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Introduction to Number Theory

Elementary number theory provides a rich set of tools for the implementation of cryptographic schemes.
Most public-key cryptosystems are based in one way or another on number-theoretic ideas.

The next pages provide a brief introduction to some basic principles of elementary number theory.
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Bignum computations

Many cryptographic schemes, such as RSA, work with large integers, also known as “bignums” or “multi-
precision integers.” Here “large” may mean 160-4096 bits (49-1233 decimal digits), with 1024-bit integers
(308 decimal digits) typical. We briefly overview of some implementation issues and possibilities.

When RSA was invented, efficiently implementing it was a problem. Today, standard desktop CPU's perform
bignum computations quickly. Still, for servers doing hundreds of SSL connections per second, a hardware
assist may be needed, such as the SSL accelerators produced by wipheipher.com/

A popular C/C++ software subroutine library supporting multi-precision operatioGMB (GNU Multi-
precision packageswww.swox.com/gmp/ . A more elaborate package (based on GMP) is Shoup’s NTL
(Number Theory Libraryyjvww.shoup.net/ntl/ . For a survey, see
https://www.cosic.esat.kuleuven.ac.be/nessie/call/mplibs.html

Java has excellent support for multiprecision operations in its Biginteger class
java.sun.com/|2se/1.4.1/docs/api/java/math/Biginteger.html ; this includes a primality-
testing routine.

Pythonwww.python.org/|is a personal favorite; it includes direct support for large integers.

Schemewww.swiss.ai.mit.edu/projects/scheme/ also provides direct bignum support.

Some other pointers to software and hardware implementations can be found in the “Practical Aspects
section of Helger Lipmaa’s “Cryptology pointenaivw.tcs.hut.fir helger/crypto/=

When working onk-bit integers, most implementations implement addition and subtraction inGithé,
multiplication, division, and gcd in tim@(k?) (although faster implementations exist for very lakgeand
modular exponentation in tim@(k?).

To get you roughly calibrated, here are some timings, obtained from a simple Python program on my IBM
Thinkpad laptop (1.2 GHz PIlI processor) on 1024-bit inputs. SHA-1 is included just for comparison. The
last column gives the approximate ratio of running time to addition.

2.2 microseconds addition 455,000 per second 1
4.4 microseconds SHA1 hash (on 20-byte input) 227,000 per second 2
10.8 microseconds modular addition 93,000 per second 5
41 microseconds multiplication 24,000 per second 20
135 microseconds  modular multiplication 7,400 per second 60
2.3 milliseconds modular exponentiation (exponent is 2**16+1) 440 per second 1000
5.5 milliseconds gcd 180 per second 2500
204 milliseconds modular exponentiation (1024-bit exponent) 5 persecond 93000
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Divisors and Divisibility

Definition 1 (Divides relation, divisor, common divisor) We say that ¢ dividesa”, written d | a, if there exists an
integerk such thata = kd. If d does not divide:, we write “d f a”. If d | a andd > 0, we say thatl is adivisor of a.
If d | a andd | b, thend is acommon divisoof a andb.

Example 1 Every integei! > 0 (includingd = 0) is a divisor of0. While0 divides no integer except itselfjs a divisor
of every integer. The divisors o2 are {1, 2,3, 4,6, 12}. A common divisor of 14 and 77 is 7.df| a thend | (—a).

Definition 2 (prime) An integerp > 1 is primeif its only divisors arel andp.

Definition 3 (Greatest common divisor, relatively prime) The greatest common divispged(a, b), of two integersa
andb is the largest of their common divisors, except thad(0,0) = 0 by definition. Integers and b are relatively
primeif ged(a,b) = 1.

Example 2
ged(24,30) = 6
ged(4,7) = 1
ged(0,5) = 5
ged(—6,10) = 2

Example 3 For all « > 0, a anda + 1 are relatively prime. The integdris relatively prime to all other integers.
Example 4 If pis prime andl < a < p, thenged(a, p) = 1. Thatis,a andp are relatively prime.

Definition 4 For any positive integen, we defineEuler’s phi function ofn, denoteds(n), as the number of integers
1 < d < n, that are relatively prime ta. (Note thatp(1) = 1.)

Example 5 If p is prime, thenp(p) = p — 1. For any integerk > 0, ¢(2%) = 2F 71,

Definition 5 Theleast common multiplécm(a, b) of two integersa > 0, b > 0, is the leastn such thata | m and
b| m.

