
MIT 6.857 Computer and Network Security Class Notes 1
File: http://theory.lcs.mit.edu/˜rivest/notes/notes.pdf Revision: December 2, 2002

Computer and Network Security

MIT 6.857 Class Notes
by Ronald L. Rivest
December 2, 2002

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/notes.pdf�

MIT 6.857 Computer and Network Security Class Notes 2
File: http://theory.lcs.mit.edu/˜rivest/notes/ntintro.pdf Revision: December 2, 2002

Introduction to Number Theory

Elementary number theory provides a rich set of tools for the implementation of cryptographic schemes.
Most public-key cryptosystems are based in one way or another on number-theoretic ideas.

The next pages provide a brief introduction to some basic principles of elementary number theory.

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/ntintro.pdf�

MIT 6.857 Computer and Network Security Class Notes 3
File: http://theory.lcs.mit.edu/˜rivest/notes/bignum.pdf Revision: December 2, 2002

Bignum computations

Many cryptographic schemes, such as RSA, work with large integers, also known as “bignums” or “multi-
precision integers.” Here “large” may mean 160–4096 bits (49–1233 decimal digits), with 1024-bit integers
(308 decimal digits) typical. We briefly overview of some implementation issues and possibilities.

When RSA was invented, efficiently implementing it was a problem. Today, standard desktop CPU’s perform
bignum computations quickly. Still, for servers doing hundreds of SSL connections per second, a hardware
assist may be needed, such as the SSL accelerators produced by nCipherwww.ncipher.com/ .

A popular C/C++ software subroutine library supporting multi-precision operations isGMP (GNU Multi-
precision package)www.swox.com/gmp/ . A more elaborate package (based on GMP) is Shoup’s NTL
(Number Theory Library)www.shoup.net/ntl/ . For a survey, see
https://www.cosic.esat.kuleuven.ac.be/nessie/call/mplibs.html .

Java has excellent support for multiprecision operations in its BigInteger class
java.sun.com/j2se/1.4.1/docs/api/java/math/BigInteger.html ; this includes a primality-
testing routine.

Python www.python.org/ is a personal favorite; it includes direct support for large integers.

Schemewww.swiss.ai.mit.edu/projects/scheme/ also provides direct bignum support.

Some other pointers to software and hardware implementations can be found in the “Practical Aspects”
section of Helger Lipmaa’s “Cryptology pointers”www.tcs.hut.fi/˜helger/crypto/= .

When working onk-bit integers, most implementations implement addition and subtraction in timeO(k),
multiplication, division, and gcd in timeO(k2) (although faster implementations exist for very largek), and
modular exponentation in timeO(k3).

To get you roughly calibrated, here are some timings, obtained from a simple Python program on my IBM
Thinkpad laptop (1.2 GHz PIII processor) on 1024-bit inputs. SHA-1 is included just for comparison. The
last column gives the approximate ratio of running time to addition.

2.2 microseconds addition 455,000 per second 1
4.4 microseconds SHA1 hash (on 20-byte input) 227,000 per second 2
10.8 microseconds modular addition 93,000 per second 5
41 microseconds multiplication 24,000 per second 20
135 microseconds modular multiplication 7,400 per second 60
2.3 milliseconds modular exponentiation (exponent is 2**16+1) 440 per second 1000
5.5 milliseconds gcd 180 per second 2500
204 milliseconds modular exponentiation (1024-bit exponent) 5 per second 93000

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/bignum.pdf�
http://www.ncipher.com/�
http://www.swox.com/gmp/�
http://www.shoup.net/ntl/�
https://www.cosic.esat.kuleuven.ac.be/nessie/call/mplibs.html�
http://java.sun.com/j2se/1.4.1/docs/api/java/math/BigInteger.html�
http://www.python.org/�
http://www.swiss.ai.mit.edu/projects/scheme/�
http://www.tcs.hut.fi/~helger/crypto/�

MIT 6.857 Computer and Network Security Class Notes 4
File: http://theory.lcs.mit.edu/˜rivest/notes/divisors.pdf Revision: December 2, 2002

Divisors and Divisibility

Definition 1 (Divides relation, divisor, common divisor) We say that “d dividesa”, written d | a, if there exists an
integerk such thata = kd. If d does not dividea, we write “d 6 | a”. If d | a andd ≥ 0, we say thatd is a divisor of a.
If d | a andd | b, thend is a common divisorof a andb.

