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Abstract In the near future it will no longer be necessary to force
designers to make trade-offs between the benefits of open

Trusted computing (e.g. TCPA and Microsoft's Next- and closeq p!atforms. This change will come as the re-
Generation Secure Computing Base) has been one of tif!lt of ubiquitous support for trusted computing plat-
most talked about and least understood technologies ifP'ms. Trusted platforms will allow systems to extend
the computing community over the past year. The Ca_f[rust to cllent_s running on these platf_orms, t_hus_ prow_d-
pabilities trusted computing provides have the potentiaf"d the benefits of open platforms: wide availability, di-
to radically improve the security and robustness of dis-Vérse hardware types, and the ability to run many ap-
tributed systems. Unfortunately, the debate over its apPlications from many mutually distrusting sources while
plication to digital rights management has caused its sigStill retaining trust in clients.
nificant other applications to be largely overlooked. InThe vision of trusted platforms cannot be achieved with
this paper we present a broader vision for trusted comtoday’s operating systems which offer poor assurance
puting. We give an intuitive model for understanding theand implement a security model that is largely orthog-
capabilities and limitations of the mechanisms providedonal to that required for trusted computing. To meet the
by trusted computing. We describe a flexible OS archi-demands of implementing a trusted platform we outline
tecture to support trusted computing. We present a rangthe design of a new OS architecture based on the idea of
of practical applications that illustrate how trusted com-a trusted virtual machine monitor. In this model, tradi-
puting can be used to improve security and robustness itional applications and OSes can run side-by-side on the
distributed systems. same platform in either an “open box” or “closed box”
execution model in keeping with the trust requirements
imposed by the application.

1 Introduction In the next section we define and describe the compo-
nents that make up trusted computing. In Section 3 we

Many difficult problems in today’s distributed systems, Présent our approach of using a trusted virtual machine
such as preventing denial of service, performing acces§10NItor to support a mixture of open and closed box
control and monitoring, and achieving scalability, are MCJels simultaneously. In Section 4 we examine a se-
either caused or severely exacerbated by the fact thé@ctlgn of practical .area.s Wherg trus.ted' F:omputlng _can
clients are untrusted and thus potentially malicious. Thig’rovide novel functionality yielding significant benefits
forces system designers to implement most system por‘_or security, scalability and robustness. Section 5 dis-
icy and sensitive computations in the core of the systemCUSSes related work.
where trust resides, instead of at the endpoints where

most of the system’s resources and capabilities are. The

only complete solution to this problem has been the us& Trusted Platforms

of closed platforms, such as those in cellular networks

and banking systems, where special-purpose, tamper-

resistant clients are utilized that provide end-to-end trustOpen platformsare general-purpose computing plat-
This approach has demonstrated significant benefits, aforms where there is no apriori trust established between
lowing the construction of some of today’s most capablethe hardware of the platform and a third party, that could
and robust distributed systems. Unfortunately, this apbe used to prove the functionality of the platform. Exam-
proach presently necessitates the use of dedicated hardles of these include workstations, mainframes, PDAs,
ware, thus limiting designers to the use of only a fewand PCs. Open platforms possess many practical bene-
types of devices over which they must have exclusivefits over closed platforms. Unfortunately a remote party
control. cannot make any assumptions about how that platform



will behave or misbehave. between the remote server and the application will

Closed platformare special-purpose computing devices € Protected using this key.

that interact with the user via a restricted interface

(e.g. automated tellers, game consoles, and satellite réVe emphasize thatttestation must result in a shared se-
ceivers). A closed platform can authenticate itself as arfret between the application and remote padtherwise
authorized platform to a remote party using a secret keyhe platform is vulnerable to session hijacking—an at-
embedded in the platform during manufacturing. Closedacker could wait for attestation to complete, reboot the
platforms rely on hardware tamper resistance to proteciiachine into untrusted mode, and masquerade as an au-
the embedded secret key and ensure well-behaved opéforized application.