Exercise 1 Show that the number of divisorsef= p{tp3? - - - p;* (where thep;’s are distinct primes) isHKKk(l +

6,’).

Exercise 2 Show thatcm(a, b) = ab/ ged(a, b).
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Fermat’s Little Theorem

*

Theorem 1 (Fermat's Little Theorem) If pis prime anda € Z3, thena?™' =1 (mod p) .
Theorem 2 (Lagrange’s Theorem) The order of a subgroup must divide the order of a group.

Fermat’s Little Theorem follows from Lagrange’s Theorem, since the order of the subgrpgenerated by in Z; is
the least > 0 such thatz’ =1 (modp), and|Z;| = p — 1.

Euler's Theorem generalizes Fermat’s Little Theorem, sj@¢g = ¢(n) for alln > 0.
Theorem 3 (Euler's Theorem) For anyn > 1 and anya € Z;,, a®™ =1 (mod n) .

A somewhat tighter result actually holds. Define for- 0 Carmichael’'s lambda functiol(n) to be the least positive
t such thate® = 1 (modn) for all @ € Z5. ThenA(1) = A(2) = 1, A(4) = 2, A(2°) = 272 fore > 2,
A(p®) = p*~'(p — 1) if pis an odd prime, and i, = pS* - - -pi¥, then

A(n) =lem(A(pTY), ..., A(PEF)) -

Computing modular inverses.Fermat’s Little Theorem provides a convenient way to compute the modular invetse
(mod p) for anya € Z3, wherep is prime:

a'=d""? (modp).

(Euclid’s extended algorithm for computirgd(a, p) is more efficient.)

Primality testing. The converse of Fermat'’s Little Theorem is “almost” true. The converse would say that i < p
anda?~! = 1 (mod p), thenp is prime. Suppose thatis a large randomly chosen integer, and thas a randomly
chosen integer such that< a < p. Thenifa?~! # 1 (modp), thenp is certainly not prime (by FLT), and otherwise
p is “likely” to be prime. FLT thus provides a heuristic test for primality for randomly chgserefinements of this
approach yield tests effective for all

Exercise 1 Prove that\(n) is always a divisor ofy(n), and characterize exactly when it is a proper divisor.
Exercise 2 Suppose > 1 is not even or divisible by; show thata'?° (in decimal) ends i®01.

Exercise 3 Letp be prime. (a) Show that” = « (modp) for anya € Z,. (b) Argue thatla + b)? = a” + b (modp)
for anya,b in Z,. (c) Show thatm®)? = m (modp) forall m € Z, ifed =1 (modp — 1).
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Generators

Definition 1 A finite groupG = (.S, -) may becyclic, which means that it containsgeneratoy such that every group
elementh € S is a powerh = g* of g for somek > 0. If the group operation is addition, we write this condition as

—
k

Example 1 For example3 generate<Z, under addition, since the multiples ®fmodulol0, are:

3,6,9,2,5,8,1,4,7,0.
Fact 1 The generators ofZ.,, +) are exactly those(m) integersa € Z,, relatively prime tom.
Example 2 The generators ofZ1o, +) are {1, 3,7,9}.

Example 3 The group(Zi,, ) is generated by = 2, since the powers & (modulo11) are:

2,4,8,5,10,9,7,3,6,1.

Fact 2 Any cyclic group of size: is isomorphic ta(Z., +). For example(Z3,, ) < (Z1o, +) via:

2° (mod11) +— z (mod10) .

Theorem 1 If p is prime, then(Z;, -) is cyclic, and containg(p — 1) generators. More generally, the gro#.., -) is
cyclic if and only ifn = 2, n = 4, n = p®, orn = 2p°, wherep is an odd prime an@ > 1; in these cases the group
containsg(¢(n)) generators.

Finding a generator of Z;. If the factorization ofp — 1 is unknown, no efficient algorithm is known, butjif— 1 has
known factorization, it is easy to find a generator. Generato@,odre relatively commong{(n) > n/(6Inlnn) for
n > 5), so one can be found by searching at random for an elegnehibse order i — 1. (Noteg has ordep — 1 if
g""' =1 (modp) butg®®1/9 £ 1 (mod p) for all prime divisorsg of p — 1).

Group generated by an elementln any groupG, the set(g) of elements generated lgyis always a cyclic subgroup of
G; if {g) = G theng is a generator of.