Example 1 Every integerd ≥ 0 (includingd = 0) is a divisor of0. While0 divides no integer except itself,1 is a divisor
of every integer. The divisors of12 are{1, 2, 3, 4, 6, 12}. A common divisor of 14 and 77 is 7. Ifd | a thend | (−a).

Definition 2 (prime) An integerp > 1 is prime if its only divisors are1 andp.

Definition 3 (Greatest common divisor, relatively prime) Thegreatest common divisor, gcd(a, b), of two integersa
and b is the largest of their common divisors, except thatgcd(0, 0) = 0 by definition. Integersa and b are relatively
prime if gcd(a, b) = 1.

Example 2

gcd(24, 30) = 6

gcd(4, 7) = 1

gcd(0, 5) = 5

gcd(−6, 10) = 2

Example 3 For all a ≥ 0, a anda + 1 are relatively prime. The integer1 is relatively prime to all other integers.

Example 4 If p is prime and1 ≤ a < p, thengcd(a, p) = 1. That is,a andp are relatively prime.

Definition 4 For any positive integern, we defineEuler’s phi function ofn, denotedφ(n), as the number of integersd,
1 ≤ d ≤ n, that are relatively prime ton. (Note thatφ(1) = 1.)

Example 5 If p is prime, thenφ(p) = p− 1. For any integerk > 0, φ(2k) = 2k−1.

Definition 5 The least common multiplelcm(a, b) of two integersa ≥ 0, b ≥ 0, is the leastm such thata | m and
b | m.

Exercise 1 Show that the number of divisors ofn = pe1
1 pe2

2 · · · pek
k (where thepi’s are distinct primes) is

∏
1≤i≤k

(1 +

ei).

Exercise 2 Show thatlcm(a, b) = ab/ gcd(a, b).

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/divisors.pdf�

MIT 6.857 Computer and Network Security Class Notes 5
File: http://theory.lcs.mit.edu/˜rivest/notes/flt.pdf Revision: December 2, 2002

Fermat’s Little Theorem

Theorem 1 (Fermat’s Little Theorem) If p is prime anda ∈ Z∗p, thenap−1 = 1 (mod p) .

Theorem 2 (Lagrange’s Theorem) The order of a subgroup must divide the order of a group.

Fermat’s Little Theorem follows from Lagrange’s Theorem, since the order of the subgroup〈a〉 generated bya in Z∗p is
the leastt > 0 such thatat = 1 (mod p), and|Z∗p| = p− 1.

Euler’s Theorem generalizes Fermat’s Little Theorem, since|Z∗n| = φ(n) for all n > 0.

Theorem 3 (Euler’s Theorem) For anyn > 1 and anya ∈ Z∗n, aφ(n) = 1 (mod n) .

A somewhat tighter result actually holds. Define forn > 0 Carmichael’s lambda functionλ(n) to be the least positive
t such thatat = 1 (mod n) for all a ∈ Z∗n. Thenλ(1) = λ(2) = 1, λ(4) = 2, λ(2e) = 2e−2 for e > 2,
λ(pe) = pe−1(p− 1) if p is an odd prime, and ifn = pe1

1 · · · pek
k , then

λ(n) = lcm(λ(pe1
1), . . . , λ(p

ek
k)) .

Computing modular inverses.Fermat’s Little Theorem provides a convenient way to compute the modular inversea−1

(mod p) for anya ∈ Z∗p, wherep is prime:

a−1 = ap−2 (mod p) .

(Euclid’s extended algorithm for computinggcd(a, p) is more efficient.)

Primality testing. The converse of Fermat’s Little Theorem is “almost” true. The converse would say that if1 ≤ a < p
andap−1 = 1 (mod p), thenp is prime. Suppose thatp is a large randomly chosen integer, and thata is a randomly
chosen integer such that1 ≤ a < p. Then ifap−1 6= 1 (mod p), thenp is certainly not prime (by FLT), and otherwise
p is “likely” to be prime. FLT thus provides a heuristic test for primality for randomly chosenp; refinements of this
approach yield tests effective for allp.

Exercise 1 Prove thatλ(n) is always a divisor ofφ(n), and characterize exactly when it is a proper divisor.

Exercise 2 Supposea > 1 is not even or divisible by5; show thata100 (in decimal) ends in001 .

Exercise 3 Letp be prime. (a) Show thatap = a (modp) for anya ∈ Zp. (b) Argue that(a+ b)p = ap + bp (modp)
for anya,b in Zp. (c) Show that(me)d = m (modp) for all m ∈ Zp if ed = 1 (modp− 1).

