0s there are in a byte.

With RSA there is an even simpler attack. In an RSA decryption, we raise a user-supplied c to the
power of d modulo n, where d is our secret. In an efficient implementation of modular exponentiation,
the code cycles through d and either multiplies the total by c or squares the total based on the bits
it finds. Multiplying and squaring use different amounts of power, in general. So the secret key can
just be read from a power trace.

Q: Discounting efficiency, can you just draw constant power?

A: Yes, but silicon chips which draw constant power are hard to build. You can do things with
capacitors to smooth the signal. Most attempts are partly effective. But variation in process
can hurt you a lot, and it is hard to gage effectiveness.

3 Differential Power Analysis

This attack attempts to find correlations between power consumption, outputs and key bits by trying
many inputs. By performing millions of trials on a card, one can find a statistical correlation. This
attack is much like tempest.

Q: I have an RSA SecureID. It gives me a number every few seconds. What is it doing?

A: It has its own CPU and battery, with a secret and a clock, and is producing the numbers with
a pseudo-random number generator.

Q: The clocks on the ID and the server are synced?

A: Yes, and the server knows the secret.

Q: Tamper resistant?

A: Maybe. :-)
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4 Tamper Resistance

4.1 Glitches

Glitches are a form of an active attack. You can control the voltage and clock rate. What happens
when you take the chip outside of its design parameters? Sometimes it does things that help you
attack it.

Many chips have the following code:

1 b = answer address
2 a = length of answer
3 loop: if a = 0 goto end
4 transmit(*b)
5 b = b + 1
6 a = a - 1
7 goto loop
8 end:

The idea here is that you play with the voltage or clock length at lines 6 or 3, and you make sure
that the loop never exits and b just keeps increasing. This way the chip will transmit its whole
memory space to you.

Q: Why can’t you read the memory yourself?

A: Typically a smart card does not expose the memory to you.

The tedium can be automated. Maybe it will not work (to find these glitches) in an ATM for 2
minutes, but the guy trying to steal cable is willing to let a computer chug along on the card for a
few days.

4.2 Other Tampering

Sometimes the chips have their program and secrets in an EEPROM. EEPROM has a lock bit,
supposed to keep the data from being read or written from outside the chip. By only lowering the
voltage a little bit, or by using a UV light, the lock bit can be cleared.

Kuhn is really into this sort of thing. He can take apart almost anything with the right tools. He
first analyzed tamper resistant devices in the lab. By fuming nitric acid, he is able remove the epoxy
from a chip without damaging it. He also uses other chemistry. Hydrogen-floride removes silicon-
dioxide. Ultrasonic vibrating probes can be used to burrow into the chip. Biology has developed
laser tools attached to microscopes for cutting at the microscopic level. These laser-scopes are used
to cut wires and other things. A lot of times it is possible to have a chip completely opened up and
running. Electrical probes can be put right on the wires.

IBM has developed a process for taking a 3D image of the chip by etching away the chip one layer at
a time. The metal, silicon and doped silicon is exposed. A layer of gold is applied, and an electron
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microscope scans the area. The gold is removed and another layer of the chip is stripped away. It
took 2 weeks and 6 chips to take an image of an Intel 386 (a fairly complicated chip) this way.

IBM has another similar technique for reverse engineering. They etch away the top layer and apply
lithium-niobate to the parts that are of interest. Lithium-niobate changes its index of refraction
with the electric field nearby. Using a laser, one can watch the 1s and 0s going around on the chip.

Sandia has a process for looking at chips without etching. At certain wavelengths in the infrared,
silicon is transparent. Using infrared light, it is possible to look through the silicon and see the
metallic traces.

Protecting against these sorts of attacks is very hard. The clipper chip tried to protect itself, but
most people do not bother. According to Kuhn, “In conclusion, it is imprudent to assume that the
design of silicon chips, or the information stored in them, can be kept from a capable motivated
opponent.”

One place where success in keeping electronics and secrets out of the hands of tamperers is nuclear
weapon test detection equipment. The equipment itself has sensitive seismic equipment, and is
programmed to self destruct if tampering is detected.

Another chip foiled by Kuhn is from Intel. Here a complex cryptographic system is used to separate
the memory and CPU. Kuhn was able to tap the bus between the two subsystems and break the
security.

5 Timing

The basic idea is to measure how long some encryption operation takes. This is an effective attack
against smart cards and PCs.

A good example of this is an attack which works on RC5 implementations which do not use a barrel
shifter. One can then measure the time taken by individual rotations and determine bits from the
round keys.

Suppose you have cd (mod n) and you would like to factor n into p and q. One attack is to measure
the time this decryption takes. If it is done using the Chinese Remainder Theorem, then c is divided
into c1 (mod p) and c2 (mod q). These are used to create the expression M = aM1 − bM2

(mod n). As c1 is increased, it eventually becomes larger than p and thereby requires an extra
operation to compute (mod p). Someone watching the jump in this time can perform a binary
search with a variety of c’s and thereby discover p.

A variation of this idea is as follows. Suppose the c1 side is processed and then the c2 side is
processed. First the answer is found mod p, then mod q and then they are linearly combined. If
the adversary has the ability to play with the power supply, he can cause a glitch at an opportune
moment. For instance suppose we did one decryption where the computation was good and then
the second time, we allowed a good computation mod p but created a short clock pulse for mod q.
Thus we would have M which was correct mod p and mod q and M ′ which is correct mod p but
NOT correct mod q. Then gcd(M −M ′, n) = p.
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6 Errors

Another side channel is provided by error handling in some schemes. Bleichenbacher pointed out
such a channel in SSL. SSL used a format for message transmission known as PKCS #1 which
caused the message to be presented as [00][02]padding[00][message]. The server would generate and
send an error message when it received a badly formatted message. This provided the adversary
with an oracle to determine if it had formatted a message correctly. This turned out to be enough
to decrypt Alice’s key.

Q: What kind of time is required to perform this attack, how many messages?

A: For a 1024-bit modulus, about 220 messages, not impossible. Surprisingly, a 1024-bit modulus
is substantially harder than a 1025-bit modulus.

What is the fix for this? They moved away from PKCS #1, to OEAP, but it had the same sort of
error handling bug. One way to approach it is to require the client to demonstrate knowledge of the
message before an error message is sent back. With these sorts of schemes the devil is always in the
details, and there are lots of details.