Groups of prime order. If a groupH has prime order, then every element except the identity is a generator. For example,
the subgroug@R11 = {1,4,9, 5,3} of squares (quadratic residues)Zij, has order, so 4, 9, 5, and 3 all generate
QRq.1. For this reason, it is sometimes of interest to work with the gr@u), of squares modulp, wherep = 2¢ + 1

andgq is prime.

Exercise 1 (a) Find all of the generators dfZ11, -) and of (Z,, +). (b) Letg be a generator ofZ;, -); prove thatg”
generate<, if and only ifz generate$Z,, 1, +).
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Orders of Elements

Definition 1 Theorderof an element of a finite groupG is the least positive such thata® = 1. (If the group is written
additively, it is the least positivesuch thata + a + - - - + a (¢ times)= 0.)

1/2/3/4/5/6|7|..|0rder

11]1]2]1)1 1 - 1 Row a columnk containse® modp for p = 7; bold-

2121411121 4 1 2 3 face entries illustrate the fundamental periodubf
(mod p) ask increases. The length of this period is

313/216/4|5| 13 6 the order of @, modulop. By Fermat’s Little The-
orem the order always dividgs— 1; thusa? ! is

414121 21 1 | 4 3 always1 (see the column marked with an uparrow).
Elements3 and5 have ordep — 1, and so argen-

5(15/4/6|12[3|1|s 6 eratorsof Z7. Element6 is —1, modulo7, and thus
has ordep.

66|16 |16 1|6 2

i

Fact 1 The order of an element € G is a divisor of the order of5. (The order|G| of a groupG is the number of
elements it contains.) Therefo®! = 1in G . Thus wherp is prime, the order of an elemente Z,, is a divisor of
|Z,| = p— 1, and in general the order of an element Zj, is a divisor of|Z;,| = ¢(n).

Computing the order ¢ of an elementa € G. If the factorization of|G| is unknown, no efficient algorithm is known,

but if |G| has known factorizatiotG?| = pjps? - - - p;*, it is easy. Basically, compute the ordeast = p{lp£2 .- ~p£k

where eacly; is initially e;, then eachy; is decreased in turn as much as possible (but not below zero) while keeping
: .

a"=1inG.

Fact 2 Whenp is prime, the number of elements &j, of order d, whered | (p — 1), is ¢(d). For example, since
¢(2) = 1, there is a unique square root dfmodulop, other thanl itself (itis—1 =p — 1 (modp)).

Exercise 1 Letord(a) denote the order af € G. (a) Prove thabrd(a) = ord(a™') andord(a®) | ord(a). (b) Prove
that ord(abd) is a divisor oflem(ord(a), ord(b)), and show that it may be a proper divisor. (c) Show that(ab) =
ord(a) ord(b) if gcd(ord(a),ord(b)) = 1.

Exercise 2 Show that there are at least as many elements of grderl (i.e. generators) o, as there are elements of
any other order.

Exercise 3 Show that the order af in (Z,,, +) isn/ gcd(a,n).
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Euclid’s Algorithm for Computing GCD

It is easyto computeged(a, b). This is surprising because you might think that in order to comgetdéa, b) you would
need to figure out their divisors, i.e. solve the factoring problem. But, as you will see, we don’t need to figure out the
divisors ofa andb to find their gcd.

Euclid (circa 300 B.C.) showed how to compuged(a, b) for a > 0 andb > 0:
a ifb=0
ged(a,b) = { ged(b,a modb) otherwise

The recursion terminates sin¢e modb) < b; the second argument strictly decreases with each call. An equivalent
non-recursive version sets = a, a1 = b, and then computes;1 fori = 2,3,... asa;+1 = a;—1 moda, until
a;+1 = 0, then returng;.

Example 1 Euclid’s Algorithm finds the greatest common divisor of 12 and 33 as:

ged(12,33) = ged(33,12) = ged(12,9) = ged(9, 3) = ged(3,0) = 3.

The equivalent non-recursive version hgs= 12, a1 = 33, and

az = apmoda; =12mod33 =12
az = a1 modaz =33mod12=9
as = azmodas =12mod9 =3
as = azmodas =9mod3 =0

Soged(12,33) = 3.

It can be shown that the number of recursive call®{og b); the worst-case input is a pair of consecutive Fibonacci
numbers. Euclid’s algorithm (even if extended) tak¥:?) bit operations when inputs andb have at mosk bits; see
Bach and Shallit
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Euclid’'s Extended Algorithm

Theorem 1 For all integersa, b, one can efficiently compute integersindy such that

ged(a,b) = ax + by .

