Computer and Network Security

MIT 6.857 Class Notes
by Ronald L. Rivest
December 2, 2002

[^0]
Introduction to Number Theory

Elementary number theory provides a rich set of tools for the implementation of cryptographic schemes. Most public-key cryptosystems are based in one way or another on number-theoretic ideas.

The next pages provide a brief introduction to some basic principles of elementary number theory.

[^1]
Bignum computations

Many cryptographic schemes, such as RSA, work with large integers, also known as "bignums" or "multiprecision integers." Here "large" may mean 160-4096 bits (49-1233 decimal digits), with 1024-bit integers (308 decimal digits) typical. We briefly overview of some implementation issues and possibilities.

When RSA was invented, efficiently implementing it was a problem. Today, standard desktop CPU's perform bignum computations quickly. Still, for servers doing hundreds of SSL connections per second, a hardware assist may be needed, such as the SSL accelerators produced by nCipher www.ncipher.com/.

A popular C/C++ software subroutine library supporting multi-precision operations is GMP (GNU Multiprecision package) www.swox.com/gmp/. A more elaborate package (based on GMP) is Shoup's NTL (Number Theory Library) www.shoup.net/ntl/. For a survey, see https://www.cosic.esat.kuleuven.ac.be/nessie/call/mplibs.html.

Java has excellent support for multiprecision operations in its BigInteger class java.sun.com/j2se/1.4.1/docs/api/java/math/BigInteger.html; this includes a primalitytesting routine.

Python www.python.org/is a personal favorite; it includes direct support for large integers.
Scheme www.swiss.ai.mit.edu/projects/scheme/also provides direct bignum support.
Some other pointers to software and hardware implementations can be found in the "Practical Aspects" section of Helger Lipmaa's "Cryptology pointers" www.tcs.hut.fi/~helger/crypto/=

When working on k-bit integers, most implementations implement addition and subtraction in time $O(k)$, multiplication, division, and gcd in time $O\left(k^{2}\right)$ (although faster implementations exist for very large k), and modular exponentation in time $O\left(k^{3}\right)$.

To get you roughly calibrated, here are some timings, obtained from a simple Python program on my IBM Thinkpad laptop (1.2 GHz PIII processor) on 1024-bit inputs. SHA-1 is included just for comparison. The last column gives the approximate ratio of running time to addition.

2.2 microseconds	addition	455,000 per second	1
4.4 microseconds	SHA1 hash (on 20-byte input)	227,000 per second	2
10.8 microseconds	modular addition	93,000 per second	5
41 microseconds	multiplication	24,000 per second	20
135 microseconds	modular multiplication	7,400 per second	60
2.3 milliseconds	modular exponentiation (exponent is $2 * * 16+1$)	440 per second	1000
5.5 milliseconds	gcd	180 per second	2500
204 milliseconds	modular exponentiation (1024-bit exponent)	5 per second	93000

[^2]
Divisors and Divisibility

Definition 1 (Divides relation, divisor, common divisor) We say that " d divides a ", written $d \mid a$, if there exists an integer k such that $a=k d$. If d does not divide a, we write " $d \nmid a$ ". If $d \mid a$ and $d \geq 0$, we say that d is a divisor of a. If $d \mid a$ and $d \mid b$, then d is a common divisor of a and b.

Example 1 Every integer $d \geq 0$ (including $d=0$) is a divisor of 0 . While 0 divides no integer except itself, 1 is a divisor of every integer. The divisors of 12 are $\{1,2,3,4,6,12\}$. A common divisor of 14 and 77 is 7 . If $d \mid$ a then $d \mid(-a)$.

Definition 2 (prime) An integer $p>1$ is prime if its only divisors are 1 and p.

Definition 3 (Greatest common divisor, relatively prime) The greatest common divisor, $\operatorname{gcd}(a, b)$, of two integers a and b is the largest of their common divisors, except that $\operatorname{gcd}(0,0)=0$ by definition. Integers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.

