
Topics Covered:

- Coin-flipping
- Proof of knowledge:
 - as identification protocol
 - definition
 - of discrete log
 - in zero knowledge

1 Coin-flipping

Alice and Bob wants to decide something on the phone. Can you flip coins on the phone?

\[
\begin{array}{cc}
\text{Alice} & \text{Bob} \\
\begin{array}{c}
b \in_R \{0,1\} \\
\end{array} & \begin{array}{c}
\text{commit}(b) \\
\end{array} \\
\hline
\leftarrow b' & b' \in_R \{0,1\} \\
\end{array}
\]

Result = \(b \oplus b' \). Both Alice and Bob cannot influence the result. They can also play other games with similar protocols.

2 Proof of Knowledge

Alice (Prover) knows \(x \) such that \(y = g^x \pmod{p} \), \(x, g, p \) are public. Alice wants to prove that she knows \(x \) to Bob (Verifier). For example, in a login system, Bob
is the computer and x is the key for identification. How to prove knowledge of x without revealing x, or any information about x?

3 Interactive Protocol

An interactive protocol is a specification of a back and forth dialogue between a Prover and a Verifier. At the end of which the Verifier either “accepts” or “rejects”. The Verifier accepts if he is convinced that the Prover knows x. The interactive protocol has multiple rounds of ‘proofs’, compared with a single one-way statement in an ordinary proof.

Completeness If P knows x, then V accepts.

Soundness If V accepts, then P knows x.

Zero-knowledge V learns nothing (zero), except that P knows x. (V learns nothing about x.) (The protocol does not leak any information about x.)

Protocol for proving knowledge of Discrete Logarithm:
Prover knows x such that $y = g^x \pmod{p}$.
Repeat the following round t times:

Prover $k \in_R Z_{p-1}$

$\xrightarrow{s = g^k \pmod{p}}$

\xleftarrow{c}

$c \in_R \{0, 1\}$

$r = k + cx \pmod{p-1}$

$\xrightarrow{sy^c \equiv g^r}$

Verifier accepts if the check $sy^c \equiv g^r$ always succeeds.

3.1 Completeness

If $c = 0$, $g^r = g^k = s = sy^0 = sy^c$.
If $c = 1$, $g^r = g^{k+x} = g^k g^x = sy^1 = sy^c$.
3.2 Soundness

If Verifier accepts, then Prover knows x.

Definition 1 A program P knows x in a given state if it is possible to easily extract x by examining P’s outputs to several different inputs (from a same given starting state).

In this case, we have:

\[
\begin{align*}
\text{input } c &= 0 & \text{output } k \\
\text{input } c &= 1 & \text{output } k + x \pmod{p - 1}
\end{align*}
\]

Thus $x \pmod{p - 1}$ is known by P. Since P has demonstrated her ability to respond to challenges, she must be prepared to respond either way.

Can she cheat?

\[
\begin{align*}
P \text{ guesses } c &= 0: & \text{pick } k & \in R \ Z_{p-1} \\
& & \text{output } s &= g^k \pmod{p} \\
& & r &= k
\end{align*}
\]

\[
\begin{align*}
P \text{ guesses } c &= 1: & \text{pick } k + x & \in R \ Z_{p-1} \\
& & \text{output } s &= g^{k + x} \pmod{p} \\
& & r &= k + x
\end{align*}
\]

She can only succeed with probability 2^{-t} by guessing the challenges (c). Therefore, P must ‘know’ x.

4 Zero-knowledge

We will show that the Verifier learns nothing about x (except that P knows x).

Definition 2 A transcript is a record of all messages, all coin flips and all public information seen by the Verifier. It is what the Verifier “takes home” when the protocol is over.
A transcript has a probability distribution depending on the random coin flips of \(P \) and \(V \). The Verifier gets a sample of transcript according to the probability distribution. However, we claim that \(V \) can sample transcripts with the same probability distribution (perfect Zero-knowledge!) on his own. This implies that \(P \) has not given \(V \) anything that \(V \) cannot get on his own, and thus \(P \) has released zero knowledge about \(x \) by engaging in the protocol (she is not worse off).

The Transcripts of the Interactive Protocol

\[
\begin{align*}
\text{s is uniform in } Z_p^* \\
\text{c is uniform in } \{0, 1\} \\
\text{r is uniform in } Z_{p-1}
\end{align*}
\]

Such that \(sy^c = g^r \)

Construction of sample transcripts without knowing \(x \)

\[
\begin{bmatrix}
\text{pick } c \in_R \{0, 1\} \\
\text{pick } r \in_R Z_{p-1} \\
\text{compute } s = \frac{r}{y^c} \ (ext{mod } p) \\
\text{output } (s, c, r)
\end{bmatrix}
\]

repeat for \(t \) rounds

Since we have an identical distribution here, an honest verifier gains zero knowledge.