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Lecture Notes 4 : Unconditional Security

September 16, 2003

We begin our discussion of cryptographic techniques by looking at techniques that achieve uncon-
ditional security—security that does not depend upon an assumption that the attacker has limited
computing power. Techniques for unconditional security are sometimes called information-theoretic
techniques, since they are based on the fact that the attacker doesn’t get enough information to
break the system.

Unconditional security methods, though excellent in theory, are hard to implement or execute effi-
ciently in practice, since they require the generation, distribution, and management of large amounts
of key material, which must be kept secret. As we shall see, the key material can be used only once,
otherwise a loss of security results. The more you communicate, the more key material you need.
Hence the name “one-time pad.” The term “pad,” referring to the key itself, may have originated
from the way Russian spies kept their key material on preprinted pads of paper; when they were
done with the digits on one sheet they would destroy that sheet and move on to the next sheet in
the pad.

Later on, we shall examine schemes that are conditionally secure—they are secure on the assumption
that the attacker has limited computing power. Such schemes are also called computationally secure.
Most practical cryptographic techniques, such as DES or RSA, are only computationally secure; they
are preferred in practice because they greatly simply key generation and management, compared
to unconditionally secure schemes. Nonetheless, it is instructive to look at uncondtionally secure
cryptosystems first, as a model for ideal cryptography.

1 The One-Time Pad (OTP) Encryption Scheme

Our problem is to design a secure method to deliver a message M € {0,1}" (an n bit string) from
Alice (A) to Bob (B) securely. An eavesdropper Eve (E), should not learn anything more about M.

Basic question: What distinguishes Bob from Eve? What allows him to understand a ciphertext
that Eve can’t?

Answer: Bob should possess something (an object) or know something (by definition, a key) which
Eve doesn’t.

It is usually easier to arrange for Bob to know a key than to arrange for him to have a object (e.g. a
decoding box) that Eve can’t have. For one thing, it is easier to change the key than to manufacture
and re-distribute new decoding boxes. In classical cryptography, the key (K) is known to both (and
only) Bob and Alice, and is thus called a shared secret key.
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Figure 1: Sending a message over the network.

This raises several problems:

Encryption: How is the key used to provide secure confidential transmission of a message from
Alice to Bob?

Key Generation: How is the key generated?

Key Distribution: How is the key distributed to Alice and Bob without Eve getting it?

1.1 Encryption with the One-Time Pad

For the encryption and decryption operations, a one time pad is used (Vernam, 1917).

Example: Suppose Alice wishes to send Bob the message
M = 011010,

and supposed they have previously established a shared secret (and randomly chosen) key
K =101100 .

Note that the key has the same length as the message; this is required. The ciphertext C' is now
defined as the bit-wise exclusive-or (xor, or @) of the message and the key:

C=MeK =110110.

Decryption is trivial since @ is associative, and each element is its own inverse; exclusive-oring the
key back into the ciphertext yields the message again:
CeK = (MeK)oK = M&(KoK)=Ma0=M .

The basic fact about the one-time pad is the following. We shall give an example illustrating its
meaning, and then prove it as a theorem.
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Claim 1 Seeing the ciphertext C' does not increase the adversary’s knowledge about the underlying
message M (assuming that the pad is randomly chosen and only used once).

Eve may know something about M beforehand, such as that M is in English. It is worth noting
(but not really sufficient to prove the claim) that a given ciphertext C' can be the encryption of any
message M—just take the key to be K = C®M, so that C = MOK.

To illustrate the claim, suppose that the message M is either 0 or 1, and suppose Eve knows a priori
that the chance that Alice will pick M = 0 is 2/3, and the chance that Alice will pick M = 11is 1/3.
More formally, we have unconditional a priori probabilities P(M = 0) = 2/3, P(M =1) =1/3.

Suppose now that Eve overhears the ciphertext C' = 1. For Eve the conditional probability of M = 0,
having now seen that C =1, is

P(M =0|C =1)

1/3

2 /3.

(See the circled portion in figure 2.) Since the conditional probability of M = 0, having seen the
ciphertext C' = 1, is the same as the unconditional (a priori) probability that M = 0, Eve has not
learning anything about M by seeing the ciphertext C'. In other words, Eve’s probability distribution
on M (reflecting her state of knowledge about M) has not changed, and so seeing C' has taught Eve
nothing at all. Anything Eve knows after seeing C it already knew before seeing C'; such knowledge
was represented in her a priori probability distribution.