Example 2

$$
\begin{aligned}
\operatorname{gcd}(24,30) & =6 \\
\operatorname{gcd}(4,7) & =1 \\
\operatorname{gcd}(0,5) & =5 \\
\operatorname{gcd}(-6,10) & =2
\end{aligned}
$$

Example 3 For all $a \geq 0, a$ and $a+1$ are relatively prime. The integer 1 is relatively prime to all other integers.

Example 4 If p is prime and $1 \leq a<p$, then $\operatorname{gcd}(a, p)=1$. That is, a and p are relatively prime.

Definition 4 For any positive integer n, we define Euler's phi function of n, denoted $\phi(n)$, as the number of integers d, $1 \leq d \leq n$, that are relatively prime to n. (Note that $\phi(1)=1$.)

Example 5 If p is prime, then $\phi(p)=p-1$. For any integer $k>0, \phi\left(2^{k}\right)=2^{k-1}$.

Definition 5 The least common multiple $\operatorname{lcm}(a, b)$ of two integers $a \geq 0, b \geq 0$, is the least m such that $a \mid m$ and $b \mid m$.

Exercise 1 Show that the number of divisors of $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ (where the p_{i} 's are distinct primes) is $\prod_{1 \leq i \leq k}(1+$ e_{i}).

Exercise 2 Show that $\operatorname{lcm}(a, b)=a b / \operatorname{gcd}(a, b)$.

[^3]
Fermat's Little Theorem

Theorem 1 (Fermat's Little Theorem) If p is prime and $a \in \mathbf{Z}_{p}^{*}$, then $a^{p-1}=1 \quad(\bmod p)$.

Theorem 2 (Lagrange's Theorem) The order of a subgroup must divide the order of a group.

Fermat's Little Theorem follows from Lagrange's Theorem, since the order of the subgroup $\langle a\rangle$ generated by a in \mathbf{Z}_{p}^{*} is the least $t>0$ such that $a^{t}=1(\bmod p)$, and $\left|\mathbf{Z}_{p}^{*}\right|=p-1$.

Euler's Theorem generalizes Fermat's Little Theorem, since $\left|\mathbf{Z}_{n}^{*}\right|=\phi(n)$ for all $n>0$.

Theorem 3 (Euler's Theorem) For any $n>1$ and any $a \in \mathbf{Z}_{n}^{*}, a^{\phi(n)}=1(\bmod n)$.

A somewhat tighter result actually holds. Define for $n>0$ Carmichael's lambda function $\lambda(n)$ to be the least positive t such that $a^{t}=1(\bmod n)$ for all $a \in \mathbf{Z}_{n}^{*}$. Then $\lambda(1)=\lambda(2)=1, \lambda(4)=2, \lambda\left(2^{e}\right)=2^{e-2}$ for $e>2$, $\lambda\left(p^{e}\right)=p^{e-1}(p-1)$ if p is an odd prime, and if $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, then

$$
\lambda(n)=\operatorname{lcm}\left(\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{k}^{e_{k}}\right)\right) .
$$

Computing modular inverses. Fermat's Little Theorem provides a convenient way to compute the modular inverse a^{-1} $(\bmod p)$ for any $a \in \mathbf{Z}_{p}^{*}$, where p is prime:

$$
a^{-1}=a^{p-2} \quad(\bmod p)
$$

(Euclid's extended algorithm for computing $\operatorname{gcd}(a, p)$ is more efficient.)
Primality testing. The converse of Fermat's Little Theorem is "almost" true. The converse would say that if $1 \leq a<p$ and $a^{p-1}=1(\bmod p)$, then p is prime. Suppose that p is a large randomly chosen integer, and that a is a randomly chosen integer such that $1 \leq a<p$. Then if $a^{p-1} \neq 1(\bmod p)$, then p is certainly not prime (by FLT), and otherwise p is "likely" to be prime. FLT thus provides a heuristic test for primality for randomly chosen p; refinements of this approach yield tests effective for all p.

Exercise 1 Prove that $\lambda(n)$ is always a divisor of $\phi(n)$, and characterize exactly when it is a proper divisor.

Exercise 2 Suppose $a>1$ is not even or divisible by 5; show that a^{100} (in decimal) ends in 001.