ation. Leveraging attestation requires the presence of software
Trusted platformgrovide the best properties of open and that allows the remote party to meaningfully interpret the
closed platforms. As with an open platform, trusted plat-state of the system. This takes place through a multi-step
forms allow applications from many different sources to Process whereby the hardware will attest to what oper-
run on the same platform. As with a closed platform, ating system it booted, the operating system will in turn
remote parties can determine what software is runningttest what application it requires a key for, and will only
on a platform and thus determine whether to expect théllow the use of that key by that given application.
platform to be well behaved. The process of dynami-

cally establishing that a platform conforms to the spec- jmitations of attestation. It is important to realize
ification expected by a remote party is done through g4t software attestation only tells a remote party exactly
process called attestation. what executable code was launched on a platform and
Attestationconsists of several steps of cryptographic au-establishes a session key for future interaction with that
thentication by which the specification for each layer of software component on the platform. This does not pro-
the platform is checked from the hardware up to the op-ide trustworthiness in the usual sense:

erating system and application code. At a high level, the
steps in a basic model of attestation are as follows. A ® The software component could be buggy and pro-

more detailed example is given in Section 4: duce incorrect results. The onus is on the remote
party to choose who to trust.

e A hardware platform has a signing ke¥;,,. It o Attestation provides no information about the cur-
also has a public key certificat€'{,,) for this key. rent state of the running system. For example, at-

e When an applicationt is started it first generates a testation does not show whether the software com-
public/private key paitPK 4 /SK 4. Next, the ap- ponent has been compromised by a buffer overflow
plication requests the platform to certify its public attack, infected by a virus, etc.
key PK 4. The platform uses its signing ke, e Future behavior can only be ensured for authenti-
to generate a certificate fd? /(4. We denote this cated interactions via a shared secret.
certificate byC4. Along with standard certificate ~ ® A platform is only as trusted as the tamper re-
fields, the certificat€’ 4 contains thenash of the ex- sistance of hardware and level of assurance of its
ecutable image of the applicatiad. This hash is trusted OS.

at the heart of the attestation process. The signed
certificateC'4 is returned to the application.
e When the applicatiomd wants to attest its valid-
ity to a remote server it sends the certificate chain3 An OS for Trusted Platforms
(Chw,Ca) to the remote server. The server checks
two things:
— The signatures on both certificates are valid
andC},, is not revoked, and
— The application hash embeddeddry is on
the server’s list of applications it trusts.

The vision of trusted computing falls apart when it en-
counters the realities of modern general-purpose oper-
ating systems. OSes such as Microsoft Windows and
Linux are large and complex code bases optimized over
the years for ease of use, performance, and reliability. As
At this point the server is assured th@l, comes a result they are incompatible both in design and imple-
from an application it trusts. The application can mentation with the objective of providing a high assur-
now authenticate itself by proving knowledge of ance platform. High assurance is essential as a trusted
SK 4. For example, the application and the remoteOS must instill confidence in remote parties that it can
server could run an authenticated key exchange tde relied upon to execute their code in a well-specified
generate a shared session key. All communicatiorfashion.



The protection model provided by contemporary oper-authenticate itself.
ating systems is poorly matched to the needs of trustege 1.y\Mm has total control of both the visibility and

computing. In a trusted platform the primary security e of hardware resources by the VMs. Resource man-

objective is to isolate subjects from one another. Theagement policy is specified by the platform owner di-
fine-grained resource abstractions for controlled sharingecuy to the T-VMM.

provided by typical OSes would add needless complex- ) . o .
ity to a trusted OS, thus detracting from its primary goal Storage devices are abstracted into disjoint virtual disks.
of providing securé isolation. Virtual storage can be either encrypted at the block level

by the T-VMM or left as plain text in accordance with the
The approach we advocate and have begun to explorga tormance and security requirements of the VM. Com-
in our own work on building a trusted operating system, o, nication devices such as network interface cards can
is to use a virtual machine monitor [14] (VMM). A Vir- - gjther pe virtualized or exported directly to a VM. User
tual machine monitor is a thin system software layer thajerface and display devices are multiplexed among the
exports the abstractions of virtual machines (VMs) thaty\s in such a fashion that one VM cannot observe the
look like the real hardware. user interactions of another.
The simplicity of the VMMs interface and implementa- 1, support composition of VMs and communicate be-

tion provides the means for building a high-assurancqyeen vMs, the T-VMM supports the notion of a virtual
OS that offers strong isolation [17]. VMM's also pro- geyice. A virtual device can be implemented by a closed
vide backwards compatibility, allowing existing services 4y \/\m and exported as a device to any VM. For exam-
and operating systems to realize the benefits provided bkﬁle, many closed box VMs will want to export a virtual

trusted platforms with little or no modification. USers yc or virtual serial port to allow other local VMs access
can continue to use their normal operating systems fof, their functionality.