We now give a formal proof of the claim.

Theorem 1

PM=z|C=y)=P(M=1x)

Proof: Assume that M and C are n bits long. For any n-bit values z and y

P(M=m|C=y)=P(M:$/\C=y)

P(C=y)
2/3 1/3
M =0 M=1
1/2 1/2
1/3 1/6

Figure 2: Probability tree for ciphertexts
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Now
PM=zANC=y) = PM=zAK=(2dy))
= P(M=z)-P(K = (zdy)) (K is independent of M)
= P(M==x)-27" (K is chosen uniformly from bit strings of length n)

and

P(C=y) = > P(M=zAC=y)

Y P(M=g)-27"
27"y P(M =z

= 27"

Il

That is, each C is equally likely, independent of the message. So,

P(M=2q|C=y) = w

which was to be shown. Note that the proof depends critically on the assumption that the key K is
generated according to the uniform distribution; the theorem is otherwise false.

Thus, the one-time pad provides perfect secrecy (unconditional confidentiality).

1.2 The Two-Time Pad?

There are some problems with the one-time pad. Note that each key can only be used once; if K is
reused, security may be compromised. For example, suppose that M; and M> are encrypted with
the same key K to generate ciphertexts C; and Cj:

Ci = M&K

Cy = M@K
CieCy = (M1oK)®(M:oK)
= (Mi®M,)o(KaK)

= M®M,

An adversary can thus take the xor of two ciphertexts to obtain the xor of the two original messages,
since the key cancels! When the messages have low entropy (lots of redundancy) as do English
messages, it is often possible to figure out both messages from their xor. It is worth noting, however,
that if M; and My are compressed before encryption, it is much harder to figure out the original
messages from the xor of the two compressed messages.

If you think that using a one-time pad more than once is too dumb to happen in real life, you may
be interested in the recently declassified story of project Venona (see reference). During the cold
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war apparently the Russians were reusing pads (!) for some of their encrypted communications.
The National Security Agency somehow (?) found out and started a massive effort to decrypt the
messages. This wasn’t easy, since the messages were already encoded once (with a codebook scheme)
before being encrypted with a one(two)-time pad. By collecting a huge number of ciphertexts and
looking for dependencies they were able to decrypt a good portion of the messages. It is still not
known how the Russians made such a fundamental error.

Another problem is that OTP is malleable; an adversary can change C' so that Bob’s decrypted M
is different from the message that Alice sent in a predictable way: by changing the i-th bit of C' Eve
causes the i-th bit of Bob’s decrypted M to change. There’s no way, using just a OTP, for Bob to
check that he received the message exactly as Alice sent it. The OTP provides confidentiality but
not authentication.

Finally, note that the key is both large (as large as the message) and used only once. For high
data-rate application (e.g. video) you would have to pre-generate and distribute huge amounts of
key!

1.3 Key Generation—Generating Random Bits

As seen above, generating long sequences of random bits is important for use of the one-time pad.
Indeed, any sort of cryptography depends on the generation of random bits—that is the traditional
way of generating a secret that you know but the attacker doesn’t. But doing this well can be tricky
or difficult. Only recently, a security bug in Netscape was found by graduate students at Berkeley;
apparently, the keys used by Netscape were not long enough, and their source of “randomness” left
much to be desired. (See http://www.ddj.com/ddj/1996/1996 01/wagner .htm)

Sources of randomness:

e Coin tosses
e Radioactive decay
e Typing speed of a user at a terminal
e Thermal noise
o Digitized images of Lava lamps (See http://lavarand.sgi.com/; this is cool!)
e Noisy diode (perhaps the most traditional approach)
e Background radiation
e Hard disk speed variation
e Input from a microphone or an antenna
e Other physical chaotic systems
These are excellent sources of randomness (some better than the others) but they may be difficult

to realize in practice. A typical PC is not supplied with a radioactive sample, nor equipped with a
Geiger counter.
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If your source of randomness is biased or otherwise not quite perfect, processing of the sampled bits
can improve the source. For example, suppose the source you have provides independent bits, but
that they are not evenly biased (e.g. 0 is more frequent than 1). A fix proposed by von Neumann
is to generate two bits at a time; return 0 if 10 is detected, return 1 if 01 is detected and resample
if 00 or 11 is detected (throw these away). Even if 0 is more frequent than 1, 01 is just as frequent
as 10, so the bias in the sample is removed, at a small cost in data rate.