Exercise 3 Let p be prime. (a)Show that $a^{p}=a(\bmod p)$ for any $a \in \mathbf{Z}_{p}$. (b) Argue that $(a+b)^{p}=a^{p}+b^{p}(\bmod p)$ for any a, b in \mathbf{Z}_{p}. (c) Show that $\left(m^{e}\right)^{d}=m(\bmod p)$ for all $m \in \mathbf{Z}_{p}$ if ed $=1(\bmod p-1)$.

[^4]
Generators

Definition 1 A finite group $G=(S, \cdot)$ may be cyclic, which means that it contains a generator g such that every group element $h \in S$ is a power $h=g^{k}$ of g for some $k \geq 0$. If the group operation is addition, we write this condition as $h=\underbrace{g+g+\cdots+g}_{k}=k g$.

Example 1 For example, 3 generates \mathbf{Z}_{10} under addition, since the multiples of 3, modulo 10, are:

$$
3,6,9,2,5,8,1,4,7,0 .
$$

Fact 1 The generators of $\left(\mathbf{Z}_{m},+\right)$ are exactly those $\phi(m)$ integers $a \in \mathbf{Z}_{m}$ relatively prime to m.

Example 2 The generators of $\left(\mathbf{Z}_{10},+\right)$ are $\{1,3,7,9\}$.

Example 3 The group $\left(\mathbf{Z}_{11}^{*}, \cdot\right)$ is generated by $g=2$, since the powers of 2 (modulo 11) are:

$$
2,4,8,5,10,9,7,3,6,1
$$

Fact 2 Any cyclic group of size m is isomorphic to $\left(\mathbf{Z}_{m},+\right)$. For example, $\left(\mathbf{Z}_{11}^{*}, \cdot\right) \leftrightarrow\left(\mathbf{Z}_{10},+\right)$ via:

$$
2^{x}(\bmod 11) \longleftrightarrow x(\bmod 10) .
$$

Theorem 1 If p is prime, then $\left(Z_{p}^{*}, \cdot\right)$ is cyclic, and contains $\phi(p-1)$ generators. More generally, the group $\left(\mathbf{Z}_{n}, \cdot\right)$ is cyclic if and only if $n=2, n=4, n=p^{e}$, or $n=2 p^{e}$, where p is an odd prime and $e \geq 1$, in these cases the group contains $\phi(\phi(n))$ generators.

Finding a generator of \mathbf{Z}_{p}^{*}. If the factorization of $p-1$ is unknown, no efficient algorithm is known, but if $p-1$ has known factorization, it is easy to find a generator. Generators of \mathbf{Z}_{p}^{*} are relatively common $(\phi(n) \geq n /(6 \ln \ln n)$ for $n \geq 5$), so one can be found by searching at random for an element g whose order is $p-1$. (Note g has order $p-1$ if $g^{p-1}=1(\bmod p)$ but $g^{(p-1) / q} \neq 1(\bmod p)$ for all prime divisors q of $\left.p-1\right)$.

Group generated by an element. In any group G, the set $\langle g\rangle$ of elements generated by g is always a cyclic subgroup of G; if $\langle g\rangle=G$ then g is a generator of G.

Groups of prime order. If a group H has prime order, then every element except the identity is a generator. For example, the subgroup $Q R_{11}=\{1,4,9,5,3\}$ of squares (quadratic residues) in \mathbf{Z}_{11}^{*} has order 5 , so $4,9,5$, and 3 all generate $Q R_{11}$. For this reason, it is sometimes of interest to work with the group $Q R_{p}$ of squares modulo p, where $p=2 q+1$ and q is prime.

Exercise 1 (a) Find all of the generators of $\left(\mathbf{Z}_{11}, \cdot\right)$ and of $\left(\mathbf{Z}_{2^{k}},+\right)$. (b) Let g be a generator of $\left(\mathbf{Z}_{p}^{*}, \cdot\right)$; prove that g^{x} generates \mathbf{Z}_{p}^{*} if and only if x generates $\left(\mathbf{Z}_{p-1},+\right)$.

[^5]
Orders of Elements

Definition 1 The order of an element a of a finite group G is the least positive t such that $a^{t}=1$. (If the group is written additively, it is the least positive t such that $a+a+\cdots+a(t$ times $)=0$.)