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/flt.pdf�

MIT 6.857 Computer and Network Security Class Notes 6
File: http://theory.lcs.mit.edu/˜rivest/notes/generators.pdf Revision: December 2, 2002

Generators

Definition 1 A finite groupG = (S, ·) may becyclic, which means that it contains ageneratorg such that every group
elementh ∈ S is a powerh = gk of g for somek ≥ 0. If the group operation is addition, we write this condition as
h = g + g + · · ·+ g︸ ︷︷ ︸

k

= kg .

Example 1 For example,3 generatesZ10 under addition, since the multiples of3, modulo10, are:

3, 6, 9, 2, 5, 8, 1, 4, 7, 0 .

Fact 1 The generators of(Zm, +) are exactly thoseφ(m) integersa ∈ Zm relatively prime tom.

Example 2 The generators of(Z10, +) are{1, 3, 7, 9}.

Example 3 The group(Z∗11, ·) is generated byg = 2, since the powers of2 (modulo11) are:

2, 4, 8, 5, 10, 9, 7, 3, 6, 1 .

Fact 2 Any cyclic group of sizem is isomorphic to(Zm, +). For example,(Z∗11, ·) ↔ (Z10, +) via:

2x (mod11) ←→ x (mod10) .

Theorem 1 If p is prime, then(Z∗p , ·) is cyclic, and containsφ(p− 1) generators. More generally, the group(Zn, ·) is
cyclic if and only ifn = 2, n = 4, n = pe, or n = 2pe, wherep is an odd prime ande ≥ 1; in these cases the group
containsφ(φ(n)) generators.

Finding a generator of Z∗p. If the factorization ofp − 1 is unknown, no efficient algorithm is known, but ifp − 1 has
known factorization, it is easy to find a generator. Generators ofZ∗p are relatively common (φ(n) ≥ n/(6 ln ln n) for
n ≥ 5), so one can be found by searching at random for an elementg whose order isp − 1. (Noteg has orderp − 1 if
gp−1 = 1 (mod p) butg(p−1)/q 6= 1 (mod p) for all prime divisorsq of p− 1).

Group generated by an element.In any groupG, the set〈g〉 of elements generated byg is always a cyclic subgroup of
G; if 〈g〉 = G theng is a generator ofG.

Groups of prime order. If a groupH has prime order, then every element except the identity is a generator. For example,
the subgroupQR11 = {1, 4, 9, 5, 3} of squares (quadratic residues) inZ∗11 has order5, so 4, 9, 5, and 3 all generate
QR11. For this reason, it is sometimes of interest to work with the groupQRp of squares modulop, wherep = 2q + 1
andq is prime.

Exercise 1 (a) Find all of the generators of(Z11, ·) and of(Z2k , +). (b) Letg be a generator of(Z∗p, ·); prove thatgx

generatesZ∗p if and only ifx generates(Zp−1, +).

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/generators.pdf�

MIT 6.857 Computer and Network Security Class Notes 7
File: http://theory.lcs.mit.edu/˜rivest/notes/orders.pdf Revision: December 2, 2002

Orders of Elements

Definition 1 Theorderof an elementa of a finite groupG is the least positivet such thatat = 1. (If the group is written
additively, it is the least positivet such thata + a + · · ·+ a (t times)= 0.)

1 2 3 4 5 6 7 . . . Order

1 1 1 1 1 1 1 1 . . . 1

2 2 4 1 2 4 1 2 . . . 3

3 3 2 6 4 5 1 3 . . . 6

4 4 2 1 4 2 1 4 . . . 3

5 5 4 6 2 3 1 5 . . . 6

6 6 1 6 1 6 1 6 . . . 2

⇑

Rowa columnk containsak modp for p = 7; bold-
face entries illustrate the fundamental period ofak

(mod p) ask increases. The length of this period is
the order of a, modulop. By Fermat’s Little The-
orem the order always dividesp − 1; thusap−1 is
always1 (see the column marked with an uparrow).
Elements3 and5 have orderp − 1, and so aregen-
eratorsof Z∗7. Element6 is−1, modulo7, and thus
has order2.

Fact 1 The order of an elementa ∈ G is a divisor of the order ofG. (The order|G| of a groupG is the number of
elements it contains.) Thereforea|G| = 1 in G . Thus whenp is prime, the order of an elementa ∈ Z∗p is a divisor of
|Z∗p| = p− 1, and in general the order of an elementa ∈ Z∗n is a divisor of|Z∗n| = φ(n).