See http://www.cs.berkeley.edu/ daw/netscape-randomness.html for many other links to doc-
uments on generating random bits.

Another common approach to generating “random” bits is to use a pseudo-random number generators
(PRNGs). A PRNG generates a long n-bit sequence from a shorter (random!) seed, using a suitably
complicated process. However, the result is certainly not more secure than the short seed (e.g. a
56-bit seed might be determined by a search), and may be weaker if the PRNG has other weaknesses.
(Tt is usually assumed that the adversary has access to the function, but not the seed.) You should
convince yourself that the theorem above on the security of the one-time pad doesn’t apply when
the pad is generated deterministically from a smaller seed.

1.4 Length of One-Time Key k
Is it possible to shorten the length of the one-time key K, |K|, needed for confidentiality? To do so,
we must start making assumptions about computational difficulty.

Alice encrypts a message M that is n bits long with a key K that is ¢ bits long, resulting in ciphertext
C, which is also n bits long. Imagine that Eve hears C' and has an infinite amount of computing
power. Eve tries all 2! keys and examines the resulting plaintexts M; she then gets 2¢ candidate
messages. Assume that the number of reasonable messages of length M is o™ (1 < a < 2) (e.g. for
English a ~ 1.1). The expected number of keys giving a reasonable result is thus:

2(a/2)"

Thus, when ¢t + n(lg(a) — 1) < 0 then the number of keys giving reasonable results < 1. When

n>t/(1—l1g(a))

then there is probably only one key that works (n > 7¢ for English). This argues that unconditional
security requires growing the length of the keys with the length of the message. Thus, unconditional
security requires long one-time keys.

2 Unconditionally Secure Authentication

A central problem in network security is authentication: how can Bob be sure that the message he
has received was actually sent by Alice, and if so, was not corrupted en route (either randomly by
communication bit errors, or maliciously by Eve)?

(In this section we are not concerned with confidentiality, just with authentication.)



The answer lies in use of a message authentication code, (aka MAC or authentication tag). A MAC
y is a function of both the message M and a shared secret key K that is known to only Alice and
Bob:

The function f is public.

Alice computes the tag y and transmits the pair (M, y) to Bob. Bob uses his knowledge of the secret
key K to recompute y = f(M, K). If his recomputed y is the same as the received y, Bob concludes
that the message is authentic. If, on the other hand, Eve had interfered and changed M to M’,
Bob would compute y' = f(M’', K), and, finding it different than y, conclude that the message has
been forged or corrupted. Similarly, if Eve tries to modify the message and also make corresponding
modifications to the MAC, she should have little chance of success.

A MAC is similar to a CRC (cyclic redundancy check) except that the CRC is only useful for
detecting random errors; an adversary can easily find an M’ that has the same CRC has a given
message M. MACs are designed to defeat active adversaries as well as random errors.

The message and its MAC may be encrypted (using another key) if confidentiality as well as au-
thentication is desired; this is discussed later.

To achieve unconditional authentication it is important that a new key K be used every time as we
shall see. This also helps prevent replay attacks: Eve cannot resend the message the next day; Bob
will not accept it.

GOAL: Eve should not be able to generate a valid pair (M', f(M', K)) even after hearing one valid
pair (M, f(M, K)).

IDEA: The one-time key K is a pair (a,b) of coefficients: K = (a,b) and then we define
f(IM,K)=y=aM +b

Having seen one (M, y) pair is of no help in figuring out the appropriate y' for a different message
M'. One point does not determine a line.

More formally:

We use some number theory; see (Cormen, 1990) for an algorithmic treatment of basic number
theory.