	1	2	3	4	5	6	7	\ldots	Order
1	$\mathbf{1}$	1	1	1	1	1	1	\ldots	1
2	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{1}$	2	4	1	2	\ldots	3
3	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1}$	3	\ldots	6
4	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	4	2	1	4	\ldots	3
$\mathbf{5}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	5	\ldots	6
6	$\mathbf{6}$	$\mathbf{1}$	6	1	6	1	6	\ldots	2

Row a column k contains $a^{k} \bmod p$ for $p=7$; boldface entries illustrate the fundamental period of a^{k} $(\bmod p)$ as k increases. The length of this period is the order of a, modulo p. By Fermat's Little Theorem the order always divides $p-1$; thus a^{p-1} is always 1 (see the column marked with an uparrow). Elements 3 and 5 have order $p-1$, and so are generators of \mathbf{Z}_{7}^{*}. Element 6 is -1 , modulo 7 , and thus has order 2 .

Fact 1 The order of an element $a \in G$ is a divisor of the order of G. (The order $|G|$ of a group G is the number of elements it contains.) Therefore $a^{|G|}=1$ in G. Thus when p is prime, the order of an element $a \in \mathbf{Z}_{p}^{*}$ is a divisor of $\left|\mathbf{Z}_{p}^{*}\right|=p-1$, and in general the order of an element $a \in \mathbf{Z}_{n}^{*}$ is a divisor of $\left|\mathbf{Z}_{n}^{*}\right|=\phi(n)$.

Computing the order t of an element $a \in G$. If the factorization of $|G|$ is unknown, no efficient algorithm is known, but if $|G|$ has known factorization $|G|=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, it is easy. Basically, compute the order t as $t=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}$ where each f_{i} is initially e_{i}, then each f_{i} is decreased in turn as much as possible (but not below zero) while keeping $a^{t}=1$ in G.

Fact 2 When p is prime, the number of elements in \mathbf{Z}_{p}^{*} of order d, where $d \mid(p-1)$, is $\phi(d)$. For example, since $\phi(2)=1$, there is a unique square root of 1 modulo p, other than 1 itself $($ it is $-1=p-1(\bmod p)$).

Exercise 1 Let $\operatorname{ord}(a)$ denote the order of $a \in G$. (a) Prove that $\operatorname{ord}(a)=\operatorname{ord}\left(a^{-1}\right)$ and $\operatorname{ord}\left(a^{k}\right) \mid \operatorname{ord}(a)$. (b) Prove that $\operatorname{ord}(a b)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(a), \operatorname{ord}(b))$, and show that it may be a proper divisor. (c) Show that $\operatorname{ord}(a b)=$ $\operatorname{ord}(a) \operatorname{ord}(b)$ if $\operatorname{gcd}(\operatorname{ord}(a), \operatorname{ord}(b))=1$.

Exercise 2 Show that there are at least as many elements of order $p-1$ (i.e. generators) of \mathbf{Z}_{p}^{*} as there are elements of any other order.

Exercise 3 Show that the order of a in $\left(\mathbf{Z}_{n},+\right)$ is $n / \operatorname{gcd}(a, n)$.

[^6]
Euclid's Algorithm for Computing GCD

It is easy to compute $g c d(a, b)$. This is surprising because you might think that in order to compute $\operatorname{gcd}(a, b)$ you would need to figure out their divisors, i.e. solve the factoring problem. But, as you will see, we don't need to figure out the divisors of a and b to find their gcd.

Euclid (circa 300 B.C.) showed how to compute $\operatorname{gcd}(a, b)$ for $a \geq 0$ and $b \geq 0$:

$$
\operatorname{gcd}(a, b)= \begin{cases}a & \text { if } b=0 \\ \operatorname{gcd}(b, a \bmod b) & \text { otherwise }\end{cases}
$$

The recursion terminates since $(a \bmod b)<b$; the second argument strictly decreases with each call. An equivalent non-recursive version sets $a_{0}=a, a_{1}=b$, and then computes a_{i+1} for $i=2,3, \ldots$ as $a_{i+1}=a_{i-1} \bmod a_{i}$ until $a_{i+1}=0$, then returns a_{i}.