Computing the order t of an elementa ∈ G. If the factorization of|G| is unknown, no efficient algorithm is known,
but if |G| has known factorization|G| = pe1

1 pe2
2 · · · pek

k , it is easy. Basically, compute the ordert ast = pf1
1 pf2

2 · · · pfk
k

where eachfi is initially ei, then eachfi is decreased in turn as much as possible (but not below zero) while keeping
at = 1 in G.

Fact 2 Whenp is prime, the number of elements inZ∗p of order d, whered | (p − 1), is φ(d). For example, since
φ(2) = 1, there is a unique square root of1 modulop, other than1 itself (it is−1 = p− 1 (modp)).

Exercise 1 Letord(a) denote the order ofa ∈ G. (a) Prove thatord(a) = ord(a−1) andord(ak) | ord(a). (b) Prove
that ord(ab) is a divisor oflcm(ord(a), ord(b)), and show that it may be a proper divisor. (c) Show thatord(ab) =
ord(a) ord(b) if gcd(ord(a), ord(b)) = 1.

Exercise 2 Show that there are at least as many elements of orderp− 1 (i.e. generators) ofZ∗p as there are elements of
any other order.

Exercise 3 Show that the order ofa in (Zn, +) is n/ gcd(a, n).

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/orders.pdf�

MIT 6.857 Computer and Network Security Class Notes 8
File: http://theory.lcs.mit.edu/˜rivest/notes/gcd.pdf Revision: December 2, 2002

Euclid’s Algorithm for Computing GCD

It is easyto computegcd(a, b). This is surprising because you might think that in order to computegcd(a, b) you would
need to figure out their divisors, i.e. solve the factoring problem. But, as you will see, we don’t need to figure out the
divisors ofa andb to find their gcd.

Euclid (circa 300 B.C.) showed how to computegcd(a, b) for a ≥ 0 andb ≥ 0:

gcd(a, b) =

{
a if b = 0
gcd(b, a modb) otherwise

The recursion terminates since(a modb) < b; the second argument strictly decreases with each call. An equivalent
non-recursive version setsa0 = a, a1 = b, and then computesai+1 for i = 2, 3, . . . asai+1 = ai−1 modai until
ai+1 = 0, then returnsai.

Example 1 Euclid’s Algorithm finds the greatest common divisor of 12 and 33 as:

gcd(12, 33) = gcd(33, 12) = gcd(12, 9) = gcd(9, 3) = gcd(3, 0) = 3 .

The equivalent non-recursive version hasa0 = 12, a1 = 33, and

a2 = a0 moda1 = 12 mod33 = 12

a3 = a1 moda2 = 33 mod12 = 9

a4 = a2 moda3 = 12 mod9 = 3

a5 = a3 moda4 = 9 mod3 = 0

Sogcd(12, 33) = 3.

It can be shown that the number of recursive calls isO(log b); the worst-case input is a pair of consecutive Fibonacci
numbers. Euclid’s algorithm (even if extended) takesO(k2) bit operations when inputsa andb have at mostk bits; see
Bach and Shallit.

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/gcd.pdf�
http://www.amazon.com/exec/obidos/ASIN/0262024055/ref=ase_weisstein-20/103-7515144-8793456�

MIT 6.857 Computer and Network Security Class Notes 9
File: http://theory.lcs.mit.edu/˜rivest/notes/xgcd.pdf Revision: December 2, 2002

Euclid’s Extended Algorithm

Theorem 1 For all integersa, b, one can efficiently compute integersx andy such that

gcd(a, b) = ax + by .

We give a “proof by example,” using Euclid’s Extended Algorithm on inputsa = 9, b = 31, which for eachai of the
nonrecursive version of Euclid’s algorithm finds anxi andyi such thatai = axi + byi:

a0 = a = 9 = a ∗ 1 + b ∗ 0
a1 = b = 31 = a ∗ 0 + b ∗ 1
a2 = a0 moda1 = 9 = (a ∗ 1 + b ∗ 0)− 0 ∗ (a ∗ 0 + b ∗ 1) = a ∗ 1 + b ∗ 0
a3 = a1 moda2 = 4 = (a ∗ 0 + b ∗ 1)− 3 ∗ (a ∗ 1 + b ∗ 0) = a ∗ (−3) + b ∗ 1
a4 = a2 moda3 = 1 = (a ∗ 1 + b ∗ 0)− 2 ∗ (a ∗ (−3) + b ∗ 1) = a ∗ 7 + b ∗ (−2)
a5 = a3 moda4 = 0

Thus Euclid’s Extended Algorithm computesx = 7 andy = −2 for a = 9 andb = 31.

