
6.857 Computer and Network Security Fall Term, 1997

Lecture 7 : September 25,1997

Lecturer: Ron Rivest Scribe: Vijak Sethaput

1 Review

� Z�p is cyclic since there exist generator g s.t. fg; g2; :::; gp�1g = Z�p

� De�nition 1 Order(a): least x s.t. ax � 1 (mod p)

� (8a 2 Z�p) order(a) divides p-1

� a is a square i� a
p�1

2 � 1 (mod p)

� if a = gx for some generator g, order(a) = p�1
gcd(x;p�1)

� a � b (mod p), where a = gx; b = gy () x � y (mod p� 1)

2 Density of Primes

2.1 The Theorem

Theorem 1 Prime Number Theorem

if �(x) = The number of primes between 1 and x, then �(x) � x
ln(x)

This approximation gets better for large values of x. Informally, the theorem states

that if one picks a number less than x at random, the probablility that it is prime

approaches 1

ln(x)
. Therefore, large prime number are relatively common, so large prime

number can be found easily by random search (e.g. just picking an odd number at

random and a test for primality will terminate in a reasonable about of time)

1



2 4 DISCRETE LOG PROBLEM

2.2 Variation

For the reason that will be clear later in the discussion of security algorithms, one

may want p� 1 to have a large prime factor. This can be done by �nding large prime

q and then check p = (iq+1) where i = 2; 4; 6; :: for primility. It is not necessary that

one needs to �nd large prime q everytime.

3 Generator

Theorem 2 g is a generator (mod p) i� gp�1 � 1 (mod p)

� Problem: factor p� 1 requires knowing all prime q that divide p� 1

� Solution: One should generate primes using p = i � q + 1 e.g. 48 � q + 1

� generator are common

4 Discrete Log Problem

De�nition 2 Discrete Log Problem

x is the discrete log (base g, modulo p) of y. If given prime p, generator

g:fg0; g1; g2; ::::g(p�2)g = Z�P ,and gx (mod p) then the adversary need to �nd x s.t.

gx = y (mod p)

This problem is the foundation for many crypto system. Its security based on compu-
tational di�culties of the problem. Discrete log algorithms may be somewhat harder

if you choose p to be large enough. However, if p� 1 has only small factors, then this

problem is easy to solve.

The next sections outline mathematical problems based on cryptography. These

crypto systems are always prone to a mathematical breakthrough. There is no proof
that they are hard, so an algorithm may exist.



3

5 Public Key Cryptography

The idea for public key systems originated with Merkle at UC Berkley when he was

trying to develop an algorithm for communicating over secure lines without prior

exchange for key as we have seen so far. Merkle came up with a puzzle scheme. This

requires people who are communicating to solve just one puzzle but the adversary

has to solve many more puzzles. Berkley wasn't interested in his work, so he went to

talked to Di�e and Hellman at Standford about the idea. Di�e Hellman then came

up with the key exchange protocol which is based on the discrete Log Problem.

6 Key Exchange Protocol

Z p-1

Z p-1

gab (mod p)

Eve

Alice Bob

b

g
a

a

gb (mod p)

(mod p)

Shared Key:

Figure 1: Di�e-Hellman Key Exchange Protocol.

As shown in the �gure, Eve faces the Di�e-Hellman problem which can be state as
follows:

De�nition 3 Di�e-Hellman Problem

Given g, p, ga (mod p), gb (mod p) The adversary has to compute gab (mod p)

The nice property about this protocol is that it can bootstap the parties from no secret

key to have shared secret key using global public value. The protocol is secured base

on the fact that Discrete Log Problem is hard. However, if Eve start to be active,

there will need to be more steps added.



4 7 EL GAMEL

7 El Gamel

7.1 Setting up:

� Alice choose private key a s.t. 0 <= a < p� 1 (a 2 Zp�1)

� Alice can then compute her public key, ga (mod p) which she can then publish

somewhere

7.2 Privacy

To encrypt messages:

� Bob pick a random k s.t. 0 <= k < p� 1 (k 2 Zp�1) which corresponding to b

in Di�e-Hellman Key exchange protocol.

� Now both parties can computer their share key gka

� Bob send (c1; c2) = (gk;M � gka)

To decrypt:

� Alice can now compute thier share key, (gk)a

� The message M is then M = c2
(gk)a

= c2
(c1)a

7.3 Authentication

Signature:

The idea for signature is that only Alice can produce the signature but others just
using Alice public key, ga, can verify that k�1 (mod (p� 1)) exist.

� Alice generate a random k, 0 <= k < p� 1 and gcd(k; p� 1) = 1

� Alice then compute r = gk (mod p)

� Signature � = (r; s) where b = (M � ra)=k (mod (p� 1))



7.3 Authentication 5

Verify:

� y = ga

� yr � rs
?
= gM (mod p)

� gar � gks
?
= gM (mod p)

� gar+ks ?
= gM (mod p)

� i� M
p

= ar + ks (mod (p� 1))

Note that in this scheme the value of k need to be protected. Since, if adversary
knows k then he/she can solve for a thus �nd out the secret.