Example 1 Euclid's Algorithm finds the greatest common divisor of 12 and 33 as:

$$
\operatorname{gcd}(12,33)=\operatorname{gcd}(33,12)=\operatorname{gcd}(12,9)=\operatorname{gcd}(9,3)=\operatorname{gcd}(3,0)=3
$$

The equivalent non-recursive version has $a_{0}=12, a_{1}=33$, and

$$
\begin{aligned}
& a_{2}=a_{0} \bmod a_{1}=12 \bmod 33=12 \\
& a_{3}=a_{1} \bmod a_{2}=33 \bmod 12=9 \\
& a_{4}=a_{2} \bmod a_{3}=12 \bmod 9=3 \\
& a_{5}=a_{3} \bmod a_{4}=9 \bmod 3=0
\end{aligned}
$$

So $\operatorname{gcd}(12,33)=3$.
It can be shown that the number of recursive calls is $O(\log b)$; the worst-case input is a pair of consecutive Fibonacci numbers. Euclid's algorithm (even if extended) takes $O\left(k^{2}\right)$ bit operations when inputs a and b have at most k bits; see Bach and Shallit

[^7]
Euclid's Extended Algorithm

Theorem 1 For all integers a, b, one can efficiently compute integers x and y such that

$$
\operatorname{gcd}(a, b)=a x+b y
$$

We give a "proof by example," using Euclid's Extended Algorithm on inputs $a=9, b=31$, which for each a_{i} of the nonrecursive version of Euclid's algorithm finds an x_{i} and y_{i} such that $a_{i}=a x_{i}+b y_{i}$:

$a_{0}=a$	$=9$
	$=a * 1+b * 0$
$a_{1}=b$	$=31$
$a_{2}=a_{0} \bmod a_{1}=9 * 0+b * 1$	
$a_{3}=a_{1} \bmod a_{2}=4=(a * 1+b * 0)-0 *(a * 0+b * 1)$	$=a * 1+b * 0$
$a_{4}=a_{2} \bmod a_{3}=1=(a * 0+b * 1)-3 *(a * 1+b * 0)$	$=a *(-3)+b * 1$
$a_{5}=a_{3} \bmod a_{4}=0$	$=0 * 1+b * 0)-2 *(a *(-3)+b * 1)$

Thus Euclid's Extended Algorithm computes $x=7$ and $y=-2$ for $a=9$ and $b=31$.

Corollary 1 (Multiplicative inverse computation) Given integers n and a where $\operatorname{gcd}(a, n)=1$, using Euclid's Extended Algorithm to find x and y such that $a x+n y=1$ finds an x such that $a x \equiv 1(\bmod n)$; such an x is the multiplicative inverse of a modulo $n: x=a^{-1}(\bmod n)$.

Example 1 The multiplicative inverse of 9, modulo 31, is 7 . Check: $9 * 7=63=1$ (mod 31).

Exercise 1 Find the multiplicative inverse of 11 modulo 41.

Exercise 2 Prove that if $\operatorname{gcd}(a, n)>1$, then the multiplicative inverse $a^{-1}(\bmod n)$ does not exist.

Exercise 3 Show that Euclid's algorithm is correct by arguing that d is a common divisor of a and b if and only if d is a common divisor of b and ($a \bmod b$).

[^8]
Chinese Remainder Theorem

When working modulo a composite modulus n, the Chinese Remainder Theorem (CRT) can both speed computation modulo n and facilitate reasoning about the properties of arithmetic modulo n.