Let p be a prime. Then Z, = {0,1,...,p — 1} forms a finite field modulo p with respect to the four
standard operations +, —, , /, so that (almost) all the usual properties of the real numbers hold:

+ is associative and commutative with identity 0

* is associative and commutative with identity 1

all elements have additive inverses: —5 =12 (mod 17)

all nonzero elements have multiplicative inverses: 5 =7 (mod 17) (multiplicative inverses
can be computed using an extended version of Euclid’s GCD algorithm; see (Cormen, 1990))

division: 2/5=2%7=14 (mod 17) since 51 =7 (mod 17)
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e x distributes over +: a*x (b+¢) =ab+ac (mod p).

(But not all properties of the reals carry over to a finite field; for example in a finite field you can
add 1 to itself some nonnegative number of times and get 0: for example, 1+14+1=0 (mod 3).)

We suppose that p is a large publicly-known prime. Suppose |M| = n (that is, M has n bits), and
suppose further that |p| > n.

Now choose a and b uniformly at random from Z,, and define

K = (a,b)
J(IM,K) = aM+b (modp) .

|f(M, k)| = |p| > |M]|; the MAC is at least as long as the message.

Suppose Eve hears (M,y), where y = aM +b (mod p). What has she learned? She knows M, y,
and p, but not a and b. There are p pairs of coefficients (a, b) that are consistent with the equation
y=aM +b (mod p). Suppose Eve picks some a; € Z,. Then choosing (a,b) = (a;, b;) satisfies the
above equation, where b; =y — a;M (mod p). All such choices (a;, b;) are equally likely, as far as
Eve knows.

Suppose Eve intercepts M and replaces it with another message M’ that she wishes Bob to accept.
She must compute a new MAC that Bob will accept for M’. She guesses a; and computes b; = y—a; M
to compute a new MAC using the guessed key K; = (a;, b;):

f(MK;) = aiM+(y—a;M) (mod p)
= a;(M'—M)+y (mod p)
But each possible choice of an a; gives a different MAC, since
ai(M' = M)+y=a;(M' = M)+y (modp)
implies
a; =a; (modp) .

Thus, f(M', K;) is equally likely to be any value in Z,. (While we have argued this for only one
strategy for Eve—guessing a and computing b—it holds in general.) Therefore, Eve’s chance of
getting the MAC right is only 1/p.

A Two-Time MAC?
What happens if Alice and Bob use the same secret key K to compute the MAC’s for two distinct
messages M and M'? Thus:
y = aM+b (modp)
y = aM'+b (mod p)
But now Eve has two equations in two unknowns, and she can solve for a and b:

(y—y)/(M - M) (mod p)
b = y—aM (mod p) .



Then Eve knows both a and b, and could replace (M',y') with a valid (M",y"). Therefore, do not
reuse a key.

Length of the MAC

Both the key and the MAC have length proportional to |M|. Having |K| = |M]| is unavoidable, but
it is possible to improve the length of the MAC, with only a small loss in security.

Ideas to shorten MAC:

e only send low-order 64 bits of y =aM +b (mod p)

e choose small p (64, 65 bits)
divide M into chunks M = M;, M,, ..., M; where 0 < M; <p
K = (a1,a2,...,a;,b) where 0 < a; <p,and 0<b<p
f(M,K)=>"a;M; +b (mod p)

3 Simultaneous Privacy and Authentication

Previously, we were only concerned with authentication. Alice was sending her message M cleartext
over the channel, and Eve could read it. Now we want to consider the case where Alice wants her
message to be private so that only Bob can read it, and she wants to authenticate the message.
Now we combine the One-Time Pad (OTP) and the One-Time MAC (OTM). It is important to use
one key K for confidentiality, and a second independent key K' for authentication. We have three
choices:

e encrypt M with OTP, then append MAC of ciphertext:
(MoK, f(MaK,K"))
Amount of key used = |K| + |K'| = n + 2n = 3n bits.
e encrypt M with OTP, then append MAC of message:
(MoK, f(M,K"))
Amount of key used = |K| + |K'| = n + 2n = 3n bits.
e append MAC to M, use OTP to encrypt (M,y) pair:
(M, f(M,K"))oK
Amount of key used = |K| + |K'| = 2n + 2n = 4n bits.
There are two advantages of the first choice:Bob can check the MAC before decrypting, and only
3n random bits are used. The second scheme requires decryption before MAC checking, and unfor-

tunately requires that K' be kept secret in order for the confidentiality of M to be preserved; this
scheme should not be used. The fourth scheme requires more key bits, but is otherwise OK.
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