We give a “proof by example,” using Euclid’s Extended Algorithm on inputs: 9, b = 31, which for eacha; of the
nonrecursive version of Euclid’s algorithm finds @apandy; such that, = ax; + by;:

a = a = 9 = ax*x14+bx0
ap = b = 31 = a*x0+0bx1
az = aomoda; = 9 = (ax1+b%x0)—0x(ax0+bx1) = axl1+bx0
a3 = armodas = 4 = (ax0+bx1)—3x(a*x1+bx0) = ax*x(—3)+bx1
ag = azmodaz = 1 = (ax14+b%x0)—2x(a*x(=3)+bxl) = ax7+bx*x(—-2)
as = azmoday = 0

Thus Euclid’s Extended Algorithm computes= 7 andy = —2 for a« = 9 andb = 31.

Corollary 1 (Multiplicative inverse computation) Given integers: and a whereged(a,n) = 1, using Euclid’s Ex-
tended Algorithm to find: and y such thataz + ny = 1 finds anz such thatax = 1 (modn); such anz is the
multiplicative inverseof a modulon: = = a~! (modn).

Example 1 The multiplicative inverse ¢f, modulo31, is7. Check:9« 7 =63 =1 (mod31).

Exercise 1 Find the multiplicative inverse of 11 modulo 41.

1

Exercise 2 Prove that ifgcd(a, n) > 1, then the multiplicative inverse~ (modn) does not exist.

Exercise 3 Show that Euclid’s algorithm is correct by arguing thats a common divisor of andb if and only ifd is a
common divisor 0b and (a modb).
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Chinese Remainder Theorem

When working modulo @ompositemodulusn, the Chinese Remainder Theorem (CRT) can both speed computation
modulon and facilitate reasoning about the properties of arithmetic modulo

Theorem 1 (Chinese Remainder Theorem (CRT))Letn = nins - - - ng be the product ok integersn; that are pair-
wise relatively prime. The mapping
f(a) = (a1,...,ar) = (amodn,...,a modny)

is an isomorphism frordl,, t0 Z,,, X - -+ X Zy, : if f(a) = (a1,...,ax) and f(b) = (b1,...,bx), then
1 k

f((atb)modn) = ((a1 +b1) modni,..., (ar £ by) modny)

1 ab) modn) = ((albl) modny, ..., (arbk) modng)

f(@™'modn) = (a;' modni,...,a;" modny)ifa”' (modn) exists
fa1,...,ar)) = a= Zaici (modn) wherem; = n/n; ande; = m;(m; ' modn;) .

i

Whenn = pq is the product of two primes, working module is equivalent to working independently on each
component of its CRT (i.e. (mogd, mod g)) representation. It can be worthwhile to convert an input to its CRT
representation, compute in that representation, and then convert back.

Example: Forn = 35 = 5 - 7 put (e mod35) in row a; = (a mod5) and columm, = (e mod7):

| [ o] 1] 2] 3] 4] 5] 6] £(8) = (3,1)

O 0[15[30[10[25] 5] 20 f(=8) = f(27) = (=3,-1)=(2,6)
121 116311126 6 f(12) = (2,5

2 722 2| 17|32 12| 27 fFaz2h = (275,571 =(,3)=f(3)
3 28] 8|23 31833 13 f(8+12) = f(20) = (3+2,14+5)=(0,6)
41429 9|24 4] 19] 34 f(8-12) = f(96) = f(26) = (3-2,1-5)=(1,5)

Heremi =7,mz2 =5,c1 =7-(77'mod5) =7-3=21,cc =5-(5"'mod7) =5-3 = 15, s0
f Y(a1,a2)) = 21a1 + 15a2  (mod 35) .
(Note: f(21) = (1,0), f(15) = (0,1).) Thus,f~*((1,5)) =21 +5- 15 = 96 = 26 (mod 35).

Speeding up Modular Exponentation.A significant application is speeding up exponentiation modute pg whenp
andgq are known. To computg = =% modn, wheref(x) = (1, z2):

(xil mod (p—1) da mod (¢—1)

f(y) = f(z?) = (21 modp, z5 modq) = modp, =5 modgq) .

Noteac’l’*1 = 1 modp for z; # 0 by Fermat's Little Theorem. Then convert back fr¢gomodp, y modg) to y modn.
Since exponentiation takes time cubic in the input size, two half-size exponentiations are about four times faster than one
full-size exponentiation (including conversion).

Exercise 1 Prove thatz is a square moa = pq if and only if it is a square mog and mody.
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