Theorem 1 (Chinese Remainder Theorem (CRT)) Let $n=n_{1} n_{2} \cdots n_{k}$ be the product of k integers n_{i} that are pairwise relatively prime. The mapping

$$
f(a)=\left(a_{1}, \ldots, a_{k}\right)=\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right)
$$

is an isomorphism from \mathbf{Z}_{n} to $\mathbf{Z}_{n_{1}} \times \cdots \times \mathbf{Z}_{n_{k}}$: if $f(a)=\left(a_{1}, \ldots, a_{k}\right)$ and $f(b)=\left(b_{1}, \ldots, b_{k}\right)$, then

$$
\begin{aligned}
f((a \pm b) \bmod n) & =\left(\left(a_{1} \pm b_{1}\right) \bmod n_{1}, \ldots,\left(a_{k} \pm b_{k}\right) \bmod n_{k}\right) \\
f((a b) \bmod n) & =\left(\left(a_{1} b_{1}\right) \bmod n_{1}, \ldots,\left(a_{k} b_{k}\right) \bmod n_{k}\right) \\
f\left(a^{-1} \bmod n\right) & =\left(a_{1}^{-1} \bmod n_{1}, \ldots, a_{k}^{-1} \bmod n_{k}\right) \text { if } a^{-1}(\bmod n) \text { exists } \\
f^{-1}\left(\left(a_{1}, \ldots, a_{k}\right)\right) & =a=\sum_{i} a_{i} c_{i}(\bmod n) \text { where } m_{i}=n / n_{i} \text { and } c_{i}=m_{i}\left(m_{i}^{-1} \bmod n_{i}\right) .
\end{aligned}
$$

When $n=p q$ is the product of two primes, working modulo n is equivalent to working independently on each component of its CRT (i.e. $(\bmod p, \bmod q))$ representation. It can be worthwhile to convert an input to its CRT representation, compute in that representation, and then convert back.

Example: For $n=35=5 \cdot 7$ put $(a \bmod 35)$ in row $a_{1}=(a \bmod 5)$ and column $a_{2}=(a \bmod 7)$:

	0	1	2	3	4	5	6
0	0	15	30	10	25	5	20
1	21	1	16	31	11	26	6
2	7	22	2	17	32	12	27
3	28	8	23	3	18	33	13
4	14	29	9	24	4	19	34

$$
\begin{array}{ll}
f(8) & =(3,1) \\
f(-8)=f(27) & =(-3,-1)=(2,6) \\
f(12) & =(2,5) \\
f\left(12^{-1}\right) & =\left(2^{-1}, 5^{-1}\right)=(3,3)=f(3) \\
f(8+12)=f(20) & =(3+2,1+5)=(0,6) \\
f(8 \cdot 12)=f(96)=f(26) & =(3 \cdot 2,1 \cdot 5)=(1,5)
\end{array}
$$

Here $m_{1}=7, m_{2}=5, c_{1}=7 \cdot\left(7^{-1} \bmod 5\right)=7 \cdot 3=21, c_{2}=5 \cdot\left(5^{-1} \bmod 7\right)=5 \cdot 3=15$, so

$$
f^{-1}\left(\left(a_{1}, a_{2}\right)\right)=21 a_{1}+15 a_{2} \quad(\bmod 35) .
$$

$($ Note: $f(21)=(1,0), f(15)=(0,1)$.$) Thus, f^{-1}((1,5))=21+5 \cdot 15=96=26(\bmod 35)$.
Speeding up Modular Exponentation. A significant application is speeding up exponentiation modulo $n=p q$ when p and q are known. To compute $y=x^{d} \bmod n$, where $f(x)=\left(x_{1}, x_{2}\right)$:

$$
f(y)=f\left(x^{d}\right)=\left(x_{1}^{d} \bmod p, x_{2}^{d} \bmod q\right)=\left(x_{1}^{d \bmod (p-1)} \bmod p, x_{2}^{d \bmod (q-1)} \bmod q\right) .
$$

Note $x_{1}^{p-1}=1 \bmod p$ for $x_{1} \neq 0$ by Fermat's Little Theorem. Then convert back from $(y \bmod p, y \bmod q)$ to $y \bmod n$. Since exponentiation takes time cubic in the input size, two half-size exponentiations are about four times faster than one full-size exponentiation (including conversion).

Exercise 1 Prove that x is a square $\bmod n=p q$ if and only if it is a square $\bmod p$ and $\bmod q$.

[^9]
[^0]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^1]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^2]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^3]: ${ }^{1}$ Copyright (C) 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^4]: ${ }^{1}$ Copyright (C) 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^5]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^6]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^7]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^8]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

[^9]: ${ }^{1}$ Copyright © 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