applications that do not require trust from a remote party.
.The T-VMM supports a trusted console that allows ac-

Developers building services that require trust can utilize e

the wide range of existing secure operating systems, aFﬁ:_ess to the T-VMM. This is used to .control the aI.Iocat—
plications, etc. , thus allowing them to leverage a hugd"d hardware sources to VMs, mapping of /O devices to
amount of high quality existing code and developmentVMS’ the destruction of VMs, etc. . The console VM can

environments. bg accesseq via a trusted path. Hoyv to securely facilitate
this access in a backwards compatible and seamless way

Our trusted virtual machine monitor (T-VMM) exports g 4 question we are still are working to address.

two different types of virtual machine abstractions:

Open-box VMsare traditional virtual machines that ex-
actly match the hardware interface of the machine. They,
are used to run general-purpose operating systems suélh

as Microsoft Windows or Linux and allow the platform

owner full access to the hardware state of the VM just as/V/e Survey several areas where trusted platforms promise
in a normal open platform. to have significant impact. We discuss how the introduc-

) ) tion of trusted platforms can significantly increase the
Closed-box VMgprovide the same hardware interface asg, «tionality of existing client side technologies, such

open-box VMs. In addition, a virtual device is provided

Example Applications

hat all h d : | as distributed firewalls and massively distributed paral-
that allows them to do attestation. To platform OWNETS, g computing clients. We also look at some entirely

the closed-box VMM is a black box. They can grant qe| anplications of this technology, like those facili-

it access to resources but they cannot inspect or tampgLia hy rate limiting. We do not discuss any applications
with its contents. related to Digital Rights Management (DRM) since we
Hardware attestation needs only attest to the fact that thiénd them far less exciting that the applications discussed
T-VMM is running. For applications to attest, the attes- below.

tation virtual device can provide a closed-box VM with a Regulated Endpoints and Distributed Firewalls. Tra-
signed hash of its executable plus some attributes whicljion a1y firewalls assume that everyone on the “inside”
it can then present to a remote party to obtain a tokenyt yhe network is trusted, while everyone on the outside
encrypted under the public key of the T-VMM. The at- j5 \ntrysted. However, the increased use of wireless ac-
testation interface can then be used to decrypt this toker}:ess points, tunnels, VPN, and dial-ins breaks down the
but it will only release the token to the VM whose hash iinction between inside and outside. Given today’s in-
and attributes match those that were originally used Q.o asingly dynamic network topologies, distributed fire-

rqugst the token. This token will contain.a session keywalls [7] greatly simplify the task of implementing net-
certificate, or some other means of allowing the VM to work security policies. With a distributed firewall secu-



rity policy is defined centrally, but enforced at each in- signing. The following steps take place during initial

dividual network endpoint. This supports a richer set offirewall setup:

policies and greater scalability than traditional central-

ized firewalls [15]. o the firewall VM generates a public/private key pair
PKFV[//SKFW

e The firewall VM requests the T-VMM to sign the
hash of the executable image running inside the fire-
wall VM. Let S be the resulting signature. This
signature is the main capability used for attestation.

e The firewall VM contacts a CA and sends the pub-

On a trusted platform a distributed firewall is a sig- lic key PK ry, the signatureS, and a certified T-

nificantly more powerful primitive since it can prevent VMM public key PKv pras.

packets that violate the central security policy from ever o The CA verifies that the firewall executable im-

reaching the network in the first place. For example, the  age (whose signature iS) is an authorized fire-

distributed firewall can prevent applications that attempt wall. If so, it issues a certificat€’ E Ry for

port scanning and IP spoofing from ever reaching the net-  the firewall's public keyPK r1y,. The CA also em-

work. Similarly, the firewall can ensure that all VMs on beds the hash of the firewall executable in the cer-

the machine are properly implementing connection rate tificate. The CA encrypts the resulting certificate

limits. Hence, distributed firewalls on trusted platforms CERTpw underPKy y, and sends the resulting

can provide well-regulated endpoints for a wide variety ciphertextE[C' ERT ] to the firewall.
of different network types.

The architecture for a distributed firewall on a trusted 1 NiS completes the initial firewall setup. Note that no
platform is as follows. The distributed firewall runs in OPeN-box VM can directly us&[C ERTrw]| since it is

its own closed-box VM and listens on a virtual NIC. All €ncrypted using the T-VMM's public key. Whenever the
packets generated by open-box application VM'’s on théﬂ_rewall VM is _Iaunche_:d, it first requests the T-VMM'’s
machine are sent to the distributed firewall VM. The dis-Virtual attestation device to decrypt{C ERTrw]. The
tributed firewall ensures that these packets adhere to ths VMM does so only if the hash of the executable run-
security policy being enforced. If so, it embeds them into"iNg in the VM matches the hash insid# RTrw . If

an IPsec packet and sends them to their destination on t{Bre is a match, the firewall VM obtairSE RTrw
network. If not, the packets are blocked. The terminationhich enables it to setup IPsec tunnels Wlth remote hosts.
point of the IPsec tunnel is the closest network gatewayCOnsequently, when a remote host receives an IPsec ses-
or alternatively, the remote destination host. The IPseSiON request using’ERTryy it is assured that the re-
tunnel is only used to prove to the IPsec endpoint deduesting machine is running an authorized firewall VM.
vice that the packets are sent via the firewall VM. Con-Rate Limiting for DDOS Prevention. Rate limiting
sequently, it suffices to use the Authentication Headeran be used to address the problem of Distributed De-
(AH) in IPsec. There is no need to encrypt the packets. nial of Service (DDOS) attacks at both the network and

The main question is how does the IPsec endpoint de@Pplication levels. For example, by limiting the rate at
vice know that the sending host is running a distributedVhich client machines can issue queries in a P2P net-
firewall. At a high level, the idea is as follows: during work we defend against certain P2P DoS attacks [9]. By
initial firewall setup the distributed firewall VM uses at- lImiting the rate at which a machine can open network
testation to convince a certification authority (CA) that it €onnection we defend against certain network DDOS at-
is an authorized firewall implementing the required secu{acks [16, 10]. Finally, by limiting the rate at which ma-
rity policy. The CA issues a certificate to the firewall VM Cchines can send email we reduce the rate at which spam
enabling it to establish IPsec tunnels with peer devicesemMail is generated [11].

Without this certificate, peer devices will reject connec-Implementing a rate limiter with a trusted platform is
tion requests. Consequently, no application on the mastraightforward. On each trusted platform we run a
chine can communicate with a networked device unlessicket-granting service in a closed-box VM. The ticket-
it sends its packets through the firewall VM. granting service issues at most one ticket every time

In reality, the exact firewall VM architecture is more duantum. These tickets are content dependent. For ex-
complicated. We briefly explain the initial attestation @MPle, to limit the rate at which a P2P client issues
protocol with the CA. We are assuming that the T-qUeries we require an open-box P2P client VM to ob-
VMM on the machine has certified public/private key tin a ticket from a ticket-granting VM for every query

pairs that can be used for encryption/decryption and fol€ing sent. More precisely, prior to issuing a query, the
P2P client VM sends a hash of the query to the ticket-

On standard hosts, distributed firewalls do an excellent
job of protecting a host from others, but are of little use
for protecting others from the host—there is no way of
ensuring that the host does not simply tamper with or
bypass the firewall.



granting VM (via a virtual NIC). The resulting ticket is computations by distributed.net, SETI@home, and Fold-
attached to the outgoing query. The P2P network willing@home, (2) using leased time on commercial com-
discard any incoming queries that contain no ticket orputer farms for doing large-scale rendering and anima-
an invalid ticket. Consequently, each client machine cartion, and (3) the emerging field of grid computing that

generate at most one query every time quantum (say ewllows heavy users of scientific computing resources to
ery 5 seconds). pool and share their computing resources.

Without attestation the best known method for achievingThe difficulty with this approach to massively parallel
these types of rate limits is using client puzzles [11, 4],computation is trusting the machines doing the compu-
the practice of forcing a client to perform some costly tation to (1) produce the correct results, and (2) keep the
computation (solving a puzzle) for each request madecontents of the computation secret. Trusted platforms of-
A trusted computing solution has several major advanfer an ideal mechanism for solving both problems. Using
tages over client puzzles: no resources must be wasted ttestation, remote machines can prove that they are run-
order to generate tickets (a real consideration on mobil@ing the expected executable image, the trusted OS wiill
devices where computing expensive client puzzles coul@f course keep the computation and its associated state
present a significant power drain); users do not need tgrivate. The executable can use its token to sign and
wait for tickets to be issued; client puzzles vary heavily inencrypt the results of its computation, thus ensuring its
their impact based on the type of platform (processor angbrivacy and authenticity.
memory speeds, etc.) whereas trusted-computing basesi| | iperties Protection.
rate limiters are independent of device size or Moore’
law.

Increasingly law enforce-
Sment requires the use of network surveillance devices [1]
that can potentially infringe on civil liberties. Cur-
Improving Robustness via Reputation.Understanding rently, these devices are certified not to exceed their le-
DDOS attacks on today’s P2P storage systems requiregal boundaries by inviting a select group of experts to
considering a broad spectrum of attack types. One of theeview their design. However, there is no guarantee that
most insidious types of attacks are those based on corthe system reviewed by the experts is the one deployed
tent poisoning, where a user disseminates damaged am the field. Attestation enables us to do precisely that.
incomplete content (e.g. audio files which have artifactsBuilding such devices on a trusted platform enables the
inserted) in order to make the good content difficult orplatform to prove to third parties that the software on
impossible to find amongst the noise. the device is the one authorized to execute. Note that

One approach to solving these and other problems opur threat model excludes com_promise of_the underlying
mis-behaving users are the use of reputation Systemgamper—resstant hardware, which |s'p033|bly not beyond
These are already widely seen in use in online gamedl® reach of law enforcement agencies.

P2P file sharing systems [2], and even on eBay to ensure

the integrity of sellers. One difficulty with reputation

systems is that when users misbehave and their identity ig Related Work

tarnished they can simply apply for a new identity. With-

out extra infrastructure there is no way to tell whether

two distinct identities represent the same entity. The basic mechanisms of attestation have been well stud-
Trusted platforms provide an ideal means of buildingi€d:- Gasser et al. [13] describes an architecture which
more robust reputation systems. First, using trusted plafP®rforms a secure loading process with minimal hard-

forms we can ensure that a single hardware platfornfV@ré support to certify to a remote party the operating

represents at most one identity. Consequently, to regSyStéms and applications on a platform. Work by Tygar

ister multiple identities in a single system one would et al. [18] describes host integrity checking with secure

have to purchase multiple hardware platforms. This ap€OProcessor. More recent work by Arbaugh [6] presents
proach would thwart common attacks on reputation sys Practical architecture for secure bootstrapping that pro-
tem where a single platform registers thousands of mavides a S|m|_lar chain of mteg_rlt_y c_hecks to those required

licious identities. Second, trusted platforms simplify de-fOr attestation. However, it is important to note that

centralized reputation systems since the platform can b&cure bootstrapping and attestation are fundamentally
used to track its own reputation. different capabilities. Secure bootstrapping limits what

. : . . software can be run on a platform, whereas attestation
Third-Party Co.mputmg. Increasingly computing re- _merely reports what software a platform is running.
sources are being borrowed, leased, or donated by a third ) o . )
party. Examples of this include (1) using donated cy-Prior work has studied attestation in a relatively lim-

cles for massively parallel scientific and mathematicallt®d context, usually allowing hosts within an admin-
istrative domain to certify what OS they are running
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