Corollary 1 (Multiplicative inverse computation) Given integersn and a wheregcd(a, n) = 1, using Euclid’s Ex-
tended Algorithm to findx and y such thatax + ny = 1 finds anx such thatax ≡ 1 (modn); such anx is the
multiplicative inverseof a modulon: x = a−1 (modn).

Example 1 The multiplicative inverse of9, modulo31, is 7. Check:9 ∗ 7 = 63 = 1 (mod31).

Exercise 1 Find the multiplicative inverse of 11 modulo 41.

Exercise 2 Prove that ifgcd(a, n) > 1, then the multiplicative inversea−1 (modn) does not exist.

Exercise 3 Show that Euclid’s algorithm is correct by arguing thatd is a common divisor ofa andb if and only ifd is a
common divisor ofb and(a modb).

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/xgcd.pdf�

MIT 6.857 Computer and Network Security Class Notes 10
File: http://theory.lcs.mit.edu/˜rivest/notes/crt.pdf Revision: December 2, 2002

Chinese Remainder Theorem

When working modulo acompositemodulusn, the Chinese Remainder Theorem (CRT) can both speed computation
modulon and facilitate reasoning about the properties of arithmetic modulon.

Theorem 1 (Chinese Remainder Theorem (CRT))Letn = n1n2 · · ·nk be the product ofk integersni that are pair-
wise relatively prime. The mapping

f(a) = (a1, . . . , ak) = (a modn1, . . . , a modnk)

is an isomorphism fromZn to Zn1 × · · · × Znk : if f(a) = (a1, . . . , ak) andf(b) = (b1, . . . , bk), then

f((a± b) modn) = ((a1 ± b1) modn1, . . . , (ak ± bk) modnk)

f((ab) modn) = ((a1b1) modn1, . . . , (akbk) modnk)

f(a−1 modn) = (a−1
1 modn1, . . . , a

−1
k modnk) if a−1 (modn) exists

f−1((a1, . . . , ak)) = a =
∑

i

aici (modn) wheremi = n/ni andci = mi(m
−1
i modni) .

When n = pq is the product of two primes, working modulon is equivalent to working independently on each
component of its CRT (i.e. (modp, mod q)) representation. It can be worthwhile to convert an input to its CRT
representation, compute in that representation, and then convert back.

Example: Forn = 35 = 5 · 7 put (a mod35) in row a1 = (a mod5) and columna2 = (a mod7):

0 1 2 3 4 5 6

0 0 15 30 10 25 5 20
1 21 1 16 31 11 26 6
2 7 22 2 17 32 12 27
3 28 8 23 3 18 33 13
4 14 29 9 24 4 19 34

f(8) = (3, 1)
f(−8) = f(27) = (−3,−1) = (2, 6)
f(12) = (2, 5)
f(12−1) = (2−1, 5−1) = (3, 3) = f(3)
f(8 + 12) = f(20) = (3 + 2, 1 + 5) = (0, 6)
f(8 · 12) = f(96) = f(26) = (3 · 2, 1 · 5) = (1, 5)

Herem1 = 7, m2 = 5, c1 = 7 · (7−1 mod5) = 7 · 3 = 21, c2 = 5 · (5−1 mod7) = 5 · 3 = 15, so

f−1((a1, a2)) = 21a1 + 15a2 (mod 35) .

(Note:f(21) = (1, 0), f(15) = (0, 1).) Thus,f−1((1, 5)) = 21 + 5 · 15 = 96 = 26 (mod 35).

Speeding up Modular Exponentation.A significant application is speeding up exponentiation modulon = pq whenp
andq are known. To computey = xd modn, wheref(x) = (x1, x2):

f(y) = f(xd) = (xd
1 modp, xd

2 modq) = (x
d mod(p−1)
1 modp, x

d mod(q−1)
2 modq) .

Notexp−1
1 = 1 modp for x1 6= 0 by Fermat’s Little Theorem. Then convert back from(y modp, y modq) to y modn.

Since exponentiation takes time cubic in the input size, two half-size exponentiations are about four times faster than one
full-size exponentiation (including conversion).

Exercise 1 Prove thatx is a square modn = pq if and only if it is a square modp and modq.

1Copyright c© 2002 Ronald L. Rivest. All rights reserved. May be freely reproduced for educational or personal use.

http://theory.lcs.mit.edu/~rivest/notes/�
http://theory.lcs.mit.edu/~rivest/notes/crt.pdf�

